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a b s t r a c t

Multimedia prefetching is able to reduce the end-to-end latency and improve the video quality perceived

by users. Previous work modeled prefetching as applying sequential decisional policies under un-

certainty, using a Markov Decision Process model that integrated both user behavior and resources

availability, to achieve optimal prefetching policies under realistic assumptions. In this paper, we ex-

tended the existing MDP model by considering more complex and aggressive policies, while preserving

the optimality of the prefetching policy. We further enriched the extended model by considering user's

profile to provide finer prefetching policies. The proposed extensions and the associated policies are

validated through comparison against the existing model and against heuristics found in related work.

We showed that our profiles-aware optimal policies can be achieved up to 28% latency reduction with

respect to known heuristics.

1. Introduction

Cisco (2015)predicted that 80% of all consumer Internet traffic

(slightly more than one zettabyte) will be video traffic by 2019,

about 4 times the video traffic in 2014. This trend is driven by

popular services and Web sites, such as Netflix and YouTube, of-

fering video contents ranging from home videos, news clips, and

product advertisement, to professionally produced TV and movies.

Users of these websites typically are presented with a set of video

clips to view. The user selects one that she or he would like to

view, causing the video to be streamed to the web browser. Once a

sufficient amount of video data has been buffered, the video

playback starts, while the rest of the video clip is still being

downloaded. After watching a video, the user is typically pre-

sented with a selection of video clips that the system thinks the

user may like (i.e., related list or video recommendations). The

user might select one video from this set of video clips to watch,

and the process repeats.

Recently, Krishnappa et al. (2013b) showed that viewers fre-

quently choose videos from the related list and that the order of

recommended video clips does influence the users' navigation

patterns. In their work, these authors used this property and

proposed to reorder recommended videos (by YouTube), prior-

itizing the ones that are already cached and ready to be delivered

to the users. This strategy improved the viewing experience while

jumping from one video clip to the subsequent one with reduced

(resp. increased) latencies (resp. cache hit rates). Moreover, for a

group of related videos, it is likely that a viewer would watch next

video from the related list after viewing the previous one. There-

fore, once a video is played back by a user, subsequent videos

could be prefetched. Combining caching and prefetching is useful

for popular applications such as online TV and video streaming

services (Krishnappa et al., 2011a). As an example, Liang and col-

leagues recently introduced an integrated prefetching and caching

proxy for services like Netflix and YouTube (Liang et al., 2015).

These authors designed prefetching strategies that reduce latency

between content servers and proxies in HTTP-based adaptive vi-

deo streaming. In general, caching and prefetching are the two

principal system techniques used to reduce latency. Both techni-

ques have been extensively studied to reduce web pages access

latency. The techniques complement each other: caching keeps a

copy of downloaded objects in anticipation of repeated access,

while prefetching downloads objects using any spare bandwidth

in anticipation of future access.

In this work, we aimed at theoretically characterizing optimal

prefetching policies. We considered users' navigation patterns

within a video collection. While a user jumps from one video to

another one, we tried to minimize the cumulative latency due to

buffering of each video within an access sequence.

Accurately predicting which video will be accessed in the near

future is a key to achieving good prefetching performance.

A wrong prediction would lead to downloading videos chunks that
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are not needed and does not reduce latency. Fortunately, predic-

tions are often statistically possible due to the reproduction of

users' navigation patterns. Frequent patterns might occur due to

popular contents within specific communities of users. Frequent

patterns might also be a direct consequence of an interface bias,

such as the play lists on YouTube, for example. Fig. 1 illustrates

another type of interface bias: even if the three related clips at the

bottom are recommended, the left one is usually chosen more

frequently because of its position and size.

Existing techniques for prefetching are often heuristically de-

signed due to the complexity of the problem as discussed by

Morad and Jean-Marie (2014a). Beyond the access pattern pre-

diction, both the available resources (e.g., spare network band-

width) and video clips sizes matter. Variability among users (e.g.,

profiles from different geographic regions, Krishnappa et al.,

2013a) should also be understood by a smart prefetching agent.

When several user profiles coexist, a simple prefetching policy can

only fit with one mixed (e.g., averaged) profile, leading to sub-

optimal results. We tackled this issue in this work. The core of this

paper significantly extended our initial model by Charvillat and

Grigoras (2007), already published in this journal. Our contribu-

tions in this paper are the following:

1. We proposed a general model that encompasses many existing

techniques for prefetching. Our model allows computation of

optimal Markovian prefetching policies based on complex ac-

cess patterns and any network condition.

2. Our model inherently/automatically classifies the user access

patterns into different profiles, allowing more accurate predic-

tions and thus better prefetching performance.

We structured the rest of the paper into seven sections. Section

2 describes a general framework for prefetching, and presents

several prefetching policies. Section 3 recapitulates our initial

model for deciding the optimal prefetching policy using an ap-

proach based on Markov Decision Process. Section 4 extends our

model by considering multiple stream prefetching policies while

Section 5 considers multiple user profiles. We evaluate our pro-

posed prefetching method in Section 6. Section 7 contrasts our

work with existing literature about prefetching. Finally, Section 8

concludes the paper by summarizing the key messages of this

paper and reflecting on possible future directions of this research.

2. Prefetching model

In this section, we describe, informally, our general model

for prefetching video clips. In our model, the user is presented

with a set of recommended video clips to watch, either while

watching a video (see the screen shot in Fig. 1), or after

watching a video. Prefetching decision is made after a pre-

fetching operation completes, or when the user selects a new

video to watch.

For each clip prefetched, we always prefetch only the initial

segment of the video, corresponding to the buffering time re-

quired to playback the video. In other words, a video whose

initial segment has been prefetched completely can start

playing immediately if the user selects this video to watch la-

ter. For brevity, when we say that a video has been prefetched,

we mean that the initial segment of the video has been

prefetched.

It may happen that the initial segment of a video is only par-

tially prefetched. This situation occurs when the user selects a new

video to watch, while the other videos are still being prefetched. In

this case, a latency is incurred if the user decides to watch the

partially prefetched video later. The user would have to wait for

the initial segment of the video to finish buffering before playback

starts.

A good prefetching policy should reduce the expected latency

experienced by users while they watch the video clips from a

given video collection. We use the expected latency as the per-

formance objective. Another commonly used objective, the hit

ratio (how many objects prefetched has been accessed) is not

really suitable, as it does not consider partially prefetched

objects.

A prefetching action should also consider how much of the

spare bandwidth to allocate to prefetch each video. The pre-

fetching decision depends on several factors. The first factor is

the user behavior. The prefetching agent should prefetch videos

that are likely to be accessed by the users after watching the

current video. For instance, on YouTube, a long video is com-

monly split into shorter video clips. In this case, users are likely to

watch the video in their original sequence. The second factor is

the amount of video that we can prefetch within a given time.

This factor in turn depends on the total spare bandwidth, the

download rate, and the playback rate of the video. The third

factor is how much of the initial segment of a video has been

partially prefetched before.

