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Abstract
Extending model-based regret minimization
strategies for Markov decision processes
(MDPs) beyond discrete state-action spaces
requires structural assumptions on the re-
ward and transition models. Existing para-
metric approaches establish regret guaran-
tees by making strong assumptions about ei-
ther the state transition distribution or the
value function as a function of state-action
features, and often do not satisfactorily cap-
ture classical problems like linear dynamical
systems or factored MDPs. This paper in-
troduces a new MDP transition model de-
fined by a collection of linearly parameter-
ized exponential families with d unknown
parameters. For finite-horizon episodic RL
with horizon H in this MDP model, we pro-
pose a model-based upper confidence RL al-
gorithm (Exp-UCRL) that solves a penal-
ized maximum likelihood estimation prob-
lem to learn the d-dimensional representation
of the transition distribution, balancing the
exploitation-exploration tradeoff using confi-
dence sets in the exponential family space.
We demonstrate the efficiency of our algo-
rithm by proving a frequentist (worst-case)
regret bound that is of order Õ(d

√
H3N),

sub-linear in total time N , linear in dimen-
sion d, and polynomial in the planning hori-
zon H. This is achieved by deriving a novel
concentration inequality for conditional ex-
ponential families that might be of inde-
pendent interest. The exponential family
MDP model also admits an efficient posterior
sampling-style algorithm for which a similar
guarantee on the Bayesian regret is shown.
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1 LINEARITY IN
REINFORCEMENT LEARNING

We consider episodic reinforcement learning (RL) in a
finite horizon Markov decision process (MDP) (Puter-
man, 1994; Sutton, 1988), with (possibly infinite) state
and action spaces S and A, respectively, reward func-
tion R : S×A → [0, 1], and parametric state transition
distribution Pθ? : S × A → ∆(S) for some underlying
parameter θ? ∈ Rd and episode length H. Very large
or infinite state and/or action spaces make RL a chal-
lenging task, especially in terms of generalising learnt
knowledge across unseen states and actions. In this
paper, we explore how to endow an MDP with a ap-
propriate linear structure in order to obtain algorithms
with guarantees of low regret.

Linearity is a natural structural assumption when con-
sidering a function defined on a large set. For instance,
in linear regression (Seber and Lee, 2012), the target
mean function f :X → R is assumed to be of the form
f(·) = θ>ϕ(·) where θ ∈ Rd is a vector of unknown pa-
rameters and ϕ : X → Rd is a known feature function.
Using a generic ϕ function allows for great flexibility
and the encoding of specific expert domain knowledge,
which explains the popularity of this model in machine
learning and statistics. Besides, this model is power-
ful in the sense that it can be extended from finite
dimension d to infinite dimensions by appealing to the
theory of Reproducing Kernel Hilbert Spaces (RKHSs)
(Paulsen and Raghupathi, 2016).

Linearity in Bandits For stateless MDPs or multi-
armed bandits, linear models have been widely stud-
ied in a number of works, see Abbasi-Yadkori et al.
(2011); Rusmevichientong and Tsitsiklis (2010); Latti-
more and Szepesvari (2016), as well as Durand et al.
(2017); Filippi et al. (2010) to cite a few, exploiting the
connection with linear regression. In particular, the
construction of finite-time confidence ellipsoids for the
unknown vector parameter θ in the challenging con-
text of bandit sampling that involves random stopping
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times is now a popular tool (which has been extended
also to RKHS, see Srinivas et al. (2010); Durand et al.
(2017); Chowdhury and Gopalan (2017)).

Linearity in MDPs Several studies have consid-
ered the task of regret minimization in tabular MDPs
in the episodic setting, with a fixed and known hori-
zon; see, e.g., Osband et al. (2013); Gheshlaghi Azar
et al. (2017); Dann et al. (2017); Efroni et al. (2019);
Zanette and Brunskill (2019). The work of Gopalan
and Mannor (2015) consider a generalized MDP for-
mulation, yet their results are restricted to the case
of finite-state, finite-action MDPs. For this reason,
their results are not clearly stronger and more general
than the ones we provide. Other approaches have been
introduced to extend the popular UCRL2 approach
from Jaksch et al. (2010) to handle continuous MDPs,
when assuming some smoothness or regularity on the
rewards and dynamics such as in Ortner and Ryabko
(2012), and more recently Domingues et al. (2020).
Building on similar tools for regret minimization in
MDPs, and combining them with a linearity assump-
tion instead, in Yang and Wang (2019) and Jin et al.
(2019), the authors suggest to exploit linearity in the
context of MDPs. For the rewards that are real-valued,
one can directly use standard linear regression model
using features ϕR : S × A → Rd. However an MDP
also involves the transitions, which do not take their
values in R but in the probability distributions over
S. The authors suggest to introduce a bi-linear model
of the transition. Namely, they consider a model of
the form P (·|·) = ψ(·)>Mϕ(·), where ψ : S → Rp and
ϕ : S×A → Rq are known feature functions, andM is
a p× q matrix of unknown parameters. This makes it
convenient since each P (·|s, a) can be seen as a linear
model with feature function ψ and vector parameter
Mϕ(s, a) ∈ Rp, while each P (s′|·) can be seen as a
linear model with feature function ϕ and vector pa-
rameter ψ(s′)>M ∈ Rq. Hence, popular tools from
linear regression can be considered.

