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Abstract 22 

Enterococci are long-standing members of the gastrointestinal tract of humans and many 23 

animals and they are also ubiquitously distributed in natural environments. Classically as 24 

harmless bacteria, two main species (namely Enterococcus faecalis and Enterococcus 25 

faecium) have become a leading cause of human infections, especially in hospital settings, 26 

with the worldwide spread of multidrug-resistant isolates, especially vancomycin-resistant 27 

enterococci. In this review, it will be summarized what is known about genetic diversity and 28 

ecology of enterococci with a focus on E. faecalis and E. faecium from human and non-29 

human habitats and related risks for public health.  30 

  31 
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Introduction 32 

Enterococci are low-GC Gram-positive cocci belonging to the phylum Firmicutes [1], and 33 

the genus currently comprises up to 60 different species until now (www.bacterio.net). 34 

These microorganisms are remarkably resistant to numerous environmental stresses (e.g., 35 

temperature, pH, 6.5% NaCl, 40% bile salts, desiccation) allowing them to survive and grow 36 

in harsh environments [2•]. Consequently, they are ubiquitously distributed in nature with 37 

a large variety of habitats such as the gastrointestinal tract (GIT) of humans and nearly all 38 

terrestrial animals (mammals, reptiles, birds and insects) as well as plants, soil and 39 

sediments, fresh and marine waters and different types of foods (including dairy products, 40 

fermented vegetables, meat, fish and sea foods) (Figure 1) [3-5]. 41 

While many Enterococcus spp. are generally commensal bacteria with coevolution with 42 

their hosts for hundreds of millions of years [5], several species have been described as 43 

human opportunistic pathogens [6]. Of them, Enterococcus faecalis and Enterococcus 44 

faecium are by far the most frequent species responsible for human infections, especially 45 

in hospital settings (Figure 1) [7]. Of the greatest concern, is the worldwide dissemination 46 

of multidrug-resistant (MDR) enterococci, especially vancomycin-resistant enterococci 47 

(VRE), for which limited therapeutic options remain [8]. The human GIT can harbor 48 

additional enterococcal species (notably E. avium, E. casseliflavus, E. durans, E. gallinarum, 49 

E. hirae, E. mundtii and E. raffinosus) that are rarely isolated from human infections  (Figure 50 

1) [9•]. Whereas enterococci can also cause infections in animals, they are not considered 51 

as food- or waterborne pathogens. However, their ingestion can lead to the asymptomatic 52 

colonization of the human GIT that is usually the first step in the development of invasive 53 

infections [10]. Outside of the hospital, they can be transmitted to humans by various ways, 54 

http://www.bacterio.net/
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including contaminated food and water, underlying that animal and environmental 55 

enterococci may potentially serve as a reservoir of MDR strains and resistance genes.  56 

This review will describe the up-to-date knowledge on genetic diversity and ecology of 57 

enterococci from human and non-human habitats with a focus on E. faecalis and E. faecium 58 

animal/environmental isolates and the related risks for public health.  59 

 60 

Genome plasticity of enterococci 61 

Both E. faecalis and E. faecium have reduced genomes but an important accessory genome 62 

(up to 38% in E. faecium) underlying their remarkable genome plasticity (Table 1) [11-13]. 63 

Besides recombination that plays a predominant role over mutation for their evolution, 64 

enterococci are also particularly adept at acquiring new genes through horizontal gene 65 

transfer (HGT) of mobile genetic elements (MGEs) including plasmids and transposons [14-66 

19]. This is notably true for E. faecium for which antimicrobial resistance (AMR) genes are 67 

major drivers for selection and spread in the hospital environment [6,20]. Importantly, the 68 

high genome plasticity in the majority of clinical isolates is sustained by the frequent lack 69 

of genome defence mechanisms limiting HGT such as CRISPR-Cas and restriction-70 

modification systems while the most frequently reported mechanism for foreign DNA 71 

acquisition is conjugation (Table 1) [9•,21,22].  72 

 73 

Genetic diversity of enterococci 74 

From an evolution point of view, E. faecalis and E. faecium are at the opposite ends of the 75 

phylogenetic tree of enterococci (Table 1). The former occurs in one of the oldest branches 76 

of the genus whereas the latter arose more recently [5]. However, their shared occurrence 77 
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in the human GIT and in hospital settings means that they possess common features that 78 

allow them to inhabit similar ecological niches. 79 

Genetic evolution of E. faecium populations has been deeply studied since the emergence 80 

of VRE clinical isolates in the early 1990s. A subpopulation associated with hospital 81 

outbreaks and human infections, named ‘clonal complex 17’ (CC17), was early identified in 82 

