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Abstract— This communication presents the underlying 

principles of the new version of Open-PSA model exchange 

format, which relies on the S2ML+X paradigm. S2ML stands 

for System Structure Modeling Language. It unifies structuring 

constructs coming from object-oriented and prototype-oriented 

programming languages. The new version of Open-PSA format, 

based on S2ML for its structural part, improves very 

significantly the previous one. Both its theoretical foundations 

and examples of use are provided.  
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I. INTRODUCTION 

In 2008, the description of the Open-PSA model exchange 
format was published by Steven “Woody” Epstein and 
Antoine Rauzy [1]. The design of this format resulted from a 
joint effort of a small group of researchers, tools developers 
and expert safety analysts (mostly coming from the nuclear 
domain). The primary goal was to improve the quality of 
probabilistic risk and safety assessment models by proposing 
an XML format making it possible to exchange seamlessly 
fault trees and event trees from one tool to the other. This, in 
turn, makes it possible to cross check results, to facilitate peer 
reviews and more generally to allow new ideas to be tested. 
Technically, the project has been a success. The format has 
been validated [2]. Several tools adopted it, e.g. [3], and new 
ideas were proposed, see e.g. [4]. 

However, it is time to revisit the format, for two categories 
of reasons. First, XML has the drawbacks of its advantages: it 
is easy to parse by computer programs, but definitely 
unreadable by humans. It is thus of importance to propose an 
analyst a friendly version of the format so to facilitate its 
adoption. Second and more importantly, very significant 
progresses have been made recently in the design of 
behavioral modeling languages, notably via the introduction 
of the paradigm S2ML+X [5]. This communication presents 
the underlying principles of the new version of the Open-PSA 
format, which relies on this paradigm, and is now based on 
both textual and XML forms. 

Any behavioral modeling language results from the 
combination of an underlying mathematical framework and a 

set of constructs to structure models. The choice of the 
underlying mathematical framework fully depends on which 
aspect of the behavior of the system under study one wants to 
capture. In the case of probabilistic risk and safety analyses, a 
good comprise consists for instance in using systems of 
stochastic Boolean equations. Fault trees and reliability block 
diagrams are typically interpreted as such systems. 

The choice of the set of structuring constructs is to a very 
large extent independent of the one of the underlying 
mathematical framework. The new version of Open-PSA 
format relies on S2ML (System Structure Modeling 
Language), which is such a set of constructs that gathers in a 
unified and coherent way ideas stemmed from object- and 
prototype-oriented programming [6]. This opens new 
perspective to probabilistic risk and safety analyses. By 
implementing the model-as-script principle, the new version 
of the format makes easier the design, the debug and the 
maintenance of models. Even more importantly, it provides 
the technical infrastructure to better capitalize knowledge 
from project to project. It is worth to notice that the 
AltaRica 3.0 modeling language [7] already relies on S2ML. 

The remainder of this article is organized as follows. 
Section II presents a case study used to illustrate different 
concepts of the new Open-PSA format. Section III introduces 
the paradigm “S2ML+Boolean equations” and describes the 
new syntax of the Open-PSA format. Section IV gives an 
overview of different architectural views of the case study. 
Section V presents the model of the case study using fault 
trees and section VI reliability block diagrams. Finally, 
section VII concludes this article. 

II. CASE STUDY: OVERFLOW PROTECTION SYSTEM 

Consider a safety instrumented system given 
Fig. 1Erreur ! Source du renvoi introuvable.. The goal of 
this system is to protect the tank from an overflow. 

The system is composed of two safety barriers: 

 The primary prevention barrier, which contains a 
sensor LS1, a controller C and a shutdown valve 
SDV1; 
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 The backup safety barrier made of a sensor LS2, a 
controller C, a shutdown valve SDV2 and a discharge 
valve DV. 

 

 

Fig. 1. Overflow protection system 

When LS1 detects that the liquid level is too high, it sends 

the information to the controller that orders to shut down the 

valve SDV1. If the primary safety barrier is not operational, 

the backup one is used: the sensor LS2 detects the overflow of 

the tank, sends the information to the controller, which orders 

to shut down the valve SDV2 and to open the discharge valve 

DV. Note that the failure of the controller causes the loss of 

the primary and the backup safety barriers.   

In the following, consider that failures of components obey 

exponential distribution with a failure rate λ= 0.0001. 