Bilinear Exponential Families Unfortunately,
such a direct bilinear assumption of the transition
probabilities falls short of capturing many rich classical
models such as the linear quadratic regulator (LQR)
and the factored MDPs. On the other hand, statistics
has benefited immensely from what is arguably one
of the most popular methods to linearly parameter-
ize families of probability distributions — exponential
families (Amari, 1997). Our main proposal in this pa-
per is to consider an exponential family formulation of
the MDP transition kernel, essentially assuming logP ,
rather than P to be bilinear1. More precisely, we as-

1This is also analogous to the logistic model where we
linearize not raw probabilities but their log-odds (Hos-
mer Jr et al., 2013).

sume the following bilinear exponential family model2:
Pθ(s

′|s, a)=h(s′, s, a) exp
(
ψ(s′)>Mθϕ(s, a)−Zs,a(θ)

)
,

Zs,a(θ)=log

∫
S
exp

(
ψ(s′)>Mθϕ(s, a)

)
h(s′, s, a)ds′ , (1)

at every s, s′ ∈ S, a ∈ A. Here h, ϕ and ψ are known
feature functions, andMθ is a p×q matrix of unknown
parameters. Note that h, ψ and ϕ cannot depend on
θ. Further, since considering all entries of the matrix
Mθ as unrelated parameters may prevent one from en-
coding stronger structure, we consider that it is of the
form Mθ =

∑d
i=1 θiAi, where θ = (θi)i≤d ∈ Rd is the

vector of unknown parameters, and each Ai is a known
p× q matrix. We recover the case of a fully unknown
matrixMθ by considering d = pq and the (Ai)i≤d to be
a one-hot encoding, but this additional flexibility en-
ables to capture situations when several entries of the
matrix must have same value. With this formulation,
for each (s, a), we get a linear model with feature func-
tion s′ 7→ (ψ(s′)>Aiϕ(s, a))i≤d and unknown parame-
ter θ ∈ Rd, while for each s′, we get a linear model with
feature function (s, a) 7→ (ψ(s′)>Aiϕ(s, a))i≤d and the
same unknown parameter. We detail popular classes of
MDP dynamics that fit this formulation in Section 4.

Learning Model and Regret The learn-
ing agent interacts with the MDP in
episodes and, at each episode t, a trajectory
(st1, a

t
1, r

t
1, . . . , s

t
H , a

t
H , r

t
H , s

t
H+1) is generated. Here ath

denotes the action taken at state sth, r
t
h=R(sth, a

t
h) de-

notes the immediate reward, and sth+1 ∼ Pθ?(·|sth, ath)
denotes the random next state. The initial state
st1 is assumed to be fixed and history indepen-
dent. The actions are chosen following some policy
π = (π1, . . . , πH), where each πh is a mapping from
the state space S into the action space A. The agent
would like to find a policy π that maximizes the long
term expected reward starting from every state s∈S
and every step h∈ [H], defined as

V πθ?,h(s)=Eθ?
[∑H

j=h
R (sj , πj(sj)) |sh=s

]
We call V πθ?,h :S→R the value function of policy π at
step h. The subscript θ? refers to the bilinear expo-
nential family transition dynamics parameterized by
θ? ∈Rd. We assume that the agent, while not know-
ing θ?, knows the matrices A1, . . . , Ad and the reward
function R.

A policy π? is said to be optimal if V π
?

θ?,h(s) =
maxπ∈Π V

π
θ?,h(s) for all s ∈ S and h ∈ [H], where Π

is the set of all non-stationary policies. (Since the
episode length is finite, such a policy exists when the
action space A is also finite.) We measure performance

2We write probability measures assuming that they
have a density mainly for convenience; the development can
easily be extended to general probability transition mea-
sures.
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of the agent by the cumulative (pseudo) regret accu-
mulated over T episodes, defined as

R(N)=
∑T

t=1

[
V π

?

θ?,1(st1)−V π
t

θ?,1(st1)
]
,

where N = TH is the total number of steps. Intu-
itively, this is a measure of the cumulative difference
in values due to not knowing the optimal policy π? be-
forehand and instead using some policy πt in episode
t starting from some fixed initial state st1. We seek
algorithms with regret that is sublinear in N , which
demonstrates the agent’s ability to act near optimally.

Outline and Contribution We detail useful prop-
erties about maximum likelihood estimation for this
exponential family setup in Section 2. We then de-
rive a novel concentration inequality for exponential
families, generalizing the popular method of mixtures
technique for sub-Gaussian random variables. We in-
troduce in Section 3 the Exp-UCRL strategy for ef-
ficient regret minimization in the context of MDPs
with such dynamics, and provide its regret guaran-
tee in Theorem 2. In Section 4, we show that this
model enables to capture large classes of MDPs, in-
cluding linear dynamical systems used in the control
literature, and factored and tabular models as special
case. We conclude the paper with a sketch of proof
highlighting the main steps leading to Theorem 2.

2 EXPONENTIAL FAMILIES FOR
TRANSITION DYNAMICS

The benefit of modelling transition kernels as exponen-
tial families is that one may benefit from numerous,
well-known properties of exponential families, relating
the log-partition function Zs,a to the mean, variance,
maximum likelihood or Kullback-Leibler (KL) diver-
gence. Indeed, it is easily checked (see Appendix A for
completeness) that

∇iZs,a(θ)=Eθs,a[ψ(s′)]
>
Aiϕ(s, a) ,

∇2
i,jZs,a(θ)=ϕ(s, a)>A>i Cθs,a[ψ(s′)]Ajϕ(s, a) ,

KLs,a (θ, θ′)=Zs,a(θ′)−Zs,a(θ)−(θ′−θ)>∇Zs,a(θ) ,

where Eθs,a,Cθs,a denote the expectation and covariance
operator for the probability distribution Pθ(·|s, a), and
KLs,a (θ, θ′) denotes the Kullback-Leibler divergence
b/w Pθ(·|s, a) and Pθ′(·|s, a). For the matrix norm
notation to be justified, we further require that for
each s, a, the matrix ∇2Zs,a that is symmetric is
also positive definite. Now, considering a sequence of
observations {(st, at, s′t)}t≤n, where for each t, s′t ∼
Pθ?(·|st, at), and any differentiable penalty function
pen(·), a solution to the penalized maximum-likelihood
problem with regularization parameter η ∈ R+ must

satisfy

θn∈argmin
θ∈Rd

n∑
t=1

−logPθ(s
′
t|st, at)+η pen(θ) =⇒∀i≤d,

n∑
t=1

(
ψ(s′t)−Eθnst,at [ψ(s′)]

)>
Aiϕ(st,at)=η∇ipen(θn). (2)

In this paper, we choose a trace-norm penalty
pen(θ) = 1

2 ‖θ‖
2
A, where A denotes the matrix with

entries Ai,j =tr(AiA
>
j ), i, j≤d. We assume that A is

invertible. A solution to equation 2 may be obtained
in closed form in some cases, e.g. when densities are
Gaussian. For generic features, one should resort to
specific schemes, involving Monte-Carlo computations
of the integrals, see Brooks et al. (2011). In Section 4,
we detail examples of MDPs, including a specialization
of (2).

