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1. INTRODUCTION

The advent of integrated electrokinetic systems has renewed
interest in employing such systems for manipulation of small-
scale flows of charged liquids using electrical forces. Electro-
kinetic effects increase within decreasing scale and are therefore
especially important when a charged liquid is confined to small
domains. The stability of electro-osmotic flows confined between
parallel plates has been investigated in several recent papers
motivated by mesoscale experimental observations of flow
instability.1,2 Far from double layers, at a scale much larger than
the Debye length, charged electrolytes are almost electroneutral
and diffusive currents are negligible compared to electromigra-
tion. The resulting “ohmic” model approximation for the elec-
trolyte is commonly used3,4 for analyzing the dynamics of
electrokinetic flows. In this framework, the presence of electro-
lyte concentration gradients induces electrical conductivity
changes which are in turn responsible for electrical potential
variations.5,6 Abrupt electrolyte concentration variations can
induce both longitudinal and transverse variations in the poten-
tial leading to flow instability.5,6

When convective transport dominates over diffusive (the large
P�eclet number regime), a recent study7 shows that the electro-
kinetic flow is stable even in the presence of time-dependent
electrical forcing. In this case, the nonstationary flow in the
Stokes layers near the boundaries decouples from the bulk
electrokinetic problem, but is driven by the Coulomb forces
arising in the bulk. These studies have been restricted to the
linear Debye�H€uckel approximation and are all based on the
thin double-layer approximation. In this limit, the bulk electro-
lyte remains quasi-neutral, and the double layer remains in
thermal quasi-equilibrium. However, dynamical studies investigat-
ing the stability at the double-layer scale have apparently not been
done. At this scale, charges are no longer locally electroneutral, and

nonlinearities involving the potential and ion concentration can
play an important role.

At these very small scales, the electrokinetic phenomenon
involves new physical effects that are still not clearly elucidated.
For example, dynamical charge relaxation involves a very fast
time scale associated with various diffusion times across the
double layer.8 At distances on the order of the Debye length,
when the electrolyte is confined between two solid surfaces, the
double layers overlap and their interaction can produce nontrivial
attraction9,10 and ion concentration profile.11 This is not true for
imposed surface charges, where Poisson�Boltzmann electro-
static interactions are always repulsive,12 unless nonsymmetric
boundary conditions associated with nonidentical surfaces are
considered.13,14

However, attraction can occur even for symmetric boundary
conditions provided charge regulation is included, as first noted
in refs 15,16 and subsequently analyzed in ref 9. In other
situations charge regulation produces repulsion.17 In the present
work, we concentrate on “reduced” charge regulation for which
the surface charge decreases with the applied electrical potential,
in contrast to the case studied in ref 8. In this case, Stern layers
associated with mixed boundary conditions for the electrical
potential destabilize the trivial state, leading to a nontrivial
symmetry-breaking stationary solution describing attractive
interaction between solid surfaces.9 Such Stern layers are con-
sistent with modified mean-field descriptions incorporating
fluctuations and charge correlation effects.9,18 Interest in this
specific case is justified within the framework of Langmuir and
Frumkin�Fowler�Guggenheim (FFG) mass action models as
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discussed in section 2.1.3. In ref 9, the attractive far-field behavior
of “reduced” charge regulation solutions between similar surfaces
was successfully compared with atomic force microscopy mea-
surements obtained in ref 19. The present contribution analyzes
in greater depth the origin of such attractive solutions, as well as
their stability properties with respect to parameter changes
including charge density variations and potential disturbances.
In the context of charge transport balance formulation, the study
shows that attractive solutions are not only robust but also
display a dramatic increase in the wall potential at small separa-
tions, similar to that observed in refs 20,21 that can swamp the
spring constant of an AFM probe tip at small distances. It is
important, therefore, to also consider the stability properties of
both the trivial and nontrivial solutions, and to do so within the
framework of a Poisson�Nernst�Planckmean-field description.

The problem is formulated in section 2 together with the
governing equations and a brief summary of the numerical
method used to solve them. The linear stability of the trivial
homogeneous solution of the Poisson�Nernst�Planck equations
is studied analytically in section 3. Section 4 is devoted to a
description of the numerical results and an analytical treatment of
the behavior of the system near a singularity identified in the
course of the numerical study. Two cases are studied, with and
without an imposed electric field, focusing on a closed systemwith
a fixed number of charges. In section 4.3, we consider the effects of
different diffusivities of the anions and cations; in section 4.4, the
case of a non electroneutral electrolyte is briefly described; the
influence of the different Stern layers is discussed in section 4.5.
Brief discussion and conclusions follow in section 5.

2. CONSTITUTIVE EQUATIONS AND NUMERICAL
METHOD

2.1. Governing Equations. 2.1.1. Dimensionless Formulation.
We consider a neutral monovalent electrolyte between two
chargeable, planar, and parallel vertical walls, as in Figure 1. In
the case considered here, the vertical extent of the walls is
sufficiently large compared to the gap 2h that a one-dimensional
formulation is appropriate, and we use the variable x to refer to
the horizontal coordinate transverse to the walls. The electrolyte
is taken to consist of dissociated cations and anions with identical
mobilities and diffusivities, satisfying the Poisson equation

εε0∇ 3E ¼ eðcþ � c�Þ ð1Þ
Here, ε is the electrolyte permittivity, ε0 the vacuum permittivity,
e the elementary electrical charge, c+ and c� are, respectively, the

cation and the anion number densities, and E is the electric field
that may be written as the gradient of a potential ϕ

E ¼ �∇ϕ ð2Þ
defined to within a constant. The diffuse-charge dynamics are
described by the Nernst�Planck equations

∂t c
( ¼ ∂xðD∂xc( ( μc(∂xϕÞ ð3Þ

where t is the time,D is the (constant) ion diffusivity, and μ is the
(constant) ion mobility given by the Einstein-Smoluchowski
formula

μ ¼ De
kBT

ð4Þ

Here, kB is the Boltzmann constant and T is the temperature. As
already mentioned, we assume that the diffusivities of positive
and negative charges are identical. However, it is important to
stress that when we relax this hypothesis (see section 4.3) we find
that doubly diffusive effects do not qualitatively affect the
conclusions reached with a single diffusivity hypothesis. Finally,
it is also interesting tomention that we have neglected convective
transport contribution in eq 3 because, at nanometer scale,
diffusive transport is generally much faster than convection
(zero P�eclet number limit).
In the following, lengths, time, and the number densities c( are

nondimensionalized, respectively, using half the wall separation
h, the diffusive time scale τ � h2/D, and the number density
c0 of cations in the absence of an electric field (equivalently,
anions, since both of these constants are equal, owing to
electroneutrality and isovalence). The electrical potential ϕ is
nondimensionalized by kBT/e. The dimensionless Poisson�
Nernst�Planck equations read