The feared event is the overflow of the Tank, which occurs 

when there is an overflow and the overflow protection system 

is failed. 

We use this case study throughout this article to illustrate 

different concepts of the new Open-PSA format.  
 

III. S2ML + BOOLEAN EQUATIONS 

A. System Structure Modeling Language (S2ML) in a 

glance 

The new version of Open-PSA format is based on S2ML. 
S2ML stands for System Structure Modeling Language [6]. It 
unifies concepts to structure models coming from object-
oriented and prototype-oriented programming languages.  

The basic structural construct in S2ML is a block, also 
called a prototype. A block is a container for variables, 
parameters and all the other modeling artifacts. The simplest 
structuring relation is the composition. A block may be 
composed of several other blocks. Classical safety analysis 
formalisms, such as fault trees and reliability block diagrams, 
use only blocks and composition for structuring models.  

In order to be able to reuse blocks, structured 
programming languages introduce the notions of class and 
instantiation of classes. A class is a reusable “on-the-shelf” 
block, which is stored in a library and can be reused 
everywhere in the model via instantiation. 

In some cases, it is necessary to modify or to extend a 
modeling unit (a class or a block) without instantiation. It can 
be achieved via inheritance relation introduced in object-
oriented programming languages. If a modeling unit A 
inherits from a modeling unit B, then A contains all the 
characteristics of B and adds some new characteristics. 

There are cases where the same component is used in 
several places or to contribute to different functions of the 
system. In other words, a modeling unit is shared between 
several other modeling units. This kind of “uses” relation 
between modeling units is called aggregation. 

In object-oriented programming languages, the reuse of 
modeling units is done by means of instantiation of classes. In 
modeling languages using only blocks (called prototype-
oriented languages), the reuse of blocks is also possible. It is 
achieved via the notion of cloning. If a block A is a clone of a 
block B, then the block A has exactly the same characteristics 
as the block B.  

To summarize, there are the following constructs to 
organize and structure models: 

 Two types of modeling units: block and class; 

 Three structural relations: composition, inheritance 
and aggregation; and 

 Two mechanisms making possible to reuse modeling 
elements: prototype/cloning and class/instantiation. 

These constructs originate from programming languages 
(see TABLE I. ).  

TABLE I.  STRUCTURING CONSTRUCTS 

Structuring 

paradigm 

Structural constructs Formalisms 

Block diagrams Blocks  +  composition Fault Trees, 

Reliability Block 
Diagrams 

Structured 
programming 

Classes  +  composition 
 

Object-oriented 

programming 

Classes + composition + 

inheritance 

 

Prototype-
oriented and 

object-oriented 

programming 

Blocks + Classes + 
composition + 

inheritance + aggregation  

+  cloning 

S2ML, 
AltaRica 3.0, 

new Open-PSA 

format 

 

In the sequel, we show how these concepts are introduced 
in the new version of Open-PSA format. Their textual form 
will be presented; nevertheless their dual XML form also 
exists, as for the previous version of Open-PSA. 

B. Basic components of Open-PSA models 

Basic components of Open-PSA models are: 

 Blocks that contain declarations of other objects of the 
model; 

 Declarations of states, representing basic events; 

 Declarations of flows, representing intermediate 
events; 

 Declarations of sources, representing house-events; 
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 Finally declarations of parameters of probability 
distributions.  

1) Blocks 
Blocks are basic containers of the Open-PSA modeling 

language. They are prototypes. Blocks contain declarations of 
parameters, states, flows and sources (and other modeling 
elements described later). 

A block declaration always starts with the keyword 
“block”, followed by the name of the block. It finishes with 
the keyword “end”. See, for example, Fig. 2. 

Note that, within a block, all modeling elements must have 
a different name, even though they are of different types (for 
example, a state and a parameter). Elements can be declared 
in any order. 

2) States and parameters 
States are Boolean variables. They play the role of basic 

events of fault trees and are associated with a probability 
distribution. States are declared one at a time, even though two 
states have the same probability distribution. The declaration 
of states starts with a keyword “state”, followed by the name 
of the state. Then comes the sign “=”, followed by the 
probability distribution. The declaration ends with “;”. 

Probability distributions associated with states (basic 
events) may contain parameters. Parameters are real-valued 
variables. Declarations of parameters are similar to those of 
states, except they start with the keyword “parameter”. 

