
Proceedings of the 2021 IEEE 18th International Conference on Networking, Sensing and Control, December 3-5, 2021 Xiamen China

Neural Network and ANFIS based auto-adaptive MPC for path tracking in
autonomous vehicles

Yassine Kebbati
IBISC-EA4526
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Abstract— Self-driving cars operate in constantly changing
environments and are exposed to a variety of uncertainties and
disturbances. These factors render classical controllers ineffec-
tive, especially for the lateral control in such vehicles. Therefore,
an adaptive MPC controller is designed in this paper for the
path tracking task, the developed controller is tuned by an
improved particle swarm optimization algorithm. Furthermore,
online parameter adaption is performed using Neural Networks
and ANFIS. The designed controller showed promising results
and adaptation capability against the standard MPC in a triple
lane change scenario and a general trajectory test.

Index Terms— Autonomous Vehicles, Optimization, Model
Predictive Control, Adaptive Control, Neural Networks.

I. INTRODUCTION

Autonomous driving is one of the top technologies that
can radically change people’s life, owing to the fact that self-
driving cars can significantly reduce road accidents, alleviate
traffic congestion and mitigate energy consumption and air
pollution. As a consequence, researchers are racing towards
building fully autonomous driving systems. One of the main
components of such systems is the control module which
handles lateral and longitudinal control tasks. Lateral control
is a primordial part to achieve autonomous driving, which
has seen extensive research over the last decades. Although
there exist several simple controllers in the literature that
can easily control the vehicle lateral dynamics, most of them
fail to cope with external disturbances and preserve safety
constraints.

Model predictive control can handle constraints system-
atically setting itself as a promising tool for such tasks
[1], [2]. On the other hand, adaptive control has shown its
ability to handle model uncertainties, disturbances and to
deal with varying parameters [3]–[6]. As the computational
power increased recently, researchers aimed at integrating
AI techniques to improve and adapt controllers to varying
working conditions, disturbances and modeling uncertainties.
These research works either use data to learn the models
used in the controller design, or learn the design itself by
adapting the control algorithm. For instance, Alcala et al. [7]

developed an MPC controller for autonomous vehicles where
they used an ANFIS approach to learn the vehicle dynamics
model in the form of a polytopic representation. Similarly,
authors of [8] developed an adaptive MPC for lane keeping
that can handle unknown steering offsets through a recursive
model estimation algorithm. In the same fashion, Lin et
al. [9] designed an adaptive MPC that handles changing
working conditions. They used the recursive least square
(RLS) algorithm to estimate the vehicle cornering stiffness
and road adhesion coefficients to adapt the MPC prediction
model. Brunner et al. [10] proposed a learning-based MPC
for autonomous racing where racing data was used to learn a
terminal cost and a safe set that guarantees recursive stability
and improved performance over iterations. In a similar way,
Kabzan et al. [11] proposed a learning-based MPC for
autonomous racing. They used Gaussian process regression
to improve the MPC prediction model using driving data after
several racing laps. In [12], an MPC with low computation
load has been proposed. The authors approximated the con-
trol signal with Laguerre functions and improved the tracking
accuracy using exponential weight technique. Furthermore,
authors of [13] considered the varying road conditions and
small slip-angle assumptions as a measurable disturbance
in the MPC design. They used the differential evolutionary
algorithm to solve the problem.

Nonetheless, very few research papers worked on learn-
ing the control algorithm and most of them only consider
constant longitudinal velocities. This paper proposes a new
approach to learn and adapt the MPC algorithm to external
disturbances and varying working conditions. Particularly, an
improved PSO algorithm developed in [14] is used to tune
and optimize several parameters of the MPC algorithm to
ensure optimal control performance. The resulting optimal
parameters are learned using neural networks and ANFIS
systems for online control adaptation. Section II of this
papers deals with vehicle modeling and MPC design, and
section III exposes the optimization of MPC parameters.
Section IV presents the controller adaptation using neural
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networks and ANFIS approach. The proposed controller is
evaluated and the results are reported and analysed in section
V. Conclusions and perspectives for future work are given in
section VI.

