

Dental assessment prior to orthopedic surgery: A systematic review

Sophie Barrere, Nicolas Reina, Ove A. Peters, Lucie Rapp, Jean-Noel Vergnes,

Delphine Maret

► To cite this version:

Sophie Barrere, Nicolas Reina, Ove A. Peters, Lucie Rapp, Jean-Noel Vergnes, et al.. Dental assessment prior to orthopedic surgery: A systematic review. Orthopaedics & Traumatology: Surgery & Research, 2019, 105, pp.761 - 772. 10.1016/j.otsr.2019.02.024 . hal-03484734

HAL Id: hal-03484734 https://hal.science/hal-03484734

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Review article

Dental Assessment Prior to Orthopedic Surgery: A Systematic Review

Sophie **Barrere** ^a, Nicolas **Reina** ^{b,c}, Ove A. **Peters** ^d, Lucie **Rapp** ^a, Jean-Noel **Vergnes** ^{a,e}, Delphine **Maret** ^{a,c,*}.

a Dental Faculty, Paul Sabatier University, Toulouse University Hospital (CHU de Toulouse),

3 chemin des Maraichers, 31400 Toulouse, France.

b Department of Orthopedic Surgery, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, Place du Dr Baylac TSA 40 031 31059 Toulouse cedex 9

c AMIS Laboratory - Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse, Université de Toulouse, UMR 5288 CNRS, UPS, 37 allée Jules Guesde 31000, Toulouse, France.

d Department of Endodontics, Arthur A. Dugoni School of Dentistry University of the Pacific, 2155 Webster St # 615, San Francisco, CA 94115, California, USA

e Division of Oral Health and Society, Faculty of dentistry, McGill University, 2001 McGill College, Montreal, Quebec, H3A1G1 Canada.

* Corresponding author: Delphine Maret, Dental Faculty, Paul Sabatier University, Toulouse University Hospital (CHU de Toulouse), France.

E-mail address: comtesse-maret.d@chu-toulouse.fr

Abstract

Background:

To reduce the risk of infection after orthopedic surgery, patients are asked to undergo preoperative assessments in various medical domains. However, to our knowledge, there has been no systematic review to evaluate the performance of a preoperative dental assessment before orthopedic surgery. We focus on two questions as follows: 1) is there a link between the presence of preoperative dental assessment and orthopedic infections; 2) is the probability of an orthopedic infection increased in the presence of dental risk factors and co-morbidities?

Patients and Methods:

Databases including PubMed, the Cochrane Library databases and Google Scholar were searched for English-language articles until November 2018. Inclusion criteria were descriptions of infections of joint prostheses and dental infections, and potential dental origins of pathogenic infections. Studies dealing with oral assessments performed before orthopedic surgery were included.

Results:

Based on eligibility criteria, 12 case series, 4 case-control studies and 12 cohort studies were included. In case-controls, prosthesis infection was presumably associated with a dental abscess in 6/224 of cases (2.9%). In cohort studies, exposure was defined as "any dental assessment or dental treatment performed before surgery". Even if only 4 cohort studies provide this information exposure, it would seem that the presence of an infectious complication is less frequent if the preoperative examination has been performed. Dental treatment given before surgery was mainly for scaling–polishing in 78/205 (38%), extraction in 49/205 of cases (24%) and restorative work in 37/205 (18%).

Discussion:

The literature review was made complex by the substantial heterogeneity among included studies. Although there is no formal evidence for or against preoperative dental assessment, it

is advisable to perform this with the aim of maintaining favorable oral hygiene and thus reduce the risk factors.

Level of evidence: Level III, systematic review

Keywords: dental infections; periprosthetic joint infections; preoperative dental assessment.

1. Introduction

Periprosthetic joint infection (PJI) is the most devastating burden for patients after total joint replacement [1]. The incidence of PJI varies from 0.8 to 1.9% after a primary total-knee replacement [2-4] and from 0.3 to 1.7% after total hip replacements [4-8]. Several risk factors for PJI are reported in the literature. Patient-related factors include previous revision arthroplasty or previous infection associated with a prosthetic joint at the same site, tobacco abuse, obesity, rheumatoid arthritis, neoplasm, immunosuppression and diabetes mellitus [9-12]. Postoperative risk factors include wound-healing complications (e.g., superficial infection, hematoma delayed healing, wound necrosis and dehiscence), atrial fibrillation, myocardial infarction, urinary-tract infection, prolonged hospital stay and *Staphylococcus aureus* bacteremia [2-5, 9-19]. With the aim of reducing the risk of infection after orthopedic surgery, patients are asked to undergo preoperative assessments in various medical domains. A search for infections at remote sites is also recommended as bacteremia associated with acute oral, skin, respiratory, gastrointestinal and urogenital infections are known to cause implant infections [20–22].

Focal infections of oral origin may be defined as infections occurring in various tissues or organs of the body and being caused by microorganisms (or their products) present in the oral cavity [23]. The incidence of focal infections of dental origin is reported to be in the range of 0.03 to 0.04% [24,25]. Bacteremia is the best-known type of focal infection and may occur spontaneously (from tooth brushing, mastication) or be caused by dental treatment (e.g. scaling, endodontic treatment, extraction) [26,27], which raises the question of whether or not to prescribe antibioprophylaxis before dental treatment [28-30]. Currently, antibiotic prophylaxis in oro-dental surgery is advised against [29-31]. Indeed, the associated costs and risks are disproportional to efficacy [29]. However, in the preoperative period, the orthopedic surgeon usually asks the dentist for a certificate declaring that all the patient's potential dental

infection sites have been checked and cleared. The question of how dental care should be managed for candidates for joint replacement remains unclear.

We aimed to systematically review and synthesize all the literature regarding the performance of a preoperative dental assessment before orthopedic surgery is undertaken. The aim of this literature review was to answer the following two questions: 1) Is there a link between the presence of preoperative dental assessment and orthopedic infections? 2) Is the probability of an orthopedic infection increased in the presence of dental risk factors and co-morbidities?

2. Search Strategy and Criteria

2.1 Data sources and searches

We followed the PRISMA guidelines to plan and conduct this systematic review [32]. Ethical approval for this study was deemed unnecessary because it was a systematic review the existing literature and did not involve the handling of any individual patient data.

