
HAL Id: hal-03483341
https://hal.science/hal-03483341

Submitted on 16 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The New Open-PSA Format: a Model-Based Approach
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. The New Open-PSA Format: a Model-Based
Approach. Congrès Lambda Mu 22 “ Les risques au cœur des transitions ” (e-congrès) - 22e Congrès
de Maîtrise des Risques et de Sûreté de Fonctionnement, Institut pour la Maîtrise des Risques, Oct
2020, Le Havre (e-congrès), France. �hal-03483341�

https://hal.science/hal-03483341
https://hal.archives-ouvertes.fr

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

The New Open-PSA Format: a Model-Based
Approach

Michel Batteux

Institut de Recherche Technologique

SystemX

Palaiseau, France

michel.batteux@irt-systemx.fr

Tatiana Prosvirnova

ONERA/DTIS

Université de Toulouse

Toulouse, France

tatiana.prosvirnova@onera.fr

Antoine Rauzy

Department of Mechanical and

Industrial Engineering

Norwegian University of Science and

Technology

Trondheim, Norway

antoine.rauzy@ntnu.no

Abstract— This communication presents the underlying

principles of the new version of Open-PSA model exchange

format, which relies on the S2ML+X paradigm. S2ML stands

for System Structure Modeling Language. It unifies structuring

constructs coming from object-oriented and prototype-oriented

programming languages. The new version of Open-PSA format,

based on S2ML for its structural part, improves very

significantly the previous one. Both its theoretical foundations

and examples of use are provided.

Keywords—Probabilistic risk and safety analyses, model

exchange formats, model-based systems engineering

I. INTRODUCTION

In 2008, the description of the Open-PSA model exchange
format was published by Steven “Woody” Epstein and
Antoine Rauzy [1]. The design of this format resulted from a
joint effort of a small group of researchers, tools developers
and expert safety analysts (mostly coming from the nuclear
domain). The primary goal was to improve the quality of
probabilistic risk and safety assessment models by proposing
an XML format making it possible to exchange seamlessly
fault trees and event trees from one tool to the other. This, in
turn, makes it possible to cross check results, to facilitate peer
reviews and more generally to allow new ideas to be tested.
Technically, the project has been a success. The format has
been validated [2]. Several tools adopted it, e.g. [3], and new
ideas were proposed, see e.g. [4].

However, it is time to revisit the format, for two categories
of reasons. First, XML has the drawbacks of its advantages: it
is easy to parse by computer programs, but definitely
unreadable by humans. It is thus of importance to propose an
analyst a friendly version of the format so to facilitate its
adoption. Second and more importantly, very significant
progresses have been made recently in the design of
behavioral modeling languages, notably via the introduction
of the paradigm S2ML+X [5]. This communication presents
the underlying principles of the new version of the Open-PSA
format, which relies on this paradigm, and is now based on
both textual and XML forms.

Any behavioral modeling language results from the
combination of an underlying mathematical framework and a

set of constructs to structure models. The choice of the
underlying mathematical framework fully depends on which
aspect of the behavior of the system under study one wants to
capture. In the case of probabilistic risk and safety analyses, a
good comprise consists for instance in using systems of
stochastic Boolean equations. Fault trees and reliability block
diagrams are typically interpreted as such systems.

The choice of the set of structuring constructs is to a very
large extent independent of the one of the underlying
mathematical framework. The new version of Open-PSA
format relies on S2ML (System Structure Modeling
Language), which is such a set of constructs that gathers in a
unified and coherent way ideas stemmed from object- and
prototype-oriented programming [6]. This opens new
perspective to probabilistic risk and safety analyses. By
implementing the model-as-script principle, the new version
of the format makes easier the design, the debug and the
maintenance of models. Even more importantly, it provides
the technical infrastructure to better capitalize knowledge
from project to project. It is worth to notice that the
AltaRica 3.0 modeling language [7] already relies on S2ML.