Δϕ ¼ β

2
ðc� � cþÞ ð5Þ

∂t c
þ ¼ ∂xð∂xcþ þ cþ∂xϕÞ ð6Þ

∂t c
� ¼ ∂xð∂xc� � c�∂xϕÞ ð7Þ

and are time-dependent. Here,Δ� ∂xx
2 and the variables x, t, c(, andϕ

now refer to dimensionless quantities. In the following, we refer to
c( as concentrations; number densities can be converted to true or
relative concentrations by dividing by the Avogadro number Av or
by a reference number density such as c0, but these prefactors cancel
out from the above equations. In eq 5, the parameter β � h2/λD

2

Figure 1. (a) Sketch of the systemwith a neutral monovalent electrolyte confined between two chargeable walls located at x =(h. The Debye and Stern
lengths λD and λS relative to the gap width 2h when (b) β > βs and (c) β = βs. The corresponding electrical potential ϕ(x) is superposed.



quantifies the relation between the gap width 2h and the Debye
length λD defined by

λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εε0kBT
2e2c0

r
ð8Þ

In the following, we shall be interested in the case of overlapping
double layers corresponding to the case β < 1 (see Figure 1).
Following classical formulation,22 we introduce the total concentra-
tion c � c+ + c� and the charge density F � c+ � c� and rewrite
eqs 5�7 in the form

Δϕ ¼ � β

2
F ð9Þ

∂t c ¼ ∂xð∂xc þ F∂xϕÞ ð10Þ

∂tF ¼ ∂xð∂xF þ c∂xϕÞ ð11Þ
We assume that the flux of anions and cations across the boundaries
vanishes

∂xc þ F∂xϕ ¼ ∂xF þ c∂xϕ ¼ 0 at x ¼ ( 1 ð12Þ
Under these conditions, eqs 10 and 11 show that ∂tÆcæ = ∂tÆFæ = 0,
where Æ f æ=

R
�1
1 f dx. Thus, the number of anions and cations in the

electrolyte remains constant in time. To fix these constants, we take
the global charge of the electrolyte to be zero corresponding to an
electrically neutral system. In dimensionless form, this assumption
leads to the constraints

Æcæ� 2c̅ ¼ ÆFæ ¼ 0 ð13Þ
where c is a constant determined by the number density of anions
and cations prior to charge separation. This condition preserves
global charge neutrality in the bulk plus solution. For simplicity, we
consider first an electrolyte with identical anion and cation diffusiv-
ities, with global charge neutrality, i.e., ÆFæ� F = 0, and no applied
electric field. Our conclusions extend, however, to the more general
case of an applied electric field (as shown in section 4.2), hetero-
geneous ion properties (as shown in section 4.3), and non-electro-
neutral liquid bulk for which F 6¼ 0 (as shown in section 4.4).
In view of our nondimensionalization, we take c = 2, although

our analytical calculations are carried out for general c. In some
applications, for example, in open systems in which the system is
in contact with electrolyte reservoirs above and below, c can be a
function of z, the coordinate parallel to the walls.11

2.1.2. Stern Layer Boundary Conditions. It remains to specify
the boundary conditions on the electrical potential ϕ at the solid
surfaces. The appropriate conditions go back to the work of O. Z.
Stern,23 albeit with a physical interpretation that benefits from
recent advances in statistical fluctuation theory analysis of surface
adsorption.9,18 This analysis modifies the traditional physical
picture of the Stern boundary conditions (see, e.g., refs 24,25)
and attributes to Stern layers chemical and entropic contribu-
tions to the charge regulation capacity, in addition to the
traditional electrical contribution.13 In the traditional picture,
developed by Stern23 and used in many subsequent studies, e.g.,
refs 24,25, a Stern layer (sometimes separated into an inner and
an outer part24) is a region where transverse spatial variations of
the potential are taken to be linear, with an apparent dielectric
permittivity different from the double-layer bulk. The value of the
electrical potential ϕ at the outer edge of the boundary layer
which connects to the double layer is called ζ. In the context of a
thin double layer, the Stern layer is sometimes considered

as providing an effective boundary condition to capture the
compact counterion sublayer resulting from local Poisson�
Boltzmann equilibrium. This point of view is not supported by
fluctuation theory9,18 where charge regulation is the result of
local surface�bulk interactions, at a scale smaller than the Debye
length. Such a local picture of the Stern layer is also supported by
mass action models in which the local Stern surface charge/field
relation results from adsorption/desorption kinetics, indepen-
dent of the Debye scale. This is the reason charge regulation
boundary conditions can be applied even on the scale of over-
lapping double layers.26 Nonetheless, the fact remains that in the
case of overlapping thick double layers with charge regulation
boundary conditions the local electrical potential on one wall
depends on the potential on the other, resulting in an indirect
coupling between the two.
The linear variation of the potential with transverse coordinate

within the Stern layer is described through the ratio of two
parameters σd/C, the surface charge density σd divided by the
Stern layer capacitance C. From Gauss’ theorem, the surface
charge density is proportional to the transverse electric field at
the double-layer edge and the double-layer bulk permittivity ε,
σd∼� ε dϕ/dx, with a negative sign in the presence of negative
surface charges and no adsorbed counterions.25 The Stern layer
capacitance C is proportional to the Stern layer permittivity εr
and inversely proportional to the Stern layer width λS,C∼ εr/λS.
In this picture, valid at each solid boundary, the Stern boundary
condition thus reads

ϕ ¼ ζ� σd

C
� ζ þ ελS

εr

∂ϕ

∂x
ð14Þ

Thus

∂ϕ

∂x
¼ εr

ελS
ðϕ� ζÞ ð15Þ

A more up-to-date picture of the boundary condition eq 15
emerges from analyzing the electrical, chemical, and entropic
contributions to charge regulation within a statistical mechanics
framework. These lead to a modified mean-field Poisson�
Boltzmann equations with surface source terms.18 In the weak-
field regime, these surface terms can in turn be mapped into a
Stern layer type boundary condition eq 15.9 Moreover, when the
Stern layer permittivity is taken to equal the bulk permittivity,
this mapping provides an explicit formula for the Stern layer
width in terms of intrinsic constitutive parameters such as the
Bjerrum length l B, the ionic charge number Z, and the surface
charge density nc of condensed ions, viz., λS = 1/πZ2l Bnc.