Literature searches for English-language articles until November 2018 were carried out using PubMed, the Cochrane Library databases and Google Scholar. No limits were placed on publication dates. The search strategy was as follows: ["odontology" OR "dental infection" OR "sites of infection" OR "dental assessment"] AND ["infection of joint prosthesis" OR "hematogenous infection" OR "dental focal infection" OR "joint prosthesis"]. For each of the keywords, we also used MeSH descriptors. A manual search completed the search of electronic databases and was intended to find any additional studies from the bibliographic references in each relevant article.

2.2 Study selection

A first selection was made on the basis of the titles and abstracts of studies found in our search (Figure 1). The inclusion criteria for selecting articles were:

1) Studies dealing with oral assessments performed before orthopedic surgery;

2) Studies where the pathogens found could have been of dental origin, if reported; and

3) Studies describing infections of joint prostheses and dental infections.

Once the full articles had been retrieved, we excluded all those dealing with the following:

1) Hematogenous infections caused by dental treatment without assessment of joint prostheses. Studies that described bacteremia caused by dental treatment through extractions and periodontal treatment. However, to evaluate the relationship between dental infections and PJI, we focused on only dental infections introduced before orthopedic surgery.

2) Superficial wound infections, since infections that occurred immediately following surgery involved subcutaneous tissue, whereas PJI caused by dental infections were hematogenous.

3) Editorials and recommendations.

4) Studies where the follow-up was not continued until an infection first appeared (i.e. followup ceased as soon as the prosthesis had been placed).

2.3 Data extraction

Two authors independently (SB and JNV) scanned the titles and abstracts of potential articles. The full text was further screened and a final decision on its relevance was made. The following data were extracted from the articles: type of study (i.e. clinical trial, case series, case-control, cohort or cross-sectional), number of participants, age and gender ratio, type of prosthesis placed, whether a preoperative dental assessment was performed, pathogens involved (if provided), site of suspected oral infection, associated comorbidities.

2.4. Quality assessment

We performed a quality assessment of each study, using the Newcastle-Ottawa scale (NOS) for cohort and case-control studies [33].

3. Results

3.1 Search results

A total of 84 articles were selected from the databases, 28 of which were eligible for this review (Figure 1). Twelve articles were case series, four were case-control studies, and 12 were cohort studies. None of the clinical trials included focused on specific dental assessment or treatment on the occurrence of PJI.

3.2 Preoperative dental assessment

In case series articles, only one had provided preoperative dental assessment. For all, the remote sites implicated were cases of periodontitis in 8/29 (27%), periapical lesions or dental abscesses in 8/29 (27%), dental treatment in 6/29 (20%), tooth decay in 3/29 (10%), whereas 4/29 (10%) were unknown and 2/29 (7%) were not documented. It was not known if dentalinfection sites had been identified preoperatively in any of the cases, nor was it known how long the patients had periodontitis or periapical lesions (Table 1). Infections found were hematogenous, with a mean delay of 32.9 months between insertion of the prosthesis and the first appearance of signs of infection (range, 3 to 111 months). In case-control studies, cases were defined as patients with clinical evidence of PJI and controls were patients without evidence of PJI (Table 2). Only 1 case-control study reported preoperative dental assessment. For all case-control studies, infection of the prosthesis was associated with a dental abscess in 6/224 of cases (2.9%). In cohort studies, we considered that exposure had to be defined as "any dental assessment or dental treatment performed before surgery" (Table 3). Dental assessments mainly concerned periodontitis and dental abscesses. Only 4 cohort studies had provided the information exposure, According to the data from the 12 cohort studies, dental treatment given before surgery was for extraction in 49/205 of cases (24%), scaling-polishing in 78/205 (38%), restorative work in 37/205 (18%), crowns in 6/205 (2.9%), and scaling and root planning for apical periodontitis or endodontic treatment in 2/205 (0.9%).

3.3 Presence of dental risk factors and co-morbidities

In case series articles, patients having at least one associated comorbidity made up 17/29 (59%) of our series (Table 1). In case-control studies, the risk factors associated with jointprosthesis infections were immunodeficiency, malnutrition, obesity, diabetes, tobacco and alcohol, renal insufficiency, presence of remote infections, and previous surgical intervention at the site. Regarding the surgical procedure, the duration of surgery was considered a risk factor. For joint pathologies, more cases of rheumatoid arthritis were found in infected patients. In cohort studies, risk factors most often retrieved were a previous intervention at the surgical site, rheumatoid arthritis, diabetes, alcohol, obesity and the presence of associated comorbidities.

3.4 Quality Assessment

Tables 4 and 5 show the results of the study quality assessment. Quality assessment was performed according to the objective of the systematic review, and does not reflect the internal validity of each specific study. Overall quality of the studies was poor. Among the studies included, one was NOS score 5, four were NOS score 4, ten were NOS score 3 and one was NOS score 2. No study was found for which the main purpose was to assess the association between a pre-operative dental encounter and the occurrence of PJI.

4. Discussion

The literature was reviewed to evaluate the relevance of a dental checkup before orthopedic surgery. However, as this preoperative dental examination is still performed, we think it is important to show this difficulty in highlighting scientific arguments. To our knowledge, the present study is the first review of this subject.

As far as the limitations of this work are concerned, they stemmed from the fact that we did not find any studies initially designed to answer the question "Is there a proven link between orthopaedic infections and the presence of preoperative dental pathologies?". In fact,

most of studies included dealt with related questions ("Do the bacteria responsible for orthopedic infections originate in the mouth?", "Is there an association between orthopedic infections and oral health before or after the orthopedic surgery?" or "What is the delay between an oral problem being found and an orthopedic infection occurring?" The literature review was made complex by the substantial heterogeneity among included studies. Initial results did not make it possible to draw definite conclusions on the relationship between preoperative dental assessment and joint infections. For all studies, preoperative dental assessment is generally not documented and, if it was present, mainly concerned periodontitis and dental abscesses. Although the cohort studies revealed a slightly smaller proportion of joint infections in patients where the preoperative oral assessment was carried out, this result is difficult to confirm as very few works stated whether assessment was performed or not. Considering the heterogeneity of the studies, the small number of patients in the studies and the lack of information on conducting a preoperative dental assessment, we can't affirm that a preoperative dental examination is necessary or not. To answer the question of the necessity for preoperative assessment, more demographic data are required that may be used to compare patients for whom surgery is planned in advance and preoperative assessment is performed, and patients that receive emergency treatment where assessment cannot take place. Lampley et al. [54] reported a good example and suggested that preoperative dental assessment should be reassessed. A study of the economic impact of systematically performing a dental checkup would also be of interest.