II. VEHICLE MODELING AND CONTROLLER DESIGN

A. Vehicle Lateral Dynamics Model

Vehicle lateral control deals with the translation along the
y-axis and the angular motion around the z-axis. The single
track dynamic bicycle model (see Fig. 1) is used for the
design of the MPC controller, this model is governed by the
following equations:{

m(ÿ + ẋφ̇) = 2Fyf + 2Fyr
Izφ̈ = 2lfFyf − 2lrFyr

(1)

where, m is the vehicle mass, x, y and φ represent the
longitudinal position, lateral position and the vehicle heading
angle. The longitudinal forces on the rear and front wheels
are Fyr and Fyf respectively, lr\lf are the distances between
the rear\front wheel axles and the vehicle’s gravity center
(CG). Fy results from the nonlinear tire-road interactions,
which can be linearized under the assumption of small slip
angles (typically no more than 5°). The linear tire model is
given as follows: {

Fyf = Cyfαf
Fyr = Cyrαr

(2)

with Cyf\Cyr being the stiffness coefficients for front\rear
wheels respectively, af\ar are the respective lateral slip
angles for the front\rear wheels which are given by:{

αf = δf − γf
αr = δr − γr

(3)

where δr\δf are the steering angles for the rear\front wheels,
the rear wheel is not steerable (δr = 0). The angles between
the direction of the wheels and the longitudinal velocity are
given as: {

tan(γf ) =
ẏ+lf φ̇
ẋ

tan(γr) = ẏ−lrφ̇
ẋ

(4)

Equation (5) transforms the lateral velocity from the body
frame to the inertial frame:

Ẏ = ẋ sinφ+ ẏ cosφ (5)

Fig. 1: 2-DOF Bicycle dynamic model.

The bicycle dynamic model is then obtained by replacing the
above mentioned equations in (1):{

m(ÿ + ẋφ̇) = 2[Cyf (δf − ẏ+lf φ̇
ẋ ) + Cyr

lrφ̇−ẏ
ẋ ]

Izφ̈ = 2[lfCyf (δf − ẏ+lf φ̇
ẋ )− lrCyr lrφ̇−ẏẋ ]

(6)
The corresponding state space representation is as follows:{

ẋc = Acxc +Bcu
yc = Ccxc

(7)

with the state vector xc = [ẏ φ φ̇ y]T , the output yc = y and
the input u = δf . The state, control and output matrices are
given by:

Ac =


−2

Cyf+Cyr

mẋ 0 −ẋ− 2
Cyf lf−Cyrlr

mẋ 0
0 0 1 0

−2
Cyf lf−Cyrlr

Iz ẋ
0 −2

Cyf l
2
f+Cyrl

2
r

Iz ẋ
0

1 ẋ 0 0

 ,

Bc =


2
Cyf

m
0

2
Cyf lf
Iz
0

 , Cc =
[

0 0 0 1
]
.

B. MPC Design

The linear MPC, having a low computational burden, is
considered in this paper. The principle of MPC is based on
using the plant model to predict its response over a prediction
horizon Np, and generating a control sequence over a control
horizon Nc. The control sequence, which is optimal and min-
imizes the tracking error, is obtained by solving a constrained
convex optimization problem. Although the control sequence
is optimized all along the control horizon Nc, only the first
term is applied. The discretized form of model (7) is used
as the prediction model of the MPC:{

x(k+1) = Akx(k) +Bu(k)
y(k) = Cx(k)

(8)

However, the state matrix Ak is updated at each iteration
with the actual longitudinal velocity unlike most studies in
the literature [8], [9], [11], [12]. This results in an adaptive
prediction model that works for varying velocity profiles and
not only constant velocities. The model is changed by adding
an integrator and the output y(k) to the state vector to obtain
an augmented model where the input becomes ∆uk:{

x̃(k+1) = Ãkx̃(k) + B̃∆ũ(k)
ỹ(k) = C̃x̃(k)

(9)

The new state is x̃ =
[
∆x(k) y(k)

]T
, the new input is ∆ũ(k)

and the augmented system matrices become as the following:

Ã =

[
Ak oTm
CAk Iq×q

]
, B̃ =

[
B
CB

]
, C̃ = [om Iq×q] .