The remainder of this article is organized as follows.
Section II presents a case study used to illustrate different
concepts of the new Open-PSA format. Section III introduces
the paradigm “S2ML+Boolean equations” and describes the
new syntax of the Open-PSA format. Section IV gives an
overview of different architectural views of the case study.
Section V presents the model of the case study using fault
trees and section VI reliability block diagrams. Finally,
section VII concludes this article.

II. CASE STUDY: OVERFLOW PROTECTION SYSTEM

Consider a safety instrumented system given
Fig. 1Erreur ! Source du renvoi introuvable.. The goal of
this system is to protect the tank from an overflow.

The system is composed of two safety barriers:

 The primary prevention barrier, which contains a
sensor LS1, a controller C and a shutdown valve
SDV1;

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

 The backup safety barrier made of a sensor LS2, a
controller C, a shutdown valve SDV2 and a discharge
valve DV.

Fig. 1. Overflow protection system

When LS1 detects that the liquid level is too high, it sends

the information to the controller that orders to shut down the

valve SDV1. If the primary safety barrier is not operational,

the backup one is used: the sensor LS2 detects the overflow of

the tank, sends the information to the controller, which orders

to shut down the valve SDV2 and to open the discharge valve

DV. Note that the failure of the controller causes the loss of

the primary and the backup safety barriers.

In the following, consider that failures of components obey

exponential distribution with a failure rate λ= 0.0001.

The feared event is the overflow of the Tank, which occurs

when there is an overflow and the overflow protection system

is failed.

We use this case study throughout this article to illustrate

different concepts of the new Open-PSA format.

III. S2ML + BOOLEAN EQUATIONS

A. System Structure Modeling Language (S2ML) in a

glance

The new version of Open-PSA format is based on S2ML.
S2ML stands for System Structure Modeling Language [6]. It
unifies concepts to structure models coming from object-
oriented and prototype-oriented programming languages.

The basic structural construct in S2ML is a block, also
called a prototype. A block is a container for variables,
parameters and all the other modeling artifacts. The simplest
structuring relation is the composition. A block may be
composed of several other blocks. Classical safety analysis
formalisms, such as fault trees and reliability block diagrams,
use only blocks and composition for structuring models.

In order to be able to reuse blocks, structured
programming languages introduce the notions of class and
instantiation of classes. A class is a reusable “on-the-shelf”
block, which is stored in a library and can be reused
everywhere in the model via instantiation.

In some cases, it is necessary to modify or to extend a
modeling unit (a class or a block) without instantiation. It can
be achieved via inheritance relation introduced in object-
oriented programming languages. If a modeling unit A
inherits from a modeling unit B, then A contains all the
characteristics of B and adds some new characteristics.

There are cases where the same component is used in
several places or to contribute to different functions of the
system. In other words, a modeling unit is shared between
several other modeling units. This kind of “uses” relation
between modeling units is called aggregation.

In object-oriented programming languages, the reuse of
modeling units is done by means of instantiation of classes. In
modeling languages using only blocks (called prototype-
oriented languages), the reuse of blocks is also possible. It is
achieved via the notion of cloning. If a block A is a clone of a
block B, then the block A has exactly the same characteristics
as the block B.

To summarize, there are the following constructs to
organize and structure models:

 Two types of modeling units: block and class;

 Three structural relations: composition, inheritance
and aggregation; and

 Two mechanisms making possible to reuse modeling
elements: prototype/cloning and class/instantiation.

These constructs originate from programming languages
(see TABLE I.).

TABLE I. STRUCTURING CONSTRUCTS

Structuring

paradigm

Structural constructs Formalisms

Block diagrams Blocks + composition Fault Trees,

Reliability Block
Diagrams

Structured
programming

Classes + composition

Object-oriented

programming

Classes + composition +

inheritance

Prototype-
oriented and

object-oriented

programming

Blocks + Classes +
composition +

inheritance + aggregation

+ cloning

S2ML,
AltaRica 3.0,

new Open-PSA

format

In the sequel, we show how these concepts are introduced
in the new version of Open-PSA format. Their textual form
will be presented; nevertheless their dual XML form also
exists, as for the previous version of Open-PSA.