9 In
fact, as discussed in refs 3 and 9, boundary conditions of the same
type result from a linearization of the adsorption isotherm
potential/concentration, the sign of which depends on the
specific kinetics.
A dimensionless formulation of the Stern layer boundary

condition eq 15, with the half-gap h used as the length scale for
transverse variation of ϕ, leads to the conditions

∂xϕ ¼ ( ν
ffiffiffi
β

p
ðϕ� ϕ(Þ at x ¼ ( 1 ð16Þ

where |ν| � λD/λS measures the width of the electrical double
layer relative to the Stern layer width, and ϕ( denotes the
dimensionless ζ-potentials outside the Stern layers. These po-
tentials may be zero or nonzero and of opposite signs as in the
case of an applied transverse electric field (see below). In the



following, we shall be interested in the case λS < h depicted in
Figure 1, corresponding to 1/ν2 < β < 1.
The sign of the parameter ν has important consequences for

the stability properties of the basic state. As already mentioned,
previous derivations led to the estimate ν ∼ λDl Bnc, with a
positive prefactor, implying that ν > 0. This result is consistent
with fluctuation theory-based modified mean-field equations.18

However, the sign in the Stern layer mixed boundary condition
depends on the dependence of σd on the potential. In particular,
when σd increases with ϕ the parameter ν is negative.27 This case
is studied in ref 8. In contrast, when σd decreases with ϕ the
parameter ν is positive. In section 2.1.3, we discuss different mass
action models which lead to the latter relationship, and conclude
that both signs of ν arise in practice.
It should be mentioned that with the Bjerrum length l B =

0.7 nm at 300 K and the surface ion density nc considered by Jiang
and Stein,28 i.e., 0 .5nm�2 < nc < 5 nm�2, the expression λS =
1/πZ2l Bnc shows that for monovalent ions (Z = 1) the Stern
length λS falls in the range 0.9 nm < λS < 9 nm. Thus, the Stern
length may represent a substantial fraction of the Debye length
if the latter is smaller than 20 nm. In this case, the parameter
|ν|� λD/λS =O (1). In the following, we shall see that when the
gap size is smaller than the Debye length, i.e., β < 1, the physically
relevant range 1.5 < ν < 3.5 contains an instability responsible for
the spontaneous generation of a stable nonzero static electrical
potential.
2.1.3. Mass Action Models. In this section, we discuss three

distinct mass-action models, all of which lead to an effective
decrease of the surface charge σd with increasing applied electrical
potential. Following the notation,29 we write first-order mass-
action equations for equilibrated Z-covalent charged particles
associated with adsorption/desorption in terms of Arrhenius-
type coefficients. In the absence of electrical effects, the adsorp-
tion/desorption coefficients are denoted by ka

ne and kd
ne. In the

presence of a dimensionless potential ϕ nondimensionalized by
kBT/e, these coefficients read

ka ¼ knea e�λaZϕ kd ¼ kned eð1 � λaÞZϕ ð17Þ
where Z is the covalence and 0 < λa < 1 is an affinity factor
describing the surface/ion interaction. As shown in refs 13,29,
the equilibrium eq 17 leads to the Langmuir model with the
normalized surface carrier concentration Cs given by the relation

Cs ¼ 1

1 þ kned
knea Cb

eZϕ
ð18Þ

where Cb is the bulk ion concentration. Consequently, in the
Langmuir model the normalized surface charge density σd = ZCs

is a decaying function of the applied potential whenever Z > 0, as
exemplified in Figure 2a.
Another popular mass-action kinetic model is the Frumkin�

Fowler�Guggenheim (FFG) model, for which, in the absence of
electrical potential, the adsorption/desorption coefficients dis-
play an Arrhenius-like dependence on the surface carrier con-
centration

knea ¼ k0a e
�RðΔG=RTÞCs kned ¼ k0d e

ð1 � RÞðΔG=RTÞCs ð19Þ

where ΔG is the standard net lateral interaction energy in the
adsorbed layer and RΔG is the standard net activation energy
due to lateral interactions, where 0 < R < 1. Using the relation
eq 19 for equilibrated mass action leads to the following closed
relationship between the applied electrical potential ϕ and the
surface carrier concentration

Zϕ ¼ ln
1� Cs

k0d
k0aCb

Cs e
ðΔG=RTÞCs

0
BBB@

1
CCCA ð20Þ

This model also leads to a decreasing surface charge density as
illustrated in Figure 2b.
Finally, the mass-action adsorption isotherm linearization in

the specific case of cobalt-hexamine on silica surfaces proposed in
ref 19 leads to the following surface charge-potential relation:

σdðϕÞ ¼ � nsie
1� K1 expð � 3ϕÞ
1 þ K2 expð � 3ϕÞ ð21Þ

where nsi = 0.5 nm
�2 andK1 = 10

4,K2 = 5� 103. In this case, too,
the surface charge density σd decreases monotonically with the
applied surface potential (cf. Figure 2c). These mass-action
models motivate our interest in the effect of the Stern boundary
conditions eq 16 with ν > 0.
2.2. Numerical Method. In the following, we restrict our

study to steady states. In order to compute steady solutions of the
above problem as a function of the experimentally easiest-to-
change parameter β, we use a numerical continuation method
(Auto-07p30) based on a Newton solver for the time-indepen-
dent version of eqs 9�11 with the boundary conditions eq 12
and eq 16. To do so, the fields c, F, and ϕ are approximated by a
high-order interpolant through the Gauss-Lobatto-Legendre
points.31 Equations 9�11 are discretized using a weak formula-
tion, a procedure that enforces the corresponding boundary
conditions eq 12 and eq 16. A similar treatment is applied to the
linearized version of the equations and their derivative with
respect to β.

Figure 2. (a) and (b) Sketches of the adsoption isotherm from, respectively, the Langmuir and Frumkin�Fowler�Guggenheim models.29 The
parameters are Z = 3, kd

0/(ka
0Cb) = 1/6 and (a) ΔG/RT = 0, (b) ΔG/RT =� 2, as used in ref 29. (c) Sketch of the adsorption isotherm for cobalt-

hexamine on silica surfaces as given by eq 21.19 In each figure, σd represents the surface charge density and ϕ is the applied electrical potential.