This review reports that patients who presented with more than one associated comorbidity were at greater risk of developing an infection in an orthopedic prosthesis [60]. Tokarski et al. [61] reported that preoperative assessment was more likely to reveal dental infections that precluded joint-replacement surgery in patients who had risk factors than in those with no risk factors. However, this study lacked the advantage of hindsight on the

incidence of infections, as the follow-up period ended immediately after placement of the prosthesis. Interestingly, the authors showed a relationship between quality of oral health and quality of life. Thus, it is important to reduce the number of risk factors, a requirement that includes the need to have a healthy mouth [61]. Numerous studies have suggested links between diabetes and periodontal diseases, or between poor dental hygiene and cardiovascular diseases [62]. It is important to re-establish a good-quality oral environment in order to improve quality of life and, thus, to reduce the risk factors for developing a periprosthetic joint infection. Although there is no formal evidence for or against preoperative dental assessment, it is advisable to perform this with the aim of maintaining favorable oral hygiene and thus reduce the risk factors.

In order to guide dental surgery and to carry out a preoperative dental check-up, we could develop the recommendations for preventing heart disease. Most recent recommendations advocate for more restorative treatments, depending on a patient's risk factors and the period between dental assessment and surgery [63]. For urgent surgery (within 1 week), the elimination of active infectious sites is recommended. However, for elective surgery, recommendations have evolved and dental surgeons now have a preventive role. Active infectious sites should be eliminated but we also need to consider alternative treatments, like periodontitis management with non-surgical therapy, restorative dentistry and endodontic therapy for teeth with non-symptomatic apical periodontitis, pulpitis or pulp necrosis, or even treatment of deep caries on molars [63]. The most important aspect is that these recommendations strongly suggest close collaboration between odontologists, cardiologists and cardiac surgeons to evaluate dental health, to determine follow-up protocols and the treatments needed for patients with cardiac disease. While waiting for further studies on preoperative dental assessments, dental surgeons can implement the recommendations for cardiac disease [63,64].

5. Conclusion

Despite the lack of direct evidence of the link between dental infection and joint infection, it is nevertheless useful to maintain good oral health in the general population and to reduce the presence of risk factors that may reduce quality of life. An interesting perspective would be to study the incidence of periprosthetic infections in a group where preoperative assessment was carried out and details were recorded on the number of remaining teeth, their value, and the time between this assessment and the placement of prosthesis.

Acknowledgment: The authors thank Susan Becker for language revision.

Conflict of Interest: Dr. Reina reports personal fees from BBraun, personal fees from Stryker, personal fees from Zimmer, outside the submitted work and Dr. Vergnes reports personal fees from BBraun, personal fees from Sanofi Aventis France, Lilly France SAS and Pfizer SAS, outside the submitted work. The other authors declare that they have no competing interest.

Funding sources: None

Authors' contribution:

S Barrere, N Reina, D Maret: writing, re-reading ; O A Peters, L Rapp, JN Vergnes: rereading

References

- Reina N, Delaunay C, Chiron P, Ramdane N, Hamadouche M. Infection as a cause of primary total hip arthroplasty revision and its predictive factors. Orthop Traumatol Surg Res 2013;99:555–61.
- Jämsen E, Huhtala H, Puolakka T, Moilanen T. Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am 2009;91:38–47.
- Peersman G, Laskin R, Davis J, Peterson M. Infection in total knee replacement: a retrospective review of 6489 total knee replacements. Clin Orthop Relat Res 2001;15– 23.
- 4. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 2008;466:1710–5.
- 5. Choong PFM, Dowsey MM, Carr D, Daffy J, Stanley P. Risk factors associated with acute hip prosthetic joint infections and outcome of treatment with a rifampin based regimen. Acta Orthop 2007;78:755–65.
- Phillips JE, Crane TP, Noy M, Elliott TSJ, Grimer RJ. The incidence of deep prosthetic infections in a specialist orthopaedic hospital: a 15-year prospective survey. J Bone Joint Surg Br 2007;88:943–8.
- Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 2008;23:984–91.
- Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res 2009;467:2606–12.

- Triantafyllopoulos G, Stundner O, Memtsoudis S, Poultsides LA. Patient, surgery, and hospital related risk factors for surgical site infections following total hip arthroplasty. ScientificWorld Journal. 2015:979560.
- Zhu Y, Zhang F, Chen W, Liu S, Zhang Q, Zhang Y. Risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis. J Hosp Infect 2015;89:82–9.
- Kunutsor SK, Whitehouse MR, Blom AW, Beswick AD, INFORM Team. Patient-Related Risk Factors for Periprosthetic Joint Infection after Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. PloS One 2016;11:e0150866.
- Del Pozo JL, Patel R. Clinical practice. Infection associated with prosthetic joints. N Engl J Med 2009; 361:787–94.
- Murdoch DR, Roberts SA, Fowler Jr VG, Shah MA, Taylor SL, Morris AJ, et al. Infection of orthopedic prostheses after Staphylococcus aureus bacteremia. Clin Infect Dis 2001;32:647–9.
- Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Ilstrup DM, Harmsen WS, et al. Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 1998;27:1247–54.
- 15. Bongartz T, Halligan CS, Osmon DR, Reinalda MS, Bamlet WR, Crowson CS, et al. Incidence and risk factors of prosthetic joint infection after total hip or knee replacement in patients with rheumatoid arthritis. Arthritis Rheum 2008;59:1713–20.
- 16. Dowsey MM, Choong PFM. Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty. Clin Orthop Relat Res 2008;466:153–8.