The situation illustrated by Fig. 1 naturally leads to several in-

tuitive prefetching heuristics. If the video stream S2 is most likely
to be viewed by the user after S1, the associated transition prob-

ability ( | )p S S2 1 should be higher than ( | )p S S3 1 or ( | )p S S4 1 . An intuitive
idea is then to prefetch either S2 only, or S2, S3 and S4 pro-

portionally according to their transition probabilities. Beyond this,

several other policies can be devised. To allow the explanation of

these heuristic policies, we first model the user behavior as a

weighted directed graph called the navigation graph (or execution

digraph as named by Fomin et al., 2014), where each vertex is a

video and an edge going from video Si to video Sj with weight

( | )p S Sj i . Fig. 2 shows an example of the navigation graph.

Let Scur be the video currently being watched by the user. Every

time the user selects a video Scur to watch, the entire available

bandwidth is allocated to download the initial segment of Scur, to

reduce the buffering time. Any on-going prefetching will stop.

When the initial segment of Scur is downloaded and the playback

of Scur starts, Scur will be downloaded with data rate equivalent to

the video playback rate. If there are spare bandwidth on the net-

work, then prefetching of other video streams starts in the back-

ground, according to some policy. We will further introduce some

well known heuristics policies.

Fig. 1. Video content with related clips in the bottom-side of the video panel.



The BEST-FIRST prefetching policy always allocates all the spare

bandwidth to prefetching one video stream with the highest

probability of being accessed by the user from Scur, i.e., the

neighbor of Scur with the highest weight in the navigation graph.

When this video has been prefetched, the policy does not prefetch

another video, even if the current video is still playing and spare

bandwidth is available.

The proportional policy (denoted PROP) allocates the spare

bandwidth, proportionally, to all video streams immediately ac-

cessible from Scur, according to their access probability and in-

dependent of their bit rate. In this way, the amount downloaded

for each video stream is proportional to its access probability. In

other words, all neighbors of Scur in the navigation graph will be

prefetched in parallel. Upon completion of prefetching a video, its

allocated bandwidth is proportionally redistributed to the other

videos being prefetched. When all neighbors of Scur have been

prefetched, the policy does not prefetch other videos, even if the

current video is still playing and spare bandwidth is available.

The two heuristics policies described before, BEST-FIRST and

PROP, do not fully utilize the spare bandwidth, as they only make

the prefetching decision once each time a video is playback. The

next group of policy, collectively called the sequential policies,

continually prefetch video while Scur is being playback. The

MAINLINE policy essentially searches for a path of limited length l

on the navigation graph starting from Scur with the highest prob-

ability of accessed, and prefetch the videos on that path one after

another with full spare bandwidth allocated to each video pre-

fetched. MAINLINE reduces to the case of BEST-FIRST if =l 1.

One can view BEST-FIRST and PROP as shortsighted policies, as

they only prefetch immediately reachable videos (Tuah et al.,

1998). On the contrary, MAINLINE prefetches objects possibly ac-

cessed further into the future (Tuah et al., 1998). PROP and

MAINLINE are also more aggressive, because they attempt to

prefetch more objects, at the price of greater bandwidth

consumption.

The three policies described earlier rely solely on the user na-

vigational behavior to make their prefetching decisions. Not all

navigational behavior, however, are captured in the navigation

graph. The navigation graph does not capture the notion of time. A

user may select another video to watch before the current video

completes its playback. In Fig. 1, the user might click and jump to

S2 from the middle of S1. This action would interrupt the decided

prefetching of S2 and may be S3, S4 and thus some videos might

not be completely prefetched depending on their bit rates and

allocated spare bandwidths.

Such partially prefetched video affects the subsequent optimal

decisions since some stalled prefetching actions should or should

not be continued depending on user behavior. Partial prefetching

can also occur due to variability in network bandwidth. The na-

vigation graph also does not capture this source of uncertainty. In

the next section, we present a much more general model for

capturing these different factors and show how this general model

can be used to compute an optimal prefetching policy that mini-

mizes the expected latency for all users.

3. Prefetching as a Markov Decision Process

We now present a model that enriches the user navigation

graph to include viewing length, network conditions, and past

prefetching actions. The key to our model is the inclusion of

buffer fill levels into the states of the navigation graph. The

buffer fill level of each video succinctly summarizes how long

a video has been watched (or equivalently, how long the

prefetching operations are executed), the network bandwidth

(how much data are prefetched) and what has been pre-

fetched before.

Our previous work (Charvillat and Grigoras, 2007) called the

new states that encapsulate both the buffer fill level of each video

and the video currently watched as buffer states. For the sake of

clarity, we briefly recapitulate this concept that has also recently

been reused by Morad and Jean-Marie (2014a,b). A buffer state s is

denoted as ( … )s b b b, , , , n1 2 , where s is the video stream currently
being watched, and bi is the current buffer fill ratio for video stream

i. The buffer fill ratio ( ≤ ≤ )b0 1i is the percentage of the minimal
amount of data needed to begin playing video stream i that has

already been buffered.

With the introduction of buffer states, the access probability

alone is no longer appropriate to determine the best video to

prefetch. How much of each video has been prefetched before

needs to be considered in the next prefetching decision. We

combine both metrics by using the expected reduction in access

latency as a metric to measure the reward if a given video or set of

videos are prefetched.

We compute the reduction of latency at the entrance of the

buffer state σ = ( … )s b b, , , n1 . Upon entry into a buffer state, the
video player first downloads the minimum quantity of data nee-

ded to begin playing s (a quantity denoted Bs). If bw is the current

average bandwidth and bs is the buffer fill ratio for video stream s,

then prefetching have caused the latency to access s, to reduce by

B b /bws s . The video player, upon entering a state, also decides
whether, while playing the current state, it will prefetch other

video streams.

In our initial model by Charvillat and Grigoras (2007), we

only consider elementary and disjoint prefetching actions: we

can only prefetch (part of) the initial segment for a video

stream i, as opposed to the heuristics policies seen earlier:

sequential and proportional. In this work, we proposed and

evaluated optimal prefetching policies for these two new

classes that deal with multiple streams at once. Moreover, we

also integrate a new hidden variable into our models, namely

the user profile.

To summarize, prefetching can be seen as a sequential decision

problem under uncertainty. Indeed, prefetching actions have to be

taken sequentially, in each buffer state. The model's dynamics is

expressed as transition probabilities between buffer states. Sto-

chastic network conditions and random user navigation lead to

variable efficiency (rewards). Therefore, we can model our pre-

fetching problem as a Markov Decision Process (MDP).

An MDP is a stochastic controlled process that assigns rewards

to transitions between states (Puterman, 1994). It is defined as a

Fig. 2. (a) Navigating a video collection. (b) A video navigation graph.



quintuple ( )S A T p r; ; ; ; where S is the state space, A is the action

space, T is the discrete temporal axis of instants when actions are

taken, ()p are the probability distributions of the transitions be-

tween states1 and ()r is a function of reward on the transitions. At

each instant ∈t T , the decisional agent observes its state σ ∈ S,

applies on the system the action ∈a A that brings the system

(randomly, according to σ σ( ′| )p a, to a new state σ′), and receives a

reward σ( )r a, .

Our MDP model is as follows. S is the set of buffer states, where

each buffer state encapsulates the current video stream and the fill

rate of each video buffer. This fill rate depends on the previous

loading decisions. We note a buffer state as σ = ( … )s b b, , , n1 ,
where n is the number of streams and bi the fill ratio of video i's

buffer. A is the set of prefetching actions depending on the po-

licies: each action represents a decision such as prefetch a video

out of n videos or prefetch several videos simultaneously or

sequentially.

