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Local Limit Theorem for Complex Valued Sequences

Lucas Coeuret1

Abstract

In this article, we study the pointwise asymptotic behavior of iterated convolutions on the one dimensional
lattice Z. We generalize the so-called local limit theorem in probability theory to complex valued sequences.
A sharp rate of convergence towards an explicitly computable attractor is proved together with a generalized
Gaussian bound for the asymptotic expansion up to any order of the iterated convolution.

AMS classification: 42A85, 35K25, 60F99, 65M12.
Keywords: discrete convolution, local limit theorem, difference approximation, stability.

For 1 ≤ q < +∞, we let ℓq(Z) denote the Banach space of complex valued sequences indexed by Z and such
that the norm:

∥u∥ℓq :=

∑
j∈Z

|uj |q
 1

q

is finite. We also let ℓ∞(Z) denote the Banach space of bounded complex valued sequences indexed by Z
equipped with the norm

∥u∥ℓ∞ := sup
j∈Z

|uj |.

Throughout this article, we define the following sets:

U := {z ∈ C, |z| > 1} , D := {z ∈ C, |z| < 1} , S1 := {z ∈ C, |z| = 1} ,

U := S1 ∪ U , D := S1 ∪ D.

For z ∈ C and r > 0, we let Br(z) denote the open ball in C centered at z with radius r.
For E a Banach space, we denote L(E) the space of bounded operators acting on E and ∥·∥L(E) the operator

norm. For T in L(E), the notation σ(T ) stands for the spectrum of the operator T .
Lastly, we let Mn(C) denote the space of complex valued square matrices of size n and for an element M

of Mn(C), the notation MT stands for the transpose of M .
We use the notation ≲ to express an inequality up to a multiplicative constant. Eventually, we let C (resp.

c) denote some large (resp. small) positive constants that may vary throughout the text (sometimes within the
same line).

1 Introduction and main result

1.1 Context
We define the convolution a ∗ b of two elements a and b of ℓ1(Z) by

∀j ∈ Z, (a ∗ b)j :=
∑
l∈Z

albj−l.

When equipped with this product, ℓ1(Z) is a Banach algebra. For a ∈ ℓ1(Z), we define the Laurent operator
La associated with a which acts on ℓq(Z) for q ∈ [1,+∞] as

∀u ∈ ℓq(Z), Lau := a ∗ u ∈ ℓq(Z).

Young’s inequality implies that those operators are well defined and are bounded for all q ∈ [1,+∞]. Fur-
thermore, we have that La∗b = La ◦ Lb for a, b ∈ ℓ1(Z). Finally, Wiener’s theorem [New75] characterizes the
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invertible elements of ℓ1(Z) and thus allows us to describe the spectrum of La via the Fourier series F associated
with a:

σ(La) =

{
F (t) :=

∑
k∈Z

ake
itk, t ∈ R

}
.

We observe that the spectrum is independent of the index q and that F is continuous since a belongs to ℓ1(Z).
If we suppose that the sequence a has real nonnegative coefficients and

∑
k∈Z ak = 1, then the sequence

an := a ∗ . . . ∗ a is the probability distribution2 of the sum of n independent random variables supported on Z
each with the probability distribution a. A lot is known on the pointwise asymptotic behavior of the sequence
an in this case. In particular, the local limit theorem states, under suitable hypotheses on the sequence a, that
there exists a family of functions (qσ : R → R)σ∈N\{0,1} such that for all s ∈ N∗ we have the following asymptotic
expansion for the elements anj

anj − 1√
2πV n

exp

(
−
X2

n,j

2

)
−

s∑
σ=2

qσ(Xn,j)

n
σ
2

=
n→+∞

o

(
1

n
s
2

)
(1)

with Xn,j =
j−nα√

V n
where α =

∑
k∈Z kak and V =

∑
k∈Z k

2ak−α2 are respectively the mean and the variance of
a random variable with probability distribution a and where the error term is uniform with respect to j ∈ Z (see
[Pet75, Chapter VII, Theorem 13] for more details). Furthermore, the terms in the asymptotic expansion (1)
can be explicitely computed using Hermite polynomials since the functions qσ are explicit linear combinations of
derivatives of the Gaussian function x 7→ exp

(
−x2

2

)
. The asymptotic expansion (1) gives a precise description

of the asymptotic behavior of anj in the range |j − nα| ≲ √
n and implies that the convolution powers of a are

attracted towards the heat kernel.
Following, among other works, [DSC14, RSC15, CF22], we are interested in generalizing the local limit

theorem to the case where a is complex valued. This problem is relevant for instance when one studies the large
time behavior of finite difference approximation of evolution equations. Extending the works of Schoenberg
[Sch53], Greville [Gre66] and Diaconis and Saloff-Coste [DSC14, Theorem 2.6], the article [RSC15] of Randles
and Saloff-Coste already provides a generalization of the local limit theorem for a large class of complex valued
finitely supported sequences. By doing so, the authors of [RSC15] describe an asymptotic expansion similar
to (1) for s = 1 and identify the leading asymptotic term (the so-called "attractors" in [RSC15]). Our goal in
this paper is to generalize the result of [RSC15] by obtaining an asymptotic expansion similar to (1) for any
s ∈ N with explicitely computable terms. We also prove a sharp rate of convergence together with a generalized
Gaussian bound for the remainder of our new-found asymptotic expansion (see Theorem 1). In the case where
a is the probability distribution of a random variable, as above, the main theorem of this paper would translate
in saying that, under suitable assumptions on a (namely that a is finitely supported with at least two nonzero
elements), for all s ∈ N∗, there exist two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z,

∣∣∣∣∣anj − 1√
2πV n

exp

(
−
X2

n,j

2

)
−

s∑
σ=2

qσ(Xn,j)

n
σ
2

∣∣∣∣∣ ≤ C

n
s+1
2

exp
(
−cXn,j

2
)

with Xn,j =
j−nα√

V n
. As an example of application, these improvements on the local limit theorem allow us in the

probabilistic case to prove the well-known Berry-Esseen inequality (see [Ber41, Ess42]) which states that there
exists a constant C > 0 such that

∀n ∈ N∗,∀J ∈ Z,

∣∣∣∣∣∣
∑
j≤J

anj −
∑
j≤J

1√
2πV n

exp

(
−|j − nα|2

2nV

)∣∣∣∣∣∣ ≤ C√
n
.

However, we will need stronger hypotheses on the elements of ℓ1(Z) than the conditions imposed in [RSC15].
We will consider here elements a of ℓ1(Z) which are finitely supported and such that the sequence (an)n∈N is
bounded in ℓ1(Z). The fundamental contribution [Tho65] by Thomée completely characterizes such elements
and is an important starting point for our work.

In the articles [DSC14] and [RSC15], the proofs mainly rely on the use of Fourier analysis to express the
elements anj via the Fourier series associated with a. In this paper, we will rather follow an approach usually

2We say that a sequence a is the probability distribution of a random variable Y with values in Z when P(Y = j) = aj for all
j ∈ Z.
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referred to in partial differential equations as "spatial dynamics". It aims at using the functional calculus (see
[Con90, Chapter VII]) to express the temporal Green’s function (here the coefficients anj ) with the resolvent of
the operator La via the spatial Green’s function which is the unique solution of

(zId− La)u = δ, z ∈ C\σ(La),

where δ is the discrete Dirac mass δ := (δj,0)j∈Z. This approach has already been used in [CF22] to extend the
result of [DSC14, Theorem 1.1] and obtain a uniform generalized Gaussian bound for the elements anj . It has
also been used in [CF21] to prove similar results on finite rank perturbations of Toeplitz operators (convolution
operators on ℓq(N) rather than on ℓq(Z)). The present paper is very much inspired by [CF22, CF21] and we
will use notations and methods similar to those articles. We will now present in more details the hypotheses we
need on the elements a ∈ ℓ1(Z) that we shall consider and we shall then present our main theorem.

1.2 Hypotheses
We consider a given sequence a ∈ ℓ1(Z). We let La be the bounded operator acting on ℓq(Z) defined as

∀u ∈ ℓq(Z), Lau :=

(∑
l∈Z

aluj+l

)
j∈Z

.

This operator is obviously linked to Laurent operators and could be written as one of them (La = Lb for
b := (a−j)j∈Z). Our goal will be to study the powers L n

a for n large. This problem arises for instance as
the large time behavior of finite difference approximations of partial differential equations and is equivalent to
studying the asymptotic behavior of the coefficients of bn := b ∗ . . . ∗ b as n tends to infinity. We define the
symbol F associated with a as

∀κ ∈ S1, F (κ) :=
∑
j∈Z

ajκ
j . (2)

The Wiener theorem [New75] allows us to conclude that the spectrum of La is given, for any q ∈ [1,+∞], by:

σ(La) = F (S1).

We are now going to introduce some hypotheses that are necessary for the rest of the paper.

Hypothesis 1. The sequence a is finitely supported and has at least two nonzero coefficients.

Looking at the definition of the operator La, in terms of applications for numerical analysis, this hypothesis
translates the fact that we are only considering the case of explicit finite difference schemes. Hypothesis 1
implies that we can extend the definition (2) of F to the pointed plane C\ {0} and F becomes a holomorphic
function on this domain. We introduce the two following elements

km := min {k ∈ Z, ak ̸= 0} , kM := max {k ∈ Z, ak ̸= 0} .

Observing that Hypothesis 1 implies km < kM , we then distinguish three different possibilities:

• Case 1: kM ≤ −1. We then define r := −km and p := 0.

• Case 2: km ≤ 0 ≤ kM . We then define r := −km and p := kM .

• Case 3: 1 ≤ km. We then define r := 0 and p := kM .

In every case, we have r, p ∈ N and −r < p. Also, we have that

∀u ∈ ℓq(Z),∀j ∈ Z, (Lau)j =

p∑
l=−r

aluj+l. (3)

The natural integers r and p we just introduced define the common stencil of the operators La and the identity
operator and they will be useful to study the so-called resolvent equation (13) below. We now introduce an
assumption on the Laurent series F which is based on [Tho65]. Just like in [DSC14, RSC15, CF22], we normalize
the sequence a so that the maximum of F on S1 is 1.
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O

exp(−η)S1

S1

σ(La)

•z1•z2

Figure 1: An example of spectrum σ(La). The spectrum σ(La) (in red) is inside the closed disk D̄ and touches
the boundary S1 in finitely many points. In gray, we have O the intersection of the unbounded connected
component of C\σ(La) and

{
z ∈ C, |z| > exp(−η)

}
.

Hypothesis 2. There exists a finite set of distinct points {κ1, . . . , κK}, K ≥ 1, in S1 such that for all k ∈
{1, . . . ,K}, zk := F (κk) belongs to S1 and

∀κ ∈ S1\ {κ1, . . . , κK} , |F (κ)| < 1.

Moreover, we suppose that for each k ∈ {1, . . . ,K}, there exist a nonzero real number αk, an integer µk ≥ 1
and a complex number βk with positive real part such that

F (κke
iξ) =

ξ→0
zk exp(−iαkξ − βkξ

2µk +O(|ξ|2µk+1)). (4)

Geometrically, this means that the spectrum σ(La) is contained in the disk D and it intersects S1 at finitely
many points (see Figure 1 for an example with K = 2, z1 = 1, z2 = −1) and that the logarithm of F has a
specific asymptotic expansion at those intersection points. From a general point of view, it is proved in [Tho65,
Theorem 1] that Hypothesis 2 is one of two conditions that characterize the elements a of ℓ1(Z) such that the
geometric sequence (an)n∈N is bounded in ℓ1(Z). In the more specific field of numerical analysis, the condition
(4) has been studied closely because of its link with the stability of finite difference approximations in the
maximum norm (see [Tho65]). We can observe that, under Hypotheses 1 and 2, there holds

∀n ∈ N∗, ∥L n
a ∥L(ℓ2(Z)) = ∥Fn∥L∞(S1) = 1.

It assures the ℓ2-stability, or strong stability (see [Str68], [Tad86]), of the numerical scheme defined as{
un+1 = Lau

n, n ≥ 0,
u0 ∈ ℓ2(Z). (5)

However, it has further consequences, as the asymptotic expansion (4) assures the ℓq-stability of the scheme (5)
for every q in [1,+∞] (see [Tho65, Theorem 1] which focuses on the ℓ∞-stability but also studies the ℓq-stability
as a consequence). In terms of numerical scheme, the meaning of (4) is that the numerical scheme introduces
an artificial numerical diffusion (like the Lax-Friedrichs scheme for example).

We now introduce yet another hypothesis.

Hypothesis 3. For all k ∈ {1, . . . ,K}, the set

Ik := {ν ∈ {1, . . . ,K} , zν = zk}

has either one or two elements, where we recall that zν := F (κν). Moreover, if there are two distinct elements
νk,1 and νk,2 in Ik, then ανk,1

ανk,2
< 0.
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Hypothesis 3 will simplify part of the analysis when we will study the spatial Green’s function defined in
(13) below. It will allow us to study precisely the spectrum of the matrix M(z) defined below as (12) near
the tangency points zk. Combining Hypothesis 3 with the fact that the αk’s are nonzero real numbers (see
Hypothesis 2) implies that, for k ∈ {1, . . . ,K}, we have three different possibilities:

• Case I: Ik is the singleton {k} and αk > 0,

• Case II: Ik is the singleton {k} and αk < 0,

• Case III: Ik has two distinct elements νk,1 and νk,2 such that ανk,1
> 0 and ανk,2

< 0.

Distinguishing between those three cases will be useful later on. The three hypotheses we presented above
will be crucial in the rest of the paper. Some hypotheses might be relaxable, but this would be considerations
for future works.

Finally, by defining the discrete Dirac mass δ := (δj,0)j∈Z, we introduce the so-called temporal Green’s
function defined by

∀n ∈ N,∀j ∈ Z, G n
j := (L n

a δ)j . (6)

It is interesting to observe that the equality between the operator La and the Laurent operator Lb with
b = (a−j)j∈Z implies that

∀n ∈ N,∀j ∈ Z, G n
j = bnj

where bn = b ∗ . . . ∗ b.

1.3 Main results and comparison to previous results
Our main goal is to determine the asymptotic behavior of G n

j when n becomes large. The identification of
the leading asymptotic term was achieved in [RSC15, Theorem 1.2]. We aim here at extending the result of
[RSC15, Theorem 1.2] into a complete asymptotic expansion up to any order and at proving sharp bounds for
the remainder. To express the asymptotic expansion of G n

j , we introduce the functions Hβ
2µ : R → C, where

µ ∈ N∗ and β ∈ C has positive real part, which are defined as

∀x ∈ R, Hβ
2µ(x) :=

1

2π

∫
R
eixue−βu2µ

du.

We call those functions generalized Gaussians since for µ = 1, we have

∀x ∈ R, Hβ
2 (x) =

1√
4πβ

e−
x2

4β .

Let us state the main result of this paper.

