Stability to oxidation and interfacial behavior at the air-water interface of minimally-processed versus processed walnut oil-bodies

Jeanne Kergomard, Nathalie Barouh, Gilles Paboeuf, Pierre Villeneuve, Olivier Schafer, Timothy Wooster, V. Vié, Claire Bourlieu-Lacanal

To cite this version:
Jeanne Kergomard, Nathalie Barouh, Gilles Paboeuf, Pierre Villeneuve, Olivier Schafer, et al.. Stability to oxidation and interfacial behavior at the air-water interface of minimally-processed versus processed walnut oil-bodies. Lipid droplets & Oleosomes - 2nd International Conference, Dec 2021, Strasbour, France. . hal-03466652

HAL Id: hal-03466652
https://hal.archives-ouvertes.fr/hal-03466652
Submitted on 6 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The consumption of walnuts is associated with many health benefits, attributed to their fatty acid profiles, which is rich in polyunsaturated fatty acids (PUFA). As a result, walnuts are used in several food products, such as walnut-based beverages, where fat is partly dispersed under the form of natural lipoproteic assemblies, which are called oil bodies (OB).

Two questions remain pressing: what is walnut OB’s oxidative behavior and what are the consequences of oxidation on its interfacial reactivity?

Material and methods

Oxidative challenge test (PV, TBARS)

- **Incubation**: 20 days at 40°C
- **Ellipsometry/Tensiometry**: D0, D1, D3...D20

Ellipsometry/Tensiometry

- **Wilhelmy balance**
- **Ellipsometry**
- **Langmuir-Blodgett transfer**

Atomic force microscopy

π (surface pressure) → molecular interfacial interactions

Δ (ellipsometric angle) → amount of matter at the a/w interface

Results - Oxidative behavior

PV value

- **MP OB**
- **Complex matrix**

TBARS value

- **MP OB**
- **Complex matrix**

Conclusion: Walnuts OB were stable to oxidation on the short term (few days). This phenomenon is related to the “assembly effect” of OB and to their antioxidant content in vitamins **E** (41.0 ± 20.7 % wt.). The stability of the OB dispersion was higher under the complex matrix form due to the “matrix effect”.

(Kergomard et al., 1994)

Results - Interfacial behavior

How does the structural changes of oxidized OB affect the behaviour at the interface?

Fresh Isolated MP OB

- **ϕ** = 20.7 mN/m
- **Δf** = 10.9°

Oxidized Isolated MP OB

- **ϕ** = 15 mN/m
- **Δf** = 5°

Conclusion: When MP OB adsorb at an air/water interface, the good cohesive ability of their native assembly allows them to keep intact their microstructure. Oxidation phenomenon modified the physical integrity of the OB, decreasing intermolecular forces, which resulted in a different interfacial organization.

(Kergomard et al., 2021)

Corresponding author: Jeanne.kergomard@univ-rennes1.fr