T is and represents the time instants (a.k.a., decision epochs)

at which decisions are made. In order to introduce the dynamics

()p , the rewards ()r , and the relation between the decision epochs

and the video duration, we start with an introductory example and

a basic navigation graph. Let us consider a video stream s1 of

duration d1 and bit-rate br1, followed by s2 and s3 as follows:

s1
s2 s3p(s2 |s1)

p(s3 |s1)

Our first buffer state (denoted s1) includes s1 as the video

currently being watched and three empty buffers showing that no

previous prefetching has occurred:

s1

0   0   0

dehcteferp1srofdehct

prefetched

quantity for

s1

prefetched

quantity for

s3

s1

0 0 0

This first buffer state is visited at time =t 0 (first decision

epoch). At the entrance of the buffer state, we observe the fol-

lowing events: (i) the system downloads the minimum quantity of

data needed to begin playing s1 (a quantity B1). If bw is the average

bandwidth, this causes a latency of B /bw1 . (ii) it decides whether,
while playing the current state, it will also prefetch other video

streams. We first consider elementary and disjoint prefetching

actions: we can only prefetch (part of) Bi for one stream si. Let us

assume that the model decides a2 (resp. a3) and s2 (resp. s3) is

prefetched using the spare bandwidth while s1 is viewed.

Playing s1 lasts during a random duration ≤d d1 depending on
the user behavior (e.g., interest about s1), and we consider here

that she or he jumps to s2 or s3. This choice (e.g., a click on a re-

commended video) brings our model into a new buffer state as-

sociated with a new decision epoch =t 1, totally independent from

the physical duration d. Possible transitions between buffer states

encapsulate the effect of previous actions and transitions and two

random sources: varying transition moments and varying

bandwidth.

Below, four transitions among others are illustrated between s1

and other buffer states σ σ σ σ( ′ ′), , ,2 2 3 3 . These target states differ:
when a2 has been decided, there is a probability σ σ( | )p a,2 1 2 to reach
s2, which represents a state where s2 has been selected by the

user, B1 has been downloaded ( =b 11 since s1 has been played),

and both the duration ≤d d1 and the spare bandwidth led to

prefetch a portion ′ ×b B2 2 of the initial segment for s2. With an-
other probability, σ σ( ′| )p a,2 1 2 , the reached state σ ′2 shows a complete
prefetching for s2 due to user's navigation from s1 to s2 and better

network conditions. We can compute the decrease in latency using

the buffer level of ′b2 in s2 (resp. 1 in σ ′2) based on previous pre-
fetching actions taken in s1. This latency reduction rewards good

prefetching decisions previously taken.

The state s3 is similar to s2 except that the user made another

choice and decided to watch s3 after s1 instead of s2: this leads to

an increased latency when the systems enter into s3 and down-

load the minimum quantity B3 of data needed to begin playing s3
( =b 03 in s3). The state σ′3 represents a target state among many
others at =t 1 when s3 is accessed and have been partially pre-

fetched:

This example illustrated the MDP dynamics. The probability of

distribution of transitions between states is denoted by σ σ( ′| )p a, ,

the probability of going to σ′whenwe are in s and we chose action

a at the start of s. Let σ′ = ( ′ ′ … ′)s b b, , , n1 and σ = ( … )s b b, , , n1 , and a
be the action of prefetching video i. The rewards σ σ( ′)r ,t re-
presenting the decrease in latency as compared to a no-prefetching

policy. The reward for transiting from a state s to σ′ at time t

depends only of the target state and is calculated as follows:

σ σ( ′) =
= ′

′ ≠ ′

⎧
⎨
⎩

r
s s

b s s
,

0 if

ift
s

Solving such an MDP means finding an optimal prefetching

policy that maximizes a criterion. Here, we optimize the expected

discounted total reward given a starting buffer-state such as s1,

∑ γ σ|
=

∞⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E r
t

t
t

1

1

where γ is a discount parameter to limit the influence of

distant rewards. This objective amounts to maximizing the

expected discounted total decrease in latency due to a pre-

fetching policy.

In practice, we use the Q-learning (Watkins and Dayan, 1992)

algorithm to determine, for each buffer-state s and each pre-

fetching action a, a Q-value, σ( )Q a, , that estimates, by simulation,

the expected discounted total reward from this state. Since we

have a finite number of states and actions, Q-values are proven to

converge to their true values and the number of states and actions

directly influences the convergence speed (Puterman, 1994). Given

a buffer-state s, it is then simple to select the best action ⁎a that

maximizes the Q-value. This is how optimal elementary pre-

fetching policies are characterized in Charvillat and Grigoras

(2007). These policies can be considered elementary since only

one object is prefetched at each decision epoch. The prefetching

policies introduced in this paper are enriched while preserving the

same optimality.

Recently our model from Charvillat and Grigoras (2007) has also

been reused by Morad and Jean-Marie (2014a,b), where they for-

mally consider non-elementary MDP policies and buffer states (i.e.,

proportional actions as defined in Section 2) but adopt less realistic

assumptions: no randomness in the prefetching process, determi-

nistic bandwidth, deterministic bandwidth allocations, users com-

mitted to view a selected video entirely, etc. In the related work

section, we compare their work and alternative techniques including

the new prefetching policies brought by this paper (Table 11).

1 In practice, p can be obtained through long term observation of user access

patterns at the server as well as buffer states reported by the video player.



In the following of the paper, we bring more sophisticated

strategies that remain optimal under realistic conditions. The next

section extends our model by considering optimal multiple stream

prefetching policies while Section 5 considers multiple user pro-

files with optimality in mind.

4. Multiple stream prefetching policies

This section presents the first contribution of this paper. We

build on the previous model and derive optimal policies for two

new classes of prefetching strategies: proportional and sequential.

The interest of these new policies is justified by a more efficient

use of the available bandwidth. Moreover the playing time of a

video is better exploited by prefetching one or more video buffers

in a sequential or parallel manner.

4.1. Proportional policies

A proportional policy aims to share the spare bandwidth be-

tween one or more prefetching streams in order to download

several buffers in parallel. More precisely, two questions need to

be answered: Which video streams should be prefetched? How to

allocate the spare bandwidth between the prefetching streams

that have been chosen?

K-order proportional policy: Given an integer k, a k-order pro-

portional policy is a strategy that associates, with every buffer

state, an action composed of a set { … }s s s, , , k1 2 of videos to be
prefetched together with their respective percentages of the spare

bandwidth { … }p p p, , ,
k1 2
. Naturally, we have ∑ =

=
p 1

i

k

i1
. For ex-

ample, an action containing the streams { }3, 4 with their re-

spective percentages { }70%, 30% means that, while the current

video is played, the agent will prefetch the streams 3 and 4 in

parallel, allocating 70% and 30% respectively from the available

spare bandwidth.

One can notice that a k-order proportional policy can be also

seen as a +k 1-order strategy. Indeed, it is sufficient to add a zero

percentage component to a k-order policy to obtain the same

decision strategy of +k 1 order. Therefore, the set of high order

policies includes the set of lower order strategies. Consequently,

optimal policy inside high order strategies always performs better

than an optimal policy selected from lower order strategies. As a

result, even a 2-order optimal proportional policy should improve

the performance of the simple optimal policies presented in

Charvillat and Grigoras (2007).