- Marculescu CE, Mabry T, Berbari EF. Prevention of Surgical Site Infections in Joint Replacement Surgery. Surg Infect 2016;17:152–7.
- Berbari EF, Osmon DR, Duffy MCT, Harmssen RNW, Mandrekar JN, Hanssen AD, et al. Outcome of prosthetic joint infection in patients with rheumatoid arthritis: the impact of medical and surgical therapy in 200 episodes. Clin Infect Dis 2006;42:216–23.
- Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 2007;357:654–63.
- 20. Ching DW, Gould IM, Rennie JA, Gibson PH. Prevention of late haematogenous infection in major prosthetic joints. J Antimicrob Chemother 1989;23:676–80.
- 21. Bartzokas CA, Johnson R, Jane M, Martin MV, Pearce PK, Saw Y. Relation between mouth and haematogenous infection in total joint replacements. BMJ 1994; 309:506–8.
- Rubin R, Salvati EA, Lewis R. Infected total hip replacement after dental procedures.
 Oral Surg Oral Med Oral Pathol 1976; 41:18–23.
- 23. Gendron R, Grenier D, Maheu-Robert L. The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes Infect 2000;2:897–906.
- 24. Vielpeau C, Lortat-Jacob A. Les prothèses totales de hanche infectées. Rev Chir Orthop 2002 ; 88(Suppl. 5) :162-216.
- Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, et al. The human oral microbiome. J Bacteriol 2010;192:5002–17.

- Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK. Bacteremia associated with toothbrushing and dental extraction. Circulation 2008;117:3118–25.
- 27. Lockhart PB, Brennan MT, Thornhill M, Michalowicz BS, Noll J, Bahrani-Mougeot FK, et al. Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J Am Dent Assoc 2009;140:1238–44.
- Rademacher WMH, Walenkamp GHIM, Moojen DJF, Hendriks JGE, Goedendorp TA, Rozema FR. Antibiotic prophylaxis is not indicated prior to dental procedures for prevention of periprosthetic joint infections. Acta Orthop 2017;88:568–74.
- 29. Legout L, Beltrand E, Migaud H, Senneville E. Antibiotic prophylaxis to reduce the risk of joint implant contamination during dental surgery seems unnecessary. Orthop Traumatol Surg Res 2012;98:910-4.
- 30. American Dental Association Appointed Members of the Expert Writing and VotingPanels Contributing to the Development of American Academy of Orthopedic Surgeons Appropriate Use Criteria. American Dental Association guidance for utilizing appropriate use criteria in the management of the care of patients with orthopedic implants undergoing dental procedures. J Am Dent Assoc. 2017;148(2):57-59.
- 31. Sollecito TP, Abt E, Lockhart PB, Truelove E, Paumier TM, Tracy SL, Tampi M, Beltrán-Aguilar ED, Frantsve-Hawley J. The use of prophylactic antibiotics prior to dental procedures in patients with prosthetic joints: Evidence-based clinical practice guideline for dental practitioners--a report of the American Dental Association Council on Scientific Affairs. J Am Dent Assoc. 2015;146(1):11-16.

- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009;62:1006-1.
- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of non randomized studies in meta-analyses. European Journal of Epidemiology, 2010; 25:603-605.
- 34. Sonohata M, Kitajima M, Kawano S, Mawatari M. Acute hematogenous infection of revision total hip arthroplasty by oral bacteria in a patient without a history of dental procedures: Case report. Open Orthop J 2014;8:56–9.
- Bengtson S, Blomgren G, Knutson K, Wigren A, Lidgren L. Hematogenous infection after knee arthroplasty. Acta Orthop Scand 1987;58:529–34.
- Lindqvist C, Slätis P. Dental bacteremia--a neglected cause of arthroplasty infections? Three hip cases. Acta Orthop Scand 1985;56:506–8.
- Schurman DJ, Aptekar RG, Burton DS. Infection in total knee joint replacement, secondary to tooth abscess. West J Med 1976;125:226–7.
- Cruess RL, Bickel WS, vonKessler KL. Infections in total hips secondary to a primary source elsewhere. Clin Orthop Relat Res 1975;106:99–101.
- Downes EM. Late infection after total hip replacement. J Bone Joint Surg Br 1977;59:42–4.
- Ahlberg A, Carlsson AS, Lindberg L. Hematogenous infection in total joint replacement. Clin Orthop Relat Res 1978;137:69–75.

- 41. Stinchfield FE, Bigliani LU, Neu HC, Goss TP, Foster CR. Late hematogenous infection of total joint replacement. J Bone Joint Surg Am 1980;62:1345–50.
- 42. Bauer T, Maman L, Matha C, Mamoudy P. Dental care and joint prostheses. Rev Chir Orthop 2007;93:607–18.
- Kaar TK, Bogoch ER, Devlin HR. Acute metastatic infection of a revision total hip arthroplasty with oral bacteria after noninvasive dental treatment. J Arthroplasty 2000;15:675–8.
- 44. Bartz H, Nonnenmacher C, Bollmann C, Kuhl M, Zimmermann S, Heeg K, et al. Micromonas (Peptostreptococcus) micros: unusual case of prosthetic joint infection associated with dental procedures. Int J Med Microbiol 2005;294:465–70.
- Kessler B, Sendi P, Graber P, Knupp M, Zwicky L, Hintermann B, et al. Risk factors for periprosthetic ankle joint infection: a case-control study. J Bone Joint Surg Am 2012;94:1871–6.
- Kaandorp CJ, Van Schaardenburg D, Krijnen P, Habbema JD, van de Laar MA. Risk factors for septic arthritis in patients with joint disease. A prospective study. Arthritis Rheum 1995;38:1819–25.
- 47. Cordero-Ampuero J, de Dios M. What are the risk factors for infection in hemiarthroplasties and total hip arthroplasties? Clin Orthop Relat Res 2010;468:3268– 77.
- Andrews HJ, Arden GP, Hart GM, Owen JW. Deep infection after total hip replacement. J Bone Joint Surg Br 1981;63:53–7.