2000s [15]. Since then, many other studies confirmed the worldwide dissemination of 83 

hospital-adapted E. faecium clones [19,23]. More recent WGS-based studies have split the 84 

E. faecium population into two well-differentiated lineages occupying mostly non-85 

overlapping ecological niches, including the hospital-associated (HA) lineage (clade A) and 86 

the community-associated (CA) lineage (clade B) [11,24]. Clade A was then subdivided into 87 

clade A1 (mostly associated to human outbreaks and infections, and comprising ‘CC17’ 88 

isolates) and clade A2 (mostly animal-related) [16]. Whereas more recent studies using 89 

larger collections of animal isolates also supported the phylogenetic distinction between 90 

clades A and B, they do not longer support the split of clade A [18,25,26••]. Animal isolates 91 

represent multiple lineages that diverged prior to the emergence of hospital-associated E. 92 

faecium isolates, which could have been emerged from an ancestor lineage associated with 93 

animals, with hospital-associated populations evolving faster than animal ones [18,25]. A 94 

recent study also showed that plasmid contents (referred as plasmidomes) were more 95 

informative than chromosomes for source specificity of E. faecium, suggesting that the 96 

distribution of plasmid-mediated genes significantly contributes to niche adaptation 97 

[26••]. Interestingly, HA E. faecium isolates possess a very diverse accessory genome and 98 

larger chromosomes and plasmidomes than non-clinical isolates [16,26••]. These strains 99 

are especially enriched in a variety of determinants enabling them to adapt to the hospital 100 

environment and to better succeed during host colonization and infection [25,26••]. 101 
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As opposed to E. faecium, phylogenetic diversity is limited in E. faecalis with a dispersion 102 

of single genotypes from different origins and countries revealing the absence of clade 103 

structure and a generalist lifestyle of this species [11,27]. Note that a few lineages show 104 

adaptation to the hospital environment with some CCs (e.g., CC2, CC16, CC87) more 105 

associated with MDR strains and enriched for MGEs while CC2 and CC87 are almost 106 

exclusively identified from nosocomial infections [27-29]. The generalist nature of E. 107 

faecalis is also clearly supported by pangenomic clustering showing no prominent host 108 

specialization with stable genome sizes across isolation years and sources and no 109 

correlation between strain isolation habitat and phylogeny [30,31••]. In addition, AMR 110 

genes are highly prevalent in E. faecalis isolates from both non-hospital settings and non-111 

human origin while the oldest hospital-associated clusters (mid-19th century) predate the 112 

introduction of antibiotics, altogether suggesting survival and selection across multiple 113 

niches [31••].  114 

 115 

Enterococci in humans 116 

Enterococcus spp. are minority members of the normal flora of the human GIT, 117 

representing less than 1% of the intestinal microbiota of an adult [32]. Primarily regarded 118 

as harmless commensal bacteria, they have become major opportunistic pathogens [7]. 119 

Indeed, E. faecalis and E. faecium are currently a leading cause of hospital-acquired 120 

infections (e.g., urinary tract and intra-abdominal infections, bacteremia, endocarditis), 121 

especially in critically-ill and immunocompromised patients with long-course antimicrobial 122 

treatments and/or prolonged hospital stays [1,6]. Historically, E. faecalis caused the 123 

majority of enterococcal infections (80-90%) but E. faecium is of increasing importance as 124 

it is usually much more resistant to antimicrobials (Table 1) [9•]. Importantly, HA E. faecium 125 
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is known to efficiently outcompete other bacteria (including clade B CA strains) and 126 

dominate the gut microbiota in long-stay hospitalized patients with antimicrobial-exposed 127 

GIT where MDR strains (especially VRE) quickly replace susceptible populations before 128 

bloodstream invasion [33,34]. It has been proposed that differential carbohydrate 129 

utilization and biofilm production could be the main drivers for the divergent evolution of 130 