B. Basic components of Open-PSA models

Basic components of Open-PSA models are:

 Blocks that contain declarations of other objects of the
model;

 Declarations of states, representing basic events;

 Declarations of flows, representing intermediate
events;

 Declarations of sources, representing house-events;

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

 Finally declarations of parameters of probability
distributions.

1) Blocks
Blocks are basic containers of the Open-PSA modeling

language. They are prototypes. Blocks contain declarations of
parameters, states, flows and sources (and other modeling
elements described later).

A block declaration always starts with the keyword
“block”, followed by the name of the block. It finishes with
the keyword “end”. See, for example, Fig. 2.

Note that, within a block, all modeling elements must have
a different name, even though they are of different types (for
example, a state and a parameter). Elements can be declared
in any order.

2) States and parameters
States are Boolean variables. They play the role of basic

events of fault trees and are associated with a probability
distribution. States are declared one at a time, even though two
states have the same probability distribution. The declaration
of states starts with a keyword “state”, followed by the name
of the state. Then comes the sign “=”, followed by the
probability distribution. The declaration ends with “;”.

Probability distributions associated with states (basic
events) may contain parameters. Parameters are real-valued
variables. Declarations of parameters are similar to those of
states, except they start with the keyword “parameter”.

1

2

3

4

5

6

7

block Valve

 state failed = 0.001 ;

 state stuck = exponential lambda ;

 parameter lambda = 0.0001 ;

 // …

end

Fig. 2. Example of a block declaration.

In the example given Fig. 2, the block “Valve” contains
the declarations of two basic events and a parameter. The basic
event “failed” (defined line 2) has a constant probability
distribution equal to 0.001. The basic event “stuck” (defined
line 3) obeys the exponential probability distribution with a
parameter “lambda” defined line 5. The parameter “lambda”
equals to 0.0001.

Note that a parameter can be used in several probability
distributions and therefore is shared by several state variables.

3) Probability distributions
Probability distributions are defined by stochastic

expressions. Stochastic expressions are arithmetic expressions
involving special operators (built-ins) to represent the most
popular probability distributions. They may depend on
parameters, themselves defined by stochastic expressions.

The following stochastic expressions are available:

 Floating point numbers;

 Parameters;

 Special distributions (exponential, Weibull, periodic).

4) Flows

Flows are Boolean variables. They play the role of
intermediate events of fault trees and are associated with
Boolean formulae. Like states and parameters, flows are
declared one at a time. The declaration of flows starts with the
keyword “flow”, followed by the name of the flow. Then
comes the sign “=” followed by the Boolean formula (its
definition). The declaration ends with “;”.

A flow depends on the variables that occur in its definition.

The following Boolean formulae are considered:

 References to another variable;

 Constants true and false;

 Operators (for example, or, and, atleast, not, etc.).

C. Structuring constructs

As we have seen earlier, classical safety analysis
formalisms, such as fault trees and reliability block diagrams
only use blocks and composition as structural constructs.
S2ML provides more structural constructs. We show how they
can be used in the context of the new Open-PSA format.

1) Composition
A block is a container for flows, connections and other

blocks. Each block is a prototype: it has a unique occurrence
in the model.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

block SIS

 block InflowPipe

 /* body of the block InflowPipe */

 end

 block Tank

 /* body of the block Tank */

 end

 block ControlRoom

 /* body of the block ControlRoom */

 end

 block OutflowPipe

 /* body of the block OutflowPipe */

 end

 block DischargePipe

 /* body of the block DischargePipe

*/

 end

end

Fig. 3. Example of composition.

In the example given Fig. 3 the block “SIS” (representing
the Safety Instrumented System described in section II) is
composed of blocks “InflowPipe”, “Tank”, ControlRoom”,
“OutflowPipe” and “DischargePipe”.

2) Cloning
A system may contain similar components, for example

sensors or valves. A first way to avoid duplicating the
description of a block consists in cloning an already existing
block.