The term om =

n︷ ︸︸ ︷
[0 0...0] is a vector of zeros and Iq×q is an

identity matrix where n, m and q are the number of states,
inputs and outputs respectively. The control sequence over
the control horizon Nc is given by:

∆U = [∆u(ki),∆u(ki + 1), ...,∆u(ki +Nc − 1)]



Model (9) predicts the plant behaviour over the prediction
horizon Np through the following equation:

Y = Fx(ki) + Φ∆U (10)

where matrices F and Φ are given by:

F =


CA
CA2

CA3

...
CANp



Φ =


CB 0 . . . 0
CAB CB . . . 0
CA2B CAB . . . 0

...
...

...
...

CANp−1B CANp−2B . . . CANp−NcB


The MPC problem is then defined as the following con-
strained optimization:

min J = (Rs − Y )TQ(Rs − Y ) + ∆UTR∆U (11)
s.t : x(k + 1) = Ax(k) +B∆u(k) (12)

∆umin ≤ ∆u ≤ ∆umax (13)
umin ≤ u ≤ umax (14)
ymin ≤ y ≤ ymax (15)

where Q and R are weighting matrices, Rs , Y and ∆U
are the reference trajectory, the output vector and the control
sequence respectively. The constraints are given in terms of
∆U as the following:

M∆U ≤ γ (16)

M is a combination of reformulation sub-matrices and γ
groups the upper and lower bounds of the constraints. Thus,
the MPC is formulated as the following quadratic program-
ming (QP) problem:{

J = 1
2x

TEx+ xTK
Mx 6 γ

(17)

where x is the decision variable (∆u), E,K and M are
compatible matrices and vectors with E being symmetric
and positive definite. The solution of the given QP problem
is based on the Hildreth’s QP method [15].

III. CONTROLLER OPTIMIZATION WITH IMPROVED PSO

To optimize and tune the MPC parameters, we use an
improved version of the PSO algorithm, which is a well
known evolutionary algorithm in the literature [16], [17]. The
standard algorithm is defined by: vi(k + 1) = ωvi(k) + c1r1(Pbi(k)− xi(k))

+c2r2(Gb(k)− xi(k))
xi(k + 1) = xi(k) + vi(k + 1)

(18)

where vi and pi are the velocity and position of particle
(i), which represents a solution to the optimization problem.
ω, c1 and c2 are the inertia weight, the cognitive and the

social accelerations respectively, and r1,2 ∈ [0, 1] are random
constants. Pb and Gb represent the best local and global
positions respectively. ω and c1,2 are constants in the classic
algorithm, however, in the improved version of this work
they are given by the following equations [14]:

ω = ωmin +
exp (ωmax − λ1(ωmax + ωmin) gG )

λ2
(19)



c1(k + 1) = c1(k) + α
c2(k + 1) = c2(k) + β
α = −β = 0.05 for g

G ≤ 20%
α = −β = 0.02 for 20% ≤ g

G ≤ 35%
α = −β = −0.035 for 35% ≤ g

G ≤ 75%
α = −β = −0.0015 for g

G ≥ 75%

(20)

where g and G are the current generation and the maximum
generation, ωmin and ωmax are minimum and maximum
inertia weights and λ1,2 are adjustable constants to ensure
an exponential decrease from ωmax to ωmin. The advantage
of this improved version over the standard one is that it
enhances the overall search capabilities of the PSO algorithm
[14], where the exponential decrease of ω accelerates the
convergence towards the global best solution. On the other
hand, increasing the cognitive acceleration c1 enhances the
exploration phase where particles tend to converge towards
Pb and increasing c2 enhances the exploitation phase where
particles converge towards Gb and vice versa. The improved
PSO algorithm is used to tune and optimize the MPC
parameters which are Np, Nc, Q and R. Fig. 2 shows
the optimization approach where the MSE is used as the
fitness function. Yref is the reference path, Y is the vehicle
lateral position, ẋ is the longitudinal velocity and Xstate

is the state vector. The PSO hyper-parameters used for
the optimization are given in table (II), these parameters
have been selected after evaluating the algorithm on typical
benchmark problems like the sphere equation. To cover the
majority of possible situations, the optimization is done for
a variety of longitudinal speeds ẋ(m/s) ∈ [3, 27] and lateral
references yref (m) ∈ [−15, 15]. In addition, to account for
external disturbances and consider different road conditions,
the road adhesion coefficient is varied µ ∈ [0.5, 0.9], and
the lateral wind is also included vw(m/s) ∈ [−30, 30]. The
result is a small data-set with optimal MPC parameters.