 

1 

2 

3 

4 

5 

6 

7 

block Valve 

 state failed = 0.001 ; 

 state stuck = exponential lambda ; 

  

 parameter lambda = 0.0001 ; 

 // … 

end 

Fig. 2. Example of a block declaration. 

In the example given Fig. 2, the block “Valve” contains 
the declarations of two basic events and a parameter. The basic 
event “failed” (defined line 2) has a constant probability 
distribution equal to 0.001. The basic event “stuck” (defined 
line 3) obeys the exponential probability distribution with a 
parameter “lambda” defined line 5. The parameter “lambda” 
equals to 0.0001.  

Note that a parameter can be used in several probability 
distributions and therefore is shared by several state variables. 

3) Probability distributions 
Probability distributions are defined by stochastic 

expressions. Stochastic expressions are arithmetic expressions 
involving special operators (built-ins) to represent the most 
popular probability distributions. They may depend on 
parameters, themselves defined by stochastic expressions.  

The following stochastic expressions are available: 

 Floating point numbers; 

 Parameters; 

 Special distributions (exponential, Weibull, periodic).  

4) Flows 

Flows are Boolean variables. They play the role of 
intermediate events of fault trees and are associated with 
Boolean formulae. Like states and parameters, flows are 
declared one at a time. The declaration of flows starts with the 
keyword “flow”, followed by the name of the flow. Then 
comes the sign “=” followed by the Boolean formula (its 
definition). The declaration ends with “;”. 

A flow depends on the variables that occur in its definition.  

The following Boolean formulae are considered: 

 References to another variable; 

 Constants true and false; 

 Operators (for example, or, and, atleast, not, etc.).  

C. Structuring constructs 

As we have seen earlier, classical safety analysis 
formalisms, such as fault trees and reliability block diagrams 
only use blocks and composition as structural constructs. 
S2ML provides more structural constructs. We show how they 
can be used in the context of the new Open-PSA format. 

1) Composition 
A block is a container for flows, connections and other 

blocks. Each block is a prototype: it has a unique occurrence 
in the model. 
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block SIS 

 block InflowPipe 

  /* body of the block InflowPipe */ 

 end 

 block Tank 

  /* body of the block Tank */ 

 end 

 block ControlRoom 

  /* body of the block ControlRoom */ 

 end 

 block OutflowPipe 

  /* body of the block OutflowPipe */ 

 end 

 block DischargePipe 

  /* body of the block DischargePipe 

*/ 

 end 

end 

Fig. 3. Example of composition. 
 

In the example given Fig. 3 the block “SIS” (representing 
the Safety Instrumented System described in section II) is 
composed of blocks “InflowPipe”, “Tank”, ControlRoom”, 
“OutflowPipe” and “DischargePipe”. 

2) Cloning 
A system may contain similar components, for example 

sensors or valves. A first way to avoid duplicating the 
description of a block consists in cloning an already existing 
block. 

In the example given Fig. 4 the block “Tank” contains two 
blocks representing the sensors “LS1” and “LS2”. The block 
“LS1” is declared lines 2-5. It contains a state variable (basic 
event) “failed” with a constant probability distribution and a 
flow (intermediate event) “out” equal to “failed”. The block 
“LS2” is a clone of the block “LS1” (declared lines 6-7). It 
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has exactly the same structure as “LS1”, except for the basic 
event probability, which is different (it is declared line 7). 
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block Tank 

 block LS1 

  state failed = 0.0001; 

  flow out = failed; 

 end 

 clones LS1 as LS2 

  state failed = 0.002;   

 end 

end 

Fig. 4. Example of cloning. 

3) Classes and instances 
A second way to avoid duplicating the description of a 

block consists in declaring a model of the duplicated block in 
a separate modeling entity, called class, and then in 
instantiating this class in the model. 

In the example given Fig. 5, the class “Sensor” is defined 
lines 1-4. It contains a state variable (basic event) “failed” 
with a probability equal to 0.0001 and a flow (intermediate 
event) “out” equal to “failed”. Inside the block “Tank” the 
class “Sensor” is instantiated twice to create “LS1” and 
“LS2” (see lines 7-8).  
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class Sensor 

  state failed = 0.0001; 

  flow out = failed; 

end 

 

block Tank 

  Sensor LS1; 

  Sensor LS2; 

end 

Fig. 5. Example of instantiation of classes. 
 

4) Inheritance 
Aside the composition, the object-oriented paradigm 

provides also an inheritance mechanism. A class or a block 
can inherit the content of another class (or another block in the 
same modeling entity).  