We now present the following key result, which is a
novel generalization of the Laplace method for Gaus-
sian or sub-Gaussian random variables (Peña et al.,
2008) to exponential families. The complete proof is
provided in Appendix B.

Theorem 1 (Laplace concentration for Exponential
families). Suppose {Ft}∞t=0 is a filtration such that for
each t, (i) s′t is Ft-measurable, (ii) (st, at) is Ft−1-
measurable, and (iii) given (st, at), s′t ∼ Pθ∗(·|st, at)
according to the exponential family defined by (1). Let
θn be the penalized MLE defined by (2), and let Zs,a(θ)
be strictly convex in θ for all (s, a).3 Then, for any
δ ∈ (0, 1], with probability at least 1−δ, the following
holds uniformly over all n∈N:
n∑
t=1

KLst,at(θn, θ
?)+

η

2
‖θ?−θn‖2A−

η

2
‖θ?‖2A≤ log

(
CA,n
δ

)
,

where CA,n=
∫
Rd exp

(
−η2‖θ′‖2A

)
dθ′∫

Rd exp
(
−
∑n
t=1 KLst,at (θn,θ

′)− η2 ‖θ′−θn‖
2
A

)
dθ′

.

Furthermore, introducing the matrix (Gs,a)i,j =
ϕ(s, a)>A>i Ajϕ(s, a), ∀i, j≤d, we have

CA,n ≤ det
(
I + βη−1A−1

∑n

t=1
Gst,at

)
,

where β=supθ,s,a λmax

(
Cθs,a[ψ(s′)]

)
.

This is a rather general concentration inequality that
helps to design confidence sets for adaptive regres-
sion in conditional exponential families. It generalizes
many previously known results for adaptive estima-
tion, including linear bandits (Abbasi-Yadkori et al.,
2011) (since KL is the Euclidean distance), GLM ban-
dits (Filippi et al., 2010) (via bounding from below the
Hessian of the log-partition function). Importantly, it
preserves the information (KL divergence) geometry

3Strict convexity essentially amounts to a minimal rep-
resentation of the exponential family (Amari, 1997). We
assume it for brevity; the result holds even if Zs,a is only
convex.
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of the exponential families in the sense of measuring
empirical deviations in the KL divergence, and this
is crucially exploited later to make the learning algo-
rithm not require knowledge of the minimum curvature
infθ,s,a λmin

(
Cθs,a[ψ(s′)]

)
.

Proof sketch. For the conditional exponential fam-
ily, a direct computation shows that the KL diver-
gence b/w Pθ(·|s, a) and Pθ′(·|s, a) can be expressed
as a Bregman divergence of the log-partition function
Zs,a with the parameters reversed, i.e. BZs,a(θ′, θ) =

KLs,a(θ, θ′). Now, for any fixed λ ∈ Rd, we introduce
the function BZs,a,θ?(λ) = BZs,a(θ? + λ, λ) and define

Mλ
n =exp

(
λ>Sn−

∑n

t=1
BZst,at ,θ?(λ)

)
,

where (Sn)i=
∑n
t=1

(
ψ(s′t)−Eθ

?

st,at

[
ψ(s′)

])>
Aiϕ(st, at),

∀i ≤ d. Since, by construction,
logE

[
exp(λ>Sn)|Fn−1

]
= λ>Sn−1 + BZsn,an ,θ?(λ),

Mλ
n is a non-negative martingale such that E[Mλ

n ]=1.
Further, we show that for any random stopping time
N , E[Mλ

N ]≤1.

We now apply the method of mixtures technique (Peña
et al., 2008) by integrating over λ. To this end, for
any prior density q(θ) for θ, we define a mixture of
martingalesMn=

∫
RdM

λ
n q(θ

?+λ)dλ so that E [Mn]=1.
Considering the prior density N

(
0, (ηA)−1

)
, we then

show that

Mn=exp
( n∑
t=1

BZst,at(θ
?,θn)+

η

2
‖θ?−θn‖2A−

η

2
‖θ?‖2A

)
/CA,n.

We then deduce from a simple Markov inequality that

P

[
n∑
t=1

BZst,at(θ
?, θn)+

η

2
‖θ?−θn‖2A−

η

2
‖θ?‖2A≥ log

(
CA,n
δ

)]
= P [Mn≥1/δ]≤δ · E [Mn]≤δ , ∀δ∈(0, 1) .

By the properties of the martingaleMn, this also holds
for any random stopping time N . The proof is com-
pleted using a stopping time construction similar to
that of Abbasi-Yadkori et al. (2011).

3 REGRET MINIMIZATION IN
BILINEAR EXPONENTIAL
MDPS

We now introduce a low-regret algorithm inspired by
the popular upper confidence RL (UCRL) strategy4

applied to our bilinear exponential family model (1),
and present a regret minimization guarantee for it in
Theorem 2.