Let us describe the formal MDP model associated with pre-

fetching using k-order proportional policies. Among the elements

(i.e., { () ()}S A T p r, , , , ) of the previous MDP model, only the action

set A changes. In fact, an action a is no longer represented by a

single video, but instead by a set of k video streams to be pre-

fetched together with a spare bandwidth allocation. As for the

buffer states, we quantify the percentages of the allocation with a

granularity called AG to limit the number of possible actions. For a

2-order policy, by choosing =AG 3 and the set of objects { }s s,1 2 ,
there are four possible actions represented in Table 1.

One can notice that the first and the last actions illustrated in

Table 1 represent obviously simple prefetching actions: prefetch s2
and prefetch s1. It should be noted that granularity value AG has a

direct impact on the performances of the optimal proportional

policy. High orders optimal policies provide better performances

but their real implementation raises difficulties. Consequently, we

used in our experiments only 2-order proportional policies.

For a collection composed of n video streams, the theoretical

number of actions is × × ( + )n n AG 1 . In practice, only half of this

action is useful as each action appears twice as suggested in the

example shown in Table 1. Moreover, all actions corresponding to

a couple ( )s s,i i are equivalent, representing the prefetch of a single
object si.

4.2. Sequential policies

Compared to simple policies that interrupt the prefetching

process as soon as the chosen initial video stream is completely

loaded, sequential policies continue to prefetch other videos dur-

ing the time spent by the user in the current video. This behavior

utilizes bandwidth more efficiently and should offer higher latency

reductions. The MDP model used for simple policies can be easily

adapted to sequential policies. One way to do this is to consider

subsequent videos to prefetch in the buffer state space. Thus, the

buffer state BS can be enriched with addition information (called

start) that codes the beginning of the current video as follows:

=
⎧
⎨
⎩

start
1 presentation start

0 presentation middle

With this enhancement of the buffer state, the MDP model for

sequential policies can be completely described. Thus, the set of

decision epochs (T) is composed of video accesses (i.e., user clicks)

as well as the endings of prefetching processes during the pre-

sentation of a current video. The set of actions (A) can be com-

posed either of elementary decisions (simple policy actions) or of

more complex decisions like those corresponding to proportional

policies previously seen. In order to alleviate the presentation of

the MDP model, the discussion is limited here to elementary

prefetching decisions. Finally, the prefetching agent is rewarded

only in video accesses (i.e., start¼1) corresponding to the begin-

nings of video stream play-out.

The dynamics of the new MDP model is illustrated in Fig. 3.

After the request (i.e., user click) of a video s, the prefetching agent

enters in the enhanced buffer state BS (start¼1) where it decides a

prefetching action a. During the playback of the current video, the

prefetching process continues until the amount Ba is completely

loaded ( = )b 1a . At this moment, the agent enters in the enhanced
buffer state ′BS (start¼0) where it decides another prefetching

action ′a . This process goes on until the user clicks and jumps to

another video stream ′s or the expected sequence of all streams

has been completely prefetched. When the user interrupts the

prefetching process by a click, the value of start is reset to 1 (i.e.,

state ‴BS ). In practice, we considered only prefetching sequences

whose depth are bound by a given length.

4.3. Experimental results

In our previous paper (Charvillat and Grigoras, 2007), we

evaluated our simple optimal policies through several simulations.

For the sake of comparison, we assess the quality of the newly

introduced optimal policies in a similar way. We simply update the

order of magnitude for both the video bit-rates and available

bandwidth. We first used an example described in Fig. 4 and

Table 2. This navigation path was used by Charvillat and Grigoras

(2007). We include into our simulator several uncertainty sources

with respect to access and resources models:

Table 1

Prefetching actions for a 2-order proportional policy and a granularity =AG 3.
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" Access model: The path length varies uniformly between 4 and

10 clicks: the user is provided with multiple choices when

visiting media objects 1 and 5. He or she may also come back to

object 1 after having seen the media 5-cycles are therefore

possible. The time spent by the user playing an object i follows a

uniform distribution between 0 and di, where di stands for

maximal duration of object i. We measure this duration from

the moment the media object begins playing. This is because,

while in the buffering stage, the user is not presented the

content and thus a state change cannot occur.
" Resources model: In our experiments, the bandwidth dynamic

respects a normal distribution σ( = = )m 3500, 250 , therefore

driving 95% of the values in 3–4 Mbps interval. Only the values

between 3 and 4 Mbps were retained. Nevertheless, any other

network model could be integrated.

The optimal prefetching policies inside each strategies class are

obtained by Q-learning as done by Charvillat and Grigoras (2007).

In other words, we solve the MDP prefetching problem with

Q-learning by updating a value function σ( )Q a, until convergence.

These results are simply stored in a two-dimensional matrix of

size | | × | |S A such as each couple σ( ∈ ∈ )S a A, is mapped to an

expected performance σ( )Q a, , obtained by applying action a in

state s and behaving optimally afterwards. This matrix is sparse, as

the number of actually visited states is small and only meaningful

actions are simulated for each buffer-state. We typically choose the

total number of simulations as 1,000,000.

Validation: The new optimal policies are validated through

comparison with the original model (i.e., simple policies) and

some heuristic approaches. Recall that MAINLINE policy chooses

objects that are placed on the most likely path starting from the

current component. For example, while playing media object 1,

MAINLINE tries to prefetch 2, 5, 6 and eventually 7. For PROP policy,

the chosen objects are those immediately reachable (i.e., 2, 3 and

4) and those streams are prefetched in parallel, sharing the spare

bandwidth according to their transition probabilities. Table 3

presents the results of 10,000 simulated random paths. For each of

the six policies analyzed, we show the average latency; for the

optimal policies we also present the gain percentage with respect

to the corresponding heuristic.

One can easily notice the incremental improvement from

dummy policy (no prefetching) which takes in average 41.871 in,

through heuristics approaches (i.e., PROP and MAINLINE) to the

optimal sequential strategy, as computed by the Q-learning algo-

rithm. Better performances can also be observed for proportional

and sequential optimal policies by comparison with optimal sim-

ple policies.

Nevertheless, one should notice the performances of MAINLINE

heuristic, tightly close to those of optimal sequential policy. In fact,

its in-depth exploration principle and the available spare band-

width allow it to prefetch heavy video streams (i.e., 4 and 5) ear-

lier, especially during the presentation of second video (Video 1).

Finally, another strong quality of the optimal policies is that, even

if they did not anticipate the path that the user actually chose, they

are able to provide the next optimum action at every step.

5. User profile-aware policies

We have presented various models for obtaining optimal po-

licies within some policy families (simple, proportional or se-

quential). These models are based on global access logs and

therefore consider the user as an “average user”. Indeed, transition

probabilities in the navigation graphs as well as the playing time

were used as average values with respect to all navigations.

Our models are able to learn how a community of users is

browsing a predefined video collection. This learning process

makes computation of different optimal policies possible. Al-

though they aim at satisfying the average user, these policies are

able to take into account the way the current user is using the

content. In practice, however, users are non-homogeneous and

form multiple sub-communities with different navigation pat-

terns. The optimal policy computed after mixing navigations from

Fig. 3. MDP dynamics for sequential prefetching policies.
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Fig. 4. Multimedia document navigation graph.