In the example given Fig. 6, the class “BasicComponent” 
is defined lines 1-3. It contains only a state variable (basic 
event) “failed”. The class “Valve” inherits from the class 
“BasicComponent” (declaration line 6). It means that the 
class “Valve” contains all the elements of the class 
“BasicComponent” (the state variable “failed” with its 
probability) and adds new elements: two flows (intermediate 
events) “in” and “out” with their definitions (see lines 7-8). 
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class BasicComponent 

  state failed = 0.0001; 

end 

 

class Valve 

  extends BasicComponent; 

  flow in = false; 

  flow out = in and (not failed); 

end 

Fig. 6. Example of inheritance. 

 

5) Aggregation 
To represent the fact that the same component is used in 

several places or to contribute to different functions of the 
system, the aggregation is used. It is introduced by the 
keyword “embeds”, followed by a path to the element to 
aggregate, followed by the keyword “as” and the name (alias) 
of the element. An example is given in section IV.D. 

IV. ARCHITECTURE VIEWS 

System architecture is an emerging discipline that 
provides a conceptual framework making it possible to merge 
in a coherent way all of the point of views on a system, and to 
reason about the system in an accurate way relying on 
approach by levels of abstraction. System architects apply 
methodologies that involve the design of models. These 
methodologies are often called architecture frameworks. For 
example, the CESAMES method for systems architecting [8] 
considers three different abstraction levels of a system: the 
operational level, the functional level and the physical level 
(see Fig. 7). 

The operational level is the analysis of the environment of 
the system. It considers the system (more or less) as a black 
box and models the interactions of the system with the 
external systems. The result of the operational analysis is thus 
a description of the missions of the system, i.e. of the services 
it provides to its users.  

 

 
Fig. 7. CESAM system architecture pattern. 
 

The functional level is an abstract analysis of the inside of 
the system. It considers the system as a white box and models 
abstract functions/capacities of the system.  

Finally, the physical level is a concrete analysis of the 
inside of the system. It considers also the system as a white 
box and models the concrete components of the system, in 
terms of hardware, sofware and human elements. The physical 
level describes thus the concrete resources the system 
involves.  

Models produced at the three different levels are strongly 
connected. The operational level is connected with the two 
other levels because missions are naturally implemented by 
functions and by components. The functional level is 
connected with the physical level because each (abstract) 
function must be concretely allocated to, or implemented by, 
some set of physical components. In the reverse way, physical 
components implement functions, which are required by 
missions. 
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Safety analyses need to gather in the same model 
operational, functional and physical aspects of the system 
under study. Typically, the top event of a fault tree represents 
the loss of a function/capacity, i.e. the incapacity to 
accomplish a mission, and the basic events represent the 
failures of physical components. 

In the following, we use the CESAMES architecture 
framework to create safety models of the case study presented 
in section II with the new Open-PSA format. 

A. Functional architecture 

Fig. 8 shows the functional architecture of the overflow 
protection system presented in Section II. Functions are 
decomposed into sub-functions. These sub-functions are 
themselves decomposed into sub-sub-functions and so on 
until the suitable granularity is reached. The result is a tree-
like structure. However, some nodes may be shared by several 
branches, for example to represent support functions like 
power supply. 

 

 

Fig. 8. Functional architecture of the overflow protection system. 
 

B. Physical architecture 

Fig. 9 shows a physical architecture of the overflow 
protection system. The system is decomposed into sub-
systems. These sub-systems are themselves decomposed into 
sub-sub-systems and so on until the suitable granularity is 
reached. 

 

Fig. 9. Overflow protection system physical architecture. 

 
Note that several physical decompositions of the system 

may be possible, depending on the point of view. In this 
article, we are interested in the safety analysis of the studied 
system.  

C. Allocation of functions to components 

TABLE II. shows the allocation of functions to physical 
components for the overflow protection system. 