Theorem 1. Let a ∈ ℓ1(Z) which verifies Hypotheses 1, 2 and 3. Then, for all integers s1, . . . , sK ∈ N there
exist a family of polynomials (Pk

σ)σ∈{1,...,sk} in C[X,Y ] for each k ∈ {1, . . . ,K} and two positive constants C, c
such that for all n ∈ N∗ and j ∈ Z, there holds:∣∣∣∣∣G n

j −
K∑

k=1

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣ ≤
K∑

k=1

C

n
sk+1

2µk

exp
(
−c|Xn,j,k|

2µk
2µk−1

)
(7)

where Xn,j,k = nαk−j

n
1

2µk

.

Theorem 1 gives the asymptotic behavior of the elements G n
j up to any order with a sharp generalized

Gaussian estimate of the remainder. We would also like to point out that the proof of Theorem 1 (mainly
Lemmas 11, 12 and equality (33)) gives us an explicit expression of the polynomials Pk

σ of Theorem 1. Examples
are provided in Section 5 where we compute these polynomials for σ = 1, 2 and numerically verify the claim of
Theorem 1 for some sequences a.

The following lemma, which is proved using integration by parts, implies that we cannot prove the uniqueness
of the polynomials Pk

σ of Theorem 1.
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Lemma 1. For µ ∈ N∗, β ∈ C with positive real part and m ∈ N∗, we have

∀x ∈ R, xHβ
2µ

(m)
(x) = (−1)µ2µβHβ

2µ

(m+2µ−1)
(x)−mHβ

2µ

(m−1)
(x),

and
∀x ∈ R, xHβ

2µ(x) = (−1)µ2µβHβ
2µ

(2µ−1)
(x).

In other words, one can either choose to multiply Hβ
2µ by a polynomial or to differentiate it sufficiently many

times. Hence, there may hold

P (·, d

dx
)Hβ

2µ = 0

for a nonzero P ∈ C[X,Y ].
In our proof of Theorem 1, the polynomials Pk

σ depend on the chosen integers s1, . . . , sk. It might be possi-
ble to prove the existence of a family of polynomials

(
Pk

σ

)
(k,σ)∈{1,...,K}×N∗ in C[X,Y ] for which the estimates

(7) are verified for all s1, . . . , sK ∈ N. However, we do not yet have a proof of this fact in full generality. We
now compare Theorem 1 with prior results:

• In the probabilistic case presented in the introduction, Theorem 1 allows us to prove sharp bounds with
Gaussian estimates on the remainder of the asymptotic expansion of G n

j that were not proved via the asymptotic
expansion (1) of the local limit theorem.

• [DSC14, Theorem 3.1] gives sharp generalized Gaussian estimates for the elements G n
j when the sequence

a satisfies Hypotheses 1, 2 and 3 with a single tangency point (i.e. K = 1), which in comparison to Theorem 1
would match the case sk = 0. [CF22, Theorem 1] generalizes those generalized Gaussian estimates for sequences
a with any number K ∈ N∗ of tangency points and a relaxed Hypothesis 1. Theorem 1 thus improves those
results by proving similar sharp generalized Gaussian estimates for the remainder of the asymptotic expansion
of the elements G n

j up to any order s1, . . . , sK ∈ N.

• For a sequence a ∈ ℓ1(Z) which satisfies Hypotheses 1 and 2, we introduce the the so-called "attractors":

∀k ∈ {1, . . . ,K} ,∀n ∈ N∗,∀j ∈ Z, H n
k,j :=

zk
nκk

j

n
1

2µk

Hβk

2µk

(
j − nαk

n
1

2µk

)
.

In [RSC15, Theorem 1.2], it is proved that if we introduce Kµ = {k ∈ {1, . . . ,K} , µk = µ} where µ =
maxk∈{1,...,K} µk, then

G n
j −

∑
k∈Kµ

H n
k,j =

n→+∞
o

(
1

n
1
2µ

)
(8)

where the error term in (8) is uniform on Z. Compared to Theorem 1, this is equivalent to finding the asymptotic
expansion up to order s1, . . . , sK = 1. The result of Randles and Saloff-Coste gives a precise description of the
behavior of G n

j for j such that
|j − nαk| ≲ n

1
2µ , (9)

where k ∈ Kµ. Theorem 1 allows us to extend the result of [RSC15] by going even farther in the asymp-
totic expansion of the elements G n

j , and proving sharp generalized Gaussian bounds on the remainder with a
more precise speed of convergence. However, [RSC15, Theorem 1.2] also treats the case where the asymptotic
expansion (4) has the form

F (κke
iξ) =

ξ→0
zk exp(−iαkξ + iγkξ

νk +O(|ξ|νk+1)),

where γk is a real number and the integer νk ∈ N\ {0, 1} can be even or odd. A generalization of Theorem 1 in
this difficult case has not yet been found, even though the result of [Cou22] indicates that such a result might
be attainable.
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1.4 Extending the result when the drift vanishes
As we have seen, Theorem 1 allows us to have generalize the local limit theorem for complex valued sequences
but it still has some limits. Relaxing some of the hypotheses we made could be interesting and theoretically
doable in some cases. For example, Theorem 1 is constrained by Hypothesis 2 which imposes that αk is nonzero
even though the result [RSC15, Theorem 1.2] does not have this kind of restriction. The hypothesis αk ̸= 0
is essential in the proof of Theorem 1 below but it seems to be a technical hypothesis that we would want to
avoid. The following corollary will allow us to extend Theorem 1 to some sequences a for which we allow αk to
be equal to 0. First, we introduce a relaxed version of Hypothesis 2.

Hypothesis 4 (Hypothesis 2 bis). The sequence a verifies Hypothesis 2 but with the possibility that some αk

are equal to 0.

We now consider a finitely supported sequence a ∈ ℓ1(Z) which verifies Hypothesis 4 and let J ∈ Z. Then,
if we define the sequence b = (aj+J)j∈Z and F̃ the symbol associated with b, we have that b satisfies Hypothesis
4 since

∀κ ∈ S1, F̃ (κ) = κ−JF (κ),

and therefore
∀κ ∈ S1,

∣∣∣F̃ (κ)
∣∣∣ = |F (κ)| .

Also, we have for k ∈ {1, . . . ,K}

F̃ (κke
iξ) =

ξ→0
κ−J
k zk exp(−i(αk + J)ξ − βkξ

2µk + o(|ξ|2µk)).

Considering this new sequence b allows us to "shift" the elements αk. In particular, if we choose J large enough,
then b satisfies Hypothesis 2. However, it is not clear that the sequence b would satisfy Hypothesis 3. We can
then prove the following corollary of Theorem 1 which generalizes Theorem 1 in the case where αk can be equal
to 0.

Corollary 1. Let a ∈ ℓ1(Z) which verifies Hypotheses 1 and 4. If there exists some integer J ∈ Z such that the
sequence (aj+J)j∈Z verifies Hypotheses 2 and 3, then for all s1, . . . , sK ∈ N there exist a family of polynomials
(Pk

σ)σ∈{1,...,sk} in C[X,Y ] for each k ∈ {1, . . . ,K} and two positive constants C, c such that for all n ∈ N∗ and
j ∈ Z ∣∣∣∣∣G n

j −
K∑

k=1

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣ ≤
K∑

k=1

C

n
sk+1

2µk

exp
(
−c|Xn,j,k|

2µk
2µk−1

)
with Xn,j,k = nαk−j

n
1

2µk

.

We prove Corollary 1 in Section 4.2.

1.5 Plan of the paper
The main goal of the paper is the proof of Theorem 1. As explained in the introduction, the proof of Theorem
1 will rely on an approach referred to as spatial dynamics. In Section 2, we will introduce the spatial Green’s
function on which Coulombel and Faye proved holomorphic extension properties and sharp bounds in [CF22,
Section 2]. Our goal in Section 2 is to improve the analysis of [CF22] and to obtain the precise behavior of
the spatial Green’s function for z close to zk and to prove sharp bounds on the remainder. More precisely, the
main novelty of this section is the introduction of the explicit function fk in Lemmas 5 and 6 which allows us
to properly describe the spatial Green’s function for z close to zk.

In Section 3, we prove Theorem 1 while assuming that the elements αk are distinct. This assumption will
allow us to separate the different Gaussian waves in the estimate (7). Section 3.1 will be dedicated to the easier
part of the proof which is proving estimate (7) when j is far from the axes j = nαk. The bulk of the proof
resides in Sections 3.2-3.5 which will be dedicated to proving estimate (7) when j is close to the axes j = nαk.
In Section 3.3, we will express the elements G n

j with the spatial Green’s function using functional calculus. We
will then use the results of Section 2 on the spatial Green’s function to prove generalized Gaussian estimates
on the difference of the elements G n

j and a linear combination of terms of the form

1(
j
αk

) l
2µk

Hβk

2µk

(m)
(Yn,j,k) where l ∈ N∗,m ∈ N, Yn,j,k :=

nαk − j(
j
αk

) 1
2µk

. (10)
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Keeping in mind that we are considering the case where j is close to nαk, Section 3.4 will deal with approaching
the terms (10) with linear combinations of the following terms appearing in Theorem 1:

1

n
l

2µk

(Xn,j,k)
m2 Hβk

2µk

(m1)
(Xn,j,k) where l ∈ N∗,m1,m2 ∈ N, Xn,j,k :=

nαk − j

n
1

2µk

.

Section 3.5 will combine the results of the previous sections to conclude the proof of Theorem 1 by constructing
the polynomials Pk

σ .
In Section 4, we prove Theorem 1 when the elements αk can be equal. We also prove Corollary 1.
Finally, in Section 5, we will explicitly compute the polynomials Pk

σ of Theorem 1 for σ = 1, 2 for any
sk ∈ N\ {0, 1} and numerically verify the estimate (7) of Theorem 1 in two cases. The first one is the probabilistic
case, i.e. a sequence a with non negative coefficients. We will compare the result of Theorem 1 with the local
limit theorem. The second example will be the sequence a associated with the so-called O3 scheme for the
transport equation (see [Des08]). This is an example of sequence a where µ = 2 in the asymptotic expansion
(4).

2 Spatial Green’s function
From now on, we consider a sequence a that satisfies Hypotheses 1, 2 and 3. In this section, we are going to
introduce the spatial Green’s function and prove some estimates for it. We will start by defining the necessary
objects for our study. First, we can observe the following lemma for which the proof can be found in the
Appendix (Section 6).

Lemma 2. For a ∈ ℓ1(Z) which verifies Hypotheses 1 and 2, we have that a−r and ap belong to D.

We define for z ∈ C and j ∈ {−r, . . . , p}
Aj(z) := zδj,0 − aj . (11)

The definition of r and p implies that the functions A−r and Ap can vanish at most on one point which
are respectively a−r and ap. Lemma 2 allows us to find η > 0 such that A−r and Ap do not vanish on{
z ∈ C, |z| > exp(−η)

}
. We can therefore define for all z ∈ C such that |z| > exp(−η) the matrix

M(z) :=


−Ap−1(z)

Ap(z)
. . . . . . −A−r(z)

Ap(z)

1 0 . . . 0

0
. . . . . .

...
0 0 1 0

 ∈ Mp+r(C). (12)

The application which associates z with M(z) is holomorphic on the annulus
{
z ∈ C, |z| > exp(−η)

}
. More-

over, since A−r(z) ̸= 0, the upper right coefficient of M(z) is always nonzero and M(z) is invertible. We define
the open set O which corresponds to the intersection of the unbounded connected component of C\F (S1) and{
z ∈ C, |z| > exp(−η)

}
(see Figure 1). Hypothesis 2 implies that U\ {z1, . . . , zK} is contained within O. By

recalling that σ(La) = F (S1), when we consider that La acts on ℓ2(Z), we have the existence for every z ∈ O
of a unique sequence G(z) := (Gj(z))j∈Z ∈ ℓ2(Z) such that

(zI − La)G(z) = δ, (13)

where δ still denotes the discrete Dirac mass. The sequence G(z) is the so-called spatial Green’s function
which has already been studied in [CF22]. In [CF22, Lemma 2], we can find a proof of local sharp exponential
bounds on Gj(z) when z ∈ O is far from the tangency points zk. This bound will be sufficient for our purpose.
Furthermore, in [CF22, Lemmas 3 and 4], the authors proved that the spatial Green’s function Gj(z) could be
holomorphically extended near the points zk through the spectrum of the operator La which is not immediate
based on the definition (13) of the spatial Green’s function and they proved sharp bounds on Gj(z) in this
case. To prove Theorem 1, we will need to get a more precise description of the behavior of the sequence Gj(z)
close to any tangency point zk. This section will therefore follow [CF22, Section 2] and make it more precise
by specifying where our study of the sequence G(z) differs from [CF22, Section 2].

Using the functions Al which are defined by (11), the equation (13) can be rewritten as

∀z ∈ O,∀j ∈ Z,
p∑

l=−r

Al(z)Gj+l(z) = δj,0.
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We introduce the vectors

∀z ∈ O,∀j ∈ Z, Wj(z) :=

Gj+p−1(z)
...

Gj−r(z)

 ∈ Cp+r, e :=


1
0
...
0

 ∈ Cp+r.

We then end up with the following dynamical system

∀z ∈ O,∀j ∈ Z, Wj+1(z)−M(z)Wj(z) = − δj,0
Ap(z)

e. (14)

The study of the recurrence relation (14) relies on the following lemma introduced in [Kre68] that studies
the eigenvalues of M(z) for z ∈ O and z ∈ {zk, 1 ≤ k ≤ K}. We recall that we defined cases I, II and III
according to the cardinality of Ik and the sign of αk right after Hypothesis 3. We also recall that we consider
that the sequence a verifies Hypotheses 1, 2 and 3.

Lemma 3 (Spectral Splitting). For z ∈ C such that |z| > exp(−η), the eigenvalues κ ∈ C of the matrix M(z)
are nonzero and satisfy the equality

F (κ) = z.

Let z ∈ O. Then the matrix M(z) has

• no eigenvalue on S1,

• r eigenvalues in D\ {0} (that we call stable eigenvalues),

• p eigenvalues in U (that we call unstable eigenvalues).

We now consider k ∈ {1, . . . ,K}. The eigenvalues of the matrix M(zk) are described by the following
possibilities depending on k.

• In case I, M(zk) has κk ∈ S1 as a simple eigenvalue, r − 1 eigenvalues in D and p eigenvalues in U .

• In case II, M(zk) has κk ∈ S1 as a simple eigenvalue, r eigenvalues in D and p− 1 eigenvalues in U .

• In case III, if we denote νk,1 and νk,2 the two distinct elements of Ik, then M(zk) has κνk,1
∈ S1 and

κνk,2
∈ S1 as simple eigenvalues, r − 1 eigenvalues in D and p− 1 eigenvalues in U .

Lemma 3 is proved in [CF22, Lemma 1] and is the key to study the recurrence relation (14). We now want
to prove some estimates on the spatial Green’s function G(z). We recall that the set O is the intersection of the
set
{
z ∈ C, |z| ≥ exp(−η)

}
, where the matrix M(z) is defined, and the set σ(L ) = C\F (S1), where the spatial

Green’s function G(z) is defined. We begin with the following lemma.