Table 2

Characteristics of components of multimedia document.

Object (i) 0 1 2 3 4 5 6 7

Duration di (s) 60 240 60 60 240 360 60 60

Bitrate bri (Kbps) 2400 1200 3600 3600 3600 3600 3600 3600

Buffer Bi (Mb) 12 8 20 20 80 80 20 20

Table 3

Average latencies and gain percentages for 6 prefetching policies over 10,000 paths.

Policy type Heuristics Optimal policies

Simple BEST-FIRST Latency Gain

28.994 18.262 37%

Proportional PROP Latency Gain

21.866 12.475 43%

Sequential MAINLINE Latency Gain

14.431 12.040 17%



two different sub-communities can perform less efficient than two

optimal policies, adapted for each community individually.

5.1. Motivation

Let us consider for example two communities called P1 and P2
afterwards, whose access' characteristics are given in Figs. 5 and 6

respectively. One can notice that we have the same pool of video

streams and only the navigation patterns and average play times for

videos 0 and 1 are different. In these simulations, we consider a

variable bandwidth from 1.5 to 2 Mbps (for both current and

prefetching streams). Our fair prefetching agent only uses a max-

imum of 50% of the spare bandwidth as a resource for latency

reduction.

For each community (P1 and P2), we obtained an optimal pre-
fetching policy by applying Q-learning algorithm on 10,000 simu-

lations. These two policies are noted π ⁎P1
and π ⁎P2

. Considering the

mixed community P&P1 1 (the mix of P1 and P2, equally represented)
we obtained another policy π ⁎P12

. Fig. 7 shows the latencies' dis-

tributions by applying the three policies, namely π ⁎P1
, π ⁎P2 and π ⁎P12

on P1, P2 and the resulting P&P1 2 community respectively.
As one can observe from Fig. 6, the two profiles are quite similar,

except for the time the user spent in video object 1. Thus, the users

belonging to the profile P1 had in average more time to prefetch the
playout buffer of next optimal object compared to users from P2
profile. Therefore, the P1 users perceive a smaller average latency (i.e.,
1.983 in) with respect to P2 users (i.e., 2.109 in).

This introductory example clearly illustrates the shortcoming of

our strategies when computed on users having different

navigation behaviors. The communities are in fact “averaged” but

the obtained result is far from being optimal in this case. Some

information giving hints on the community the current user be-

longs to (for example, the time spent viewing video 0) may help us

to improve our prefetch strategy.

5.2. Handling composite user communities

Ideally, we only need to duplicate our optimization mechan-

isms for prefetching each profile. We suppose there is a known

number of K profiles (denoted as { … }P PK1 ) but this assumption will
be relaxed later. For every profile Pi, we can define an MDP similar

to those presented in the previous sections.

Fig. 6. Access characteristics for users from community P2.

Fig. 5. Access characteristics for users from community P1.

Fig. 7. Latencies' distributions for the three optimal policies applied to P1, P2 and P&P1 2 communities.

Fig. 8. Buffer-states model enriched with user profile.



In particular, a buffer state introduced in Section 3 can be easily

extended by tagging it with a profile Pi (Fig. 8). If we suppose that

we have a set of navigations of users belonging to profile Pi, then

we can estimate an MDP model (transition probabilities between

buffer states) specific to this profile. Therefore we can optimize

various policies and find optimal policies for each community.

These policies naturally perform better (for their community) than

a single policy computed for the whole, mixed, community. There

is still one important problem pending: how to automatically as-

sociate a user to a profile?

One way to model this problem is to say that the profile for the

current user is hidden (i.e., we are not able to compute it). An MDP

with a state that contains a hidden variable becomes a partially

observable MDP (POMDP). Since we are unable to observe the

profile, we will infer it from other observable data that we are

going to define. As shown by the example of Section 5.1, we might

estimate a user profile by using the time spent in the navigation

states and the access sequence. To distinguish between profiles P1
and P2 while in Video 1, we can take into account the time (long or

short) spent in the previous Video 0. In the same way, while in

Video 4, we can infer the most probable profile (i.e., P1 and P2
resp.) according to the previous visited videos (i.e., 2 and 3 resp.).

These information (the time spent in the visited videos and the

sequence of visited objects) that enables us to estimate the profile

of the user will be our observations.

An observation function can be associated with a buffer state,

extended with a profile, as shown in Fig. 9(a) and (b). In buffer

state s4 (resp. σ′4) corresponding to profile P1 (resp. P2) we can
observe that the previous state is 3 more (resp. less) often than 2.

Moreover, in buffer state s1 (resp. σ ′1) corresponding to profile P1
(resp. P2), the probabilities to observe a short (resp. long) sojourn

time in the previous state are different: σ( = | )p t long0 1 is big,

whereas σ( = | ′)p t long0 1 is small. Thanks to different distributions of
observation probabilities we can distinguish among the hidden

states (i.e., distinguish among the profiles).

We now formally describe our POMDP model, which is defined

by its underlying MDP ( )S A T p r; ; ; ; t and a set of observations .
There is also an observation function Π→ ( )O S: that maps every

state s to a probability distribution on the observations' space. The

probability to observe o knowing the agent's state s will be re-

ferred as ( ) = ( = | = )O s o P o o s s, t t . Solving POMDPs is a much more
difficult task than solving Markov Decision Processes (Singh et al.,

1994).

5.3. Formal POMDP model for prefetching

In our case, we generalize MDP into POMDP by introducing

observations as those showed by Fig. 11 and by adding a hidden

variable (profile) to the buffer states and also taking into account

the probability distribution of observations according to previous

states and the sojourn time in these states. We show, below, that

by factorizing the conditional dependencies between decisional

variables, this model maintains the Markov property of the hidden

states.

Let sj be the video visited, Bj be the buffer state, and tj be the time

spent by the user while playing video sj. Let C denote any other

contextual information (such as the video or user genre, the time of

video playing, etc.). We should notice that the history of the

Fig. 9. Time spent and last visit observations for two profiles.

Fig. 10. POMDP integrating the user's profile.



navigation path is somehow hidden inside each profile P. Under the

knowledge of each profile P, we make the following assumptions, in

which the next object visited, the next buffer states, and the time

spent on the current video, does not depend on C.

Assumption 1. The transition probability towards the next ob-

ject depends only on the current object and the profile of the

user P. In other words, the transition process between objects is

Markovian:

( | ) = ( | )+ +p s s P p s s P, , ,j j j j1 1

Assumption 2. The next buffer state B depends only on its current

value, the current object, the prefetching action a, and profile P:

( | ) = ( | )+ +p B B s a P p B B s a P, , , , , , ,j j j j j j1 1

Assumption 3. The time spent by the user depends only on the

current video and the user's profile.

( | ) = ( | )p t s P p t s P, , ,j j j j

The conditional dependencies of the three assumptions above

are graphically represented in Fig. 10(a). Under the assumptions

above, the prefetching decision mechanism can be modeled using

the POMDP illustrated in Fig. 10(b). σ = { }s B P, ,j j j is the POMDP

hidden state at instant j and = { }− −o s B s t, , ,j j j j j1 1 is the global ob-

servation perceived at that moment. This global observation in-

cludes both observable elements of the hidden state and the

“proper”, formal observations tj#1 and sj#1.