3.1 Exponential Family UCRL Algorithm

In order to address the exploration-exploitation trade-
off, the proposed algorithm maintains both an empir-

4or ‘optimism in the face of uncertainty’

ical estimate of θ? as well as a high-probability confi-
dence set. Specifically, at the start of episode t, we let
n=(t−1)H denote the total number of steps completed
so far. The penalized maximum likelihood (PML) es-
timate θn≡θ(t−1)H is computed to solve the following
equation
t−1∑
τ=1

H∑
h=1

(
ψ(sτh+1)−Eθsτh,aτh

[
ψ(s′)

])>
Aiϕ(sτh, a

τ
h)=η(Aθ)i .

where ∀i ≤ d, (Aθ)i =
∑d
j=1 θj tr(AiA

>
j ). Penaliza-

tion acts as a regularizer and avoids the need for any
specific initialization scheme to make the MLE well-
defined. Now, for any δ∈ (0, 1] and BA≥‖θ?‖A, The-
orem 1 suggests the following high probability confi-
dence set around the PML estimate:

Θn=

{
θ∈Rd

∣∣ t−1∑
τ=1

H∑
h=1

KLsτh,aτh(θn,θ)+
η

2
‖θ−θn‖2A≤βn(δ)

}
where the confidence width is given by βn(δ) ≡
β(t−1)H(δ) = η

2B
2
A + log(2CA,(t−1)H/δ). This high-

probability confidence set is then used to carry out
an optimistic planning step:

πt=argmaxπ∈Π maxθ∈Θn V
π
θ,1(st1) , (3)

where st1 is the initial state, and V πθ,1 is the value func-
tion under transition model is Pθ. Using the transition
model (1) that we introduced, the algorithm crucially
adapts the confidence sets of UCRL2 (Jaksch et al.,
2010) to exploit the linear structure. We call this
algorithm Exponential Family Upper Confidence RL
(Exp-UCRL); its pseudocode appears in Algorithm 1.

Algorithm 1 Exponential Family Upper Confidence
RL (Exp-UCRL)

Input: Matrices A1, . . . , Ad, constant BA, parame-
ters δ∈(0, 1], η>0.
for episode t=1, 2, 3, . . . do
Set n=(t−1)H.
Compute the penalized ML estimate θn and the
confidence set Θn.
Observe initial state st1.
Choose policy πt = argmaxπ∈Π maxθ∈Θn V

π
θ,1(st1).

for period h = 1, 2, 3, . . . ,H do
Choose action ath = πth(sth).
Observe reward rth and next state sth+1.

end for
end for

A key result of this paper is the following theoreti-
cal guarantee on the regret minimization properties of
Exp-UCRL.

Theorem 2 (Regret bound for Exp-UCRL). Let
Ai,j = tr(AiA

>
j ) and (Gs,a)i,j =ϕ(s, a)>A>i Ajϕ(s, a),

∀i, j≤ d. Assume that ‖θ?‖A≤BA and
∥∥A−1Gs,a

∥∥≤
Bϕ,A for all (s, a). Then, for any η>0 and δ∈ (0, 1],
Exp-UCRL enjoys, with probability at least 1−δ, the
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cumulative regret

R(N)≤2H

√
β

α

(
1+

βBϕ,AH

η

)
2βN (δ)NγN

+2H
√

2N ln(2/δ)+
2H

3

β

α

(
1 +

βBϕ,AH

η

)
βN (δ)γN ,

where γN ≡ γN (β, ϕ,A) = d log
(
1 + βη−1Bϕ,AN

)
,

α = inf
θ,s,a

λmin

(
Cθs,a[ψ(s′)]

)
, β = sup

θ,s,a
λmax

(
Cθs,a[ψ(s′)]

)
,

βN (δ) = η
2B

2
A+ γN+log(2/δ) and N=TH.

Remark 1. In the special case of a bandit setting
(|S| = 1) with each action’s reward being distributed as
an exponential family, our result implies an improved
regret bound for generalized linear bandits, where the
dependence on α scales only as 1/

√
α compared to the

1/α scaling given in Filippi et al. (2010). (We ignore
the 1/α scaling in the lower order term of the regret
bound, where the dependency with N is only logarith-
mic.) This improvement is consistent with a conjec-
ture of Filippi et al. (2010), and we achieve this thanks
to the novel concentration inequality for conditional
exponential families (Theorem 1) that directly controls
deviations of estimates in the KL geometry rather than
Euclidean-type metrics.

Remark 2. We prove Theorem 2 assuming a minimal
representation of the exponential family. A minimal
representation amounts to assuming strict convexity
of the log partition function for each (s, a) and thus,
in turn, α > 0. If α= 0, then the log-partition func-
tion is not strictly convex at some state-action pair
(s, a); this is akin to some non-minimality in the ex-
ponential family representation (e.g., degenerate mul-
tivariate Gaussian). Assuming minimality is a restric-
tion but is quite common when dealing with exponential
family models. We believe Theorem 2 can somewhat be
extended to non-minimal families, but this would re-
quire specific care and technicalities that might hinder
the paper’s clarity.

Theorem 2 yields a Õ
(
d
√
H3N

)
regret bound in the

linear exponential MDP setting, where d is the number
of model parameters, H is the episode length and N is
the total time. It is worth noting that the regret bound
does not explicitly depend on the size (cardinality) of S
and A, which is crucial in the large state-action space
setting that entails function approximation. For sim-
plicity of representation, we have assumed that the
reward function R is known. When R is unknown but
satisfies a linear structure with d unknown parame-
ters, our algorithm can be extended naturally with an
an optimistic reward estimation step at each episode,
similar to that for the linear bandit setting (Abbasi-
Yadkori et al., 2011). This would add an additional
O
(
d
√
N
)
term in the regret bound. We now discuss

the dependence of regret on key problem parameters
against the backdrop of existing work.

On the Dependency on H (Time Horizon)
Yang and Wang (2019) assume a bilinear transi-
tion probability model with a matrix factorization of
the form P (s′|s, a) = ψ(s′)>Mϕ(s, a), and propose a
model-based algorithm with regret Õ

(√
d3H4N

)
in

general, where d is the dimension of state-action fea-
tures ϕ(s, a). Jin et al. (2019) study a similar class
of linear MDPs with the transition probabilities be-
ing linear in state-action features ϕ(s, a), proposing
a model-free least-squares value iteration algorithm
that achieves a regret bound of order Õ

(√
d3H3N

)
.