Fig. 2: Schematic diagram of the optimization approach.



TABLE I: PSO hyper-parameters.
Parameter Interpretation Value

N Number of generations 15

NPop Number of particles 20

ωmax Maximum inertia weight 0.99

ωmin Minimum inertia weight 0.1

c1i Initial cognitive acceleration coefficient 2

c2i Initial social acceleration coefficient 2

λ1 Constant 30

λ2 Constant 3

IV. MPC PARAMETERS ADAPTATION

A. MPC adaptation with neural networks

After the optimisation phase which is done offline, a
data-set of optimal MPC parameters is generated. In the
first approach, four feedforward neural networks are used
to learn the optimal MPC parameters for the sake of online
adaptation. The proposed neural networks consist of four
layers; the first layer contains the same four inputs, the first
hidden layer consists of 16 neurons, the second hidden layer
contains 8 hidden neurons and the output layer corresponds
to one of the four MPC parameters: Np, Nc, Q or R as
shown in Fig. 3. The Sigmoid activation function is used for
the hidden layers and the relu function is used for the output
layer since this is a regression problem for positive values
only. The loss function used for the back-propagation is the
MSE along with the gradient decent with momentum.

The forward pass in the neural network is governed by
equations (21), (22) and (23) respectively:

H1
j = f(

n+1∑
i=1

wiijxi), for j = 1, .., nh1 (21)

H2
j = f(

n+1∑
i=1

wh
1

ij xi), for j = 1, .., nh2 (22)

Oj = g(

n+1∑
i=1

wh
2

i xi) (23)

where f and g are the Sigmoid and ReLU functions respec-
tively, ωij and xi are the respective layer weights and inputs.
The training is carried for 1000 epochs using a data-set of
6400 samples.

Fig. 3: Neural network for MPC adaptation

B. MPC adaptation with ANFIS

ANFIS tool is used in the second approach to learn the
data-set of MPC optimal parameters in order to achieve
online adaptation. Adaptive neuro-fuzzy inference systems
are a hybrid AI technique that combines fuzzy logic and
artificial neural networks to learn a mapping from input-
output data [18]. The general architecture of an ANFIS
system, illustrated in Fig. 4, is composed of the following:

• Layer 1: the fuzzification layer obtains fuzzy clusters
from the input data by using membership functions as
given below:

O1
i = µAi

(x) (24)

with x being the input to node i, and Ai the linguistic
label of the node function. O1

i is the membership
function.

• Layer 2: the rule layer computes the strengths by
multiplying the membership values coming from the
fuzzification layer:

ωi = µAi
(x)× µBi

(y) (25)

• Layer 3: the normalization layer computes the normal-
ized strengths that belong to each rule by applying the
following:

ω̄i =
ωi∑n
i ωi

(26)

where ω̄i is the normalized strength and n is the number
of nodes.

• Layer 4: the diffuzification layer calculates the weighted
values of rules through first order polynomials :

ω̄ifi = ω̄i(pix+ qiy + ri) (27)

with fi being the polynomial composed of the parameter
set {pi, qi, ri} called consequence parameters.

• Layer 5: the summation layer sums all the outputs of
the diffuzification layer to obtain the ANFIS output:

O5
i =

∑
i ωifi∑
i ωi

(28)

The adaptation system consists of four ANFIS subsystems
with four inputs each and one output corresponding to
Np, Nc, Q or R. The hybrid training approach combining
gradient decent with RLS is used to train the ANFIS and
avoid local minima. The scattering method is used for input

Fig. 4: General architecture of ANFIS



Fig. 5: ANFIS based adaptation approach

space partitioning since there are four inputs. Fig. 5 illustrates
the proposed approach where vx, vw, µ and yref are the
longitudinal velocity, the lateral wind velocity, the road
adhesion coefficient and the reference lateral position.