Lemma 4 (Bounds far from the tangency points [CF22]). For all z ∈ O, there exist a radius δ > 0 and
constants C, c > 0 such that for all j ∈ Z, z 7→ Gj(z) is holomorphic on Bδ(z) and satisfies

∀z ∈ Bδ(z),∀j ∈ Z, |Gj(z)| ≤ C exp(−c|j|).

Lemma 4 is proved in [CF22, Lemma 2] and allows us to study the spatial Green’s function far from the
points zk, where the spectrum of La intersects the unit circle S1. We will now have to study the spatial Green’s
function G(z) near those points zk while still remembering that Gj(z) and the vector Wj(z) are only defined
on O in the neighborhood of zk. We are going to extend holomorphically Gj(z) in a whole neighborhood of zk,
and thus pass through the spectrum σ(La).

Lemma 5 (Bounds close to the tangency points : cases I and II). Let k ∈ {1, . . . ,K} so that we are either
in case I or II. Then, there exist a radius ε > 0, some constants C, c > 0 and some holomorphic functions
κk, fk : Bε(zk) → C such that for all z ∈ Bε(zk), κk(z) is a simple eigenvalue of M(z) with κk(zk) = κk, for all
j ∈ Z, the function z ∈ Bε(zk) ∩ O 7→ Gj(z) can be holomorphically extended on Bε(zk) and
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Case I: (αk > 0)

∀z ∈ Bε(zk),∀j ≥ 1, |Gj(z)− fk(z)κk(z)
j | ≤ C exp(−cj). (15)

∀z ∈ Bε(zk),∀j ≤ 0, |Gj(z)| ≤ C exp(−c|j|). (16)

Case II: (αk < 0)

∀z ∈ Bε(zk),∀j ≥ 1, |Gj(z)| ≤ C exp(−cj). (17)

∀z ∈ Bε(zk),∀j ≤ 0, |Gj(z)− fk(z)κk(z)
j | ≤ C exp(−c|j|). (18)

Furthermore, we have

∀z ∈ Bε(zk), fk(z) = −sgn(αk)
κ′
k(z)

κk(z)
. (19)

Lemma 6 (Bounds close to the tangency points : case III). Let k ∈ {1, . . . ,K} so that we are in case III.
The set Ik has two elements νk,1 and νk,2 so that ανk,1

> 0 and ανk,2
< 0. Then, there exist a radius ε > 0,

some constants C, c > 0 and some holomorphic functions κνk,1
, κνk,2

, fνk,1
, fνk,2

: Bε(zk) → C such that for all
z ∈ Bε(zk), κνk,1

(z) and κνk,2
(z) are simple eigenvalues of M(z) with κνk,1

(zk) = κνk,1
and κνk,2

(zk) = κνk,1
,

for all j ∈ Z, the function z ∈ Bε(zk) ∩ O 7→ Gj(z) can be holomorphically extended on Bε(zk) and

∀z ∈ Bε(zk),∀j ≥ 1, |Gj(z)− fνk,1
(z)κνk,1

(z)j | ≤ C exp(−cj). (20)

∀z ∈ Bε(zk),∀j ≤ 0, |Gj(z)− fνk,2
(z)κνk,2

(z)j | ≤ C exp(−c|j|). (21)

Furthermore, knowing that zk = zνk,1
= zνk,2

, we have that

∀z ∈ Bε(zk), fνk,1
(z) = −

κ′
νk,1

(z)

κνk,1
(z)

, fνk,2
(z) =

κ′
νk,2

(z)

κνk,2
(z)

. (22)

Lemmas 5 and 6 are similar to [CF22, Lemmas 3 and 4] but instead of proving sharp bounds on the spatial
Green’s function, we express its precise behavior near the points zk. This is the crucial improvement with respect
to [CF22] that will allow us to find their asymptotic behavior and prove a sharp bound for the remainder.

Proof of Lemma 5 Our proof will follow that of [CF22, Lemmas 3, 4]. First, we observe that case II would
be dealt similarly as case I and that case III is a mixture of both cases I and II. Therefore, we will only detail
the proof of Lemma 5 in case I and leave the proof of Lemma 6 to the interested reader. We therefore consider
k ∈ {1, . . . ,K} so that we are in case I. Lemma 3 implies that κk is a simple eigenvalue of M(zk). Thus, we
can find a holomorphic function κk defined on a neighborhood Bε(zk) of zk such that for all z ∈ Bε(zk), κk(z)
is an algebraically simple eigenvalue of M(z) and κk(zk) = κk. We also know that for all z ∈ Bε(zk), the vector

Rk(z) :=


κk(z)

p+r−1

...
κk(z)
1

 ∈ Cp+r

is an eigenvector of M(z) associated with κk(z). Because of Lemma 3, even if we have to take a smaller radius
ε, we can assume that for all z ∈ Bε(zk), M(z) has κk(z) as a simple eigenvalue, r−1 eigenvalues different from
κk(z) in D and p eigenvalues different from κk(z) in U . We define Es(z) (resp. Eu(z)) the strictly stable (resp.
strictly unstable) subspace of M(z) which corresponds to the subspace spanned by the generalized eigenvectors
of M(z) associated with eigenvalues different from κk(z) in D (resp. U). We therefore know that Es(z) (resp.
Eu(z)) has dimension r − 1 (resp. p) thanks to Lemma 3 and we have the decomposition

Cp+r = Es(z)⊕ Eu(z)⊕ Span Rk(z).

The associated projectors are denoted πs(z), πu(z) and πk(z). Those linear maps commute with M(z) and
depend holomorphically on z ∈ Bε(zk) (see [Kat95, I. Problem 5.9]).

For all z ∈ Bε(zk)∩O and j ∈ Z, Gj(z) and the vector Wj(z) are well defined. Also, by Lemma 3, we have
that |κk(z)| < 1 for all z ∈ Bε(zk) ∩ O. By reasoning in the same manner as in the proof of [CF22, Lemma 3],
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we have for all z ∈ Bε(zk) ∩ O and j ∈ Z

πu(z)Wj(z) = −1j∈]−∞,0]

Ap(z)
M(z)j−1πu(z)e, (23)

πs(z)Wj(z) =
1j∈[1,+∞[

Ap(z)
M(z)j−1πs(z)e, (24)

πk(z)Wj(z) =
1j∈[1,+∞[

Ap(z)
M(z)j−1πk(z)e =

1j∈[1,+∞[

Ap(z)
κk(z)

j−1πk(z)e. (25)

We observe that the right hand side in the equations (23), (24) and (25) can be holomorphically extended
on Bε(zk). Therefore, we can extend holomorphically the applications which associates z to πs(z)Wj(z),
πu(z)Wj(z) and πk(z)Wj(z) on the whole open ball Bε(zk) and this allows us to extend Wj(z) on Bε(zk).
Since Gj(z) is a coordinate of the vector Wj(z), the holomorphic extension property is proved.

By reasoning in the same manner as in the proof of the inequality [CF22, (23)], we prove that there exist
two constants C, c > 0 such that

∀z ∈ Bε(zk),∀j ∈ Z, ∥πs(z)Wj(z) + πu(z)Wj(z)∥ ≤ C exp(−c|j|).

This implies that
∀z ∈ Bε(zk),∀j ∈ Z, ∥Wj(z)− πk(z)Wj(z)∥ ≤ C exp(−c|j|).

This is now where our proof differs from the proof of [CF22, Lemmas 3, 4]. In [CF22], the authors find bounds
on πk(z)Wj(z) and thus obtain estimates on Gj(z). In our case, we have a stronger hypothesis (Hypothesis 1)
that allows us to have a much simpler expression (25) of πk(z)Wj(z) and this will enable us to find the precise
behavior of Gj(z).

For j ≤ 0, we observe from (25) that πk(z)Wj(z) = 0 and that Gj(z) is a component of Wj(z). We therefore
get the inequality (16).

We now consider the case j ≥ 1. We have that Gj(z) = (Wj(z))p for all z ∈ Bε(zk) where (X)p refers to
the p-th coordinate of a vector X ∈ Cp+r. Then,

∀z ∈ Bε(zk), |Gj(z)− (πk(z)Wj(z))p| ≤ C exp(−c|j|).

We then define the holomorphic function

fk : Bε(zk) → C
z 7→ 1

Ap(z)κk(z)
(πk(z)e)p

.

By observing that (πk(z)Wj(z))p = fk(z)κk(z)
j , we get the inequality (15) and it now remains to obtain the

expression (19). We first need to determine the spectral projector πk(z). We recall that κk(z) ∈ S1 is a simple
eigenvalue of M(z) and the vector

Rk(z) =


κk(z)

p+r−1

...
κk(z)
1

 ∈ Cp+r

is an eigenvector of M(z) associated with κk(z). We also know that there exists a unique eigenvector Lk(z) =
(lj(z))j∈{1,...,p+r} ∈ Cp+r of M(z)T associated with the eigenvalue κk(z) such that

Lk(z) ·Rk(z) = 1

where the symmetric bilinear form · on Cp+r is defined as3

∀X,Y ∈ Cp+r, X · Y :=

p+r∑
l=1

XiYi.

Then, we have that
∀Y ∈ Cp+r, πk(z)Y = (Lk(z) · Y )Rk(z).

3Observe that this symetric bilinear form is not the Hermitian product on Cp+r.

11



Thus, applying to the vector e implies that

fk(z) =
l1(z)κk(z)

r−1

Ap(z)
. (26)

We thus need to find the value of the coefficient l1(z). Since Lk(z) is an eigenvalue of M(z)T for the eigenvalue
κk(z), we get

∀j ∈ {1, . . . , p+ r} , lj(z) = −
(

p−j∑
l=−r

Al(z)

κk(z)p−j+1−l

)
l1(z)

Ap(z)
.

We now have an expression of each lj(z) depending on l1(z). To determine the value of l1(z), we have to use
the normalization condition that we have made between Lk(z) and Rk(z). We have

1 = Lk(z) ·Rk(z) =

p+r∑
j=1

κk(z)
p+r−j lj(z) = −

p+r∑
j=1

p−j∑
l=−r

Al(z)κk(z)
l+r−1

 l1(z)

Ap(z)
.

By the expression of Al(z), this implies that

1 = −
(

p∑
l=−r

(p− l)Al(z)κk(z)
l+r−1

)
l1(z)

Ap(z)
= −

(
pκk(z)

r−1z −
p∑

l=−r

(p− l)alκk(z)
l+r−1

)
l1(z)

Ap(z)

= −
(
pκk(z)

r−1(z − F (κk(z))) + κk(z)
rF ′(κk(z))

) l1(z)

Ap(z)
.

Since κk(z) is an eigenvalue of M(z), Lemma 3 implies that

F (κk(z)) = z and κ′
k(z)F

′(κk(z)) = 1.

Thus,

1 = −κk(z)
rl1(z)

κ′
k(z)Ap(z)

.

Combining this equality with (26) implies the equality (19). □

3 Temporal Green’s function
We are now ready to start proving Theorem 1. In Section 3.1, we will prove the result of the theorem far
from the axes j = nαk. In this regime, the estimates proved in [CF22, Theorem 1] on G n

j and estimates on
the derivatives of the function Hβ

2µ will allow us to prove bounds that are even stronger than those claimed in
Theorem 1. The bulk of the proof will happen in the case where j − nαk is close to 0 as the limiting estimates
of Theorem 1 occur in this case. Section 3.2 will summarize the idea of the proof in the case where j is close
to nαk and Sections 3.3-3.5 give the details. The main tools are the use of functional calculus (see [Con90,
Chapter VII]) to express the elements G n

j with the spatial Green’s function Gj(z) and the estimates on the
spatial Green’s function proved in Section 2.

Before we start, we are going to make two hypotheses to simplify the proof. The first one is that −1 /∈
{z1, . . . , zK}. This hypothesis is actually not restrictive. If it were not verified, we would just have to multiply
the sequence a by some well chosen element of S1 to find a new sequence b that will verify this hypothesis and
prove the theorem for this new sequence. The theorem for our previous sequence a would directly follow.

The second hypothesis we make is that all αk are distinct from one another. This hypothesis has a real
impact on the proof, symplifying greatly some parts of the calculations. We will come back in Section 4.1 to
the case where the elements αk can be equal and explain which elements of the proof should be modified.
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D1

D2

D3

j

n

δ1

α1

δ1

δ2 α2 δ2

δ3

α3

δ3

Figure 2: An illustration of the sectors Dk. Here, we have α1 = −2, α2 = 0.5 and α3 = 4. The rays labeled αk

(resp. δk, δk) correspond to the ray j = nαk (resp. j = nδk, j = nδk). We observe that, because δk, αk and
δk have the same sign, j and αk have the same sign for (n, j) ∈ Dk. Also, the sectors Dk do not intersect each
other.

3.1 Estimates far from the axes j = nαk

As explained at the beginning of the section, we suppose that all αk are distinct from one another. Without
loss of generality, we suppose that we arranged them so that there holds:

α1 < . . . < αk < . . . < αK .

For all k ∈ {1, . . . ,K}, we define two elements δk, δk ∈ R∗ such that δk, δk and αk have the same sign and

δ1 < α1 < δ1 < . . . < δk < αk < δk < . . . < δK < αK < δK .

We now define for every k ∈ {1, . . . ,K} the sector

Dk :=
{
(n, j) ∈ N∗ × Z, nδk ≤ j ≤ nδk

}
that do not intersect each other. We also introduce

D :=

K⋃
k=1

Dk.

We represent the sectors Dk on the Figure 2. In this section, we are going to prove the following two lemmas,
which give estimates on the Green’s function G n

j and on the elements in its asymptotic expansion (7) outside
of the sectors Dk.

Lemma 7. We have that
∀(n, j) ∈ N× Z, j < −np or j > nr ⇒ G n

j = 0.

Furthermore, there exist two constants C, c > 0 such that

∀(n, j) ∈ (N∗ × Z)\D, −np ≤ j ≤ nr ⇒
∣∣G n

j

∣∣ ≤ C exp(−c(n+ |j|)). (27)

Lemma 8. We consider k ∈ {1, . . . ,K} and P ∈ C[X,Y ]. For all s ∈ N, there exist two constants C, c > 0
such that

∀(n, j) ∈ (N∗ × Z)\Dk,

∣∣∣∣(P

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣ ≤ C

n
s+1
2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)
(28)

where Xn,j,k := nαk−j

n
1

2µk

.

Both lemmas are proved in a similar way.
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Proof of Lemma 7 The first part of Lemma 7 is directly proved recursively using the definition (6) of the
elements G n

j and the equality (3) on the operator La. We now focus our attention on the inequality (27) of
Lemma 7. The result [CF22, Theorem 1] gives us the existence of two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z, |G n
j | ≤

K∑
k=1

C

n
1

2µk

exp

−c

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

For a sufficiently small c̃ > 0, we have that

∀k ∈ {1, . . . ,K} ,∀(n, j) ∈ (N∗ × Z)\D, −np ≤ j ≤ nr ⇒ c

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

≥ c̃(n+ |j|). (29)

Therefore, we prove that there exist two positive constants C, c such that

∀(n, j) ∈ (N∗ × Z)\D, −np ≤ j ≤ nr ⇒
∣∣G n

j

∣∣ ≤ C exp(−c(n+ |j|)).