A similar regret guarantee is also established by Wang
et al. (2020) in the context of generalized linear MDPs.
In this work, the authors essentially assume that any
value function arising from an optimistic value iter-
ation step can be represented as a generalized lin-
ear function of the features. We, however, do not
need to put any prior knowledge on the value func-
tion and only need an assumption on the transition
structure. We believe that it is more natural in prac-
tice to impose structural assumptions on the transi-
tion model than on (future) value functions, which are
generally complex, derived functions of the reward and
transition structures. Moreover, all these models are
rather limited in the range of well-known MDPs that
they can capture; apart from the tabular model, it is
unclear if they can express classical continuous-space
models like the linear dynamical system or even the
factored MDPs.5 We consider a more natural and
flexible transition model, involving exponential fam-
ilies, than these prior works. Though it is incompa-
rable with the above works in general, we note that
our regret bound reduces a

√
H factor as compared

to Yang and Wang (2019), while achieving the same
scaling with H as in Jin et al. (2019). To provide
further insights on the dependency of our bound on
H, let us consider the case of finite-horizon, tabu-
lar MDP learning. In this case, the best known re-
gret achieved by model-based methods is Õ

(√
HSAN

)
(Gheshlaghi Azar et al., 2017; Zanette and Brunskill,
2019; Efroni et al., 2019) whereas the best known
regret for model-free learning is Õ

(√
H3SAN

)
(Jin

et al., 2018). Our algorithm’s regret scaling with H
is similar to the latter, but with the advantage of be-
ing able to handle models much more general than just
tabular MDPs.

On the Dependency on d (Number of Unknown
Parameters) We first note that the regret bounds
in prior work on linear MDP models (Yang and Wang,
2019; Jin et al., 2019; Wang et al., 2020), as stated
previously, depend on d as O

(
d3/2

)
; however, the ap-

5For the factored MDPs, in fact, model-based algo-
rithms are exponentially better (in terms of sample com-
plexity) than model free methods under a certain realiz-
ability condition (Sun et al., 2019).
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parent
√
d factor improvement in our result is just a

consequence of what bound we assume on the scale of
the features. Under a similar assumption, the prior
bounds can also be shown to be linear in the num-
ber of parameters d like ours. The more important
question is whether this linear dependency is optimal
or not. A linear scaling of worst-case regret is well-
known for linear stochastic bandits (Abbasi-Yadkori
et al., 2011), which are a special case of the MDPs
studied in this work with an additional linear reward
structure and with the episode length set equal to
one. We note, however, that while an MDP has state
transitions, the bandits do not, and a naive adapta-
tion of existing linear bandit algorithms to the lin-
ear MDP setting would give a regret exponential in
episode length H. As for model-based RL, Osband
and Van Roy (2014a) analyze the regret guarantee for
any given class of transition functions. Chowdhury
and Gopalan (2019) make a smoothness assumption
compatible with a reproducing kernel Hilbert space
and prove regret bound for this transition model. In
the case of linearly parametrized (with d unknown pa-
rameters) transition models, both these bound reduce
to Õ

(
d
√
H2N

)
. However, the above works make a

restrictive assumption of the transitions being deter-
ministic with a controllable amount of noise. We make
arguably the most natural, yet expressive enough, lin-
ear assumption over the transitions, and still achieve
a similar regret scaling of the prior works.

Complexity of Optimistic Planning Exact opti-
mistic planning as prescribed in Exp-UCRL may be
computationally intractable, so it is common to as-
sume access to an oracle which returns an ε-optimal
solution to (3). Now, setting ε=

√
H/t at episode t, we

can ensure that this adds only an additional O(
√
N)

factor in the regret bound. We note here that the de-
sign of such approximate MDP planners or oracles for
continuous state and action spaces is a subject of ac-
tive research, whereas our focus in this work is chiefly
on the statistical efficiency of algorithms for achieving
low regret.

An alternative approach for regret minimization in
MDPs, to alleviate the burden of optimistic planning,
is posterior or Thompson sampling. We now introduce
a low-regret posterior sampling RL strategy (Osband
et al., 2013) applied to our bilinear exponential fam-
ily model, where planning is needed only for a single
MDP and can be done using standard techniques like
model predictive path integral control (Williams et al.,
2017).

3.2 Exponential Family PSRL Algorithm

We consider a Bayesian setting in which the unknown
parameter θ? ∈ Rd of the exponential family MDP (1)

is assumed to be distributed according to a (known)
prior µ. At the beginning of episode t (i.e., after
n= (t−1)H total steps), we first sample a parameter
θ̃n ∼ µn, where µn = P(θ? ∈ ·|Hn) denotes the poste-
rior distribution of θ?, given the history of transitions
Hn = {(sτh, aτh, sτh+1)τ<t,h≤H}. Then, we execute the
optimal policy for the MDP whose transition model
is parameterized by θ̃n: πt = argmaxπ∈Π V

π
θ̃n,1

(st1) ,
where st1 is the initial state and and V π

θ̃n,1
is the value

function when the transition model is Pθ̃n . We call
this algorithm Exponential Family Posterior Sampling
RL (Exp-PSRL).

Similar to prior work (Osband et al., 2013), we can
bound the Bayes regret E[R(N)], where the expecta-
tion is taken with respect to the randomness in θ?, in
the state transitions and in the algorithm. The com-
plete proof is deferred to Appendix D.

Theorem 3 (Bayes regret for Exp-PSRL). Let θ?∼µ.
Then, the Bayes regret of Exp-PSRL is

E [R(N)]≤2H

√
β

α

(
1+

βBϕ,AH

η

)
2βN (1/N)NγN

+
2H

3

β

α

(
1 +

βBϕ,AH

η

)
βN (1/N)γN + 1 ,

where BA, Bϕ,A, α, β, γN and βN (·) are as given in
Theorem 2.

Note that the regret bound depends on the prior dis-
tribution via the norm bound ‖θ?‖A ≤ BA, assumed
to hold almost surely with respect to the prior. The
proof of this result follows the general template of Os-
band et al. (2013) and works for any prior distribution
µ. However, the exponential family structure suggests
existence of a natural conjugate prior, described below.

Conjugate Prior for Conditional Exponential
Families We consider the prior distribution:

µ(θ)∝exp

(
n0

d∑
i=1

θiψ(s′0)>Aiϕ(s0, a0)−n0Zs0,a0(θ)

)
,

where (s0, a0, s
′
0)∈ S×A×S and n0 ∈N+ is a scalar.