3. LINEAR STABILITY ANALYSIS

3.1. The Trivial Solution and Its Stability. When the
potential difference across the system vanishes, we may, without
loss of generality, write ϕ( = 0. The problem in eqs 9�12 and
eq 16 then has the trivial solution (c, F) = (c, 0) with ϕ = 0. To
analyze the stability of this solution, we linearize the equations
and write the perturbation as (~c, ~F, ϕ~) exp(σt), where σ is the
temporal growth rate. This procedure leads to the eigenvalue
problem

Δ~c ¼ σ~c ð22Þ

Δ~F þ c̅Δϕ~ ¼ σ~F ð23Þ

Δϕ~ ¼ � β

2
~F ð24Þ

The corresponding linearized boundary conditions are

∂x~c ¼ ∂x~F þ c̅∂xϕ~ ¼ 0 at x ¼ ( 1 ð25Þ

∂xϕ~ - ν
ffiffiffi
β

p
ϕ~ ¼ 0 at x ¼ ( 1 ð26Þ

The integral constraints on the perturbation become

Æ~cæ ¼ Æ~Fæ ¼ 0 ð27Þ
Because the equation for~c decouples, the form of an eigenmode
(~c, ~F) is either (~c, 0) with ϕ~ � 0 or (0, ~F) with ϕ~ 6¼ 0. Solving
equation eq 22 with the first boundary condition in eq 25 and the
first constraint in eq 27, we find that~c is either symmetric,~c�~cs
with ~cs(x) = ~cs(�x), or antisymmetric, ~c � ~ca with ~ca(x) =
�~ca(�x)

~cs ¼ coshð ffiffiffi
σ

p
xÞ with σ ¼ � ðn þ 1Þ2π2 ð28Þ

~ca ¼ sinhð ffiffiffi
σ

p
xÞ with σ ¼ � ð2n þ 1Þ2 π

2

4
ð29Þ

where n = 0, 1, 3 3 3 is a non-negative integer. Likewise, when~c =
0, we set λ2 � σ + [cβ/2] and find that ~F is either symmetric,
~F � ~Fs

~Fs ¼ coshðλxÞ with σ ¼ � ðn þ 1Þ2π2 � c̅β
2

ð30Þ

with associated potential

ϕ~s ¼ � β

2λ2
coshðλxÞ þ β

2λ2
ð � 1Þn þ 1 ð31Þ

or antisymmetric, ~F � ~Fa
~Fa ¼ sinhðλxÞ ð32Þ

with associated potential

ϕ~a ¼ � β

2λ2
sinhðλxÞ þ 1

c̅
βc̅
2λ

� λ

� �
x cosh λ ð33Þ

Imposition of the boundary conditions eq 25 leads to a trans-
cendental equation for the associated eigenvalue σ

1� ν
ffiffiffi
β

p
¼ c̅νβ3=2

2λ2
1
λ
tanh λ� 1

� �
ð34Þ

A summary of the eigenmodes of the trivial solution is given in
Table 1. These results indicate that the only eigenmodes that can
be unstable (σ > 0) are of the form (0, ~Fa). From eq 34, we first
observe that, for v > 0, a singularity appears at β = βs � 1/v2. At
this value, σf∞ and the potential ϕ~a diverges at all x ∈ [�1, 1]
except x = 0 (see eq 33). To locate bifurcations, we set σ = 0 in
eq 34. This provides a criterion for stability: if v e (c/2)1/2, no
instability from the trivial solution can occur. If, on the other
hand, v g (c/2)1/2 there is a critical dimensionless gap βc at
which the trivial state changes stability given by

βc ¼
1
2c̅

ln
ν þ ffiffiffiffiffiffiffi

c̅=2
p

ν� ffiffiffiffiffiffiffi
c̅=2

p
 !2

ð35Þ

The dependence of βc on c is shown in Figure 3. A more detailed
analysis of eq 34 reveals that this is the only bifurcation of the
trivial state and hence that any bifurcation from the trivial state
must correspond to an antisymmetric eigenmode. The structure
of the unstable eigenmode is shown in Figure 4 for c = 2, ν = 2,
and β = 0.3 < βc � 0.3017. Moreover, eq 34 shows that σ
decreases to �∞ as β approaches βs = 0.25 from below and
increases to +∞ when β approaches βs from above. Thus, when
β > βc > βs (respectively, βc > β > βs), the trivial state is stable
(respectively unstable).

Table 1. Summary of the Primary Eigenmodesa

trivial solution eigenmodes

ϕ~ = 0, ~c, ~F = 0 ϕ~, ~c = 0, ~F

symmetric antisymmetric symmetric antisymmetric

σ = �(n + 1)2π2 σ = �(2n + 1)2π2/4 σ = �(n + 1)2π2 � cβ/2 transcendental eq.

see eq 28 see eq 29 see eqs 30�31 see eqs 32�34
aThe only eigenmodes that can lead to instability are those expressed by eqs 32�34.

Figure 3. Evolution of the location of the primary bifurcation βc as a
function of the mean concentration c as computed from eq 35 for ν = 2.



The variation of βs and βc with the aspect ratio v of the
boundary layer is illustrated in Figure 5 for 1.5 < v < 3.5. When ν
increases, i.e., when the Stern layer becomes smaller and smaller
compared to the Debye layer, βc decreases toward βs and the
interval of instability decreases. Asymptotically, the case ν . 1
corresponds to a constant imposed potential—Dirichlet bound-
ary conditions for the Poisson�Boltzmann problem eq 9—at the
solid boundary and in this system there is no bifurcation of the
trivial state.
3.2. Analysis of the Growth RateDivergence near βs.Let us

now turn to the divergence of the growth rate near βs� 1/ν2.We
write

β ¼ ð1 þ εÞ=ν2 ð36Þ
where |ε| , 1 measures the distance to the singularity, and
obtain from eq 34 the following leading order balance

σ ∼ c̅
ν2ε

∼ c̅
ν2ðν2β� 1Þ ð37Þ

valid when |ε|, 1. A comparison between this relation and the
numerical results presented in Figure 6 confirms the validity of
this leading order asymptotic behavior.

4. NONLINEAR REGIME

We now turn to the study of the nontrivial solutions created at
β = βc, and consider the case with no electric field imposed across
the layer separately from the case with an imposed electric field.