- 49. Aomori K, Kamada Y, Watanabe N, Fujiwara Y, Hosokawa M, Nakai M, et al. Dental examination prior to total joint arthroplasty as a means to prevent postoperative haematogenous infection. Jpn J Rheum Jt Surg 2003;22:223–8.
- 50. Barrington JW, Barrington TA. What is the true incidence of dental pathology in the total joint arthroplasty population? J Arthroplasty 2011;26:88–91.
- Grogan TJ, Dorey F, Rollins J, Amstutz HC. Deep sepsis following total knee arthroplasty. Ten-year experience at the University of California at Los Angeles Medical Center. J Bone Joint Surg Am 1986;68:226–34.
- Hamilton H, Jamieson J. Deep infection in total hip arthroplasty. Can J Surg J 2008;51:111–7.
- 53. Jacobsen PL, Murray W. Prophylactic coverage of dental patients with artificial joints: A retrospective analysis of thirty-three infections in hip prostheses. Oral Surg Oral Med Oral Pathol 1980;50:130–3.
- 54. Lampley A, Huang RC, Arnold WV, Parvizi J. Total joint arthroplasty: should patients have preoperative dental clearance? J Arthroplasty 2014;29:1087-90.
- 55. Maderazo EG, Judson S, Pasternak H. Late infections of total joint prostheses. A review and recommendations for prevention. Clin Orthop Relat Res 1988;229:131–42.
- 56. Poss R, Thornhill TS, Ewald FC, Thomas WH, Batte NJ, Sledge CB. Factors influencing the incidence and outcome of infection following total joint arthroplasty. Clin Orthop Relat Res 1984;182:117–26.

- 57. Schmalzried TP, Amstutz HC, Au MK, Dorey FJ. Etiology of deep sepsis in total hip arthroplasty. The significance of hematogenous and recurrent infections. Clin Orthop Relat Res 1992;280:200–7.
- 58. Uçkay I, Lübbeke A, Emonet S, Tovmirzaeva L, Stern R, Ferry T, et al. Low incidence of haematogenous seeding to total hip and knee prostheses in patients with remote infections. J Infect 2009;59:337–45.
- 59. Waldman BJ, Mont MA, Hungerford DS. Total knee arthroplasty infections associated with dental procedures. Clin Orthop Relat Res 1997;343:164–72.
- 60. Guillain M, Tomeno B, Courpied JP, Commissionat Y, Boukhobza F, Al-Zriquat N. Complications infectieuses des prothèses articulaires et infection bucco-dentaire rapport à l'académie nationale de chirurgie dentaire, synthèse des données bibliographiques actuelles. Actual Odonto-Stomatol 2007;375–86.
- 61. Tokarski AT, Patel RG, Parvizi J, Deirmengian GK. Dental clearance prior to elective arthroplasty may not be needed for everyone. J Arthroplasty 2014;29:1729–32.
- Loesche WJ. Association of the oral flora with important medical diseases. Curr Opin Periodontol 1997;4:21–8.
- 63. Millot S, Lesclous P, Colombier M-L, Radoi L, Messeca C, Ballanger M, et al. Position paper for the evaluation and management of oral status in patients with valvular disease: Groupe de Travail Valvulopathies de la Société Française de Cardiologie, Société Française de Chirurgie Orale, Société Française de Parodontologie et d'Implantologie Orale, Société Française d'Endodontie et Société de Pathologie Infectieuse de Langue Française. Arch Cardiovasc Dis 2017;110:482–94.

64. Cotti E, Arrica M, Di Lenarda A, Serri SB, Bassareo P, Padeletti L, Mercuro G. The perioperative dental screening and management of patients undergoing cardiothoracic, vascular surgery and other cardiovascular invasive procedures: A systematic review. Eur J Prev Cardiol 2017;24:409-425.

Figure legend

Fig 1: Flowchart of literature screening

Author/ Publication	Number of cases	Age/ gender	Comorbidities/ risk factors	Type and date of prosthesis	Antibioprophylaxis	Preoperative dental assessment	Time to onset	Type of infection	Dental infected site
Sonohata et al. [34]	1	53/ F	Nd Nd	Revision of THA Nd	Cefazolin IV	Nd	18 months	Hematogenous Str mutans gram+	Decay Str parasanguinus (oral flora)
Bengston et al. [35]	2*	56 /F 73 /F	Nd Nd	TKA 1973-1981	Nd	Nd	18 months 111 months	Hematogenous Staph aureus	Unknown
Lindqvist et Slätis [36]	3	67 /M 66 /F 84 /F	Osteoarthrosis Post-traumatic osteoarthritis Bilateral coxarthrosis	THA 1981 1982 1978(l)-1979(r)	erythromycin (-1 d to +3 d) dicloxacillin streptomycin	Nd	3 years 2 years 5years	Hematogenous Str viridans	periodontitis periodontitis periodontitis+ peri-apical lesion
Schurman et al. [37]	1	61/F	Rheumatoid arthritis	Bilateral knee arthroplasty 1973	Cephalosporin IV (d4)	Nd	2 years	Hematogenous Cocci gram+ Staphaureus	Abscess right lower incisor
Cruess et al. [38]	2*	72 /F 64 /F	NRT Degenerative arthritis	THA 1970	Nd Ampicillin + dimethoxyphenyl penicillin (preop d5)	Nd	2 years 3 months	Hematogenous Staph epidermidis non group A Str	Infected molar Nd
Downes [39]	3*	69/F 54/F 62/M	Osteoarthrosis Nd Osteoarthrosis	THA 1968(1)-1969(r) 1969 1971	Nd	Nd	1-2 years 5 years 3 years	Hematogenous Staph aureus Strβhemolytic	Parotid abscess Nd Periodontitis
Ahlberg et al. [40]	3*	76/F 70/F 39/M	Osteoarthrosis Rheumatoid arthritis Pelvo-spondylitis	THA(x2) TKA 1970 (l)-1971 (r) 1975 1973-74	Cloxacillin Cloxacillin (2w) Nd	Nd	3 years 1 year 3 years	Hematogenous Pneumococcal Strβhemolytic Staph aureus	Unknown sources
Stinchfield et al. [<mark>41]</mark>	2*	6o/M 56/F	Rheumatoid arthritis Osteoarthrosis	THA-TKA 1975 1976	Ampicillin + oxacillin	Full medical exam	5 months 1 year	Hematogenous Str group G Staph aureus	Dental abscess Tooth decay
Bartzokas et al. [<mark>21</mark>]	4	83/Nd 58/Nd 64/Nd 75/Nd	Osteoarthrosis Osteoarthrosis Osteoarthrosis History of pain after THA	Knee arthroplasty Nd	Nd	Nd	Nd	Hematogenous Str sangunis	Periodontitis + peri-apical infection Increasing periodontal pocket
Bauer et al. [42]	6	Nd	None	THA(x4)-TKA(x2) Nd	Nd	Nd	24 months 84 months 18 months 96 months 4 months 72 months	Hematogenous Str intermedius Str mitis Str adjacent Abiotrophia Str β hemolytic	Extractions Decay Care Abscess Extraction Care
Kaar et al. [43]	1	67/ M	Nd	THA revision Nd	cefazolin	Nd	11months	Hematogenous Str intermedius Str mutans	Supra gingival scaling
Bartz et al. [44]	1	63 /F	Lyme arthritis	THA Nd	Nd	Nd	9 years	Hematogenous Peptostreptococcus micros	Periodontitis Peri apical infection Infected molar