We can think of the prior as incorporating n0 “vir-
tual” observations of (s0, a0, s

′
0). Now, given n samples

(st, at, s
′
t)t≤n, we obtain the joint likelihood

Ln(θ)∝exp

(
n∑
t=1

(
d∑
i=1

θiψ(s′t)
>Aiϕ(st,at)−Zst,at(θ)

))
.

Then the posterior density takes the form

µn(θ)∝exp

(
n+n0∑
t=1

(
d∑
i=1

θiψ(s′t)
>Aiϕ(st,at)−Zst,at(θ)

))
.

where we set (st, at, s
′
t)=(s0, a0, s

′
0) for all n<t≤n+

n0. The prior is conjugate since the posterior density
takes the same form as the prior.
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4 EXAMPLES OF EXPONENTIAL
FAMILY TRANSITION MODEL

In this section, we now detail several models of dy-
namics to show the flexibility of the formulation we
consider. Importantly for the practitioner, we recover
as special cases the large classes of linear dynamical
systems from continuous control literature, as well as
of factored and tabular MDPs in the computer science-
RL tradition.

4.1 Linearly controlled dynamical systems

Let us consider the classical linear dynamical system
evolution (Bertsekas, 2001) given by

s′ = Gs+Ha+ ζ,

where s, s′ ∈ Rm1 are the current and next states,
a ∈ Rm2 is the current action, G ∈ Rm1×m1 , H ∈
Rm1×m2 are matrices representing the process and
ζ ∼ N (0,Σs,a) is iid state transition noise at the
state-action pair (s, a). We assume the matrices G
and H to be unknown6, and we denote θ = [G,H] ∈
Rm1×(m1+m2). For this model the conditional density
of the next state s′ given s, a is the multivariate normal
density

Pθ(s
′|s, a)=

exp
(
−1

2s
′>Σ−1

s,as
′)

(2π)
m1
2 |Σs,a|

1
2

exp

(
s′>Σ−1

s,aθ

[
s
a

])

× exp

(
−
[
s
a

]> θ>Σ−1
s,aθ

2

[
s
a

])
.

Identifying the exponent in the second multi-
plicand above with ψ(s′)>Mθϕ(s, a) yields the
natural parametric form ψ(s′) = s′ ∈ Rm1 ,
Mθ = I ⊗ vec(θ)> ∈ Rm1×m2

1(m1+m2) and ϕ(s, a) =[
vec
((

Σ−1
s,a

)
1

[s>, a>]
)>
, . . . , vec

((
Σ−1
s,a

)
m1

[s>, a>]
)>]>
∈

Rm2
1(m1+m2), where for any matrix M , (M)i de-

notes its i-th column. In this case, there are
d = m1(m1+m2) unknown parameters and the matrix
Ai∈Rm1×m2

1(m1+m2) has (j, (j−1)d+i)-th entry equal
to 1 for all j≤m1 and all other entries equal to zero.
Therefore, in this case A = m1I and thus, equation
(2) specifies to∑n

t=1
(s′t−Gst−Hat)

>(
Σ−1
st,at

)
i
(st)j=ηm1Gi,j and∑n

t=1
(s′t−Gst−Hat)

>(
Σ−1
st,at

)
i
(at)k=ηm1Hi,k ,

for all i, j ≤m1 and k ≤m2. Further, for each state-
action pair (s, a), Cθs,a [ψ(s′)] = Σs,a, and thus α and
β from Theorem 2 are λmin (Σs,a) and λmax (Σs,a), re-
spectively. Applying Theorem 2 to this MDP yields

Corollary 1 (Linearly controlled dynamical sys-

6We assume that the process noise covariance Σs,a de-
pends on s, a but is known.

tem regret). Under the linearly controlled dynam-
ics, the cumulative regret of Exp-UCRL is R(N) =

Õ
(
m1(m1 +m2)

√
H3N log(1/δ)

)
with probability at

least 1−δ.
Remark 3. Corollary 1 matches (order-wise) the
bound given in Abbasi-Yadkori and Szepesvári (2011)
if we restrict their result to the bounded linearly con-
trolled dynamical systems.

4.2 Factored MDP

We now consider the factored MDP model introduced
by Kearns and Koller (1999). Let X = S × A so
that each x ∈ X is a state-action pair (s, a). Let
the state space S and the joint state-action space X
are factorized as Cartesian product of some finite sets:
S=S1×· · ·×Sm and X =X1×· · ·×Xn. For each state
coordinate i∈ [m], the parents of i, pari⊆ [n] are the
subset of state-action coordinates that directly influ-
ence i. For a state s ∈ S, the value of s on the i-th
coordinate is denoted by s(i) with s(i)∈Si. Similarly
for each state-action pair x ∈ X , the value of x for a
subset of coordinates pari is denoted by x(pari) with
x(pari) ∈ X (pari), where X (pari) =

⊗
j∈pari

Xj . For
ease of representation, we enumerate Si={1, . . . , |Si|}
and X (pari) = {1, . . . |X (pari)|}. In factored MDPs,
the transition dynamics P factorize according to the
parent relationships:

Pθ(s
′|s, a)≡Pθ(s′|x)=

∏m

i=1
P iθ (s′(i)|x(pari)) ,

where each P iθ is a conditional probability table (CPT)
with |Si| rows and |X (pari)| columns. Following clas-
sical parametrization of discrete distributions as expo-
nential family (Amari, 1997), the next state probabil-
ities are given by

P iθ (ji|li)=


exp(θiji,li

)

1+
∑
ji<|Si|

exp(θiji,li
)
, ji< |Si|, li≤|X (pari)|

1
1+

∑
ji<|Si|

exp(θiji,li
)
, ji= |Si|, li≤|X (pari)|

.

The transition model involves a total of d =∑m
i=1 |Si|·|X (pari)| real-valued parameters θiji,li with∑m
i=1 |X (pari)| of them equal to zero.