Theorem 1. The process s is a Markovian decision process. More-

over, the process of global observations o depends only on the un-

derlying Markovian process s.

Proof.

σ σ

σ σ

σ

σ
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Next, we show that memorizing observable variables over a sliding

window of finite time period is sufficient for eliminating the am-

biguity among the hidden states. In which case, the POMDP model

becomes equivalent to an MDP model where the hidden variables

are replaced by the history of observations. The idea of using the

recent past of the observed process to find the appropriate action

for an POMDP has been proposed in Dutech (2000). The author

details the so-called adapted policies acting over an extended state

space composed of n-order action-observation trajectories and

solve the original POMDP by using MDP resolution algorithms on

this extended space.

Theorem 2. If a profile can be completely estimated from the last L

observations, then the stochastic process associated with these ob-

servations is Markovian.

Proof. Suppose profile P is completely estimated using the last L

observations:

( | … ) = ( | … )− −( − ) − −( − )p P o o o p P o o o, , , , , , ,j j j L j j j L1 1 1 1

Then:

σ

σ

( | … ) = (

| … )

= ( | … )

= ( | … )

= ( | … )
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− − − −( − )
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− −( − )
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p o o o p s B

P s B s t o o
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p P o o o

p o o o
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, , ,
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j j j j L j j

j j j j j j L

j j j j j j L

j j j L

j j j j L

1 1

1 1 1 1

1 1 1 1

1 1

1 1

Let us call Oj the sequence of L last observations at instant j :

= { … }− −( − )O o o o, , ,j j j j L1 1 . We are now able to prove that the pro-

cess { }Oj is Markovian:

Fig. 11. Several tuples { }− −s t,j j1 1 that may be observed in POMDP state sj.

Fig. 12. Bringing the POMDP observations' history into a corresponding MDP state.
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It is therefore natural to solve our prefetching problem using

the memory of recent navigations instead of the profile. These

observations give hints on the profile and allow to find optimal

prefetching actions. A state of the obtained MDP is given by Fig. 12.

Assuming that the profile can be estimated from the last L

observation, we can therefore transform our POMDP into the MDP

whose states are sequences of last L observations. There is much

redundancy in composing such sequence, however, and we may

eliminate part of this redundancy using the conditional de-

pendencies previously seen (Fig. 10(a)). In fact, we can keep only

the following information in the buffer state: the objects visited

{ … }−s s, ,j j L , the times spent { … }− −t t, ,j j L1 and the current buffers B.

6. Experimental results

We validate our new, history-based model and show its abil-

ities of integrating various profiles by proposing the optimal action

for each profile. First, we present two examples that show that our

approach is well defined:

1. Profiles with the same average playing time and different

transition probabilities.

2. Profiles with the same transition probabilities and different

playing times.

Second, we present a more complex scenario involving four

user profiles and show, how the degree of history can give us hints

on the underlying profile, thus improving the overall latency ob-

tained by the history-based MDP policies.

6.1. Profiles with the same average playing time and different tran-

sition probabilities

The two navigation profiles that we consider are shown in

Fig. 13 (transition probabilities) and Table 4 (characteristics of

media objects). Average playing times for these profiles are the

same (second line of Table 4). In these simulations, we consider a

variable bandwidth from 3 to 4 Mbps; from the spare bandwidth

the prefetching agent uses a maximum of 50%.

First, we simulate a navigation corpus for each profile and de-

duce the corresponding optimal policies: π ⁎P1
and π ⁎P2

. Second, we

mix the two corpus and, starting from these mixed navigations, we

obtain two optimal policies (π =
⁎
m H, 0 and π =

⁎
m H, 1) with respect to the

model that has been used: MDP without history (Section 3) and

MDP with a 1 degree history (Section 5.3). Then these two policies

are compared on the mixed corpus. Thanks to its memory, the

history-based policy is able to exhibit the two mixed profiles and

applies an optimal policy to each of them. Table 5 shows latencies

obtained for the compared policies.

Let us give an intuitive explanation of these results. The rela-

tively short time spent on the first part of multimedia document

(components 0, 1, 2) makes essential the prefetching decision on

component 3. Here, the agent should choose between 4, 6, and

7 for profile P1 and between 5, 6 and 8 for P2. For profile P1, sto-
chastic conditions (bandwidth, playing time, transitions) direct the

agent to prefetch 7 as soon as it gets to 3. Similarly, for profile P2,
the agent decides to prefetch 8 while in 3.

In the mixed corpus, the agent equitably sees transitions to

4 and 5 from 3. In the same way, components 7 and 8 can be

equitably reached. This makes the agent choose 6 (in 3) which is

not an optimal action neither for P1 nor for P2. This gives an ex-
planation for the deceiving performance of history-less optimal

policies when using a corpus mixing different profiles. In this case,

by simply memorizing the last visited component allows the agent

to distinguish between the two profiles as early as when it is in 3.

Therefore it chooses to prefetch 7 if it comes from 2 (profile P1) and
8 if it comes from 1 (profile P2). One can notice that the average
latency observed for the mixed corpus with π =

⁎
m H, 1 gets very close

to the average optimal latency for the profile (i.e., the first row in

Table 5).

Fig. 13. Graph of transition probabilities associated to user profiles.

Table 4

Characteristics of components of multimedia document.

Object (i) 0 1 2 3 4 5 6 7 8

Duration di (s) 10 10 10 60 180 180 10 300 300

Bitrate bri (Kbps) 2400 2400 2400 500 500 500 3200 3200 3200

Buffer Bi (Kb) 7200 7200 7200 1200 1200 1200 18,000 24,000 30,000

Table 5

Average latencies for two profiles according to the resolution method.

Users Corpus MDP models Profile P1 Profile P2

Separate corpus Memory-less 8.772 10.483

Mixed corpus Memory-less π( )=
⁎
m H, 0 12.435 15.814

With memory π( )=
⁎
m H, 1 8.782 10.494



6.2. Profiles with the same transition probabilities and different

playing times

Similar results are obtained if profiles differ only by the average

time spent in the components. By keeping the same methodology,

we use profiles described in Fig. 14 and Table 6 and show that a

history-based optimal policy is capable of exhibiting them. In

these simulations, we consider a variable bandwidth from 1.5 to

2 Mbps; from the spare bandwidth, the prefetching agent uses a

maximum of 50%. For each profile, the average time associated to

the component i is represented by a percentage of the duration di.

Table 7 confirms the same good, predictable results. The in-

tuitive explanation behind these results is very simple: while

playing components 1 and 2 the prefetching agent would see if the

user has spent less (profile P1) or more (profile P2) time so far and
therefore guess the optimal action for the remaining content.

6.3. More complex scenario

In this case, we would like to show that providing a sufficient

history level, our prefetching policies could improve their perfor-

mances as if they knew intimately the composition of a mixed

navigation corpus composed of several user profiles. More pre-

cisely, we consider a collection of 9 movie trailers collected from

YouTube and store this content on a server located in a research

lab from Toulouse.