HA E. faecium [35••]. Also, E. faecium remains viable for extended periods of time on 131 

inanimate surfaces (from several days to several months), which is in relation with their 132 

persistence in the hospital environment and their implication in hospital outbreaks even if 133 

no clear transmission chains of direct acquisition is demonstrated [17,36,37]. 134 

 135 

Enterococci in animals and food 136 

Apart from humans, GIT of animals likely represent the greatest reservoir for enterococci, 137 

in which they also can cause infections while large amounts of antimicrobial agents are 138 

used in animal production [38]. The most commonly encountered enterococcal species in 139 

the gut of mammals are E. faecalis, E. faecium, E. hirae and E. durans while E. cecorum is 140 

an important poultry pathogen [39]. The major concern with animal enterococci is the 141 

potential transmission of MDR enterococci to humans since they can be exposed by direct 142 

contact with animals and animal-contaminated environments or indirectly, through 143 

consumption of contaminated food of animal origin and vegetables from crops treated 144 

with animal manure (Table 1) [4]. Once acquired, strains of animal origin may transiently 145 

colonize the human GIT and potentially transfer AMR-carrying MGEs to the indigenous 146 

microbiota, including bacteria other than enterococci [38].  147 

E. faecium and E. faecalis are generally the most frequently encountered species in food 148 

products. Contamination of raw meat occurs during the evisceration process at 149 
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slaughterhouses, with fecal enterococci contaminating over 90% of food products of 150 

animal origin [39]. Nevertheless, there is limited evidence of the direct role of food-151 

producing animals in the dissemination of VRE among humans suggesting that animal MDR 152 

strains have a limited zoonotic potential (Table 1) [38,39]. Only some sporadic cases have 153 

been described showing overlapping between animal and human isolates such as the 154 

existence of clonal relationships between HA and swine-associated VRE [40], the recovery 155 

of human-adapted CCs from farm and companion animals (e.g., E. faecium CC17, E. faecalis 156 

ST6) or the isolation of animal-associated CCs in humans (e.g., E. faecium CC5, E. faecalis 157 

ST16) [38,39,41]. Interestingly, a recent (2014-2015) cross-sectional survey in the UK 158 

including farm animals (but not pets) found limited sharing of strains and resistance genes 159 

between livestock and humans except for some pig isolates that were genetically related 160 

to HA strains [40,42]. This suggests that livestock is unlikely to play a major role in the 161 

persistence of vancomycin resistance in human invasive isolates. By contrast, dogs may be 162 

a reservoir of HA E. faecium clones and may form a higher risk for zoonotic transfer to 163 

humans [23]. 164 

Very interestingly, a recent one-health investigational study conducted in Southern Alberta 165 

(Canada) showed that throughout a human-agriculture-environment continuum a clear 166 

delineation of species present in different environments with E. faecium and E. faecalis 167 

being the predominant species associated with humans (hospital and urban wastewaters) 168 

while E. hirae was the predominant species isolated from cattle feces and associated 169 

feedlot catch-basins [43••]. This confirms a minimal transmission of Enterococcus spp. 170 

from animals and animal-associated environments to humans with a negligible role in 171 

enterococcal human infections [43••,44]. In the same way, significant differences were 172 
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observed between isolates from dairy products and humans, suggesting that dairy isolates 173 

exist as independent lineages rather than a product of fecal contamination [45]. 174 

Enterococci in the environment and water    175 

In most extra-enteric environments, both growth and persistence of enterococci are 176 

generally limited due to many abiotic and biotic stressors, such as sunlight, salinity, 177 

competition for nutrients, or predation by indigenous microorganisms (i.e., protozoa, 178 

bacteriophages) [3]. However, they are able to survive for extended periods of time in the 179 

environment since they develop numerous mechanisms allowing them to cope with these 180 

adverse conditions [2•]. 181 

Environmental and water samples, especially those contaminated by sewage or fecal 182 

wastes, often contain enterococci. They have been widely used as bacteriological indicators 183 

of fecal contamination (fecal indicator bacteria; FIB), especially to monitor the quality 184 

of recreational waters [46]. Indeed, there is a strong positive correlation with enterococcal 185 

concentrations in marine and fresh waters determined by culturable or qPCR methods and 186 

the risk of gastroenteritis associated with swimming [46]. Nonetheless, ‘fecal’ species have 187 