Now for any s′=(j1, . . . , jm) and x=(x1, . . . , xn) such
that x(pari)= li,∀i∈ [m], we have

Pθ (s′|s, a)=exp
(∑m

i=1
θiji,li−Zs,a(θ)

)
,

where Zs,a(θ) =
∑m
i=1 log

(
1+
∑
ji<|Si|exp(θiji,li)

)
.

Identifying the first term in the exponent above
with ψ(s′)>Mθϕ(s, a) yields the natural paramet-
ric form with Mθ = diag(M1

θ , . . . ,M
m
θ ) being a

block diagonal matrix, where each sub-block M i
θ =

[θiji,li ]ji,li ∈ R|Si|×|X (pari)| is composed of the pa-
rameters of P iθ . The state features are ψ(s′) =
[ψ1(j1)>, . . . , ψm(jm)>]>, where each ψi(ji) = 1ji ,
the indicator vector of length |Si|. The state-
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action features are ϕ(s, a) = [ϕ1(l1)>, . . . , ϕm(lm)>]>,
where each ϕi(li) = 1li , the indicator vector of
length |X (pari)|. We can further express Mθ =∑m
i=1

∑|Si|
ji=1

∑|X (pari)|
li=1 θiji,li1

i
ji,li

, where 1iji,li is the
one-hot indicator block diagonal matrix (of suitable
size) whose (ji, li)-th entry of the i-th sub-block is 1
and all other entries are 0. Therefore, in this case
A=I and thus, equation (2) specifies to∑

ki∈Si\jiexp(θiki,li)∑
ki∈Siexp(θiki,li)

n∑
t=1

I{s′t(i)=ji,xt(pari)= li}=ηθiji,li

(with θi|Si|,li =0), ∀i≤m, ji< |Si| and li≤|X (pari)|.

Further, for the state-action pair x=(x1, . . . , xn) such
that x(pari) = li,∀i ≤ m, where li ≤ |X (pari)|, the
covariance matrix Cθs,a [ψ(s′)] is block diagonal with
each sub-block also being diagonal. The ji-th diag-
onal entry, ji ≤ |Si|, of the i-th sub-block, i ≤ m,

is equal to uiji,li =
exp(θiji,li

)
∑
ki∈Si\ji

exp(θiki,li
)

(
∑
ki∈Si

exp(θiki,li
))2

. Con-

sequently, α and β from Theorem 2 simply become
α = mini,ji,li u

i
ji,li

and β = maxi,ji,li u
i
ji,li
≤ 1

4 . Now,
applying Theorem 2 to this MDP yields

Corollary 2 (Factored MDP regret). For factored
MDPs, the cumulative regret of Exp-UCRL is R(N)=

Õ
(∑m

i=1 |Si||X (pari)|
√
H3N log(1/δ)

)
with probabil-

ity at least 1−δ .

4.3 Tabular MDP

We now consider a discrete transition distribution with
S = m1 states and A = m2 actions: for each state-
action pair (sl, al), 1 ≤ l≤ m1m2, and following classi-
cal parametrization of discrete distributions as expo-
nential family, the next state probabilities are given
by Pθ(s′i|sl, al) =

exp(θi,l)

1+
∑m1−1

k=1 exp(θk,l)
for 1 ≤ i≤ m1−1,

and Pθ(s
′
i|sl, al) = 1

1+
∑m1−1

k=1 exp(θk,l)
for i=m1. This

model involves m2
1m2 real-valued parameters θi,l, i ∈

[m1], l ∈ [m1m2], m1m2 of which being equal to 0
(we have ∀l, θm1,l = 0), and the rest are unknown.
The conditional probability mass function of the next
state satisfies Pθ(s′i|sl, al) = exp(θi,l − logZsl,al(θ)) =

1
Zsl,al (θ)

exp
(
1>i Mθ1l

)
, where Mθ = [θi,l]i,l, and 1x

is the indicator vector (of suitable length) whose x-
th entry is 1 and all other entries are 0. Further,
Mθ =

∑m1

j=1

∑m1m2

r=1 θj,r1j,r, where 1x,y is the one-
hot indicator matrix (of suitable size) whose (x, y)-th
entry is 1 and all other entries are 0. Therefore, in this
case A=I and thus, equation (2) specifies to∑

k 6=i exp(θk,l)∑m1

k=1 exp(θk,l)

n∑
t=1

I{s′t=si, st=sl, at=al} = ηθi,l,

(with θm1,l = 0), for all i∈ [m1], l∈ [m1m2].

Further, for each state-action pair l ∈ [m1m2],
Cθsl,al [ψ(s′)] is a diagonal matrix with entry (i, i),

i ∈ [m1] equal to
exp(θi,l)

∑
k 6=i exp(θk,l)

(
∑
k exp(θk,l))

2 . Consequently,

α and β from Theorem 2 simply become
α = minl,i

exp(θi,l)
∑
k 6=i exp(θk,l)

(
∑
k exp(θk,l))

2 , and

β = maxl,i
exp(θi,l)

∑
k 6=i exp(θk,l)

(
∑
k exp(θk,l))

2 ≤ 1
4 .

Now, applying Theorem 2 to this MDP yields
Corollary 3 (Tabular regret). For tabular Markov de-
cision processes, the cumulative regret of Exp-UCRL
is R(N) = Õ

(
S2A

√
H3N log(1/δ)

)
with probability at

least 1−δ.
Remark 4. We remark that our regret bounds for tab-
ular and factored MDPs are worse than the respective
best known bounds (Gheshlaghi Azar et al. (2017) for
the tabular model and Osband and Van Roy (2014b) for
the factored model); by more refined analyses special-
ized to these models, the regret bound of our algorithm
can be improved using techniques similar to the men-
tioned works. However, we emphasize that our algo-
rithm and analysis tackle a more general setting; thus,
recovering the optimal regret bounds for the tabular and
factored models are not the main focus of this work.
Remark 5 (Minimal exponential family). In our ex-
ample of tabular MDPs, we illustrated, out of simplic-
ity, a minimal representation with the support of each
transition being the full state space. A minimal rep-
resentation essentially amounts to assuming that the
support of each transition is known (locally at each
(s, a), dimension = support−1). This is more flexi-
ble than assuming that we can transit to all states with
a positive probability. Assuming the knowledge of the
support is a restriction, but we feel that it is not strin-
gent. For instance, in grid-world MDPs, the supports
are indeed known ahead of time. If the support is un-
known, then the exponential family need not be min-
imal. However, an equivalent minimal representation
exists. We leave as future work the task of trying to
remove the minimality assumption.