*only cases of dental or unknown sources. Nd: none documented, M: male, F: female, THA: total hip arthroplasty, TKA: total knee arthroplasty, str: streptococcus, staph: Staphylococcus

Author/ publication	cas	mber of es and itrols	Age/ gender	Articular pathology	Comorbidities	Preoperative dental assessment	Type of infection	Time to onset	Dental infected site
Peersman et al. [3]	Cases	116 prosthese s (3 excluded) (114 patients : 1 excluded) 236	Nd 1 case for 2 control s	62% : osteoarthrosis 20% : Rheumatoid arthritis 11% : osteoarthrosis post- traumatic 7% other	96% ≥6 comorbidities Comorbidities increasing the risk of infection: Prior open surgical procedure Immunosuppressive therapy Hypokalemia Poor nutrition Diverticulosis Infection elsewhere Diabetes mellitus Obesity Smoking Renal failure Hypothyroidism Alcohol abuse Operative time 80% ≥0 comorbidities	OK	14%SSI 86% deep infection 34,5% hematogenous (=56.5% late deep infection) 35% Staph aureus 15% Staph epidermidis 6% Str group B 4% Escherichia coli, Staph aureus Mr 12% others 9% poly microbial 19% unknown	<3 months 29% <3months 71%>3months	2.6% dental abscesses
	Controls	patients			Significant difference on the number of comorbidities				
<essler et<br="">al. [45]</essler>	Cases	26 patients	~ 61.4 yr 39% M 61% F	31% osteoarthrosis, 8% rheumatoid arthritis 54% osteoarthrosis traumatism 15% revision	Mean BMI 26,7 kg/m ² 7.7% diabetes mellitus 11.5% corticosteroid use 3.8% chronic renal failure 3.8% chronic heart failure 3.8% chronic skin disease 3.8% polyneuropathy 3.8% peripheral arterial occlusive disease 19% smoking	Nd	85% exogenous 15% hematogenous 35% Staph aureus (1episode cause by Mr) 31% Staph. coagulase - 15% Enterococcus 12% Enterobacter 8% Klebsiella pneumoniae. Propionibacterium acnes 4% Str milleri, Pseudomonas aeruginosa, Achromobacter spp 15% poly microbial	Mean 193d (10-3762d) 23% <90d 62% 90d-2yr 15%>2yr	3.8% dental abscess (1case)
-	controls	52 patients	~ 64 yr 39% M 61% F	31% osteoarthrosis 6% rheumatoid arthritis 64% osteoarthrosis traumatic	Mean BMI 26,5 kg/m ² 1.9% diabetes mellitus 5.7% malignant tumor 5.7% corticosteroid use 5.7% chronic heart failure 1.9% chronic skin disease 1.9% polyneuropathy 10% smoking	Nd			
	0	52 patients	~ 64.6 y 56% M 34%F	48% osteoarthrosis 2% rheumatoid arthritis 50% osteoarthrosis traumatic 2% revision	Mean BMI 275 kg/m ² 9.6% diabetes mellitus 5.7% chronic heart failure 3.8% peripheral arterial occlusive disease 21% smoking	Nd			
<aandorp et al. <mark>[</mark>46]</aandorp 	Cases	37 patients	~ 65 yr 38% M 62% F	67% rheumatoid arthritis 5% osteoarthrosis of an other site 3% ankylosing spondylitis 14% JCA, lupus erythematosus 19% osteoarthrosis hip or knee	5% malignancy 11% diabetes 3% liver disease 32% immunosuppressive therapy 86% infection (skin respiratory-urinary tract)	Nd	41% infection at surgical site 59% hematogenous 40% Staph aureus	Nd	Nd

	Controls	4870 patients	5% >8oyr 31%M 69%F	27% rheumatoid arthritis 18% osteoarthrosis hip or knee 8% ankylosing spondylitis 7% JCA, lupus erythematosus 40% osteoarthrosis of an other site 11% traumatic	1% malignancy 4% diabetes mellitus 1% renal disease 1% liver disease 13% immunosuppressive therapy 55% infection (skin, respiratory-urinary tract) 10% invasive dental procedure	Nd			
Cordero- Ampuero et de Dios [47]	Cases	47 patients	~ 81 yr 96% F 4% M ~ 67 yr 58% F 42% M	4% rheumatoid arthritis 17% post traumatic 63% osteoarthrosis 8% rheumatoid arthritis 4% other inflammatory diseases	9% previous surgery 9% obesity 26% diabetes mellitus 4% liver disease 13% corticosteroid use. 4% immunosuppressive therapy 4% thalassemia infection (skin-urinary-respiratory-abdominal) 6% previous surgery 33% obesity 25% diabetes mellitus 21% liver disease infection (skin-urinary- abdominal-respiratory-dental) 13% alcohol abuse 8% past parenteral drug abuse 13% corticosteroid use 8% immunosuppressive therapy	Nd	Late infection Late infection Infection Nd	> 3months	Nd
	Controls	200 patients	~ 84 yr 77% F 23% M ~ 64 yr 55% F 45% M	1% rheumatoid arthritis 3% post traumatic 79% osteoarthrosis 2% rheumatoid arthritis 1% other inflammatory diseases	1% obesity 18% diabetes mellitus 5% liver disease 2% corticosteroid use 4% tuberculosis 3% thalassemia infection (skin-urinary-abdominal-respiratory-dental) 6% previous surgery 19% obesity 11% diabetes mellitus 2% liver disease 3% immunosuppressive therapy 11% tuberculosis 11% tuberculosis	Nd			