The bifurcation diagrams exhibited below show ϕw, the potential
at the right wall, as a function of the parameter β. As shown by
Plourabou�e and Chang,9 this potential is directly linked to the
amplitude of the interaction between the walls. This relation is
modified here by the constraint eq 13 imposing global charge
neutrality but the results for different choices of c are qualitatively
similar.
4.1. Nontrivial Solutions with No Imposed Electric

Field. 4.1.1. Numerical Results. As already mentioned, in the
absence of an imposed electric field we may set ϕ+ = ϕ� = 0. The
resulting problem has the solution (c, F) = (c, 0) with ϕ = 0, valid
for any value of β. We refer to this solution as the trivial state and
study the solutions resulting from the instability of this state at
β = βc.
Equations 9�11with the boundary conditions eq 12 and eq 16

are invariant under two symmetry operations, the operation S:(c, F,
ϕ)f (c,�F,�ϕ), xf x, and the spatial reflection SΔ:(c, F, ϕ)f
(c, F, ϕ), x f �x.
The type of bifurcation that takes place at β = βc depends on

the symmetry properties of the marginally stable eigenfunction.
We showed that, at β = βc, the marginal eigenmode takes the
form (c, ~F, ϕ~) = (0, ~Fa, ϕ~a) with ~Fa(x) = �~Fa(�x), ϕ~a(x) =
�ϕ~a(�x). This eigenvector breaks both the S and SΔ symmetries
but is invariant under S o SΔ= SΔ o S. We expect therefore that the

Figure 4. The marginal antisymmetric eigenmode (~F, ϕ~) versus x for
c = 2, β = 0.3017, v = 2. The solid line denotes the charge density
perturbation ~Fa in eq 32 and the broken line the electrical potential
perturbation ϕ~a in eq 33.

Figure 5. Locationβs of the singularity andβc of the bifurcation point as
a function of the aspect ratio of the boundary layer ν when c = 2. Both
locations approach β = 0 monotonically as ν f ∞, with βs < βc.

Figure 6. Asymptotic behavior of the eigenvalue σ as a function of ε/ν2,
i.e., β � βs when c = 2, ν = 2. The solid line represents the analytical
prediction eq 37, while the squares are numerical results obtained with
81 mesh points.

Figure 7. This bifurcation diagram shows the dependence of the
electrical potential ϕw at the right wall on β in the case of a closed
system with no imposed electric field and c = 2, ν = 2. Resolution uses 41
mesh points. Solid (respectively dashed) lines refer to stable
(respectively unstable) solutions. The trivial solution loses stability at
βs = 0.25 before recovering it after a supercritical pitchfork bifurcation at
βc = 0.3017. This pitchfork creates two stable nonlinear branches of
antisymmetric states whose amplitude diverges near βs.



bifurcation at βc is a pitchfork. Figure 7 and Figure 8 show the
resulting bifurcation diagrams for v = 2 and c = 2, c = 3,
respectively. Solid (broken) lines correspond to linearly stable
(unstable) solutions. The trivial state corresponds to ϕw = 0. As
predicted by linear theory, this state is unstable for βs = 0.25 <β <
βc = 0.3017 (c = 2), 0.3386 (c = 3). At β = βc, the branch
undergoes a supercritical pitchfork bifurcation as β decreases,
producing two branches. Solutions along each branch are related
by the broken symmetry (S or SΔ that in the present case produce
the same solution) and are therefore dynamically equivalent.
Both inherit the stability properties of the bifurcating trivial
solution and are therefore stable. Sample solutions are shown in
Figure 9 for c = 2, ν = 2 and β = 0.28. With further decrease in β

both branches diverge, at β = βs, independently of the value of c.
In fact, a divergence is present at this parameter value in the
steady state potential ϕ(x) at all locations |x|e 1 in the domain
except x = 0.
Figure 10 shows the bifurcation diagram for c = 2 and ν = 0.8.

The nonlinear solution branches persist and remain stable
throughout. Both branches continue to diverge at βs but no longer
bifurcate from the trivial state which remains unstable for all values
of β > βs. However, since βs is now larger the electrical double
layer in the corresponding solutions is sharper (Figure 11).

Figure 8. As for Figure 7 but with c = 3, yielding βc = 0.3386. The
resolution uses 41 mesh points.

Figure 9. Nonlinear solutions on the lower solution branch in Figure 7
for c = 2, ν = 2, and β = 0.28 using 41 mesh points. Note that c is
symmetric and nonzero.

Figure 10. This bifurcation diagram shows the dependence of the
electrical potential ϕw at the right wall on β in the case of a closed system
with no imposed electric field and c = 2, ν = 0.8. Resolution uses
29 mesh points. Solid (respectively dashed) lines refer to stable
(respectively unstable) solutions. The trivial solution loses stability at
βs = 1.5625.

Figure 11. Nonlinear solutions on the upper solution branch in
Figure 10 for c = 2, ν = 0.8, and β = 2 and 41 mesh points. The electrical
potential is nearly linear with the double layer structure clearly visible in
the concentration and charge density profiles.



4.1.2. Analysis of the Divergence of the Stationary Solution
near βs. The singular behavior of the nonlinear solutions at βs is,
like the growth rate divergence in the linear problem, a conse-
quence of the global charge constraint eq 13. To analyze the
origin of this behavior, we adopt the parametrization eq 36 in the
vicinity of βs and restrict attention to the branch of nonlinear
solutions with ϕw > 0. After integrating once the stationary
solutions of eqs 10�11 with the boundary conditions eq 12 and
eq 16, it is possible to obtain a general expression for the total
concentration and density

c ¼ 2eγcoshðϕ þ δÞ ð38Þ

F ¼ � 2eγsinhðϕ þ δÞ ð39Þ
where γ and δ are two constants of integration. The normal-
ization conditions eq 13 imply that δ = 0 and yield an integral
condition determining the second constant of integration γ

eγ ¼ c̅Z 1

�1
cosh ϕ dx

ð40Þ

The constant γ can be found from an implicit integral relation
that we now establish.
The governing equation eq 9 with F from eq 38 has the first

integral

1
2
ð∂xϕÞ2 ¼ βeγðcosh ϕ þ dÞ ð41Þ

where d is a further constant of integration. Integrating once
more and making use of the relation eq 40, we obtain