□

To prove Lemma 8, we use the following lemma which gives sharp estimates on the derivatives of the function
Hβ

2µ.

Lemma 9. For µ ∈ N∗, β ∈ C with positive real part and m ∈ N, there exist two constants C, c > 0 such that

∀x ∈ R,
∣∣∣Hβ

2µ

(m)
(x)
∣∣∣ ≤ C exp

(
−c|x| 2µ

2µ−1

)
.

This lemma is proved in [Rob91, Proposition 5.3]. For the sake of completeness, we give a complete proof
in the appendix (Section 6).

Proof of Lemma 8 We fix a k ∈ {1, . . . ,K} and we verify the estimate of Lemma 8 for the monomial
P = X lXY lY where lX , lY ∈ N. We use Lemma 9 which implies the existence of two constants C, c > 0 such
that

∀(n, j) ∈ N∗ × Z,

∣∣∣∣∣
(
nαk − j

n
1

2µk

)lX (
Hβk

2µk

)(lY )
(
nαk − j

n
1

2µk

)∣∣∣∣∣ ≤ C

( |nαk − j|
n

1
2µk

)lX

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 .

This implies that there exists C̃ > 0 such that

∀(n, j) ∈ N∗ × Z,

∣∣∣∣∣
(
nαk − j

n
1

2µk

)lX (
Hβk

2µk

)(lY )
(
nαk − j

n
1

2µk

)∣∣∣∣∣ ≤ C̃ exp

− c

2

( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 .

Using the definition of the set Dk, we prove the existence of a constant c̃ > 0 such that

∀(n, j) ∈ (N∗ × Z)\Dk,
c

4

( |nαk − j|
n

1
2µk

) 2µk
2µk−1

≥ c̃n.

Therefore, we easily conclude that there exist two positive constants C, c such that the inequality (28) of Lemma
8 is verified for P = X lXY lY . □

Now that the two Lemmas 7 and 8 are proved, we observe that for any family of polynomials (Pk
σ)k∈{1,...,K},σ∈N∗

which belong to C[X,Y ], for all s1, . . . , sK ∈ N, there exist two positive constants C, c such that for all
(n, j) ∈ N∗ × Z\D∣∣∣∣∣G n

j −
K∑

k=1

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣ ≤
K∑

k=1

C

n
sk+1

2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)
, (30)
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and for any k0 ∈ {1, . . . ,K} and for all (n, j) ∈ Dk0 , since the sets Dk do not intersect each other∣∣∣∣∣G n
j −

K∑
k=1

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣ ≤
K∑

k=1
k ̸=k0

C

n
sk+1

2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)

+

∣∣∣∣∣G n
j −

sk0∑
σ=1

znk0
κj
k0

n
σ

2µk0

(
Pk0

σ

(
Xn,j,k0

,
d

dx

)
H

βk0
2µk0

)
(Xn,j,k0

)

∣∣∣∣∣ (31)

with Xn,j,k = nαk−j

n
1

2µk

. There just remains to find a family of polynomials (Pk
σ)k,σ to bound the last term in

(31) when (n, j) ∈ Dk0
.

3.2 Plan of the proof of Theorem 1 close to the axes j = nαk

We claim that to conclude the proof of Theorem 1, there only remains to prove the following lemma:

Lemma 10. For all k ∈ {1, . . . ,K} and sk ∈ N, there exist a family of polynomials (Pk
σ)σ∈{1,...,sk} in C[X,Y ]

and two positive constants C, c such that

∀(n, j) ∈ Dk,

∣∣∣∣∣G n
j −

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣ ≤ C

n
sk+1

2µk

exp
(
−c|Xn,j,k|

2µk
2µk−1

)
(32)

with Xn,j,k = nαk−j

n
1

2µk

.

Once the existence of families of polynomials (Pk
σ)k,σ satisfying Lemma 10 is proved, the inequalities (30)

and (31) we deduced from Lemmas 7 and 8 imply that Theorem 1 is also verified for the same family of
polynomials. It is important to observe that we use intensively the fact that the sectors Dk do not intersect
each other. In Section 4.1, we will see that when the elements αk are not supposed to be different, we will
need to adapt Lemma 10 to take into account that for each sector there could be multiple generalized Gaussian
waves that are superposed in the estimate (7).

We now focus our attention on proving Lemma 10. We fix k ∈ {1, . . . ,K} and s ∈ N. For s = 0, the result
has been proved in [CF22, Theorem 1]. Therefore, we will focus on the case where s ≥ 1. The proof of Lemma
10 in this case will be separated in three steps:

• Step 1: In Section 3.3, we will express the elements G n
j using the spatial Green’s function Gj(z) via the

inverse Laplace transform and use the results of Section 2 to prove the following lemma:

Lemma 11. For all k ∈ {1, . . . ,K} and for all s ∈ N∗, there exist two positive constants C, c such that for all
(n, j) ∈ Dk∣∣∣∣∣G n

j − znkκ
j
k

2π

∫ +∞

−∞
Ps,k(it+ τk)

(
s−1∑
l=0

(jRs,k(it+ τk))
l

l!

)
exp

(
it

(
n− j

αk

)
− j

αk

βk

α2µk

k

t2µk

)
dt

∣∣∣∣∣
≤ C

n
s+1
2µk

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1


where τk := iθk is the only element of i]− π, π[ such that

zk = exp(τk) = exp(iθk)

and the polynomial functions Ps,k and Rs,k have explicit expressions defined in Lemma 13.

• Step 2: We observe that in Lemma 11, we approach the elements G n
j for (n, j) ∈ Dk by an explicit linear

combination of the following terms where l,m ∈ N and m ≥ (2µk + 1)l

jl

2π

∫ +∞

−∞
(it)m exp

(
it

(
n− j

αk

)
− j

αk

βk

α2µk

k

t2µk

)
dt =

αm+l
k |αk|(

j
αk

)m−2µkl+1

2µk

Hβk

2µk

(m)

 nαk − j(
j
αk

) 1
2µk

 . (33)

If we compare the terms in (33) with the terms appearing in the estimate (7) of Theorem 1, since we are
considering (n, j) ∈ Dk, we see that j

αk
is close to n. Therefore, once Lemma 11 is proved, we will only need

some standard analysis in Section 3.4 to prove the following lemma.

15



Lemma 12. For all s ∈ N, m ∈ N, l ∈ N\ {0} and k ∈ {1, . . . ,K}, if we consider d ∈ N such that

d ≥ s+ 1

2µk − 1

then there exist two constants C, c > 0 such that for all (n, j) ∈ Dk,∣∣∣∣∣∣∣
Hβk

2µk

(m)
(Yn,j,k)(

j
αk

) l
2µk

−
d−1∑
k1=0

d−1∑
k3=0

Bk
l,k1,k3

n
l+(2µk−1)k3

2µk

(Xn,j,k)
k1+k3 Hβk

2µk

(m+k1)
(Xn,j,k)

∣∣∣∣∣∣∣ ≤
C

n
s+1
2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)

where Yn,j,k := nαk−j(
j

αk

) 1
2µk

, Xn,j,k := nαk−j

n
1

2µk

and

Bk
l,k1,k3

:=

k1∑
k2=0

(
k1

k2

)
(−1)k1−k2

k1!k3!α
k3

k

(
k3−1∏
k4=0

l + k2
2µk

+ k4

)
.

• Step 3: In Section 3.5, we will explicitly construct the polynomials Pk
σ satisfying Lemma 10 using Lemmas

11 and 12. This will conclude the proof of Lemma 10 and Theorem 1 in the case where the elements αk are
distinct.

3.3 Step 1: Link between the spatial and temporal Green’s functions and proof
of Lemma 11

As explained at the end of the previous section, we start by proving Lemma 11. The first step will be to
express the elements G n

j via the spatial Green’s function Gj(z). The equation (13) implies by using the inverse
Laplace transform that if we define a path which surrounds σ(La) = F (S1), like for example Γ̃ρ = exp(ρ)S1 for
0 < ρ ≤ π, then

∀n ∈ N∗,∀j ∈ Z, G n
j =

1

2iπ

∫
Γ̃ρ

znGj(z)dz.

We fix this choice of path for now but we are going to modify it in what follows. The idea will be to deform
the path on which we integrate so that we can best use the estimates on Gj(z) proved in Section 2. We start
with a change of variable z = exp(τ) in the previous equality. Therefore, if we define Γρ := {ρ+ il, l ∈ [−π, π]}
and Gj(τ) = eτGj(e

τ ), then

∀n ∈ N∗,∀j ∈ Z, G n
j =

1

2iπ

∫
Γρ

enτGj(τ)dτ. (34)

We will therefore need a lemma that allows us to get from estimates on Gj(z) to estimates on Gj(τ). First,
recalling that zk ̸= −1, we define for all k ∈ {1, . . . ,K} the unique element τk := iθk of i]− π, π[ such that

zk = exp(τk) = exp(iθk).

We also introduce for all k ∈ {1, . . . ,K} the unique θ̃k ∈]− π, π] such that

κk = eiθ̃k .

We now introduce a lemma to pass from estimates on Gj(z) to estimates on Gj(τ).

Lemma 13. There exist a radius ε⋆ > 0 and for all k ∈ {1, . . . ,K} two holomorphic functions ϖk : Bε⋆(τk) → C
and gk : Bε⋆(τk) → C such that for all ε ∈]0, ε⋆[, there exist a width ηε ∈]0, ε[ and two constants C, c > 0 such
that if we define

Uε := {τ ∈ C,ℜ(τ) ∈]− ηε, π],ℑ(τ) ∈ [−π, π]} and Ωε := Uε\
K⋃

k=1

Bε(τk),

then for all j ∈ Z, the application τ 7→ Gj(τ) can be holomorphically extended on Uε ∪
⋃K

k=1 Bε(τk) and we
have that

∀τ ∈ Ωε,∀j ∈ Z, |Gj(τ)| ≤ Ce−c|j|. (35)
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Also, for all k ∈ {1, . . . ,K}, depending on the case, we have that
Case I:

∀τ ∈ Bε(τk),∀j ≥ 1, |Gj(τ)− eτgk(τ)e
jϖk(τ)| ≤ Ce−c|j|, (36)

∀τ ∈ Bε(τk),∀j ≤ 0, |Gj(τ)| ≤ Ce−c|j|, (37)

Case II:

∀τ ∈ Bε(τk),∀j ≥ 1, |Gj(τ)| ≤ Ce−c|j|, (38)

∀τ ∈ Bε(τk),∀j ≤ 0, |Gj(τ)− eτgk(τ)e
jϖk(τ)| ≤ Ce−c|j|, (39)

Case III:

∀τ ∈ Bε(τk),∀j ≥ 1, |Gj(τ)− eτgνk,1
(τ)ejϖνk,1

(τ)| ≤ Ce−c|j|, (40)

∀τ ∈ Bε(τk),∀j ≤ 0, |Gj(τ)− eτgνk,2
(τ)ejϖνk,2

(τ)| ≤ Ce−c|j|, (41)

where we have Ik = {νk,1, νk,2}, ανk,1
> 0 and ανk,2

< 0.
For all k ∈ {1, . . . ,K}, we have

ϖk(τ) =
τ→τk

iθ̃k − (τ − τk)

αk
+ (−1)µk+1 βk

α2µk+1
k

(τ − τk)
2µk + o(|τ − τk|2µk). (42)

and
∀τ ∈ Bε⋆(τk), eτgk(τ) = −sgn(αk)ϖ

′
k(τ) (43)

For s ∈ N∗, we define the functions

Ps,k : τ ∈ C 7→ −sgn(αk)

s−1∑
l=0

ϖ
(l+1)
k (τk)

l!
(τ − τk)

l,

φk : τ ∈ C 7→ iθ̃k − (τ − τk)

αk
+ (−1)µk+1 βk

α2µk+1
k

(τ − τk)
2µk ,

Qs,k : τ ∈ C 7→
2µk+s−1∑

l=0

ϖ
(l)
k (τk)

l!
(τ − τk)

l,

Rs,k : τ ∈ C 7→ Qs,k(τ)− φk(τ).

The functions Ps,k, Qs,k and φk are asymptotic expansions of the function eτgk and ϖk at τk up to different
orders. We can then define a bounded holomorphic function ξs,k : Bε⋆(τk) 7→ C such that

∀τ ∈ Bε⋆(τk), ϖk(τ) = Qs,k(τ) + ξs,k(τ)(τ − τk)
2µk+s.

We then can prove that there exist two positive constants AR, AI such that for all τ ∈ Bε⋆(τk)

αkℜ(φk(τ)) ≤ −ℜ(τ − τk) +ARℜ(τ − τk)
2µk −AIℑ(τ − τk)

2µk , (44)

αkℜ(ϖk(τ)) + |αk||ξs,k(τ)(τ − τk)
2µk+s| ≤ −ℜ(τ − τk) +ARℜ(τ − τk)

2µk −AIℑ(τ − τk)
2µk , (45)

αkℜ(φk(τ)) + |αk||Rs,k(τ)| ≤ −ℜ(τ − τk) +ARℜ(τ − τk)
2µk −AIℑ(τ − τk)

2µk . (46)

Proof Using the Lemmas 5 and 6 and writing κk(z) = exp(ωk(z)) for z near zk with ωk(zk) = iθ̃k, we can
define for a choice of ε⋆ small enough two holomorphic functions ϖk and gk such that

∀τ ∈ Bε⋆(τk), ϖk(τ) = ωk(e
τ ), gk(τ) = fk(e

τ ).

Lemmas 5 and 6 directly imply the inequalities (36), (37), (38), (39), (40) and (41) on the open balls Bε⋆(τk)
and the fact that the functions τ 7→ Gj(τ) are holomorphic on Bε⋆(τk). We now consider ε ∈]0, ε⋆[. The
inequalities we just proved remain true on Bε(τk). Using a compactness argument and Lemma 4, we also get
the existence of ηε and the inequality (35).
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We observe that the asymptotic expansion (4) implies that

τ − τk =
τ→τk

−αk(ϖk(τ)− iθ̃k) + (−1)µk+1βk(ϖk(τ)− iθ̃k)
2µk +O

(∣∣∣ϖk(τ)− iθ̃k

∣∣∣2µk+1
)
.

We then deduce the equation (42).
For τ ∈ Bε⋆(τk), the equations (19) and (22) imply the equality (43).
There only remains to prove the existence of AR and AI to verify the inequalities (44) - (46).
We are going to prove (44) first. Because of Young’s inequality, we have that for l ∈ {1, . . . , 2µk − 1}, for

all δ > 0, there exists Cδ > 0 such that for all τ ∈ C

|ℜ(τ)|l|ℑ(τ)|2µk−l ≤ δℑ(τ)2µk + Cδℜ(τ)2µk .

Furthermore, we have that

αkℜ(φk(τ)) = −ℜ(τ − τk) + (−1)µk+1

(
ℜ(βk)

α2µk

k

ℜ((τ − τk)
2µk)− ℑ(βk)

α2µk

k

ℑ((τ − τk)
2µk)

)
.

