Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review Applied Année : 2021

Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling

Résumé

We investigate electron transport in asymmetric double-barrier (Al, Ga)As/GaAs thermionic cooling heterostructures. Measurements of temperature-dependent current-voltage characteristics confirm that the dominant electron transport is a sequential process of resonant tunneling injection into and thermionic emission from the quantum-well (QW) cooling layer. The thermal activation energy of the current is found to be strongly dependent on the bias voltage. Furthermore, instead of showing a simple thermal activation behavior, the current exhibits rather complicated temperature and voltage dependence, particularly when the thermionic emission barrier is low. To establish a quantitative understanding, we develop an intuitive analytical model for sequential electron transport that explicitly takes into account scattering effects in the thermionic emission process from the two-dimensional QW states to the three-dimensional above-barrier states. The observed temperature-dependent sequential current is well explained by the present theory.
Fichier principal
Vignette du fichier
PhysRevApplied.16.064017.pdf (3.65 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03472656 , version 1 (09-12-2021)

Identifiants

Citer

Xiangyu Zhu, Marc Bescond, Toshiki Onoue, Gerald Bastard, Francesca Carosella, et al.. Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling. Physical Review Applied, 2021, 16 (6), ⟨10.1103/physrevapplied.16.064017⟩. ⟨hal-03472656⟩
22 Consultations
88 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More