1
2

Z 1

�1
ð∂xϕÞ2 dx ¼ βðc̅ þ 2deγÞ ð42Þ

The constant d is determined by the boundary conditions eq 16
and eq 41

d ¼ 1
2
ν2ϕw

2e�γ � cosh ϕw ð43Þ

where ϕw is the potential at the wall, ϕw = ϕ(1). We now rewrite
the left-hand side of eq 42 using the parity of the integrand

1
2

Z 1

�1
ð∂xϕÞ2 dx ¼

Z ϕw

0
∂xϕ dϕ ð44Þ

and combine eqs 41�44 to obtain

ffiffiffiffiffiffi
deγ

p Z ϕw

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ cosh ϕ

d

r
dϕ ¼

ffiffiffi
β

2

r
ðc̅ þ 2deγÞ ð45Þ

Equations 43 and 45 provide a transcendental equation for the
constant γ. This equation requires the knowledge of the potential
ϕ in order to compute the integral on the left, as well as the wall
potential ϕw.
It is necessary therefore to solve for the potential ϕ near the

singularity. Since the wall potential diverges at the singularity, so
does cosh ϕ. Hence, the integral

R
�1
1 cosh ϕ dx in eq 40 will also

diverge and we may anticipate that the constant γ approaches�∞
monotonically as a function of the departure ε from the singularity.
Consequently, we set eγ � ε̅, where ε̅ is a small parameter with
monotone dependence on ε. This setup provides the relevant
asymptotic ordering required to find the dependence of ε̅ on ε
and thereby to identify the singularity in the wall potential when the
dimensionless gap β approaches βs. To do so, we insert the above
Ansatz in the governing equation for the potential

Δϕ ¼ βeγ sinh ϕ ¼ βε̅ sinh ϕ ð46Þ
The small forcing term on the right-hand side suggests the following
expansion for the potential near βs:

ϕ ¼ ϕ0 þ ε̅ϕ1 þ Oðε̅2Þ ð47Þ

At leading order, the homogeneous problem

∂xx
2 ϕ0 ¼ 0 ð48Þ

∂xϕ
0jx¼ ( 1 ¼ ( ν

ffiffiffi
β

p
ϕ0 ð49Þ

leads to the simple linear solution

ϕ0ðxÞ ¼ ν
ffiffiffi
β

p
ϕwx ð50Þ

Close to the singularity, ν(β)1/2 f 1 so that the integral in eq 40
required to compute the constant γ yields

eγ = c̅ϕwe
�ϕw ð51Þ

Figure 12. Asymptotic behavior of the electrical potential ϕw at the right
wall as a function of ε/ν2, i.e., β � βs when c = 2, ν = 2. The solid line
represents the analytical prediction eq 55 while the squares are
numerical results obtained with 81 mesh points.

Figure 13. This bifurcation diagram shows the dependence of the electrical
potential ϕw at the right wall on β in the case of a closed system with an
imposed electric field (ϕ0 = 0.01) and ν = 2. Resolution uses 41mesh points.
The applied potential difference is 2% of the thermal potential. Solid
(respectively dashed) lines refer to stable (respectively unstable) solutions.
The imperfect pitchfork bifurcation produces a fold, here observed at βf =
0.2911. The upper branch loses stability at βs = 0.25 and recovers it after the
fold. The lower branch is always stable. Both branches diverge at βs. Points a,
b, and c correspond to the solutions shown in Figure 14.



Using eq 51 in the definition eq 43, we see that, near βs, d .
cosh ϕw g cosh ϕ(x). Since cosh ϕ/d , 1, we expand
the integrand on the left-hand side of eq 45, and by integrating
only the leading order term, we obtain

ffiffiffiffiffiffi
deγ

p
ϕw =

ffiffiffi
β

2

r
ðc̅ þ 2deγÞ ð52Þ

We next approximate the quantity (deγ)1/2 on the left-hand side of
eq 52 using eq 51

ffiffiffiffiffiffi
deγ

p
=

νϕwffiffiffi
2

p 1� c̅
2ν2ϕw

 !
ð53Þ

Inserting the approximation eq 53 into eq 52 and using the scaling
eq 36 for β, we obtain finally the following balance between the wall
potential ϕw and the distance ε to the singular dimensionless wall
gap βs

νϕw
2ffiffiffi
2

p 1� c̅
2ν2ϕw

 !
¼ 1ffiffiffi

2
p

ν
1 þ ε

2

� �
c̅ þ ν2ϕw

2 � c̅ϕw
� �

ð54Þ
This expression leads to an explicit relation between the wall
potential, the constant γ, the previously introduced small parameter
ε̅ and the distance from singular behavior as measured by ε

ϕw =
c̅
ν2ε

∼ c̅
ν2ðν2β� 1Þ ð55Þ

ε̅ ¼ eγ =
c̅ 2

ν2ε
e�̅c=ν2ε ð56Þ

A comparison between this analytical result and the numerical
results is shown in Figure 12. The numerical results agree well with
the analytical prediction.
4.2. Imposed Electric Field.We next consider the case where

ϕ+ 6¼ ϕ� corresponding to an imposed electric field, as con-
sidered by Bazant et al.8 Since a constant can be added to the

Figure 14. Solutions in 4.2 for c = 2, ν = 2, ϕ0 = 0.01, andβ= 0.28 at the locations indicated, obtained with 41mesh points. (a) left column: solution from
the upper branch, (b) middle column: solution from the middle branch, (c) right column: solution from the lower branch.

Figure 15. The locations of the singularity βs and of the fold βf
as a function of ϕ0 when c = 2, ν = 2. The imposed electrical field
has no influence on the location of the singularity, but unfolds
the pitchfork bifurcation at βc thereby creating a fold at βf (see
Figure 13).