V. RESULTS AND DISCUSSION

For evaluating the proposed adaptive MPC controllers,
a high fidelity vehicle model has been built using Vehicle
Dynamics Blockset of MATLAB. The model consists of the
3-DOF dual track lateral dynamics block with nonlinear
Pacejka tire formula [19]. In addition, a simplified powertrain
block is added to accommodate variable velocities through
the predictive longitudinal driver block. The parameters of
model (7) and MPC controller are given in table (II).

Both NN-MPC and ANFIS-MPC are tested against the
standard MPC for a triple lane change scenario which is
often performed in multi-lane highways. The longitudinal
velocity of the vehicle is varied according to Fig. 6(a). The
vehicle was exposed to wind gust and varying road adhesion
coefficient, these are given in Fig. 7 along with the resulting
adaptive Nc, Np, Q and R signals. The corresponding tra-
jectory tracking, steering angle, tracking error and yaw rate
signals are given in Fig. 8. As can be seen from the figures,
NN-MPC has the best tracking performance with an MSE of
(0.0051) compared to (0.0062) and (0.0318) for the ANFIS-
MPC and standard MPC respectively. On the other hand,
ANFIS-MPC exhibits smoother control signals but is slightly
less accurate. Overall, both adaptive controllers overcome the
standard MPC and are much more robust and adaptive to
wind disturbance and changing road conditions.

Furthermore, the controllers are tested for a general tra-
jectory where the velocity profile is given in Fig. 6(b). Wind
gust, road adhesion coefficient and Nc, Np, Q and R signals

TABLE II: MPC and model parameters
Model parameter Value MPC parameter Value

m 1575 (kg) Np 35

Iz 2875(kg.m2) Nc 8

lf 1.2(m) ∆umax/min ± π
12

(rad)

lr 1.6(m) umax/min ±π
6

(rad)

Cf 19000(N/rad) R 0.01

Cr 33000(N/rad) Qy 10

Fig. 6: Longitudinal velocity profile (a) : Triple lane change,
(b) : General trajectory.

Fig. 7: (a) : Lateral gust profile, (b) : Road adhesion coefficient,
(c) : Nc/Np adaptation, (d) : Q/R adaptation.

are shown in Fig. 9 respectively. The corresponding results
in Fig. 10 show similar performance to the previous test. The
NN-MPC and ANFIS-MPC proved higher tracking accuracy,
better disturbance rejection and are more adaptive compared
to regular MPC. Similarly NN-MPC was slightly more accu-
rate in this test with an MSE of (0.132) compared to (0.1349)
and (0.5896) for ANFIS-MPC and classic MPC respectively.
Contrary to NN-MPC, the main drawback of ANFIS-MPC is
the curse of dimensionality. The latter is due to the exploding
number of input membership functions, which makes such an
approach very demanding in terms of computational power
and less practical for real-time applications.

VI. CONCLUSIONS

In this paper, two adaptive MPC controllers are proposed
for the lateral control of autonomous vehicles. An improved
PSO algorithm is used to tune and optimize MPC parameters
for varying working conditions and external disturbances.
A data-set of optimal MPC parameters is generated and
learned using two approaches; first by using MLP neural
networks, and second by using ANFIS systems. The neural
networks and ANFIS systems are then used for the adap-
tation of MPC parameters. The proposed controllers are
tested against the standard MPC for a triple lane change
scenario and a general trajectory. Furthermore, lateral gust
is introduced with varying road conditions. The proposed



Fig. 8: Triple lane change ((a) : Trajectory tracking, (b) : Tracking
error, (c) : Steering command, (d) : Vehicle yaw rate).

Fig. 9: (a) : Lateral gust profile, (b) : Road adhesion coefficient,
(c) : Nc/Np adaptation, (d) : Q/R adaptation.

controllers showed improved tracking accuracy, robustness
and adaptability to disturbances and varying parameters. NN-
MPC proved to be more accurate while ANFIS-MPC was
found to be smooth but very demanding. Further studies shall
address the improvement and learning of the MPC prediction
model in the mixed longitudinal and lateral control.
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