5 PROOF SKETCH: THEOREM 2

We give, in this section, an overview of several of the
key ideas behind the main regret bound (Theorem 2).
The full proof is deferred to the appendix.

Step 1: Optimism Let us consider a fixed episode t,
i.e., when n = (t−1)H. Let θ̂n denotes the most opti-
mistic realization from the confidence ellipsoid Θn, i.e.,
V πt
θ̂n,1

(st1) ≥ V πθ,1(st1), ∀π ∈ Π, ∀θ ∈ Θn. Therefore, as
long as the true parameter θ?∈Θn with high probabil-
ity, V πt

θ̂n,1
(st1) gives an optimistic estimate of the value

V π
?

θ?,1(st1) of the episode. An application of Theorem 1
implies that with probability at least 1−δ/2, θ? ∈Θn

across all episodes and thus, in turn, the cumulative
regret R(N)≤

∑T
t=1 V

πt
θ̂n,1

(st1)−V πtθ?,1(st1).
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Step 2: Bellman Recursion, Transportation and
Martingale Control For any θ ∈ Rd, π ∈ Π and
V :S→R, we define the Bellman operator ∀h≤H as

T πθ,h (V ) (s)=R (s, π(s, h))+Eθs,π(s,h) [V ] .

Now, by the Bellman equation, we have ∀h ≤ H,
V πθ,h(s)=T πθ,h

(
V πθ,h+1

)
(s), (with V πθ,H+1(s) :=0).

Applying the Bellman equation recursively, the cu-
mulative regret can be upper bounded as R(N) ≤∑
t≤T,h≤H

(
T πt
θ̂n,h

(
V πt
θ̂n,h+1

)
(sth)−T πtθ?,h

(
V πt
θ̂n,h+1

)
(sth)+mt

h

)
,

where {mt
h}t,h is a martingale difference sequence sat-

isfying |mt
h|≤2H. Therefore, by the Azuma-Hoeffding

inequality (Boucheron et al., 2013), with probability
at least 1−δ/2, we obtain

∑
t,hm

t
h≤2H

√
2N ln(2/δ).

Since, by design, V πt
θ̂n,h+1

(s)≤H, we can now control
the Bellman differences using transportation inequali-
ties (Lemma 1 in Appendix A) as
T πt
θ̂n,h

(
V πt
θ̂n,h+1

)
(sth)−T πtθ?,h

(
V πt
θ̂n,h+1

)
(sth)

/H
(√

KLsth,ath(θn, θ̂n)+
√

KLsth,ath(θn, θ
?)+KLsth,ath(θn, θ

?)
)
.

Step 3: Controlling Sum of KL Divergences
We first approximate the KL divergence b/w Pθ(·|s, a)
and Pθ′(·|s, a) using curvature properties of the log-
partition function as α

2 ‖θ
′−θ‖2Gs,a ≤ KLs,a(θ, θ′) ≤

β
2 ‖θ

′−θ‖2Gs,a . This follows from a second-order Taylor
approximation of the log-partition function together
with the definition of β. Then, for any θ∈Θn, we ob-
tain ∀(s, a), KLs,a(θn, θ)≤(β/α)·βn(δ)

∥∥∥G−1

n Gs,a

∥∥∥ ,

where Gn :=Gn+α
−1ηA and Gn :=

∑t−1
τ=1

∑H
h=1Gsτh,aτh .

Now
∥∥∥G−1

n Gs,a

∥∥∥≤ α
η

∥∥A−1Gs,a
∥∥≤βBϕ,A/η, ∀(s, a) and

Gn+H =Gn+
∑H
h=1Gsth,ath . Therefore, we deduce that∥∥∥G−1

n Gs,a

∥∥∥=∥∥∥(I+G
−1

n

∑
h≤HGsth,ath

)
G
−1

n+HGs,a

∥∥∥≤(1 +

βBϕ,AH/η)
∥∥∥G−1

n+HGs,a

∥∥∥. Using spectral properties of
(p.s.d.) matrices, we can now show that∑

t,h

∥∥∥G−1

n+HGsth,ath

∥∥∥≤ log det(I+αη−1A−1GN ) ,

which is further upper bounded by γN =
d log

(
1+βη−1Bϕ,AN

)
. Therefore, since βn is

monotone increasing in n, we have for any θ∈Θn,∑
t,h

KLsth,ath(θn,θ)≤(β/α)·(1+βBϕ,AH/η)βN(δ)γN .

Final Step: We note that, by design, θ̂n ∈
Θn and by Theorem 1, θ? ∈ Θn. Further, by
Cauchy-Schwartz inequality,

∑
t,h

√
KLsth,ath(θ, θ

′) ≤√
N
∑
t,hKLsth,ath(θ, θ

′). The proof now can be com-
pleted by putting all the steps together and applying
a union bound.

6 CONCLUDING REMARKS

We have provided a new framework to express shared,
linear, structure in large, complex MDP problems, re-
lying on the expressive power of exponential family
models. We hope this opens the door on more connec-
tions to be drawn between learning in dynamical sys-
tems on the one hand, and statistical models and guar-
antees on the other. Several questions emerge, includ-
ing whether it is possible to sharpen the regret bounds
derived here, by employing/building tighter confidence
sets, and making full use of the linear structure (still
open for linear bandits, see Lattimore and Szepesvari
(2017); Magureanu (2018)), and whether richer infor-
mation structures can be cast into this framework, e.g.,
partially observed MDPs (POMDPs).
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