also been detected in various environmental samples with no obvious sources of 188 

contamination while environmental enterococci have been isolated from both human and 189 

animal feces [47]. 190 

Even though their actual prevalence in many non-clinical contexts is likely underestimated 191 

since most studies focus only on clinical isolates, wastewater is often reported as a 192 

reservoir for HA E. faecium (Table 1). Recently conducted in the East of England, a 193 

systematic genomic survey on E. faecium isolates collected from wastewater confirmed 194 

that HA lineages of VRE were widespread in wastewater and showed that wastewater 195 

treatment did not prevent downstream environmental contamination, with the majority of 196 
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plants releasing MDR E. faecium into the environment [48••]. The detection of VRE at all 197 

treatment plants is consistent with the widespread dissemination of MDR lineages in the 198 

community, with potential sources including the environment and the food chain [48••]. 199 

Interestingly, recent data from the same group also showed that VRE in the food chain 200 

differed genetically from human and wastewater VRE, suggesting that environmental 201 

isolates come from anthropogenic pollution and human isolates are not originated from 202 

the food chain [42]. The release of VRE into the environment should be controlled by 203 

improving wastewater decontamination both at the hospital and municipal waste level 204 

[48••]. 205 

 206 

Risk for public health 207 

Even though they are one of the traditional bacterial markers of fecal contamination of 208 

food and water for human consumption, enterococci are generally not considered as food- 209 

or waterborne pathogens causing diarrhea [6]. By contrast, enterococci are potential 210 

vectors of AMR genes from the environment to humans, risk aggravated by the capacity of 211 

disseminate those genes to the host microbiome by HGT [49]. In the community, MDR 212 

enterococci may reach humans by several ways, including direct contact with farm 213 

personnel, via wastewater and surface water, or by contact with or consumption of food 214 

animals and food of animal origin (Figure 2) [50].  215 

The most typical example is that of VRE, which have been identified mid-1980s in Europe 216 

and then have rapidly spread worldwide especially in the United States [51]. 217 

Epidemiological differences between the US and Europe presumably resulted from the 218 

massive antibiotic use in US hospitals (most notably of vancomycin and cephalosporins) 219 

while initial reports of VRE in Europe reported strains frequently isolated from healthy 220 
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people, farm animals, pets, and retail food products [52]. It was demonstrated that this 221 

large community reservoir in Europe was related to the extensive and widespread use of 222 

avoparcin (a vancomycin-like glycopeptide never used in the US) as growth promoter in 223 

animal husbandry, which subsequently led to the colonization of healthy humans by VRE 224 

via the food chain [38]. Due to the VRE emergence, use of avoparcin was banned in Europe 225 

in 1997, leading to a rapid decrease of the prevalence of VRE fecal carriage in food-226 

producing animals and healthy humans. Nonetheless, VRE colonization never completely 227 

disappeared from livestock after the avoparcin withdrawal, likely related to the co-228 

selection of vanA-harboring plasmids carrying other resistance genes by other compounds 229 

(e.g., tylosin, copper) or the presence of toxin-antitoxin systems located on these plasmids 230 

[38,39]. Note that this community reservoir seemed absent in the US where the detection 231 

of VRE from food-producing animals has been exceptionally reported. 232 

Another major concern is the emergence and diffusion of transferable linezolid resistance 233 

genes since oxazolidinones are pivotal last-line drugs for the treatment of infections caused 234 

by VRE and methicillin-resistant staphylococci [53]. To date, five mobile oxazolidinone 235 

resistance genes (namely cfr, cfr(B), cfr(D), optrA and poxtA) have been identified among 236 

human and animal enterococci on various conjugative and non-conjugative plasmids 237 