Then, for δ > 0, there exists Cδ > 0 such that

αkℜ(φk(τ)) ≤ −ℜ(τ − τk) + ℜ(τ − τk)
2µk

(
ℜ(βk)

α2µk

k

+ Cδ

)
+ ℑ(τ − τk)

2µk

(
−ℜ(βk)

α2µk

k

+ δ

)
.

Therefore, by taking δ small enough, we can end the proof of inequality (44). The proof of inequality (45)
is similar. We have for τ ∈ Bε⋆(τk)

αkℜ(ϖk(τ)) + |αk||ξs,k(τ)(τ − τk)
2µk+s| ≤ −ℜ(τ − τk) + |αk|

(
2|ξs,k(τ)||τ − τk|2µk+s + |Rs,k(τ)|

)
+ (−1)µk+1

(
ℜ(βk)

α2µk

k

ℜ((τ − τk)
2µk)− ℑ(βk)

α2µk

k

ℑ((τ − τk)
2µk)

)
.

We know there exists c1, c2 > 0 such that

∀k ∈ {1, . . . ,K} ,∀τ ∈ C, |τ |2µk ≤ c1ℜ(τ)2µk + c2ℑ(τ)2µk .

Since ξs,k and Rs,k

X2µk+1 can be bounded by some constant C̃ > 0 on Bε⋆(τk), using the same reasoning as
previously gives us

αkℜ(ϖk(τ)) + |αk||ξs,k(τ)(τ − τk)
2µk+s| ≤ −ℜ(τ − τk) + |αk|C̃ (2εs⋆ + ε⋆) (c1ℜ(τ − τk)

2µk + c2ℑ(τ − τk)
2µk)

+ ℜ(τ − τk)
2µk

(
ℜ(βk)

α2µk

k

+ Cδ

)
+ ℑ(τ − τk)

2µk

(
−ℜ(βk)

α2µk

k

+ δ

)
.

Taking δ and ε⋆ small enough allows us to prove (45). We prove the inequality (46) the same way. □

Remark 1. We observe that the constants in the inequalities (36), (37), (38), (39), (40) and (41) can (and will)
be chosen uniformly with respect to ε ∈]0, ε⋆[. However, it is not the case for the constants in inequality (35).

3.3.1 Choice of integration paths for the proof of Lemma 11

From now on, we fix a k ∈ {1, . . . ,K} and an integer s ∈ N\ {0} and our goal is to prove the claim of Lemma 11
for this k and s, i.e. we want to prove the existence of two positive constants C, c such that for all (n, j) ∈ Dk

we have∣∣∣∣∣G n
j − znkκ

j
k

2π

∫ +∞

−∞
Ps,k(it+ τk)

(
s−1∑
l=0

(jRs,k(it+ τk))
l

l!

)
exp

(
it

(
n− j

αk

)
− j

αk

βk

α2µk

k

t2µk

)
dt

∣∣∣∣∣
≤ C

n
s+1
2µk

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 . (47)
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We will suppose that αk > 0. The major consequence is that for (n, j) ∈ Dk, we have j ≥ 1. This implies that
we will use the inequalities (36), (38) and (40). The case where αk < 0 would need some little modifications, in
particular we will have that j ≤ 0 for (n, j) ∈ Dk and we would rather use the inequalities (37), (39) and (41).

Before we begin with the proof, we will need to introduce some lemmas and define some elements. First, we
can easily prove the following lemma which allows us to pass from bounds that are exponentially decaying in n
to the generalized Gaussian bounds expected in (47).

Lemma 14. We consider C, c > 0. Then, for all s ∈ N∗, there exist C̃, c̃ > 0 such that

∀(n, j) ∈ Dk, C exp(−cn) ≤ C̃

n
s+1
2µk

exp
(
−c̃ |Xn,j,k|

2µk
2µk−1

)
with Xn,j,k := nαk−j

n
1

2µk

.

We now apply Lemma 13 and consider ε ∈]0, ε⋆[ small enough so that

∀i, j ∈ {1, . . . ,K} , zi ̸= zj ⇒ Bε(τ i) ∩Bε(τ j) = ∅

and
∀l ∈ {1, . . . ,K} , Bε(τ l) ⊂ {τ ∈ C, ℑ(τ) ∈ [−π, π]} .

This can be done because we supposed that zl ̸= −1 which implies τ l /∈ {−iπ, iπ} for all l. We also introduce
some conditions on the values ηε we defined in Lemma 13 which will be useful later on in the proof, especially
for Lemma 19. We define the function

rε : ]0, ε[ → R
η 7→

√
ε2 − η2

(48)

which serves to define the extremities of −η + iR ∩Bε(τk) for any k ∈ {1, . . . ,K}. We impose that ηε is small
enough so that

ηε <

√
3

4
ε. (49)

This condition implies that
rε(ηε) >

ε

2
.

Finally, we also impose that

∀k ∈ {1, . . . ,K} , ηε +ARη
2µk
ε −AI

(ε
2

)2µk

< 0. (50)

We now fix a constant η ∈]0, ηε[ which we will use to express the modified path on which we will integrate the
right-hand term of equality (34).

We will now follow a strategy developed in [ZH98], which has also been used in [God03], [CF22] and [CF21],
and introduce a family of parameterized curves. For τp ∈ R, we introduce

Ψk(τp) = τp −ARτp
2µk .

The function Ψk is continuous and strictly increasing on
]
−∞,

(
1

2µkAR

) 1
2µk−1

[
. We choose ε small enough so

that it is strictly increasing on ]−∞, ε]. We can therefore introduce for τp ∈ [−η, ε]

Γk,p =
{
τ ∈ C,−η ≤ ℜ(τ) ≤ τp, ℜ(τ − τk)−ARℜ(τ − τk)

2µk +AIℑ(τ − τk)
2µk = Ψk(τp)

}
.

It is a symmetric curve with respect to the axis R+ τk = R+ iθk which intersects this axis on the point τp+ τk.

If we introduce ℓk,p =
(

Ψk(τp)−Ψk(−η)
AI

) 1
2µk , then −η + i(θk + ℓk,p) and −η + i(θk − ℓk,p) are the end points of

Γk,p. We can also introduce a parametrization of this curve by defining γk,p : [−ℓk,p, ℓk,p] → C such that

∀τp ∈ [−η, ε] ,∀t ∈ [−ℓk,p, ℓk,p], ℑ(γk,p(t)) = t+ θk, ℜ(γk,p(t)) = hk,p(t) := Ψ−1
k

(
Ψk(τp)−AIt

2µk
)
. (51)

The above parametrization immediately yields that there exists a constant M > 0 such that

∀τp ∈ [−η, ε],∀t ∈ [−ℓk,p, ℓk,p], |h′
k,p(t)| ≤ M. (52)
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Also, there exists a constant c⋆ > 0 such that

∀τp ∈ [−η, ε],∀τ ∈ Γk,p, ℜ(τ − τk)− τp ≤ −c⋆ℑ(τ − τk)
2µk . (53)

We introduce those integration paths Γk,p because they allow us to use optimally the inequalities (44)-(46).
For example, if we seek to bound enτ+jϖk(τ) when (n, j) ∈ Dk and τ ∈ Γk,p, it follows from the equality
sgn(j) = sgn(αk) and the inequalities (45) and (53) that

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ nℜ(τ − τk)−
j

αk

(
ℜ(τ − τk)−ARℜ(τ − τk)

2µk +AIℑ(τ − τk)
2µk
)

≤ −nc⋆ℑ(τ − τk)
2µk −

(
j

αk
− n

)
τp +

j

αk
ARτ

2µk
p .

(54)

Such calculations will happen regularly in the following proof (see Lemmas 17 and 18). There remains to
make an appropriate choice of τp depending on n and j that minimizes the right-hand side of the inequality
(54) whilst the paths Γk,p remain within the ball Bε(τk). Even if we have to consider a smaller η, we can define
a real number 0 < εk,0 < ε such that the curve Γk,p associated to τp = εk,0 intersects the axis −η + iR within
Bε(τk). Then, we let

ζk =
j − nαk

2µkn
, γk =

ARj

n
, ρk

(
ζk
γk

)
= sgn(ζk)

( |ζk|
γk

) 1
2µk−1

.

The inequality (54) thus becomes

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ −nc⋆ℑ(τ − τk)
2µk +

n

αk
(γkτ

2µk
p − 2µkζkτp). (55)

Our limiting estimates will come from the case where ζk is close to 0. We observe that the condition (n, j) ∈ Dk

implies
ARδk ≤ γk ≤ ARδk. (56)

Moreover, we have that ρk

(
ζk
γk

)
is the unique real root of the polynomial

γkx
2µk−1 = ζk.

Then, we take

τp :=


ρk

(
ζk
γk

)
, if ρk

(
ζk
γk

)
∈ [−η

2 , εk,0], (Case A)

εk,0, if ρk
(

ζk
γk

)
> εk,0, (Case B)

−η
2 , if ρk

(
ζk
γk

)
< −η

2 . (Case C)

The case A corresponds to the choice to minimize the right-hand side of (55). The cases B and C allow the
path Γk,p to stay within Bε(τk).

There just remains to define the path Γk defined on the Figure 3. As we can see, it follows the ray −η+i[−π, π]
and is deformed inside Bε(τk) into the path Γk,p. We define

Γk,res := {−η + it, t ∈ [−π, π]\[θk − ℓk,p, θk + ℓk,p]} ∩Bε(τk),

Γk,out := {−η + it, t ∈ [−π, π]} ∩Bε(τk)
c,

Γk,in :=Γk,p ∪ Γk,res,

Γk :=Γk,in ∪ Γk,out.

Using Cauchy’s formula and taking into account the "2iπ-periodicity" of Gj(τ), we have that for all n ∈ N∗

and j ∈ Z
G n
j =

1

2iπ

∫
Γρ

enτGj(τ)dτ =
1

2iπ

∫
Γk

enτGj(τ)dτ. (57)

In order to prove Lemma 11, we will start by proving the following lemma.
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ℜ(τ)

ℑ(τ)
•
iπ

•−iπ

•−η
×

Bε(0)•
τp

>

Γk,out >

Γk,res

Γk,p

Figure 3: A representation of the path Γk for τk = 0. It is composed of Γk,out (in red), Γk,res (in green) and
Γk,p (in blue). The section of Γk which lies inside the ball Bε(τk) (i.e. the reunion of Γk,res and Γk,p) is notated
Γk,in.

Lemma 15. For all k ∈ {1, . . . ,K} and for all s ∈ N∗, there exist two positive constants C, c such that for all
(n, j) ∈ Dk∣∣∣∣∣G n

j − 1

2iπ

∫
Γk,in

Ps,k(τ)

(
s−1∑
l=0

(jRs,k(τ))
l

l!

)
enτejφk(τ)dτ

∣∣∣∣∣ ≤ C

n
s+1
2µk

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 .

Our main focus now will be to prove Lemma 15. We observe that the triangular inequality implies∣∣∣∣∣G n
j − 1

2iπ

∫
Γk,in

Ps,k(τ)

(
s−1∑
l=0

(jRs,k(τ))
l

l!

)
enτejφk(τ)dτ

∣∣∣∣∣ ≤ 1

2π

8∑
l=1

El (58)

where

E1 =

∣∣∣∣∣
∫
Γk,out

enτGj(τ)dτ

∣∣∣∣∣ , E2 =

∣∣∣∣∣
∫
Γk,in

enτ (Gj(τ)− eτgk(τ) exp(jϖk(τ))) dτ

∣∣∣∣∣ ,
E3 =

∣∣∣∣∣
∫
Γk,p

enτ+jϖk(τ) (eτgk(τ)− Ps,k(τ)) dτ

∣∣∣∣∣ , E4 =

∣∣∣∣∣
∫
Γk,res

enτ+jϖk(τ) (eτgk(τ)− Ps,k(τ)) dτ

∣∣∣∣∣ ,
E5 =

∣∣∣∣∣
∫
Γk,p

Ps,k(τ)e
nτ
(
ejϖk(τ) − ejQs,k(τ)

)
dτ

∣∣∣∣∣ , E6 =

∣∣∣∣∣
∫
Γk,res

Ps,k(τ)e
nτ
(
ejϖk(τ) − ejQs,k(τ)

)
dτ

∣∣∣∣∣ ,

E7 =

∣∣∣∣∣
∫
Γk,p

Ps,k(τ)e
nτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)
dτ

∣∣∣∣∣ ,
E8 =

∣∣∣∣∣
∫
Γk,res

Ps,k(τ)e
nτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)
dτ

∣∣∣∣∣ .
We will now have to determine estimates on all these terms depending on k (case I, II and III) and also on

τp and Γk,p:

• Case A: ρk
(

ζk
γk

)
∈
[
−η

2 , εk,0
]
,
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• Case B: ρk
(

ζk
γk

)
> εk,0,

• Case C: ρk
(

ζk
γk

)
< −η

2 .

The main contribution will come from the terms E3, E5 and E7 in the case A. We will prove much sharper
estimates for the other terms.

3.3.2 Preliminary lemmas

Before we start to determine the estimates on the different terms, we are going to introduce some lemmas to
simplify the redaction. Those lemmas assemble inequalities in the different cases (A, B and C) for which the
proofs are similar with variations depending on the case we are in. They mainly rely on the inequalities (44),
(45) and (46). The proofs of those lemmas can be found in the appendix.

We start with a lemma which will be useful to study the terms E5, E6, E7 and E8.

Lemma 16 (Inequalities in Bε⋆(τk)). There exists C > 0 such that for all τ ∈ Bε⋆(τk) and (n, j) ∈ Dk, we
have∣∣∣enτ (ejϖk(τ) − ejQs,k(τ)

)∣∣∣ ≤ Cn|τ − τk|2µk+s exp(nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s+1|))

and∣∣∣∣∣enτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)∣∣∣∣∣ ≤ C
(
n|τ − τk|2µk+1

)s
exp(nℜ(τ−τk)+j(ℜ(φk(τ))+sgn(αk)|Rs,k(τ)|)).

This next lemma will be useful for terms where the integral is defined along the path Γk,p (terms E3, E5

and E7).

Lemma 17 (Inequalities on Γk,p). For (n, j) ∈ N∗ × Z such that sgn(j) = sgn(αk) and τ ∈ Γk,p, we have
• Case A: ρk

(
ζk
γk

)
∈
[
−η

2 , εk,0
]

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ −nc⋆ℑ(τ − τk)

2µk − n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

,

(59)

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ −nc⋆ℑ(τ − τk)
2µk − n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

,

(60)

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ −nc⋆ℑ(τ − τk)
2µk − n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

.

(61)

• Case B: ρk
(

ζk
γk

)
> εk,0

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ − n

αk
(2µk − 1)ARδkε

2µk

k,0 , (62)

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ − n

αk
(2µk − 1)ARδkε

2µk

k,0 , (63)

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ − n

αk
(2µk − 1)ARδkε

2µk

k,0 . (64)

• Case C: ρk
(

ζk
γk

)
< −η

2

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk

, (65)

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk

, (66)

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk

. (67)
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Finally, we introduce in the next lemma some inequalities that will help us for the terms with integrals
defined on Γk,res (terms E4, E6 and E8).