Nd: none documented; M: male, F: female, str: streptococcus, staph: Staphylococcus, Mr: methicillin resistant, BMI: body mass index

Table 3: Cohort studies

Author/ Publication	Number of cases	Mean age and gender	Type of prosthesis and articular pathologies	Comorbidities and risk factors	Dental assessment	Dental treatment before orthopedic surgery	Incidence/ Type of infection	Time to onset	Dental infected site
Andrews et al. [48]	64 THA (65 infected patients : 4 died)	Nd 81.5% F 18.5% M	THA 1.8% osteoarthrosis 10.5% rheumatoid arthritis 7.2% Revision 7.7% ankylosing spondylitis 20% traumatism	Previous surgery RA anticoagulant SSI	Nd	Nd	Incidence 3.9% Early infection Late infection 17.6% hematogenous infection 32% Staph aureus 15% Staph. albus 15% Str 11% Escherichia coli 8% Proteus spp 9% Klebsiella/Enterobacter/Serratia 1% Salmonella 7% Pseudomonas 4% anaerobic	54% < 4monts 18% < 1yr 28% < 10yr	Nd
Aomori et al. [49]	105 patients (113 prostheses)	7yr (43-87 yr) 77.1% F 22.8% M	38% THA 58.4% TKA 2.6% TEA 0.9% TSA 82.3% osteoarthrosis 17.7% rheumatoid arthritis	Nd	Dental panoramic 10-48 d (mean 30 d) before prosthetic insertion 74-3% periodontitis 17% toothless	22.1% extractions o.9% scaling periodontal pocket 73.4% root plaining 4.4% decay treatments	Incidence 1.9% Staph epidermidis	0.9% 1week 0.9% 10months-1yr	Periodontitis P3 Extraction (2months before surgery) no active outbreak after surgery periodontitis (no active outbreak after surgery)
Barrington et Barrington <mark>[5</mark> 0]	100	64 yr 54% F 46% M	75% primary arthroplasty (31% THA, 44% TKA) 25% revision (15% T HA, 10% TKA) Nd	Nd	OK 23% decay of which 1% was periodontitis	32 decay treatments 26 extractions (abscess) 6 crowns 1 root treatment 1 scaling / root planning	o% of infection No infection found	<90d	None
Grogan et al. [51]	12* (13 prostheses)	Nd 41.6% M 58.3% F	TKA 84.6% primary 15.4% revision 41.6% rheumatoid arthritis 50% osteoarthrosis 8.3% lupus	Prosthesis revision Type of prosthesis	Nd	Nd	Incidence 1.71% 50% unknown 7.1%SSI 42.8% hematogenous 21.4% Staph aureus, Str micrococcus 7.1%Escherichia coli, Proteus mirabilis, P maroxella, Str viridans, Enterobacter aerogenes, Staph epidermidis, Str group A, listeria	2 weeks-40 months (mean 8.3 months) hematogenous infection. 3.5-40 months (mean 16.4 months)	No previous oral infections

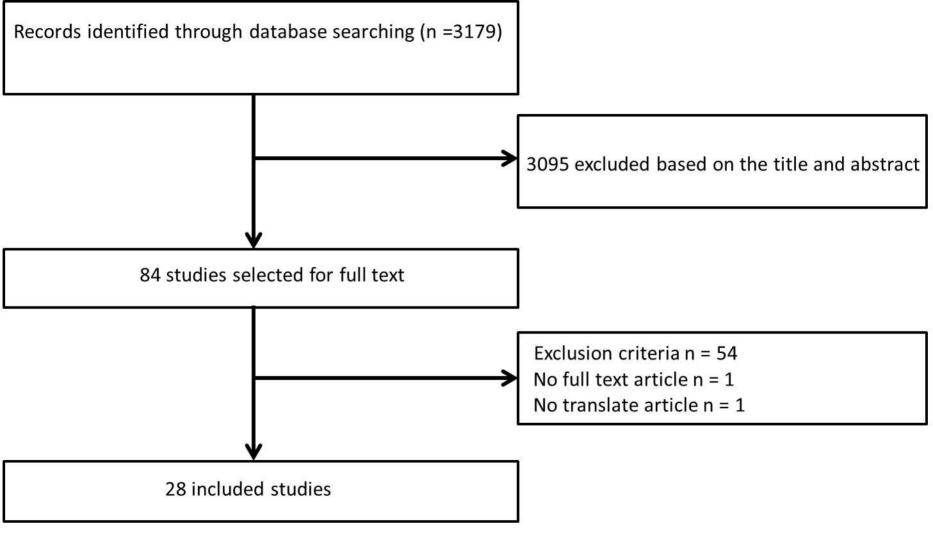
	1		erythematosus						
Hamilton et Jamieson [<mark>52]</mark>	1993 operations	Nd	THA 84% primary 16% revision	Blood transfusion type of anesthesia malignant tumor radio/ chemo immunosuppre ssive rheumatoid arthritis diabetes mellitus alcohol abuse	Nd	Nd	2% infection 31% Staph aureus 21% Staph epidermidis	Nd	Nd
Jacobsen et Murray [53] ⁹	33 (infected prostheses)	Nd	Nd	Nd	Nd	Nd	Incidence : 1.8% early infection late infection 43% Staph aureus (late infections ++) 17% Staph epidermidis 17% Pseudomonas aeruginosa 6% Str. α and Enterococcus 3% Str. γ and β, Peptostreptococcus, Candida tropicalis.	<6 months mean 34 months (17-48)	3% associated with dental site Peri apical abscess
Lampley et al. [54]	365 (dental exams)	62.4 yr (16-88) 44% M 56% F	47% TKA: -90% primary -9.4% revision -0.6% arthroplasty 53%THA: -89% primary -11% revision Nd	BMI 30.6 Comorbidity index 2	84%OK 8.8% periodontitis 6.0% toothless 1.6% no check	2% no treatment (no surgery) 6.8% treated	Incidence 1.7% 50% Staph aureus 33% Staph coagulase - 16%Pseudomonas aeruginosa 16%Peptostreptococcus magnus 16%Enterococcus faecalis 16%Str group B	< 6 months mean 68.5days (36 –166)	1 patient needed treatment before surgery
	218 (without)	78.7yr (42 - 101) 32% M 68% F	63%THA 37% hemi HA Nd	BMI 24 Comorbidity index 3-7	none	none	Incidence 2.5% Staph coagulase -	< 1 month mean 16 days (9-28)	None
Maderazo et al. [55]	24 (late infections)	56 yr (27-86)	58%THA 46%TKA 46% osteoarthrosis 29% rheumatoid arthritis 21% traumatism 4% vascular necrosis (radiotherapy) 4% rheumatoid arthritis juvenile	Nd	Nd	Nd	Incidence 1.7% 42% hematogenous. 46% SSI propionibacterium Staph. epidermidis Staph aureus	12 months – 6 yr	Periapical abscess Periodontitis (extractions) extractions
Poss et al. [56]	4240 (prostheses)	65 yr (OA) 55 yr (RA) Nd	2012 THA 1957 TKA (metal-plastic) 156 TKA	Prosthesis revision (risk x8) RA (risk x 2.6)	done	Nd	Incidence: 1.3% 49% early 32% late 10% uncertain	Some days-5 yr 4 months- 9 yr	Gingivitis