The collection of video trailers was requested multiple times

from different client stations located in Bucharest. For each video

stream, we use YouTube JavaScript Player API to capture two

events: unstarted and playing. Averaging the time difference be-

tween these two events gives us an estimation of each video

start-up latency. Considering also the average video bit rate, we

estimated the size of play-out buffer for each video. The char-

acteristics of those 9 videos and their average playing are shown in

Table 8.

For this case, we consider four navigation user profiles shown

in Fig. 15. The intuitive explanation beyond their design is that

Fig. 14. Transition graph shared by the two user profiles.

Table 6

Access times for each of the two profiles.

Object (i) Duration (s) Profile P1 (%) Profile P2 (%) bri (Kbps) Buffer Bi
(Kb)

0 10 20 50 1200 600

1 10 30 80 1200 600

2 100 90 10 500 500

3 100 10 90 500 1000

4 100 10 90 500 500

5 50 100 100 2400 7200

Table 7

Latencies for profiles of Fig. 14 obtained for different models.

Users Corpus MDP models Profile P1 Profile P2

Separate corpus Memory-less 2.790 2.208

Mixed corpus Memory-less π( )=
⁎
m H, 0 2.924 2.836

With memory π( )=
⁎
m H, 1 2.793 2.210

Table 8

Characteristics of video streams for the four profiles.

Object (i) 0 1 2 3 4 5 6 7 8

Duration di (s) 40 25 35 30 60 70 50 55 65

Bitrate bri (Kbps) 1675 1760 1814 1656 2412 3210 3196 3048 3096

Playout Bi (s) 8.2 8.3 7.9 8.7 9.8 9.7 9.9 9.3 9.6

Fig. 15. Four navigation user profiles.



each profile can be characterized by a significant sequence,

namely:

→ → → → → →

→ → → → → →

→ → → → → →

→ → → → → →

P : 0 2 1 3 4 5 6 P :

0 1 2 3 4 6 5P :

0 3 1 2 4 7 8 P :

0 1 3 2 4 8 7

1 2

3

4

One can easily observe that, following the path of those re-

markable sequences, when the prefetching agent arrives in video

stream 4, looking one step behind (i.e., a history =H 1) can only

help him distinguish between two profiles classes: { }P , P1 2 if it
comes from 3 and { }P , P3 4 if it comes from 2. Nevertheless, in-
creasing the history (i.e., looking two steps behind) allows the

prefetching agent to completely infer to the 4 profiles involved. For

example, if it comes from the path → →1 3 4, then the presumed

profile (i.e., statistically speaking) is clearly P1.
As before, we conduct a series of simulations, mixing the four

profiles and apply our optimal prefetching policies with different

degrees of history. In these simulations, the bandwidth varies

uniformly between 3 and 4 Mbps and from the spare bandwidth,

the prefetching agent uses a maximum of 50%. We solve the model

using Q-learning and obtain for each category of policy (i.e., simple,

proportional and sequential) three policies corresponding with

three history levels (i.e., =H 0, =H 1, =H 2). The key aspect in

these simulations is that the policy is not aware of the various

profiles whose it is applied to. One can notice the decrease of these

latencies with the history level, for each category of policy

(Table 9).

One interesting aspect of our experimental part concerns the

video quality results. As we handle the original video sequences,

we do not address any compression issue like PSNR. Even if we do

not perform any subjective evaluation like MOS (i.e., mean opinion

score), minimizing the latency should lead to an increase of QoE

(i.e., Quality of Experience). However, counting the number of vi-

deo stalls (start-up latencies greater than 3 s) we could estimate

the MOS parameter on a scale from 0 to 5, by following an existing

model proposed by Hossfeld et al. (2011). Table 10 shows an im-

portant gain in MOS (i.e., approx. 0.7) just by using a heuristic

simple policy (i.e., BEST-FIRST) while using an optimal policy

enriched by a 2-step history leads to an even significant gain in the

quality of experience.

7. Related work

Prefetching is a prominent problem in many computer science

research areas. One of the most recent instance of such problems

deals with mobile applications. The system presented by Parate

et al. (2013) mitigates launch latencies by making applications

prefetch practical on mobile phones. A prediction model is learnt

from real-life logs based on the probability distribution of the

applications to be used in the future.

Historically, the concept of prefetching has long been used in a

variety of distributed and parallel systems to hide communication

latency (Culler et al., 1998). In operating systems research, a no-

table work in automatic prefetching for reducing latency in oper-

ating systems is due to Griffioen and Appleton (1994). They pro-

posed predicting future file accesses based on past file activities

that are characterized by probability graphs. More recently, Web

prefetching (Chen and Zhang, 2003) has been extensively studied

as a basic mechanism for downloading documents in advance

while a user is surfing. Since the Web surfer follows the hyperlinks

in an unpredictable way, the choice of the Web pages to be pre-

fetched must be computed online by a prefetching policy. A gen-

eralization of this concept to multimedia playback is natural.

Prefetching in the context of non-linear access to media data is

also studied in Krishnamoorthi et al. (2014) for on-demand

streaming of branched video.

In this paper, we address the problem of prefetching in the

context of a collection of streaming media (e.g., videos). Our ap-

proach targets optimization for different types of prefetching

strategies and a well defined performance metric, i.e., the user-

perceived latency. Moreover, our prefetching model remains op-

timal even in the presence of multiple user profiles, adapting the

best strategy for each of them. To the best of our knowledge,

achieving optimality for the prefetching problem, in the context of

multiple user profiles has never been addressed before. The next

section presents the most important performance metrics for the

prefetching problem in the context of web or media prefetching.

Then, we briefly discussed some relevant works that target opti-

mization according to some of these metrics.

7.1. Prefetching performance metrics

The prefetching performance criteria could be classified into

3 main categories (Domènech et al., 2006):

" How accurate is the prediction: The first category is often used

when comparing prediction techniques and includes those

metrics that quantify both the efficiency and the efficacy of the

technique. For example, precision measures the ratio of good

predictions to the number of predictions (Davison, 2004). Byte

precision measures the percentage of prefetched bytes that are

subsequently requested (Bouras et al., 2004). Precision just

evaluates the algorithm without considering physical system

restrictions (e.g., cache, network or time restrictions) and it can

be seen as a theoretical metric. Recall measures the percentage

of requested objects that were previously prefetched.
" The cost of prefetching: The second category quantifies the ad-

ditional cost that prefetching incurs (e.g., increases in network

traffic or computation time); and can be seen as complementary

measures. Traffic increase quantifies the increase of network

traffic (in bytes) due to unsuccessfully prefetched documents. It

is also called wasted network traffic, extra bytes, network traffic,

or bandwidth ratio (Bouras et al., 2004). Server load ratio is

Table 9

Average latencies for all policies: heuristics and optimal with various degrees of

history.

Policy Type Heuristics Optimal policies

Simple prefetching BEST-FIRST =H 0 =H 1 =H 2

15.405 13.620 12.310 11.029

– 12% 20% 28%

Proportional prefetching PROP =H 0 =H 1 =H 2

12.990 12.305 11.668 10.707

– 5% 10% 18%

Sequential prefetching MAINLINE =H 0 =H 1 =H 2

14.254 13.155 12.105 10.987

– 8% 15% 23%

Table 10

Average number of video stalls for simple policies (1 þ stands for the initial

buffering).