Lemma 18 (Inequalities on Γk,res). For (n, j) ∈ N∗ ×Z such that sgn(j) = sgn(αk) and τ ∈ Γk,res, we have in
all cases

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)
∣∣ξs,k(τ)(τ − τk)

2µk+s
∣∣) ≤ −n

η

2
, (68)

nℜ(τ − τk) + j(ℜ(ϖk(τ)) ≤ −n
η

2
, (69)

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ −n
η

2
. (70)

3.3.3 Estimates of part of the terms

We are going to first prove estimates for the terms where the proof will not depend on the case A, B or C in
which we are.

• Estimate for E2:
We introduce the path Γη,k defined as

Γη,k := {−η + it, t ∈ [−π, π]} ∩Bε(τk).

Using Cauchy’s formula, we have that∫
Γk,in

enτ (Gj(τ)− eτgk(τ) exp(jϖk(τ))) dτ =

∫
Γη,k

enτ (Gj(τ)− eτgk(τ) exp(jϖk(τ))) dτ.

Because we supposed that αk > 0, depending on whether we are in case I or III, the previous equality and the
inequalities (36) and (40) imply∣∣∣∣∣

∫
Γk,in

enτ (Gj(τ)− eτgk(τ) exp(jϖk(τ))) dτ

∣∣∣∣∣ ≲ e−nη−cj .

• Estimate for E4:
The inequality (69) implies∣∣∣∣∣

∫
Γk,res

enτ+jϖk(τ) (eτgk(τ)− Ps,k(τ)) dτ

∣∣∣∣∣ ≲
∫
Γk,res

exp (nℜ(τ) + jℜ(ϖk(τ))) |dτ | ≲ e−n η
2 .

• Estimate for E6:
If we use Lemma 16, we have∣∣∣∣∣
∫
Γk,res

Ps,k(τ)e
nτ
(
ejϖk(τ) − ejQs,k(τ)

)
dτ

∣∣∣∣∣
≲
∫
Γk,res

exp(nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|))n|τ − τk|2µk+s|dτ |.

Therefore, the inequality (68) implies∣∣∣∣∣
∫
Γk,res

Ps,k(τ)e
nτ
(
ejϖk(τ) − ejQs,k(τ)

)
dτ

∣∣∣∣∣ ≲ ne−n η
2 ≲ e−n η

4 .

• Estimate for E8:
If we use Lemma 16, we have∣∣∣∣∣
∫
Γk,res

Ps,k(τ)e
nτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)
dτ

∣∣∣∣∣
≲
∫
Γk,res

exp(nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|Rs,k(τ)|))(n|τ − τk|2µk+1)s|dτ |.
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Therefore, the inequality (70) implies∣∣∣∣∣
∫
Γk,res

Ps,k(τ)e
nτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)
dτ

∣∣∣∣∣ ≲ nse−n η
2 ≲ e−n η

4 .

It remains to study the terms E1, E3, E5 and E7.

3.3.4 The terms E3, E5 and E7, Case A : ρk
(

ζk
γk

)
∈
[
−η

2 , εk,0
]

This part of the proof is the most important because those terms will create the limiting estimates.
• Estimate for E3:
Because of Taylor’s theorem, we have

E3 =

∣∣∣∣∣
∫
Γk,p

(eτgk(τ)− Ps,k(τ)) e
nτ+jϖk(τ)dτ

∣∣∣∣∣ ≲
∫
Γk,p

|τ − τk|s exp (nℜ(τ) + jℜ(ϖk(τ))) |dτ |.

The inequality (60) implies

E3 ≲
∫
Γk,p

|τ − τk|se−nc⋆ℑ(τ−τk)
2µk |dτ | exp

− n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

 .

But, the inequality (56) and the fact that ρk

(
ζk
γk

)
= τp imply

n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

≥ 2µk − 1

αk
ARδkn|τp|2µk .

If we introduce c > 0 small enough, then

E3 ≲
∫
Γk,p

|τ − τk|se−nc⋆ℑ(τ−τk)
2µk |dτ | exp

(
−cn|τp|2µk

)
.

Using the parametrization (51) and the inequality (52), we have∫
Γk,p

|τ − τk|se−nc⋆ℑ(τ−τk)
2µk |dτ | ≲

∫ ℓk,p

−ℓk,p

(|τp|s + |t|s)e−nc∗t
2µk

dt.

The change of variables u = n
1

2µk t and the fact that the function x ≥ 0 7→ xs exp
(
− c

2
x2µk

)
is bounded

imply 
∫ ℓk,p

−ℓk,p

|t|se−nc∗t
2µk

dt ≲
1

n
s+1
2µk

,∫ ℓk,p

−ℓk,p

|τp|se−nc∗t
2µk

dt ≲
1

n
s+1
2µk

exp
( c
2
n|τp|2µk

)
.

Thus,

E3 ≲
1

n
s+1
2µk

exp
(
− c

2
n|τp|2µk

)
.

Lastly, the inequality (56) implies that we have a constant c̃ > 0 independent from j and n such that

c

2
n|τp|2µk ≥ c̃

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

so,

E3 ≲
1

n
s+1
2µk

exp

−c̃

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

• Estimate for E5:
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Using Lemma 16 and the inequality (59), we have

E5 =

∣∣∣∣∣
∫
Γk,p

Ps,k(τ)e
nτ
(
ejϖk(τ) − ejQs,k(τ)

)
dτ

∣∣∣∣∣
≲
∫
Γk,p

n|τ − τk|2µk+s exp(nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|))|dτ |

≲ exp

− n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

n

∫
Γk,p

|τ − τk|2µk+s exp(−nc⋆ℑ(τ − τk)
2µk)|dτ |.

Just like in the estimate for the previous term, because of the inequality (56), if we introduce c > 0 small
enough, we have

E5 ≲ n exp
(
−cn|τp|2µk

) ∫
Γk,p

|τ − τk|2µk+s exp(−nc⋆ℑ(τ − τk)
2µk)|dτ |.

The same reasoning as for the estimate of E3 implies that

n

∫
Γk,p

|τ − τk|2µk+s exp(−nc⋆ℑ(τ − τk)
2µk)|dτ | ≲ n

∫ ℓk,p

−ℓk,p

|t|2µk+se−nc∗t
2µk

dt+ n

∫ ℓk,p

−ℓk,p

|τp|2µk+se−nc∗t
2µk

dt.

The change of variables u = n
1

2µk t and the fact that the function x ≥ 0 7→ x2µk+s exp
(
− c

2
x2µk

)
is bounded

imply 
n

∫ ℓk,p

−ℓk,p

|t|2µk+se−nc∗t
2µk

dt ≲
1

n
s+1
2µk

,

n

∫ ℓk,p

−ℓk,p

|τp|2µk+se−nc∗t
2µk

dt ≲
1

n
s+1
2µk

exp
( c
2
n|τp|2µk

)
.

Thus,

E5 ≲
1

n
s+1
2µk

exp
(
− c

2
n|τp|2µk

)
.

Lastly, the inequality on γk (56) implies that we have a constant c̃ > 0 independent from j and n such that

c

2
n|τp|2µk ≥ c̃

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

so,

E5 ≲
1

n
s+1
2µk

exp

−c̃

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

• Estimate for E7:
Using Lemma 16 and the inequality (61), we have

E7 =

∣∣∣∣∣
∫
Γk,p

Ps,k(τ)e
nτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)
dτ

∣∣∣∣∣
≲
∫
Γk,p

(n|τ − τk|2µk+1)s exp(nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|))|dτ |

≲ exp

− n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

ns

∫
Γk,p

|τ − τk|s(2µk+1) exp(−nc⋆ℑ(τ − τk)
2µk)|dτ |.

Just like in the estimate for the previous term, because of the inequality (56), if we introduce c > 0 small
enough, we have

E7 ≲ ns exp
(
−cn|τp|2µk

) ∫
Γk,p

|τ − τk|s(2µk+1) exp(−nc⋆ℑ(τ − τk)
2µk)|dτ |.
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The same reasoning as for the estimate of E3 implies that

ns

∫
Γk,p

|τ − τk|s(2µk+1) exp(−nc⋆ℑ(τ − τk)
2µk)|dτ |

≲ ns

∫ ℓk,p

−ℓk,p

|t|s(2µk+1)e−nc∗t
2µk

dt+ ns

∫ ℓk,p

−ℓk,p

|τp|s(2µk+1)e−nc∗t
2µk

dt.

The change of variables u = n
1

2µk t and the fact that the function x ≥ 0 7→ xs(2µk+1) exp
(
− c

2
x2µk

)
is

bounded imply 
ns

∫ ℓk,p

−ℓk,p

|t|s(2µk+1)e−nc∗t
2µk

dt ≲
1

n
s+1
2µk

,

ns

∫ ℓk,p

−ℓk,p

|τp|s(2µk+1)e−nc∗t
2µk

dt ≲
1

n
s+1
2µk

exp
( c
2
n|τp|2µk

)
.

Thus,

E7 ≲
1

n
s+1
2µk

exp
(
− c

2
n|τp|2µk

)
.

Lastly, the inequality on γk (56) implies that we have a constant c̃ > 0 independent from j and n such that

c

2
n|τp|2µk ≥ c̃

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

so,

E7 ≲
1

n
s+1
2µk

exp

−c̃

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

3.3.5 The terms E3, E5 and E7, Case B and C:

We now consider that we are either in case B or case C (i.e. ρk(
ζk
γk
) /∈

[
−η

2 , εk,0
]
).

• Estimate for E3:
Because of Taylor’s theorem, we have

E3 =

∣∣∣∣∣
∫
Γk,p

enτ+jϖk(τ) (eτgk(τ)− Ps,k(τ)) dτ

∣∣∣∣∣ ≲
∫
Γk,p

|τ − τk|s exp (nℜ(τ) + jℜ(ϖk(τ))) |dτ |.

Using the inequality (63) or (66) whether we are in case B or C, they imply that there exists c > 0
independent from j and n such that

E3 ≲ e−cn.

• Estimate for E5:
Using Lemma 16, we have

E5 =

∣∣∣∣∣
∫
Γk,p

enτPs,k(τ)
(
ejϖk(τ) − ejQs,k(τ)

)
dτ

∣∣∣∣∣
≲
∫
Γk,p

n|τ − τk|2µk+s exp(nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|))|dτ |.

Using the inequality (62) or (65) whether we are in case B or C, they imply that there exists c > 0
independent from j and n such that

E5 ≲ ne−cn ≲ e−
c
2n.

• Estimate for E7:
Using Lemma 16, we have

E7 =

∣∣∣∣∣
∫
Γk,p

Ps,k(τ)e
nτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)
dτ

∣∣∣∣∣
≲
∫
Γk,p

(n|τ − τk|2µk+1)s exp(nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|))|dτ |.
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ℜ(τ)

ℑ(τ)
•
iπ

•−iπ

•−η

×
Bε(τk)

×
Bε(τ̂l)

>
>Γ̂0

>

Γk,in

Γ̂l

Figure 4: This is a representation of Γk where we decompose Γk,out. The red path corresponds to Γ̂0 the part of
Γk,out which lies outside the balls Bε(τ̂l). The green path corresponds to Γ̂l the part of Γk,out which lies inside
the ball Bε(τ̂l). The dashed green path corresponds to the deformation we use in the proof of the estimate for
E1.

Using the inequality (64) or (67) whether we are in case B or C, they imply that there exists c > 0
independent from j and n such that

E7 ≲ nse−cn ≲ e−
c
2n.

3.3.6 Estimate for the term E1

• Estimate for E1:
We recall that

E1 =

∣∣∣∣∣
∫
Γk,out

enτGj(τ)dτ

∣∣∣∣∣ .
For τ ∈ Γk,out, we have different estimates depending on whether we are inside a ball Bε(τ l) or not.

Therefore, we introduce the set of distinct points

{τ̂1, . . . , τ̂R} = {τ l, l ∈ {1, . . . ,K}} \ {τk} .

It allows us to decompose the path Γk,out as

Γk,out :=

R⋃
l=0

Γ̂l,

where for all l ∈ {1, . . . , R}
Γ̂l := Γk,out ∩Bε(τ̂l)

and

Γ̂0 := Γk,out\
R⋃
l=1

Γ̂l.

This decomposition of Γk,out is represented on Figure 4. The inequality (35) gives us that∣∣∣∣∫
Γ̂0

enτGj(τ)dτ

∣∣∣∣ ≲ e−nη−c|j|.

We now consider l ∈ {1, . . . , R}. There are two possibilities because of Hypothesis 3:
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• The set {i ∈ {1, . . . , R} , τ i = τ̂l} is the singleton {i} with αi < 0 (i.e. we are in case II). Then, knowing
that for (n, j) ∈ Dk we have j ≥ 1, because of the inequality (38), we have∣∣∣∣∫

Γ̂l

enτGj(τ)dτ

∣∣∣∣ ≲ e−nη−c|j|.

• The set {i ∈ {1, . . . , R} , τ i = τ̂l} is the singleton {i} with αi > 0 (i.e. we are in case I) or it has two
distinct elements {i, j} with αi > 0 and αj < 0 (i.e. we are in case III). Either way, the inequalities (36) and
(40) imply that ∣∣∣∣∫

Γ̂l

enτGj(τ)dτ

∣∣∣∣ ≤ 2πCe−nη−c|j| +

∣∣∣∣∫
Γ̂l

exp(nτ + jϖi(τ))e
τgi(τ)dτ

∣∣∣∣ .
Just like we defined the path Γk,p, Γk,res and Γk,in := Γk,p ⊔ Γk,res, we can define a path Γi,p, Γi,res and

Γi,in := Γi,p ⊔ Γi,res. The path Γi,in is represented with a dashed green line on the Figure 4. Using Cauchy’s
formula, we then have∫

Γ̂l

exp(nτ + jϖi(τ))e
τgi(τ)dτ =

∫
Γi,in

exp(nτ + jϖi(τ))e
τgi(τ)dτ

The function τ 7→ eτgi(τ) can be bounded so we just have to bound
∫
Γi,in

exp(nℜ(τ − τ i) + jℜ(ϖi(τ)))d|τ |.

We observe that the proofs of the Lemmas 17 and 18 are also true for Γi,p and Γi,res. Using the inequality (69)
for the integral along the path Γi,res, we prove that there exists a constant c > 0 independent from n and j so
that ∫

Γi,res

exp(nℜ(τ − τ i) + jℜ(ϖi(τ)))d|τ | ≲ e−cn.

It remains to bound the integral along the path Γi,p. In the case A (i.e. ρi(
ζi
γi
) ∈ [−η

2 , εi,0]), we observe
that for (n, j) ∈ Dk, γi is bounded between two positive constants and

|ζi| ≥
1

2µi
min(|αi − δk|, |αi − δk|).

Therefore, using the inequality (60) and the previous observation in case A and using the inequalities (63) and
(66) in cases B and C, we prove that there exists a constant c > 0 independent from n and j so that∫

Γi,p

exp(nℜ(τ − τ i) + jℜ(ϖi(τ)))d|τ | ≲ e−cn.