In the example given Fig. 4 the block “Tank” contains two
blocks representing the sensors “LS1” and “LS2”. The block
“LS1” is declared lines 2-5. It contains a state variable (basic
event) “failed” with a constant probability distribution and a
flow (intermediate event) “out” equal to “failed”. The block
“LS2” is a clone of the block “LS1” (declared lines 6-7). It

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

has exactly the same structure as “LS1”, except for the basic
event probability, which is different (it is declared line 7).

1

2

3

4

5

6

7

8

9

block Tank

 block LS1

 state failed = 0.0001;

 flow out = failed;

 end

 clones LS1 as LS2

 state failed = 0.002;

 end

end

Fig. 4. Example of cloning.

3) Classes and instances
A second way to avoid duplicating the description of a

block consists in declaring a model of the duplicated block in
a separate modeling entity, called class, and then in
instantiating this class in the model.

In the example given Fig. 5, the class “Sensor” is defined
lines 1-4. It contains a state variable (basic event) “failed”
with a probability equal to 0.0001 and a flow (intermediate
event) “out” equal to “failed”. Inside the block “Tank” the
class “Sensor” is instantiated twice to create “LS1” and
“LS2” (see lines 7-8).

1

2

3

4

5

6

7

8

9

class Sensor

 state failed = 0.0001;

 flow out = failed;

end

block Tank

 Sensor LS1;

 Sensor LS2;

end

Fig. 5. Example of instantiation of classes.

4) Inheritance
Aside the composition, the object-oriented paradigm

provides also an inheritance mechanism. A class or a block
can inherit the content of another class (or another block in the
same modeling entity).

In the example given Fig. 6, the class “BasicComponent”
is defined lines 1-3. It contains only a state variable (basic
event) “failed”. The class “Valve” inherits from the class
“BasicComponent” (declaration line 6). It means that the
class “Valve” contains all the elements of the class
“BasicComponent” (the state variable “failed” with its
probability) and adds new elements: two flows (intermediate
events) “in” and “out” with their definitions (see lines 7-8).

1

2

3

4

5

6

7

8

9

class BasicComponent

 state failed = 0.0001;

end

class Valve

 extends BasicComponent;

 flow in = false;

 flow out = in and (not failed);

end

Fig. 6. Example of inheritance.

5) Aggregation
To represent the fact that the same component is used in

several places or to contribute to different functions of the
system, the aggregation is used. It is introduced by the
keyword “embeds”, followed by a path to the element to
aggregate, followed by the keyword “as” and the name (alias)
of the element. An example is given in section IV.D.

IV. ARCHITECTURE VIEWS

System architecture is an emerging discipline that
provides a conceptual framework making it possible to merge
in a coherent way all of the point of views on a system, and to
reason about the system in an accurate way relying on
approach by levels of abstraction. System architects apply
methodologies that involve the design of models. These
methodologies are often called architecture frameworks. For
example, the CESAMES method for systems architecting [8]
considers three different abstraction levels of a system: the
operational level, the functional level and the physical level
(see Fig. 7).

The operational level is the analysis of the environment of
the system. It considers the system (more or less) as a black
box and models the interactions of the system with the
external systems. The result of the operational analysis is thus
a description of the missions of the system, i.e. of the services
it provides to its users.

Fig. 7. CESAM system architecture pattern.

The functional level is an abstract analysis of the inside of
the system. It considers the system as a white box and models
abstract functions/capacities of the system.

Finally, the physical level is a concrete analysis of the
inside of the system. It considers also the system as a white
box and models the concrete components of the system, in
terms of hardware, sofware and human elements. The physical
level describes thus the concrete resources the system
involves.

Models produced at the three different levels are strongly
connected. The operational level is connected with the two
other levels because missions are naturally implemented by
functions and by components. The functional level is
connected with the physical level because each (abstract)
function must be concretely allocated to, or implemented by,
some set of physical components. In the reverse way, physical
components implement functions, which are required by
missions.