TABLE II.  OVERFLOW PROTECTION SYSTEM: ALLOCATION OF 

FUNCTIONS TO PHYSICAL COMPONENTS 

Functions Components 

Primary 
safety 

barrier 

Level measure  Sensor LS1 

Control  Controller C 

Level reduction Inflow reduction Valve SDV1 

Back-up 

safety 
barrier 

Level measure  Sensor LS2 

Control  Controller C 

Level reduction Inflow reduction Valve SDV2 

Discharge Valve DV 

 

D. Open-PSA model of the overflow protection system 

First, we represent the physical architecture of the system 
under study. Its safety model is given Fig. 10. The block “SIS” 
(Safety Instrumented System) is composed of 5 blocks 
“InflowPipe”, “Tank”, “ControlRoom”, “OutflowPipe” 
and “DischargePipe”. The block “InflowPipe” is composed 
of two instances of the class “Valve”, defined Fig. 6. The 
block “Tank” contains two instances of the class “Sensor” 
defined Fig. 5. The block “ControlRoom” contains a block 
“Controller” defined lines 9-14. The block “DischargePipe” 
contains an instance of the class “Valve” named “DV”.  

Note that the model given Fig. 10 has the same 
decomposition as the physical architecture depicted Fig. 9. 
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block SIS 

 block InflowPipe 

  Valve SDV1, SDV2; 

 end 

 block Tank 

  Sensor LS1, LS2; 

 end 

 block ControlRoom 

  block Controller 

    state failed = exponential lambda; 

    parameter lambda = 0.0001; 

    flow in = false; 

    flow out = in and (not failed); 

  end 

 end 

 block OutflowPipe 

 end 

 block DischargePipe 

  Valve DV; 

 end 

end 

Fig. 10. Safety model: physical architecture view. 
 

Second, a safety model of the functional architecture is 
defined. Fig. 11 represents the functional view of the safety 
model of the overflow protection system. The block 
“OverflowPrevention” contains two blocks 
“PrimarySafetyBarrier” and “BackupSafetyBarrier” and a 
flow (intermediate event) “lost”, which represents the loss of 
the capacity to prevent the overflow. The value of “lost” is 
true when both “PrimarySafetyBarrier” and 
“BackupSafetyBarrier” are lost. 
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block OverflowPrevention 

 block PrimarySafetyBarrier 

  /* … */  

  flow lost = …; 

 end 

 block BackupSafetyBarrier 

  /*… */ 

  flow lost = …; 

 end 

 flow lost = PrimarySafetyBarrier.lost 

          or BackupSafetyBarrier.lost; 

end 

Fig. 11. Safety model: functional architecture view. 
 

The link between functional and physical views of the 
overflow protection system is shown Fig. 12. The block 
“OverflowProtectionSystem” contains two blocks: “SIS” 
given Fig. 10, and “OverflowPrevention”, representing the 
functional view of the system. As explained earlier, this 
function is decomposed in two functions. The model of the 
block “PrimarySafetyBarrier” is given. The model of the 
block “BackupSafetyBarrier” is quite similar.  
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block OverflowProtectionSystem 

 block SIS 

 /* body of the block SIS, 

    see Fig. 10 */ 

 end 

 

 block OverflowPrevention 

  block PrimarySafetyBarrier 

 

   block LevelMeasure 

    embeds main.SIS.Tank.LS1 as S; 

    flow lost = S.failed; 

   end 

 

   block Control 

    embeds main.SIS.ControlRoom.C 

          as C; 

    flow lost = C.failed; 

   end 

 

   block LevelReduction 

    embeds main.SIS.InFlowPipe.SDV1 

           as A; 

    flow lost = A.failed; 

   end 

 

   flow lost = S.lost or C.lost 

                      or A.lost; 

  end 

  /* The remainder of the block 

     OverflowPrevention */ 

 end 

end 

Fig. 12. Safety model: example of allocation between functions and 
physical components. 

 

The block “PrimarySafetyBarrier” is composed of three 
functions: “LevelMeasure”, “Control” and 
“LevelReduction”. Each function contains a flow 
(intermediate event) named “lost”. Moreover, each function 
aggregates components allocated to this function (see TABLE 
II. ). For example, the block “LevelMeasure” aggregates the 
class instance “LS1” (sensor), renames it and uses it to 

calculate the value of its flow “lost”. The function is lost when 
its allocated physical component is failed. The function may 
be allocated to several physical components, in this case the 
calculation of “lost” may be more complex. 

In addition, note that the component “Controller” is used 
by two functions: “PrimarySafetyBarrier.Control” and 
“BackupSafetyBarrier.Control”. 

The safety model of the overflow protection system 
presented in this section combines two architecture views: the 
functional and the physical. Thanks to advanced structural 
constructs, it can be easily represented with the new version 
of Open-PSA format.  