values of ϕ+ and ϕ� without changing the solution (c, F), we
study the general case in which the boundary condition on ϕ is
rewritten as ∂xϕ =(ν β1/2(ϕ- ϕ0) at x =(1, where ϕ0 6¼ 0, so
that ϕ+ = �ϕ� = ϕ0 providing an electrically neutral system. We
take ϕ0 = 0.01, representing a potential difference of 2% of the
thermal potential kBT.
The main effect produced by the imposed electric field is the

destruction of the trivial equilibrium state (c, F) = (c, 0).
Equations 9�11 with the boundary conditions eq 12 and
eq 16 no longer have any symmetry. As a consequence, we
expect that the primary bifurcation becomes imperfect when ϕ0 is
small but nonzero. Figure 13 shows the resulting bifurcation
diagram and confirms this expectation. The lower branch, ϕw < 0,
β > βs, is always stable, while the upper branch, ϕw > 0, loses
stability with increasing β at βs and then passes through a
fold at βf and recovers stability. Note that βs e βf e βc.
Different steady solutions corresponding to the same value of
β are shown in Figure 14. The dependence of βf and βs on the
potential difference ϕ0 is shown in Figure 15; the imposed
electric field does not affect the value at which the nontrivial
solutions diverge. Additionally, reversing the sign of the imposed
electric field changes the bifurcation diagram in a simple way: the
fold now appears on the lower branch and is absent from the
upper branch.
4.3. Doubly Diffusive Effects. It is important, finally, to

mention that we can also analyze the possible influence of double
diffusion on the electrolyte dynamics. Let us first note that
double diffusion results in different time scales for charge density
and charge concentration dynamics. Indeed, on inspecting the
Nernst�Planck equations (eq 3) one sees that each diffusion
coefficient can be factored from the right-hand side because both
the electroconvective and the diffusive fluxes are proportional
to it. On adding and subtracting the anionic and cationic

concentrations to obtain the dynamical equations associated with
the charge density and total concentration, one finds that
different time scales are present in each equations. These time
scales obviously impact the transient states such as those studied
by Bazant et al.8 However, they do not change the steady states,
and do not change the stability of the trivial solution. Moreover,
although additional secondary bifurcations are in general possi-
ble, our results show that double diffusion does not qualitatively
impact the results already obtained, although it does affect the
instability growth rates. In particular, no Hopf bifurcations
leading to oscillatory dynamics of the charge distribution were
located while changing the diffusivity ratio between 0.1 and 10,
even when applying a supplementary potential difference.
4.4. The Nonneutral Case F 6¼ 0.We next turn to the case of

an electrolyte with nonzero global charge density, a case studied
experimentally at the nonelectroneutral point pH 6¼ 7 in ref 32.
The resulting solution profiles, displayed in Figure 16, differ quanti-
tatively from the electroneutral case, since the profiles of the
potential, concentration, and charge density are now all para-
bolic. In the case of the potential, this profile is the result of
symmetric forcing associated with the Coulomb source terms.
Despite these differences, we find that the system behaves exactly
as in the electroneutral case (ϕ = 0, c = 2, F = 0). In particular, all
the main features of the bifurcation diagram are recovered,
including the presence of the singularity at β = βs that is
simultaneously responsible for the change in stability of the
trivial state and the divergence of the nonsymmetric solution that
bifurcates from the trivial state at βc > βs, cf. Figure 7. A detailed
numerical study of the divergent behavior of the solution in the
vicinity of the singularity β = βs follows the analytical properties
identified in relations eqs 55�56. Indeed, the asymptotic analysis
developed in section 4.1.2 can be easily extended to the none-
lectroneutral case, with the important difference that the constant
δ� tanh�1(F/c) in relations eqs 38�39 now differs from zero. The
wall potential ϕw again diverges at βs following the prediction eq 55,
and the potential variation forβ > βs follows the asymptotically linear
trend found in eq 50 and confirmed in Figure 11.
4.5. The Case ν < 0 in the Stern Layer Boundary Condition.

Let us also comment on the choice ν < 0 in the Stern layer
boundary condition, as considered in refs 8 and 27. In this case,
the stability result is dramatically different. There are no solutions
apart from the trivial solution which remains stable for all values
of β. In the absence of an applied electric field, the stability
analysis for the trivial state in section 3 and the corresponding
relations (eqs 34�35) do not generate either bifurcation or
singularity. This theoretical observation complements the anal-
ysis of the bifurcation diagram in the presence of an applied
electric field as exemplified in Figure 17.

Figure 16. Plots of the stable potential, concentration, and density profiles for a nonelectroneutral electrolyte with F = 0.2 and c = 2 computed for
dimensionless half-gap β = 0.245, just below the singularity at βs = 1/v2 = 0.25.

Figure 17. Bifurcation diagram showing the stable trivial solution in the
case ν =� 2 and an applied potential difference equal to 2% of the thermal
potential. The remaining parameters are as in Figures 7, 8, and 13.



5. DISCUSSION AND CONCLUSION

5.1. Discussion. 5.1.1. Instability Mechanism. In this paper,
we have analyzed the properties of electro-osmotic flows confined
between parallel plates, focusing on gap widths 2h on the order of
the Debye length λD. We have shown that, in the presence of
Stern layers, there is a range of gaps for which an electro-
neutral but charged electrolyte is unstable and a stable potential
difference is spontaneously generated despite thermodynamic
equilibrium.
To understand the physical origins of the instability of the

trivial state when ν > 0, we recall (see section 3) that the
perturbation in the total concentration decouples from the
perturbations of both the charge density and the potential. Thus,
all concentration perturbations decay, as described by eq 28 and
eq 29, and instability arises from the coupling between charge
density fluctuations and the potential. This coupling leads to
eqs 22�23, and hence to an eigenvalue problem of Poisson type

Δ~F� β~F ¼ σ~F ð57Þ

where ~F is the density perturbation and σ is the eigenvalue. The
first term of the left side of eq 57 describes diffusion of the
perturbation and is stabilizing. The second term on the left arises
from electroconvection. Since β > 0, this term is also stabilizing.
Hence, one has to look to the boundary conditions for the source
of instability. Equations 25 and 26 show that the perturbation of
the potential in the Stern layer generates a nonzero charge flux,
∂xF = -cν

√
βϕ~ at x = (1. Thus, when v > 0 an increase in the

potential ϕ~ on the wall (and hence an increase in the positive
charge) leads to an increased flux of (positive) charge to the wall.
This positive feedback is in turn responsible for the instability,
and the instability is thus a consequence of the charge regulation
process. The strength of the feedback mechanism scales with