Therefore, there exists a constant c > 0 such that

∀(n, j) ∈ Dk,

∣∣∣∣∫
Γ̂l

enτGj(τ)dτ

∣∣∣∣ ≲ e−cn.

This gives a sharp estimate of E1.
If we recapitulate the estimates we found, we can define two constants C, c > 0 such that

∀(n, j) ∈ Dk,∀l ∈ {1, 2, 4, 6, 8} , El ≤ Ce−cn,

and

∀(n, j) ∈ Dk,∀l ∈ {3, 5, 7} , El ≤
C

n
s+1
2µk

exp

−c

( |j − nαk|
n

1
2µk

) 2µk
2µk−1

 .

The estimates we proved on all the terms and Lemma 14 allow us to conclude the proof of Lemma 15.

3.3.7 From Lemma 15 to Lemma 11

Now that Lemma 15 is proved, we know that there exist two positive constants C, c such that for all (n, j) ∈ Dk,∣∣∣∣∣G n
j − 1

2iπ

∫
Γk,in

Ps,k(τ)

(
s−1∑
l=0

(jRs,k(τ))
l

l!

)
enτejφk(τ)dτ

∣∣∣∣∣ ≤ C

n
s+1
2µk

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 . (71)

Proving Lemma 11 amounts to proving a similar estimate as (71) where the integration path would be
{it+ τk, t ∈ R}. This is the goal of this subsection. We prove the following lemma, which will use the conditions
(49) and (50) we introduced on ηε.
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ℜ(τ)

ℑ(τ)
•
iπ

•−iπ

•−η
×

Bε(0)

>
>

Γk,in

>
>

Γ0
k,in

>

Γ−
comp

>

Γ+
comp

Figure 5: A representation of the path Γk,in, Γ0
k,in and Γ±

comp for τk = 0 used in Lemma 19.

Lemma 19. We define the path

Γ0
k,in := {it, t ∈ [θk − rε(η), θk + rε(η)]}

where the function rε is defined in (48). Then, for all m ∈ N∗, there exist two positive constants C, c such that

∀(n, j) ∈ Dk,

∣∣∣∣∣
∫
Γ0
k,in

(τ − τk)
menτejφk(τ)dτ −

∫
Γk,in

(τ − τk)
menτejφk(τ)dτ

∣∣∣∣∣ ≤ Ce−cn.

Proof As in Figure 5, we define the paths

Γ+
comp := {t+ i(θk + rε(η)), t ∈ [−η, 0]} , Γ−

comp := {t+ i(θk − rε(η)), t ∈ [−η, 0]} .

Cauchy’s formula then implies that∣∣∣∣∣
∫
Γ0
k,in

(τ − τk)
menτejφk(τ)dτ −

∫
Γk,in

(τ − τk)
menτejφk(τ)dτ

∣∣∣∣∣
≤
∣∣∣∣∣
∫
Γ+
comp

(τ − τk)
menτejφk(τ)dτ

∣∣∣∣∣+
∣∣∣∣∣
∫
Γ−
comp

(τ − τk)
menτejφk(τ)dτ

∣∣∣∣∣ .
We need to find estimates for the two terms on the right-hand side. Both terms will be bounded similarly so
we will focus on the first one. Since Γ+

comp ⊂ Bε(τk), we have∣∣∣∣∣
∫
Γ+
comp

(τ − τk)
menτejφk(τ)dτ

∣∣∣∣∣ ≲
∫ 0

−η

exp (nt+ jℜ (φk (t+ i(θk + rε(η))))) dt.

For t ∈]− η, 0[, since t+ i(θk + rε(η)) ∈ Bε⋆(τk) and j
αk

> 0, using the inequality (44), we prove

nt+ jℜ(φk(t+ i(θk + rε(η)))) ≤
j

αk

(
η +ARη

2µk −AIrε(η)
2µk
)
.

Using the inequality (49), we have that rε(η) ≥ rε(ηε) >
ε
2 . Inequality (50) then implies that

η +ARη
2µk −AIrε(η)

2µk ≤ ηε +ARη
2µk
ε −AI

(ε
2

)2µk

< 0.
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Since (n, j) ∈ Dk, we have that j
αk

≥ δ̃k
αk

n so there must exist c > 0 such that

∀(n, j) ∈ Dk,∀t ∈]− η, 0[, nt+ jℜ(φk(t+ i(θk + rε(η)))) ≤ −cn.

This concludes the proof of Lemma 19. □

Using Lemma 15 and the estimate (71), we have thus proved that for all s ∈ N∗, there exist two positive
constants C, c such that for all (n, j) ∈ Dk∣∣∣∣∣G n

j − znkκ
j
k

2π

∫ rε(η)

−rε(η)

Ps,k(it+ τk)

(
s−1∑
l=0

(jRs,k(it+ τk))
l

l!

)
exp

(
it

(
n− j

αk

)
− j

αk

βk

α2µk

k

t2µk

)
dt

∣∣∣∣∣
≤ C

n
s+1
2µk

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1

 . (72)

There just remains to prove the following lemma to conclude the proof of Lemma 11.

Lemma 20. For all m ∈ N and c0 > 0, there exist two positive constants C, c > 0 such that

∀(n, j) ∈ Dk,

∫ +∞

rε(η)

tm exp

(
− j

αk
c0t

2µk

)
dt ≤ Ce−cn.

Proof The proof is done recursively and using the following equality proved by integrating by parts∫ +∞

rε(η)

tm exp

(
− j

αk
c0t

2µk

)
dt =

rε(η)
m+1−2µk

2µkc0
j
αk

exp

(
−c0rε(η)

2µk
j

αk

)
+

m+ 1− 2µk

2µkc0
j
αk

∫ +∞

rε(η)

tm−2µk exp

(
− j

αk
c0t

2µk

)
dt. (73)

• For m ∈ {0, . . . , 2µk − 1}, since the second term of the sum on the right hand side of (73) is non-positive,
using the fact that (n, j) ∈ Dk, we directly prove the result.

• If we consider m̃ ≥ 2µk such that the result of lemma has been proved for all m ∈ {0, . . . , m̃− 1}, then
the equality (73) implies the result for m = m̃.

□

Combining Lemmas 20, 14 and the inequality (72), we easily conclude the proof of Lemma 11.

3.4 Step 2 : Proof of Lemma 12
As we explained in Section 3.2, Lemma 11 and the equality (33) imply that we proved generalized Gaussian
estimates on the difference between the elements G n

j and a linear combination of

1(
j
αk

) l
2µk

Hβk

2µk

(m)

 nαk − j(
j
αk

) 1
2µk

 where l ∈ N∗,m ∈ N.

We now need to approach the above terms by the elements appearing in Theorem 1, i.e. a linear combination
of

1

n
l

2µk

(
nαk − j

n
1

2µk

)m2

Hβk

2µk

(m1)
(
nαk − j

n
1

2µk

)
where l ∈ N∗,m1,m2 ∈ N.

This is the goal of Lemma 12 that we recall here:
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Lemma (Lemma 12). For all s ∈ N, m ∈ N, l ∈ N\ {0} and k ∈ {1, . . . ,K}, if we consider d ∈ N such that

d ≥ s+ 1

2µk − 1

then there exist two constants C, c > 0 such that for all (n, j) ∈ Dk,∣∣∣∣∣∣∣
Hβk

2µk

(m)
(Yn,j,k)(

j
αk

) l
2µk

−
d−1∑
k1=0

d−1∑
k3=0

Bk
l,k1,k3

n
l+(2µk−1)k3

2µk

(Xn,j,k)
k1+k3 Hβk

2µk

(m+k1)
(Xn,j,k)

∣∣∣∣∣∣∣ ≤
C

n
s+1
2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)

where Yn,j,k := nαk−j(
j

αk

) 1
2µk

, Xn,j,k := nαk−j

n
1

2µk

and

Bk
l,k1,k3

:=

k1∑
k2=0

(
k1

k2

)
(−1)k1−k2

k1!k3!α
k3

k

(
k3−1∏
k4=0

l + k2
2µk

+ k4

)
.

First, we prove the following lemma.

Lemma 21. For all s ∈ N, m ∈ N and k ∈ {1, . . . ,K}, if we consider d ∈ N such that

d ≥ s+ 1

2µk − 1

then there exist two constants C, c > 0 such that for all (n, j) ∈ Dk,∣∣∣∣∣∣Hβk

2µk

(m)
(Yn,j,k)−

d−1∑
k1=0

Hβk

2µk

(m+k1)
(Xn,j,k)

k1!
(nαk − j)k1

((
αk

j

) 1
2µk

−
(
1

n

) 1
2µk

)k1
∣∣∣∣∣∣

≤ C

n
s+1
2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)
.

Proof We will apply Taylor’s Theorem to bound the term on the left hand side of the inequality. We observe
using the bounds of Lemma 9 on the derivatives of Hβk

2µk
that there exist two positive constants C, c such that

∀(n, j) ∈ Dk,∀x ∈ [Xn,j,k, Yn,j,k] ,
∣∣∣Hβk

2µk

(m+d)
(x)
∣∣∣ ≤ C exp

(
−c |Xn,j,k|

2µk
2µk−1

)
. (74)

We also observe that the mean value inequality implies that there exists a constant C > 0 such that

∀(n, j) ∈ Dk,

∣∣∣∣∣
(
αk

j

) 1
2µk

−
(
1

n

) 1
2µk

∣∣∣∣∣ ≤ C

n
1+ 1

2µk

|nαk − j|. (75)

Combining Taylor’s Theorem and both inequalities (74) and (75), we can prove the existence of two positive
constants C, c such that for all (n, j) ∈ Dk∣∣∣∣∣∣Hβk

2µk

(m)
(Yn,j,k)−

d−1∑
k1=0

Hβk

2µk

(m+k1)
(Xn,j,k)

k1!
(nαk − j)k1

((
αk

j

) 1
2µk

−
(
1

n

) 1
2µk

)k1
∣∣∣∣∣∣

≤ C

n
d
(
1− 1

2µk

) |Xn,j,k|2d exp
(
−c |Xn,j,k|

2µk
2µk−1

)
.

Since the function x 7→ x2d exp
(
− c

2x
2µk

2µk−1

)
is bounded, our choice for d allows us to conclude. □

Using Lemma 21, we have now approached the elements G n
j via a linear combination of

(nαk − j)k1

n
k1−k2
2µk

(
j
αk

) l+k2
2µk

Hβk

2µk

(m+k1)
(
nαk − j

n
1

2µk

)
where l ∈ N∗,m ∈ N, k1 ∈ N, k2 ∈ {0, . . . , k1} . (76)

We approach the terms in (76) using the following lemma.
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Lemma 22. We consider s ∈ N, m ∈ N, l ∈ N\ {0}, k1 ∈ N, k2 ∈ {0, . . . , k1} and k ∈ {1, . . . ,K}. We define
the function

Ψq : x ∈ R∗
+ → 1

xq
.

If we consider d ∈ N such that

d ≥ s+ 1

2µk − 1

then there exist two constants C, c > 0 such that for all (n, j) ∈ Dk,∣∣∣∣∣∣∣Hβk

2µk

(m+k1)
(Xn,j,k)

(nαk − j)k1

n
k1−k2
2µk

Ψ l+k2
2µk

(
j

αk

)
−

d−1∑
k3=0

Ψ
(k3)
l+k2
2µk

(n)

k3!

(
j

αk
− n

)k3


∣∣∣∣∣∣∣

≤ C

n
s+1
2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)
with Xn,j,k := nαk−j

n
1

2µk

.

Proof We will apply Taylor’s theorem to bound the term on the left hand side of the inequality. We observe
that there exist two positive constants C, c such that

∀(n, j) ∈ Dk,∀x ∈
[
n,

j

αk

]
,

∣∣∣∣Ψ(d)
l+k2
2µk

(x)

∣∣∣∣ ≤ C

n
l+k2
2µk

+d
. (77)

Thus, the inequality (77) and Taylor’s theorem imply the existence of two positive constants C, c such that for
all (n, j) ∈ Dk∣∣∣∣∣∣∣Hβk

2µk

(m+k1)
(Xn,j,k)

(nαk − j)k1

n
k1−k2
2µk

Ψ l+k2
2µk

(
j

αk

)
−

d−1∑
k3=0

Ψ
(k3)
l+k2
2µk

(n)

k3!

(
j

αk
− n

)k3


∣∣∣∣∣∣∣

≤ C

n
l

2µk
+d

(
1− 1

2µk

) |Xn,j,k|k1+d
exp

(
−c |Xn,j,k|

2µk
2µk−1

)
.

Since the function x 7→ xk1+d exp
(
− c

2x
2µk

2µk−1

)
is bounded, our choice for d allows us to conclude. □

Lemmas 21 and 22 allow us to conclude the proof of Lemma 12.

3.5 Step 3: Construction of the polynomials Pk
σ satisfying Lemma 10 and Theo-

rem 1
Now that Lemmas 11 and 12 are proved, we will construct the polynomials Pk

σ in C[X,Y ] which will verify
Lemma 10 and Theorem 1. We start by introducing some notations. We fix k ∈ {1, . . . ,K} and sk ∈ N. For
l ∈ {0, . . . , sk − 1}, we define the coefficients A k

sk,l,m
∈ C for m ∈ {(2µk + 1)l, . . . , (2µk + sk − 1)l + sk − 1}

such that

∀τ ∈ Bε⋆(τk), Psk,k(τ)
Rsk,k(τ)

l

l!
=

(2µk+sk−1)l+sk−1∑
m=(2µk+1)l

A k
sk,l,m

(τ − τk)
m. (78)

where the polynomial functions Psk,k and Rsk,k are defined in Lemma 13. Using Lemma 11 and equality (33),
we prove that there exist two positive constants C, c such that for all (n, j) ∈ Dk∣∣∣∣∣∣∣∣G

n
j − znkκ

j
k

sk−1∑
l=0

(2µk+sk−1)l+sk−1∑
m=(2µk+1)l

A k
sk,l,m

αm+l
k |αk|(

j
αk

)m−2µkl+1

2µk

Hβk

2µk

(m)
(Yn,j,k)

∣∣∣∣∣∣∣∣ ≤
C

n
sk+1

2µk

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1


(79)
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where Yn,j,k := nαk−j(
j

αk

) 1
2µk

.

We now want to apply Lemma 12, so we need to define an integer d ∈ N such that

d ≥ sk + 1

2µk − 1
.