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

Safety analyses need to gather in the same model
operational, functional and physical aspects of the system
under study. Typically, the top event of a fault tree represents
the loss of a function/capacity, i.e. the incapacity to
accomplish a mission, and the basic events represent the
failures of physical components.

In the following, we use the CESAMES architecture
framework to create safety models of the case study presented
in section II with the new Open-PSA format.

A. Functional architecture

Fig. 8 shows the functional architecture of the overflow
protection system presented in Section II. Functions are
decomposed into sub-functions. These sub-functions are
themselves decomposed into sub-sub-functions and so on
until the suitable granularity is reached. The result is a tree-
like structure. However, some nodes may be shared by several
branches, for example to represent support functions like
power supply.

Fig. 8. Functional architecture of the overflow protection system.

B. Physical architecture

Fig. 9 shows a physical architecture of the overflow
protection system. The system is decomposed into sub-
systems. These sub-systems are themselves decomposed into
sub-sub-systems and so on until the suitable granularity is
reached.

Fig. 9. Overflow protection system physical architecture.

Note that several physical decompositions of the system

may be possible, depending on the point of view. In this
article, we are interested in the safety analysis of the studied
system.

C. Allocation of functions to components

TABLE II. shows the allocation of functions to physical
components for the overflow protection system.

TABLE II. OVERFLOW PROTECTION SYSTEM: ALLOCATION OF

FUNCTIONS TO PHYSICAL COMPONENTS

Functions Components

Primary
safety

barrier

Level measure Sensor LS1

Control Controller C

Level reduction Inflow reduction Valve SDV1

Back-up

safety
barrier

Level measure Sensor LS2

Control Controller C

Level reduction Inflow reduction Valve SDV2

Discharge Valve DV

D. Open-PSA model of the overflow protection system

First, we represent the physical architecture of the system
under study. Its safety model is given Fig. 10. The block “SIS”
(Safety Instrumented System) is composed of 5 blocks
“InflowPipe”, “Tank”, “ControlRoom”, “OutflowPipe”
and “DischargePipe”. The block “InflowPipe” is composed
of two instances of the class “Valve”, defined Fig. 6. The
block “Tank” contains two instances of the class “Sensor”
defined Fig. 5. The block “ControlRoom” contains a block
“Controller” defined lines 9-14. The block “DischargePipe”
contains an instance of the class “Valve” named “DV”.

Note that the model given Fig. 10 has the same
decomposition as the physical architecture depicted Fig. 9.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

block SIS

 block InflowPipe

 Valve SDV1, SDV2;

 end

 block Tank

 Sensor LS1, LS2;

 end

 block ControlRoom

 block Controller

 state failed = exponential lambda;

 parameter lambda = 0.0001;

 flow in = false;

 flow out = in and (not failed);

 end

 end

 block OutflowPipe

 end

 block DischargePipe

 Valve DV;

 end

end

Fig. 10. Safety model: physical architecture view.

Second, a safety model of the functional architecture is
defined. Fig. 11 represents the functional view of the safety
model of the overflow protection system. The block
“OverflowPrevention” contains two blocks
“PrimarySafetyBarrier” and “BackupSafetyBarrier” and a
flow (intermediate event) “lost”, which represents the loss of
the capacity to prevent the overflow. The value of “lost” is
true when both “PrimarySafetyBarrier” and
“BackupSafetyBarrier” are lost.

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

1

2

3

4

5

6

7

8

9

10

11

12

block OverflowPrevention

 block PrimarySafetyBarrier

 /* … */

 flow lost = …;

 end

 block BackupSafetyBarrier

 /*… */

 flow lost = …;

 end

 flow lost = PrimarySafetyBarrier.lost

 or BackupSafetyBarrier.lost;

end

Fig. 11. Safety model: functional architecture view.