V. FAULT TREE MODEL 

The overflow protection system presented in Section II, 
can be modeled by a fault tree, depicted Fig. 13. 

 

 
Fig. 13. Fault tree representing the overflow protection system. 

 
This fault tree, represented within the new Open-PSA 

format, is given Fig. 14. 
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block OverflowProtectionSystemFT 

/* Declarations of Basic events */ 

 state LS1Failed = exponential lambda; 

 state LS2Failed = exponential lambda; 

 state ControllerFailed = 

                   exponential lambda; 

 state SDV2Failed = 

                   exponential lambda; 

 state SDV1Failed = 

                   exponential lambda; 

 state DVFailed = 

                   exponential lambda; 

/* Declarations of parameters */ 

 parameter lambda = 0.0001; 

/* Declarations of intermediate 

   events */ 

 flow Top = PSBFailed and BSBFailed; 

 flow PSBFailed = LS1Failed 

                  or SDV1Failed; 

 flow BSBFailed = LS2Failed 

           or ValvesFailed or CFailed; 

 flow ValvesFailed = SDV2Failed 

                     and DVFailed;  

end 

Fig. 14. Fault tree representing the overflow protection system in Open-

PSA format. 
 

Lines 3-12 define basic events of the model (introduced by 
the keyword “state”). They are associated with exponential 
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probability distribution with the failure rate defined by a 
parameter lambda, defined line 14. The parameter lambda is 
shared by all the basic events.  

The top event of the fault tree is defined line 17. It is 
introduced by the keyword “flow”, followed by its name 
“Top”. It is defined as an “and” gate between two intermediate 
events “PSBFailed”, defined line 18, and “BSBFailed”, 
defined line 20. 

VI. RELIABILITY BLOCK DIAGRAM MODEL 

 
The overflow protection system described in Section II can 

be also represented by a reliability block diagram depicted 
Fig. 15. In this reliability block diagram: 

 There are a source flow S and a target flow T. 

 Each physical component of the system is represented 
by a block (for example LS1, LS2, SDV1). 

 The primary and backup safety barriers are connected 
in parallel. 

 Components of each safety barrier are connected in 
series, except the valves SDV2 and DV, that are 
connected in parallel. 

 The controller is connected in series with the safety 
barriers as it is shared by both of them. 

 

 
Fig. 15. Reliability Block Diagram representing the overflow protection 

system. 
 

This reliability block diagram can be represented using the 
new Open-PSA format in the following way. First, let’s define 
a class to represent each basic block of the diagram (see 
Fig. 16). 
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4 

5 

6 

7 

class BasicBlock 

 state failed = exponential lambda ; 

 parameter lambda = 0.0001 ; 

  

 flow in = false ; 

 flow out = (not failed) and in ; 

end 

Fig. 16. Basic Block of RBD in new Open PSA format. 
 

In this class we define a state variable “failed” (line 2), 
which is associated with an exponential probability 
distribution with a parameter lambda defined line 3. Two 
flows are also defined “in” and “out” (lines 5-6). 

Then we use this class to define the reliability block 
diagram, given Fig. 17. In this reliability block diagram, first, 
all the blocks are defined (instances of the class “BasicBlock”, 
see line 3). Second, flows (intermediate events) are connected 
together, which redefines their definitions. 
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block OverflowProtectionSystemRBD 

/* Declaration of blocks */  

BasicBlock LS1, LS2, SDV1, SDV2, 

           DV, C; 

/* Declaration of connections 

   between blocks */ 

 flow S = true; 

 LS1.in = S; 

 LS2.in = S; 

 SDV1.in = LS1.out; 

 SDV2.in = LS2.out; 

 DV.in = LS2.out; 

 C.in = SDV1.out 

        or (SDV2.out or DV.out); 

 flow T = C.out; 

end 

Fig. 17. RBD of the overflow protection system in new Open-PSA format. 
 

VII. CONCLUSION 

This communication presents the underlying principles of 
the new version of Open-PSA model exchange format, which 
relies on the S2ML+X paradigm. This new version improves 
very significantly the previous one. A case study is used to 
illustrate different concepts of the new Open-PSA format. The 
new Open-PSA format can be used to represent classical 
safety assessment formalisms, such as Fault Trees and 
Reliability Block Diagrams, and also to create models close to 
system functional and physical architecture. Both textual and 
XML forms of this new version of the Open-PSA format are 
available. 
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