√
β

and so increases with increasing β. However, for large gaps, β.
1, the destabilizing mechanism is suppressed by the stabilizing
electroconvection effect which is proportional to β. Likewise, for
very small gaps, β, 1, the destabilizing term is dominated by the
stabilizing effect of diffusion. Thus, straightforward balances
between the different physical effects explain qualitatively the
range of values of the parameter β for which instability occurs.
The detailed calculations in section 3 confirm this basic picture.
Note that no instability is predicted for ν < 0 and none is found.
The parameter range for which this occurs is most easily given

in terms of the parameter β � h2/λD
2 : βs � 1/v2 < β < βc � 1/

2c{ln[(v + (c/2)1/2]/[v � (c/2)1/2]}2, where v � λD/λS is the
ratio between the Debye length and the width of the Stern layer.
Figure 5 shows the range of values of β (between the continuous
and dotted lines) for which this is the case. For large Debye
lengths, the range is narrow but broadens considerably as the
Debye length approaches the Stern length. This regime is both of
physical interest and relevant to experimental observations;9

consequently, the generation of a spontaneous potential differ-
ence across the gap should be accessible to experimental con-
firmation. For a confined system (c = 2), the typical values of the
Stern length λS = 5 nm and the Debye length λD = 10 nm indicate
that v = 2 and hence that the instability sets in at β = 0.3017, i.e., at
a wall gap 2h = 11 nm. This property of the system is a
consequence of the overlap of the double layers resulting in
nonlinear interactions that lead to a preferred antisymmetric
potential difference. Indeed, when the overlap zone is sufficiently
large, both double layers compete and destabilize the trivial

solution. As a result, any small perturbation grows and evolves
into an antisymmetric solution.
The instability threshold βc diverges when νf (c/2)1/2, and

for 0 < ν < (c/2)1/2 the trivial solution is stable. For the confined
system of interest, c = 2. Since the Stern length associated with
the width of the ion adsorption layer is always smaller than the
Debye length, this regime of stability is not accessible in physical
systems. In contrast, when ν > (c/2)1/2 the trivial solution is
stable at large β but loses stability at the critical value β = βc as β
decreases. This value is on the order of 1 implying that stability is
lost when the gap is on the order of the Debye length. A
nontrivial antisymmetric steady solution emerges from the trivial
branch through a supercritical bifurcation, i.e., in the direction of
decreasing β. When the gap width is twice the Stern length, the
nontrivial branch diverges to infinity and, at the same time, the
neutral solution restabilizes.
5.1.2. Divergent Behavior of the Potential. In section 4.1.2, we

showed that there is a critical gap for which the stable attractive
solution diverges, leading to large and potentially infinite surface
potential and charge. The analytical study of this behavior in
the vicinity of this singularity is consistent with our numerical
results, confirming that the presence of the singularity is a
property of the mathematical model, and in particular a conse-
quence of the imposition of overall charge balance—whether
electroneutral or not.
The singularity results from a “reduced” charge regulation

effect at the solid surface combined with Poisson�Boltzmann
nonlinearities. These imply that increasing the charge on one
surface increases the potential on the other, with increasing but
opposite charges on the two surfaces owing to the overall charge
conservation constraint. For antisymmetric solutions, this con-
straint thus leads to an increase in the potential difference
between the surfaces. This effect increases with decreasing gap
width and is in turn enhanced by growing nonlinear terms.
Furthermore, the singular behavior appears precisely when the
Stern layers of the two surfaces first touch (Figure 1c) implying
that no electrical breakdown occurs unless the Stern layers
overlap. This is physically reasonable, since ion adsorption
precludes gap widths equal to or greater than typical electron
cloud separations. Hence, even if the singularity is an artifact of
the model, it is physically clear that bringing two solids closer
together than a Stern length will involve strong repulsive forces
associated with short-range hard-sphere repulsion. Therefore,
the singularity identified here also represents a limit on the
possible distance between the two solid surfaces. With the same
physical parameters used previously (λS = 5 nm, λD = 10 nm, and
ν = 2), this distance is 2h = 10 nm.
It is important, however, to stress that the singularity is

unphysical, since very high values of the electrical potential are
inconsistent with the dilute Poisson�Boltzmann approxima-
tion.33 At very high potentials, other mechanisms such as limiting
current or Faradaic electron transfer reactions34 become impor-
tant, but these have not been included in the model studied here.
Furthermore, at very small distances other forces such as strong
repulsive van der Waals/Lennard-Jones potentials will overcome
the attractive Coulomb forces considered in this study, smooth-
ing out the associated singularity. Nevertheless, the prediction of
a strong attractive interaction at small distances could provide an
explanation for the observation of just such interactions.20,21

Moreover, since the singularity is also associated with a diver-
gence of the total electrical energy, our findings are also likely
relevant to the design and use of electrolyte solutions in



nanometer-sized sheets for electrical storage.35�37 The high
surface potential dependence with a reduced charge regulation
effect in Stern layers emphasizes the tremendous role of adsorp-
tion kinetics in confined systems, and provides a rationale for the
choice of chemically relevant systems in highly compact double-
layer-scale capacitors. Our results predict an explicit dimension-
less gap range (between βs and βc) for which these desirable
surface potentials arise, and its dependence on the parameters
characterizing the adsorption kinetics of the chosen materials.
5.1.3. Bifurcation Diagrams. Let us now comment on the

generality of our results. It is an important observation that the
bifurcation diagrams associated with the different solutions we
have identified here appear to be a generic property of this type of
physical system, since similar diagrams characterize both differ-
ent parameter values and different variants of the same system.
For example, we have changed the ratio ν between the Debye and
Stern lengths widely without finding any new solution branches.
Adding an imposed electric field modifies the trivial state and
unfolds the supercritical pitchfork bifurcation in the field-free
case, replacing it by a fold bifurcation, at a new threshold value βf,
in an entirely predictable manner. This local change in behavior
does not alter our main conclusion that for small gaps there is a
range of parameter values in which nontrivial steady antisym-
metric solutions are stable. These conclusions remain qualita-
tively unchanged when different anion and cation diffusivities are
included or when nonelectroneutrality is permitted. Thus, the
conclusions of our study are robust, and no new effects arise
when the model assumptions are relaxed.
5.2. Conclusion. The analysis of electrokinetic dynamics at

nanometer scales opens new directions for research on electro-
osmosis. In this paper, we followed the classical mean-field
Poisson�Boltzmann�Nernst�Planck description associated
with double-layer electrokinetics. We have considered the sim-
plest model, consisting of an infinite slot configuration and one-
dimensional field variations perpendicular to the parallel solid
surfaces, but have taken into account the overlap of double layers
and the influence of the associated Stern layers. At a distance on
the order of the Debye length, a nontrivial antisymmetric steady-
state solution bifurcates supercritically from the trivial electro-
neutral state through a pitchfork bifurcation. This solution is
stable between this length scale and the shorter Stern length. At
separations resulting in overlap of the Stern layers, a second tran-
sition takes place, where the stable nontrivial solution diverges.
These properties persist within more elaborate models and are
therefore likely to be of interest in future work.
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