The link between functional and physical views of the
overflow protection system is shown Fig. 12. The block
“OverflowProtectionSystem” contains two blocks: “SIS”
given Fig. 10, and “OverflowPrevention”, representing the
functional view of the system. As explained earlier, this
function is decomposed in two functions. The model of the
block “PrimarySafetyBarrier” is given. The model of the
block “BackupSafetyBarrier” is quite similar.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

block OverflowProtectionSystem

 block SIS

 /* body of the block SIS,

 see Fig. 10 */

 end

 block OverflowPrevention

 block PrimarySafetyBarrier

 block LevelMeasure

 embeds main.SIS.Tank.LS1 as S;

 flow lost = S.failed;

 end

 block Control

 embeds main.SIS.ControlRoom.C

 as C;

 flow lost = C.failed;

 end

 block LevelReduction

 embeds main.SIS.InFlowPipe.SDV1

 as A;

 flow lost = A.failed;

 end

 flow lost = S.lost or C.lost

 or A.lost;

 end

 /* The remainder of the block

 OverflowPrevention */

 end

end

Fig. 12. Safety model: example of allocation between functions and
physical components.

The block “PrimarySafetyBarrier” is composed of three
functions: “LevelMeasure”, “Control” and
“LevelReduction”. Each function contains a flow
(intermediate event) named “lost”. Moreover, each function
aggregates components allocated to this function (see TABLE
II.). For example, the block “LevelMeasure” aggregates the
class instance “LS1” (sensor), renames it and uses it to

calculate the value of its flow “lost”. The function is lost when
its allocated physical component is failed. The function may
be allocated to several physical components, in this case the
calculation of “lost” may be more complex.

In addition, note that the component “Controller” is used
by two functions: “PrimarySafetyBarrier.Control” and
“BackupSafetyBarrier.Control”.

The safety model of the overflow protection system
presented in this section combines two architecture views: the
functional and the physical. Thanks to advanced structural
constructs, it can be easily represented with the new version
of Open-PSA format.

V. FAULT TREE MODEL

The overflow protection system presented in Section II,
can be modeled by a fault tree, depicted Fig. 13.

Fig. 13. Fault tree representing the overflow protection system.

This fault tree, represented within the new Open-PSA

format, is given Fig. 14.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

block OverflowProtectionSystemFT

/* Declarations of Basic events */

 state LS1Failed = exponential lambda;

 state LS2Failed = exponential lambda;

 state ControllerFailed =

 exponential lambda;

 state SDV2Failed =

 exponential lambda;

 state SDV1Failed =

 exponential lambda;

 state DVFailed =

 exponential lambda;

/* Declarations of parameters */

 parameter lambda = 0.0001;

/* Declarations of intermediate

 events */

 flow Top = PSBFailed and BSBFailed;

 flow PSBFailed = LS1Failed

 or SDV1Failed;

 flow BSBFailed = LS2Failed

 or ValvesFailed or CFailed;

 flow ValvesFailed = SDV2Failed

 and DVFailed;

end

Fig. 14. Fault tree representing the overflow protection system in Open-

PSA format.

Lines 3-12 define basic events of the model (introduced by
the keyword “state”). They are associated with exponential

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

probability distribution with the failure rate defined by a
parameter lambda, defined line 14. The parameter lambda is
shared by all the basic events.

The top event of the fault tree is defined line 17. It is
introduced by the keyword “flow”, followed by its name
“Top”. It is defined as an “and” gate between two intermediate
events “PSBFailed”, defined line 18, and “BSBFailed”,
defined line 20.

VI. RELIABILITY BLOCK DIAGRAM MODEL

The overflow protection system described in Section II can

be also represented by a reliability block diagram depicted
Fig. 15. In this reliability block diagram:

 There are a source flow S and a target flow T.

 Each physical component of the system is represented
by a block (for example LS1, LS2, SDV1).

 The primary and backup safety barriers are connected
in parallel.

 Components of each safety barrier are connected in
series, except the valves SDV2 and DV, that are
connected in parallel.

 The controller is connected in series with the safety
barriers as it is shared by both of them.

Fig. 15. Reliability Block Diagram representing the overflow protection

system.

This reliability block diagram can be represented using the
new Open-PSA format in the following way. First, let’s define
a class to represent each basic block of the diagram (see
Fig. 16).