[54,55]. The emergence of linezolid-resistant enterococci (LRE) of animal origin carrying 238 

optrA-positive plasmids underlines the role in the co-selection of MDR enterococci by 239 

antibiotics commonly used in animals (e.g., phenicols, tetracyclines, lincosamides, 240 

aminoglycosides) and the risk of transmission from food-producing animals to humans via 241 

the food chain [39]. 242 

 243 

Conclusions 244 
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Enterococci have an extraordinary genome plasticity and metabolic versatility that enable 245 

them to thrive in many diverse environments. Therefore, clinically-relevant species (i.e., E. 246 

faecalis and E. faecium) are found ubiquitously in non-human habitats such animals and 247 

the environment, which constitute important secondary reservoirs. There is then a 248 

potential risk of transfer of MDR enterococci and AMR genes into the food chain and the 249 

environment that could potentially pose a threat to public health. Whereas contamination 250 

through the food chain seems to be negligible, the environment (especially that related to 251 

human activities) may play a critical role in the acquisition and the dissemination of AMR 252 

in humans. Indeed, the highest concentrations HA lineages of MDR E. faecalis and E. 253 

faecium are found in hospital and municipal wastewaters, for which the decontamination 254 

process in wastewater treatment plants should be improved. 255 
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Legend of the figures 434 

Figure 1. Phylogenetic tree of Enterococcus species and their corresponding habitats. 435 

The 16S rRNA sequences of the 59 enterococcal type strains were used to construct the 436 

maximum-likelihood tree with Lactobacillus casei as an outgroup. The tree was constructed 437 

using Mega X with 1,000 bootstrap iterations and only bootstraps >50 are showed. The 438 

heatmap with corresponding habitats was combined to the phylogenetic tree by using the 439 

iTOL online program (https://itol.embl.de/). Species involved in human infections and 440 

reported as multidrug resistant (vancomycin, linezolid) are also indicated in the heatmap. 441 

Figure 2. Possible routes for transfer of enterococci or AMR genes (especially VRE) among 442 

different reservoirs. 443 

Strains can move between ecological niches in the environment, animal and/or human 444 

animal hosts, carrying with them plasmid-mediated AMR genes. Strains can be transferred 445 

from the environment to humans/animals via contact or consumption of contaminated 446 

water sources or vegetables; between humans and animals via contact or food 447 

consumption; and from hosts back to the environment via effluents or wastewaters. The 448 

risk level of transfer is represented by the width of arrows. The figure was obtained by using 449 

the Biorender online program (https://biorender.com/).  450 

https://itol.embl.de/
https://biorender.com/
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Table 1. Genetic and ecological similarities and differences between E. faecalis and E. faecium species 

(4,5,9•,13,26••,31••,39,41,42,47). 

 E. faecalis E. faecium 

Reservoirs Human GIT (healthy individuals) Human GIT (hospitalized patients) 

Animal GIT (dog, cat, chicken, pig, calf, cow, wild birds, invertebrates) 

Food (meat, vegetables, milk, cheese) 

Soil and sediments, fresh and marine water, vegetation 

Genome plasticity Small genome size (3.00 Mb on average) 

Large accessory genome (up to 25 %) 

Small genome size (2.85 Mb on average) 

Large accessory genome (up to 38 %) 

Homologous recombination, HGT (conjugation) 

Usually lack of CRISPR-Cas and restriction-modification systems 

Genetic evolution No clear clade structure with limited 

phylogenetic diversity 

Generalist lifestyle 

No host specialization 

Clade structure with separation between 

clinical and commensal isolates 

Distinct hospital-associated lineage 

Niche ecology driven by plasmidome 

Human pathogens Yes (ca. 75 %) 

(both CAI and HAI) 

Yes (ca. 25 %) 

(quasi-exclusively HAI) 

MDR phenotype and hospital 

outbreaks 

Occasionally Frequent (VRE+++) 

Animal pathogens and food 

contaminants 

Yes 

(poultry, pigs, cattle) 

Risk of zoonotic transfer of 

AMR to humans 

Low 

(optrA-mediated linezolid resistance?) 

Low 

(except from pig isolates?) 

Contamination of the 

environment by clinical isolates 

Possible Frequent 

(VRE in hospital and municipal 

wastewaters) 

Role in environmental 

dissemination of AMR 

Possible Important (VRE, van genes) 

AMR, antimicrobial resistance; CAI, community-associated infections; GIT, gastro-intestinal tract; HAI, hospital-acquired infections; 

HGT, horizontal gene transfer; VRE, vancomycin-resistant enterococci. 


	Review Enterococci environment COM Final Réf R1
	The multifaceted lifestyle of enterococci: genetic diversity, ecology and risks for public health

	Figure 1 - Revue Enterococci environment COM Final R1
	Figure 2 - Revue Enterococci environment COM Final R1
	Table 1 - Review Enterococci environment COM Final