			(metal-metal) 115 TSA 90% osteoarthrosis + rheumatoid arthritis 10% others				50% Staph aureus 9.6% Staph. epidermidis, Diphtheroids 15% Str group B 1.9% Lactobacillus 5.7% Klebsiella, Pseudomonas 7.6% Escherichia coli		
Schmalzried et al. [57] ²	43 (47 prostheses ÷ in 3 groups according to the surgery)	50yr (periope rative contami nation) 49 yr (hemat ogenou s) 47 yr Repeat infectio n 53% F 47% M	THA 15% osteoarthrosis 13% osteonecrosis 11% rheumatoid arthritis 4% congenital dysplasia of the hip	Systemic disease: 38% surgical contamination 74% hematogenous 38% repeat infection	Nd	Nd	Incidence 1.5% o.4% perioperative contamination o.6% hematogenous o.4% repeat infection 33% Staph aureus 16% Escherichia coli 13% Staph epidermidis, Pseudomonas 6% polymicrobial	mean 20 months (1-60) mean 40 months (1- 96) mean 42 months (1- 84)	1 patient (Nd)
Uçkay et al. [58]	6101	69.9 yr Nd	66% THA 34% TKA 7% revision 93% primary arthroplasty polymyalgic revision rheumatoid arthritis lupus erythematosus	malignant tumur diabetes mellitus alcohol abuse renal insufficiency BMI ASA 3-4 revision	Nd	Nd	Incidence: 1.2% (1.1%THA / 1.2%TKA) 10% hematogenous 29.6% early 33.8% delayed: 28.6% hematogenous 36.6% late: 71.4% hematogenous 42% Escherichia coli 8.6% Staph aureus, Klebsiella 5% Bacteroides fragilis, Str pneumoniae 3.7% Enterococcus faecalis, Proteus mirabilis, Str bovis 1.2% Str oralis	Mean 33 months (6-67) < 3 months >24 months	Dental abscess (3 cases)
Waldman et al. [<mark>59]</mark>	9*	65 yr (56-76) 67% F 33% M	TKA 22% rheumatoid arthritis 44% osteoarthrosis	33% diabetes mellitus 22%corticoster oid use	Nd	Nd	Incidence: 2.1% late deep infection 33% Str viridans 22% Peptococcus 11% Staph aureus Mr, Str mutans, Serratia marcescens	mean 72 months (26-95)	Periodontitis Periodontal abscess

*12 infected patients for 604 patients (801 prostheses)

**9 patients had undergone dental treatments with respect to the infection included in the 3490 TKA implanted, of which 74 TKA infected Nd: none documented, M: male, F: female, THA: total hip arthroplasty, TKA: total knee arthroplasty, TSA: total shoulder arthroplasty, TEA: total elbow arthroplasty str: Streptococcus, staph: Staphylococcus, Mr: Methicillin resistant, BMI: body mass index

Table 4: Study Quality assessment using Newcastle-Ottawa scale for cohort studies.


Study, year		Selecti	on		Comparability of cohorts (matched for)		Total score		
	Representativeness of exposed cohort	Selection of non exposed cohort	Ascertainment of exposure	Outcome not present at baseline	-	Assessment of outcome	Sufficient follow-up duration	Adequate follow-up	-
Andrews [48]	-	-	-	-	-				3
1981 Aomori [49] 2003	-	-			-			-	4
Barrington [50]	-	-			-		-	-	3
2011 Grogan [51]1986	-	-	-		-				4
Hamilton [52] 2008	-	-	-		-			-	3
Jacobsen [53] 1980	-	-	-		-			-	3
Lampley [54] 2014	-	-			-				5
Maderazo [55] 1988	-	-	-		-			-	3
Poss [56] 1984	-	-	-	-	-				3
Schmalzried [57] 1992	-	-	-	-	-				3
Uçkay [58] 2009	-	-	-		-				4
Waldman [59] 1997	-	-	-		-				4

NB: Quality assessment is performed according to the objective of the systematic review, and does not reflect the internal validity of each specific study.

Table 5: Study Quality assessment using Newcastle-Ottawa scale for case-control studies

Study, year	Adequate definition of case	Representativeness of cases	Selection of control	Control for important factor or additional factor	Exposure assessment	Same method of ascertainment for cases and controls	Non response rate	Total score
Peersman [3]				-	-	-	-	3
2001								
Kessler [45]				-	-	-	-	3
2012								
Kaandorp	-		-		-	-	-	2
[46] 1995								
Cordero-				-	-	-	-	3
Ampuero [47]								
2010								

NB: Quality assessment is performed according to the objective of the systematic review, and does not reflect the internal validity of each specific study.