1

2

3

4

5

6

7

class BasicBlock

 state failed = exponential lambda ;

 parameter lambda = 0.0001 ;

 flow in = false ;

 flow out = (not failed) and in ;

end

Fig. 16. Basic Block of RBD in new Open PSA format.

In this class we define a state variable “failed” (line 2),
which is associated with an exponential probability
distribution with a parameter lambda defined line 3. Two
flows are also defined “in” and “out” (lines 5-6).

Then we use this class to define the reliability block
diagram, given Fig. 17. In this reliability block diagram, first,
all the blocks are defined (instances of the class “BasicBlock”,
see line 3). Second, flows (intermediate events) are connected
together, which redefines their definitions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

block OverflowProtectionSystemRBD

/* Declaration of blocks */

BasicBlock LS1, LS2, SDV1, SDV2,

 DV, C;

/* Declaration of connections

 between blocks */

 flow S = true;

 LS1.in = S;

 LS2.in = S;

 SDV1.in = LS1.out;

 SDV2.in = LS2.out;

 DV.in = LS2.out;

 C.in = SDV1.out

 or (SDV2.out or DV.out);

 flow T = C.out;

end

Fig. 17. RBD of the overflow protection system in new Open-PSA format.

VII. CONCLUSION

This communication presents the underlying principles of
the new version of Open-PSA model exchange format, which
relies on the S2ML+X paradigm. This new version improves
very significantly the previous one. A case study is used to
illustrate different concepts of the new Open-PSA format. The
new Open-PSA format can be used to represent classical
safety assessment formalisms, such as Fault Trees and
Reliability Block Diagrams, and also to create models close to
system functional and physical architecture. Both textual and
XML forms of this new version of the Open-PSA format are
available.

REFERENCES

[1] Steven Epstein, Olivier Nusbaumer, Antoine Rauzy and Donald

Wakefield. A Modest Proposal: A Standard PSA Model Representation
Format. Proceedings of the conference Nuclear Energy for New
Europe, 2007. I. Jencic and M. Lenosek Ed.. INIS. ISBN 978-961-
6207-28-7. Portoroz, Slovenia. 2007.

[2] Steven Epstein, Mark Reinhart and Antoine Rauzy. Validation Project
for the Open-PSA Model Exchange using RiskSpectrum and CAFTA.
Proceeding of the PSAM'10 Conference. B.P. Hallbert Ed..ISBN
9781622765782. Seatle, USA. June, 2010. (also in E. Fadier ed., Actes
du congrès LambdaMu'10)..

[3] Emmanuel Clément, Thierry Thomas and Antoine Rauzy. Arbre
Analyste : un outil d'arbres de défaillances respectant le standard Open-
PSA et utilisant le moteur XFTA. Actes du congrès Lambda-Mu 19
(actes électroniques). Institut pour la Maîtrise des Risques. ISBN 978-
2-35147-037-4. Dijon, France. October, 2014.

[4] Mohamed Hibti, Thomas Friedlhuber and Antoine Rauzy. Overview of
The Open PSA Platform. Proceedings of International Joint Conference
PSAM'11/ESREL'12. Reino Virolainen Ed.. ISBN 978-162276436-5.
pp. 2798–2807. June, 2012.

[5] Antoine Rauzy and Cecilia Haskins. Foundations for Model-Based
Systems Engineering and Model-Based Safety Assessment. Journal of
Systems Engineering. Wiley Online Library. 2018.
doi:10.1002/sys.21469.

[6] Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy. From Models
of Structures to Structures of Models. IEEE International Symposium
on Systems Engineering (ISSE 2018). IEEE. Roma, Italy. October,
2018. doi:10.1109/SysEng.2018.8544424. Best paper award.

[7] Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy. Altarica 3.0
in 10 modeling patterns. International Journal of Critical Computer-
Based Systems (IJCCBS), 2018.

[8] Daniel Krob. CESAM: CESAMES Systems Architecting Method: A
Pocket Guide. CESAMES, http://www.cesames.net, January 2017.