QoE Metric Dummy

policy

BEST FIRST Optimal policies

=H 0 =H 1 =H 2

# of video stalls 1þ4.211 1þ1.562 1þ1.218 1þ1.037 1þ0.785

Mean opinion

score

2.0630 2.718 2.954 3.154 3.424



defined as the ratio between the number of requests for server

service when prefetching is employed to the number of requests

for server service when prefetching is not employed. Some

researchers also discuss how the overhead impacts on the

server performance. In this manner, prediction time quantifies

the time that the predictor takes to make a prediction, a metric

used in Dongshan and Junyi (2002) to compare different

predicting algorithms.
" Decrease in latency: Finally, the third category summarizes the

performance achieved by the system from the users' point of

view. Several names have been used for this metric such as la-

tency, access time, or responsiveness (Khan and Tao, 2005). The

three categories are closely related since, in order to achieve a

good overall performance, prefetching systems must trade off

the contents prediction (first category) and the system cost

increase due to prefetching (second category). Metrics belong-

ing to this category include those aimed at measuring the end-

to-end responsiveness (e.g., user or proxy related latencies),

some of which are difficult to quantify.

Beyond the three categories of metrics above, some authors

(Wu and Kshemkalyani, 2006) propose the use of performance

metrics combining mixed predictive metrics with resource utili-

zation metrics. They seek to find the right balance between quality

of prediction and consumption of bandwidth. These metrics gen-

erally increase with the quality of the prediction and decrease

with the extra bandwidth generated. Consequently, the value re-

flects the system performance of prefetching, in its entirety. By

optimizing these metrics, policies even more sophisticated for

optimal prefetching can be considered.

Our research belongs to the third category as we choose to

optimize the average latency perceived by user along its naviga-

tion through a multimedia document content. Several other work

deals with this optimization problem and three representative

approaches will be presented further.

7.2. Prefetching optimization approaches

The approach developed in Tuah et al. (2002) provides a se-

quential policy aiming to optimize the latency at each navigation

step. In their work, the authors assume the knowledge of the avail-

able bandwidth, the size of the media objects, and the time spent by

the user in each object. Moreover, the media objects are available

only by download and not by a streaming process. Henceforth, the

prefetching process occupies all the available bandwidth during the

presentation of the current media object. At each user request, a new

optimization prefetching problem is solved based on the current

media demand and network bandwidth. The prefetching is modeled

as a maximization problem under constraints and solved (in a ap-

proximated manner) by decomposing it into two stretch knapsack

sub-problems. Pons (2005) improves this framework using a Markov

model to estimate object's access probabilities.

A second approach aiming to reach the optimality for the se-

quential policy proposed in Tuah et al. (2002) is presented by

Angermann (2002). The prefetching mechanism uses a Markov

model that is downloaded to the client's system that becomes

personalized to the client's distinct behavior. The framework used

is slightly different from Tuah et al. (2002) and allows the media

objects to be stored on different servers, the cache storage is

supposed unlimited and the viewing time for each object is not

anymore constant but distributed following a Zipf low (Breslau

et al., 1999). Under these hypothesis, the author shows that the

media objects should be prefetched in decreasing order of their

access probabilities.

The two previous approaches provide, under specific hypoth-

esis, optimal (or near optimal) prefetching policies to reduce the

latency perceived by the user. Nevertheless, their optimality is

limited at a single navigation step. Just like some heuristics seen in

Section 2, these strategies target only immediately reachable

media objects (i.e., a single transition). Therefore, they provide

only a local optimality. Reaching an in-depth optimality, i.e., re-

ducing the global navigation latency, implies considering not only

immediate but also late effects of a prefetching decision.

The third approach (Khan and Tao, 2001) targets this goal un-

der the hypothesis that the network bandwidth is constant and

the percentage allocated to the prefetching process is given by a

parameter β. As in our case, each media object i is composed of a

lead segment (i.e., the amount bi) and a stream segment. The au-

thors provide principles and several hints to solve the problem

without offering a rigorous solution for the general case. For par-

ticular cases, they suggest a prefetching algorithm that gives the

priority to the more popular and smaller media objects.

Recently, prefetching policies for VoD systems and P2P video

streaming have been devised to anticipate seeking actions or VCR

operations. Any seek operation from a user usually results in la-

tency and learning segment access probability is a key problem.

Optimality of prefetching policies in this P2P context is twofold.

The distributed nature of media data and varying popularity lead

to specific optimization criteria (He et al., 2009). Similarly, the

prefetching and caching of online TV services provided by a

hosting service is examined in Krishnappa et al. (2011b), where

the authors proposed the prefetch of the most popular videos of a

week. The idea of prefetching videos/scenes which are watched

with a high probability is used in our work too, but we integrate a

profiling strategy and dynamically personalize the media delivery

while a specific user with a specific profile is browsing a collection

of media.

Another work that extend our initial MDP model by Charvillat

and Grigoras (2007) is presented in Morad and Jean-Marie (2014a,

b). The authors formally consider non-elementary MDP policies

and buffer states (e.g., proportional policies as defined in Section

2) but adopt less realistic assumptions: no randomness in the

prefetching process, deterministic bandwidth, deterministic

bandwidth allocations, users committed to view a selected video

Table 11

Prefetching policies comparison.

Prefetching properties Heuristics (2002)a Optimal policies

BEST FIRST PROP MAINLINE (2007)b (2014 )c This paper

Prefetched stream(s) 1 K in parallel K in sequential 1 K in parallel K in parallel and sequential

Viewing duration variability – – – ✓ ✓ ✓

Bandwidth variability – – – ✓ – ✓

Multiple user profiles – – – – – ✓

a Tuah et al. (2002).
b Charvillat and Grigoras (2007).
c Morad and Jean-Marie (2014b), see also derived heuristics (Morad and Jean-Marie, 2014a).



entirely, etc. They also consider only one averaged user profile 
while our model is capable of demixing several user profiles.

8. Conclusion

The problem we address in this paper is the reduction of na-
vigation latencies in the context of non-linear media accesses by 
means of prefetching policies. We deliver rigorous solutions to this 
problem thanks to our modeling by Markov Decision Processes 
and their associated resolution algorithms. Our approach differ-
entiates from long-term prefetching techniques by several aspects. 
First, we believe that prefetching decisions while navigating in a 
collection of media objects should not be fixed before hand. Sec-
ond, these decisions should take into account the existing links 
(semantically or structurally) between media objects together 
with a short-term memory witnessing the user behavior. Third, we 
believe that the prefetching process should use only the spare 
bandwidth available that is, by its very nature, random.

The strength of our MDP models is their capacity to integrate 
both user behavior and resource availability. The key points of our 
prefetching policies are twofold: they are optimal in the sense of 
our Markovian models and they can be computed automatically. 
Moreover, we derived a hierarchy of prefetching policies classes 
and obtained, inside each class, the optimal policy. Among them, 
the more sophisticated are able, under specific hypothesis, to 
manage the coexistence of different user profiles. In this sense, we 
contribute to the modern momentum whose aim is to mix modern 
technology components (often observable) with human factors 
(often partially observable) to manage dynamic execution con-
texts. We believe that our prefetching framework can also be 
adapted to other video interactions (e.g., zooming, panning, and 
seeking) or other contexts such as 3D streaming. These are the 
main avenues for our future research.
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