We will consider that d = sk + 1 so that when we will do computations of the polynomials Pk
σ in Section 5,

we will not have to distinguish the value of d depending on the value of µk. Then, for l ∈ {0, . . . , sk − 1},
m ∈ {(2µk + 1)l, . . . , (2µk + sk − 1)l + sk − 1} and k1, k3 ∈ {0, . . . , sk}, we define the coefficients

C k
sk,l,m,k1,k3

:= A k
sk,l,m

αm+l
k |αk|Bk

m−2µkl+1,k1,k3

=
A k

sk,l,m
αm+l−k3

k |αk|
k1!k3!

k1∑
k2=0

(
k1
k2

)
(−1)k1−k2

(
k3−1∏
k4=0

m− 2µkl + 1 + k2
2µk

+ k4

)
(80)

where the coefficients Bk
m−2µkl+1,k1,k3

are defined in Lemma 12. Combining the result of Lemma 12 with the
estimates (79), we prove the existence of two positive constants C, c such that for all (n, j) ∈ Dk∣∣∣∣∣∣G n

j − znkκ
j
k

sk−1∑
l=0

(2µk+sk−1)l+sk−1∑
m=(2µk+1)l

sk∑
k1=0

sk∑
k3=0

C k
sk,l,m,k1,k3

n
m−2µkl+k3(2µk−1)+1

2µk

Xn,j,k
k1+k3Hβk

2µk

(m+k1)
(Xn,j,k)

∣∣∣∣∣∣
≤ C

n
sk+1

2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)
(81)

with Xn,j,k := nαk−j

n
1

2µk

. For σ ∈ {1, . . . , sk}, we define the polynomial

Pk
σ(X,Y ) :=

sk−1∑
l=0

(2µk+sk−1)l+sk−1∑
m=(2µk+1)l

sk∑
k1=0

sk∑
k3=0

1m−2µkl+k3(2µk−1)+1=σC k
sk,l,m,k1,k3

Xk1+k3Y m+k1 ∈ C[X,Y ]. (82)

Using the estimates on the derivatives of Hβ
2µ (Lemma 9) to take care of the terms where m− 2µkl+ k3(2µk −

1) + 1 ≥ sk + 1, the inequality (81) implies that the polynomials Pk
σ verify the estimates (32) of Lemma 10.

Lemma 10 is proved and Theorem 1 in the case where the elements αk are supposed to be distinct ensues from
Lemma 10 and inequalities (30) and (31).

4 Closing arguments on Theorem 1 and proof of Corollary 1

4.1 Proof of Theorem 1 when the elements αk can be equal
As we said in the beginning on Section 3, we supposed in the proof that the elements αk were distinct from
one another. In the case where the αk can be equal, there are some changes that need to be done but the
calculations remain similar. Most modifications will happen on the part of the proof contained in Section 3.3.

First, just as in Section 3.1, we would define δk, δk and Dk in the same manner but with the added condition
that if αk = αl, then δk = δl and δk = δl.

If we consider k0 ∈ {1, . . . ,K}, we define

Jk0
:= {k ∈ {1, . . . ,K} , αk = αk0

} .
We observe that for k ∈ Jk0

, we have Dk = Dk0
because of our new condition.

Lemmas 7 and 8 remain true. The inequality (30) thus remains true, however inequality (31) now becomes
that for k0 ∈ {1, . . . ,K}, there exist two constants C, c > 0 such that for all (n, j) ∈ Dk0∣∣∣∣∣G n

j −
K∑

k=1

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣ ≤
K∑

k=1
k/∈Jk0

C

n
sk+1

2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)

+

∣∣∣∣∣∣G n
j −

∑
k∈Jk0

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣∣ .
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Therefore, to prove Theorem 1, we now have to prove the following lemma which is a modification of Lemma
10.

Lemma 23 (Modified Lemma 10). For all k0 ∈ {1, . . . ,K} and (sk)k∈Jk0
∈ NJk0 , there exist a family of

polynomials (Pk
σ)σ∈{1,...,sk} in C[X,Y ] for each k ∈ Jk0

and two positive constants C, c such that for (n, j) ∈ Dk0∣∣∣∣∣∣G n
j −

∑
k∈Jk0

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣∣ ≤
∑

k∈Jk0

C

n
sk+1

2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)
with Xn,j,k := nαk−j

n
1

2µk

.

Just as in the case where the elements αk were supposed distinct, if Lemma 23 is verified, then the families
of polynomials (Pk

σ)k,σ constructed in Lemma 23 will also verify the estimates (7) of Theorem 1. Since the
equality (33) and Lemma 12 remain true, to prove Lemma 23, we only have to prove the following Lemma which
is a modification of Lemma 11.

Lemma 24 (Modified Lemma 11). For all k0 ∈ {1, . . . ,K} and for all (sk)k∈Jk0
∈ N∗Jk0 , there exist two

positive constants C, c such that for all (n, j) ∈ Dk0∣∣∣∣∣∣G n
j −

∑
k∈Jk0

znkκ
j
k

2π

∫ +∞

−∞
Psk,k(it+ τk)

(
sk−1∑
l=0

(jRsk,k(it+ τk))
l

l!

)
exp

(
it

(
n− j

αk

)
− j

αk

βk

α2µk

k

t2µk

)
dt

∣∣∣∣∣∣
≤
∑

k∈Jk0

C

n
sk+1

2µk

exp

−c

( |nαk − j|
n

1
2µk

) 2µk
2µk−1


where the polynomial functions Psk,k and Rsk,k have explicit expression defined in Lemma 13.

Therefore, there just remains to prove Lemma 24 and Theorem 1 will ensue. We recall that, to prove Lemma
11 in the case where the elements αk were distinct from one another, we found an expression of the elements
G n
j as an integral along the path Γk

∀n ∈ N∗,∀j ∈ Z, G n
j =

1

2iπ

∫
Γk

enτGj(τ)dτ

and used the triangular inequality to find the inequality (58) that we recall here∣∣∣∣∣G n
j − 1

2iπ

∫
Γk,in

Ps,k(τ)

(
s−1∑
l=0

(jRs,k(τ))
l

l!

)
enτejφk(τ)dτ

∣∣∣∣∣ ≤ 1

2π

8∑
l=1

El.

We then bounded all the terms Ei to find an estimate on∣∣∣∣∣G n
j − 1

2iπ

∫
Γk,in

Ps,k(τ)

(
s−1∑
l=0

(jRs,k(τ))
l

l!

)
enτejφk(τ)dτ

∣∣∣∣∣ .
In the case where the elements αk are no longer supposed to be distinct, the reasoning is the same but with a
better suited choice of path to express the elements G n

j . We fix k0 ∈ {1, . . . ,K} and introduce the path Γ̃k0

which is the ray {−η + it, t ∈ [−π, π]} deformed into the path Γk,in inside the balls Bε(τk) for k ∈ Jk0
(see

Figure 6). Using Cauchy’s formula and taking into account the "2iπ-periodicity" of Gj(τ), we have that

∀n ∈ N∗,∀j ∈ Z, G n
j =

1

2iπ

∫
Γ̃k0

enτGj(τ)dτ.

We end up with an inequality similar to (58).∣∣∣∣∣∣G n
j − 1

2iπ

∑
k∈Jk0

∫
Γk,in

Psk,k(τ)

(
sk−1∑
l=0

(jRsk,k(τ))
l

l!

)
enτejφk(τ)dτ

∣∣∣∣∣∣ ≤ 1

2π

Eout +
∑

k∈Jk0

8∑
l=2

El,k

 (83)
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ℜ(τ)

ℑ(τ)
•
iπ

•−iπ

×
Bε(τk1

)

×
Bε(τ l)

×
Bε(τk2

)
Γk2,in

Γk1,in

Γ̃k0,out

Figure 6: A representation of the path Γ̃k0
. Inside the balls Bε(τk) where k belongs to Jk0

, it follows the path
Γk,in composed of Γk,res and Γk,p. For l ∈ {1, . . . ,K}, if there is no k ∈ Jk0

such that τk = τ l, then the path
Γ̃k0

inside Bε(τ l) just corresponds to the ray {−η + it, t ∈ [−π, π]}.

where El,k has the same definition as El in (58) but depends on the k ∈ Jk0 we consider. The term Eout is
similar to E1 in (58) and is equal to

Eout =

∣∣∣∣∣
∫
Γ̃k0,out

enτGj(τ)dτ

∣∣∣∣∣ ,
where Γ̃k0,out corresponds to the part of Γ̃k0

outside the balls Bε(τk) for k ∈ Jk0
(see the red path on Figure

6). Reasoning in the same manner as in the case where the elements αk are different from one another, we get
estimates on the different terms. The minor modifications are left to the reader. Notice that Lemmas 19 and
20 are still verified, Lemma 24 ensues. Therefore, Theorem 1 in the case where the elements αk can be equal is
proved for the same polynomials Pk

σ given in Section 3.5.

4.2 Proof of Corollary 1
We are now going to prove Corollary 1 that we recall here:

Corollary (Corollary 1). Let a ∈ ℓ1(Z) which verifies Hypotheses 1 and 4. If there exists some integer J ∈ Z
such that the sequence b := (aj+J)j∈Z verifies Hypotheses 2 and 3, then for all s1, . . . , sK ∈ N there exist a
family of polynomials (Pk

σ)σ∈{1,...,sk} in C[X,Y ] for each k ∈ {1, . . . ,K} and two positive constants C, c such
that for all n ∈ N∗ and j ∈ Z∣∣∣∣∣G n

j −
K∑

k=1

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
Xn,j,k,

d

dx

)
Hβk

2µk

)
(Xn,j,k)

∣∣∣∣∣ ≤
K∑

k=1

C

n
sk+1

2µk

exp
(
−c|Xn,j,k|

2µk
2µk−1

)
with Xn,j,k = nαk−j

n
1

2µk

.

We consider that a satisfies the hypotheses of Corollary 1. As we said just before we introduced the corollary,
we observe that if we define F̃ the symbol associated with b, then we have that

∀κ ∈ S1, F̃ (κ) = κ−JF (κ).

and we have for k ∈ {1, . . . ,K}

F̃ (κke
iξ) =

ξ→0
κ−J
k zk exp(−i(αk + J)ξ − βkξ

2µk + o(|ξ|2µk)). (84)
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We fix s1, . . . , sK ∈ N. Applying Theorem 1 for the sequence b, there exist a family of polynomials (Pk
σ)σ∈{1,...,sk}

in C[X,Y ] for each k ∈ {1, . . . ,K} and two positive constants C, c such that for all n ∈ N∗ and j ∈ Z∣∣∣∣∣(L n
b δ)j −

K∑
k=1

sk∑
σ=1

znkκ
j
k

n
σ

2µk

(
Pk

σ

(
n(αk + J)− j

n
1

2µk

,
d

dx

)
Hβk

2µk

)(
n(αk + J)− j

n
1

2µk

)∣∣∣∣∣
≤

K∑
k=1

C

n
sk+1

2µk

exp

−c

( |n(αk + J)− j|
n

1
2µk

) 2µk
2µk−1

 .

By observing that
∀n ∈ N∗,∀j ∈ Z, (L n

b δ)j = (L n
a δ)j−nJ = G n

j−nJ ,

we conclude the proof of Corollary 1.

5 Computations of the polynomials Pk
σ

Now that Theorem 1 is proved, we want to compute the polynomials Pk
σ defined with (82) in the proof of

Theorem 1. We separate this section in three parts:

• The coefficients of the polynomials Pk
σ depend on the elements A k

sk,l,m
defined as (78). Based on the

definition of the polynomials Psk,k and Qsk,k defined in Lemma 13, the elements A k
sk,l,m

are expressed
using derivatives of ϖk at τk. In Section 5.1, we present a reliable way to compute the value ϖ

(n)
k (τk).

• In Section 5.2, we compute the polynomials Pk
σ for σ = 1, 2. We compare those results with the asymptotic

expansion determined in [RSC15, Theorem 1.2].

• In Section 5.3, we compute numerically the polynomials Pk
σ and verify the sharpness of the estimates (7)

in Theorem 1 for two specific examples of sequences a:

⋆ A case where the sequence a has real non negative coefficients.

⋆ The sequence a associated to the O3 scheme for the transport equation.

5.1 Computing the derivatives of ϖk at τ k

The coefficients A k
sk,l,m

defined in (78) are expressed using the derivatives of ϖk at τk. We now present a
reliable way to compute ϖ

(n)
k (τk). For τ ∈ Bε⋆(τk), eϖk(τ) = κk(e

τ ) is an eigenvalue of M(eτ ). Lemma 3
implies that

∀τ ∈ Bε⋆(τk), F (eϖk(τ)) = eτ . (85)

For all n ∈ N, we define the moment function

Mn : C∗ → C
κ 7→ ∑

j∈Z j
najκ

j . (86)

We observe that we have the equality M0 = F and

∀n ∈ N,∀κ ∈ C∗, Mn+1(κ) = κ
dMn

dκ
(κ),

thus
∀n ∈ N,∀τ ∈ Bε⋆(τk),

d

dτ

(
Mn

(
eϖk(τ)

))
= ϖ′

k(τ)Mn+1

(
eϖk(τ)

)
. (87)

We will differentiate the equality (85) and use the equality (87) to find an expression of ϖ(n)
k (τk). To do so,

we introduce the Bell polynomials (see [Com74], Chapter 3.3) defined for n ∈ N and j ∈ {1, . . . , n} as

Bn,j(X1, . . . , Xn+1−j) :=
∑ n!

l1! . . . ln+1−j !

(
X1

1!

)l1

. . .

(
Xn+1−j

(n+ 1− j)!

)ln+1−j
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where the sum is taken over the integers l1, . . . , ln+1−j ∈ N such that

j = l1 + l2 + . . .+ ln+1−j ,

n = l1 + 2l2 + . . .+ (n+ 1− j)ln+1−j .

The Bell polynomials Bn,j verify the following equalities:

∀n ∈ N∗,∀j ∈ {1, . . . , n} , Bn,j =

n+1−j∑
i=1

(
n− 1

i− 1

)
XiBn−i,j−1, (88)

∀n ∈ N∗,∀j ∈ {1, . . . , n} ,∀i ∈ {1, . . . , n+ 1− j} , ∂Bn,j

∂Xi
=

(
n

i

)
Bn−i,j−1. (89)

We can now prove the following lemma which allows us to express recursively the derivatives of ϖk at τk
with the moments Mn(κk).

Lemma 25. For all k ∈ {1, . . . ,K}, we have

ϖ′
k(τk) =

zk
M1(κk)

,

∀n ≥ 2, ϖ
(n)
k (τk) =

1

M1(κk)

zk −
n∑

j=2

Mj(κk)Bn,j

(
ϖ′

k(τk), . . . , ϖ
(n+1−j)
k (τk)

) .

Proof Using the equalities (87), (88) and (89), we can prove recursively the following equality for all n ∈ N∗

and τ ∈ Bε⋆(τk) which looks like Faà di Bruno’s formula :

dn

dτn

(
M0(e

ϖk(τ))
)
=

n∑
j=1

Mj(e
ϖk(τ))Bn,j

(
ϖ′

k(τ), . . . , ϖ
(n+1−j)
k (τ)

)
. (90)

Using the equalities (90), (85) and M0 = F , we conclude the proof of Lemma 25. □

5.2 Computation of Pk
σ for σ = 1, 2

In this section, we will compute the polynomials Pk
σ for σ = 1, 2. The goal is to compare the asymptotic

expansion (7) with the result of [RSC15, Theorem 1.2] and with the local limit theorem (see [Pet75, Chapter
VII, Theorem 13]). We consider k ∈ {1, . . . ,K} and sk ∈ N∗.

• We start to compute the polynomials Pk
1 . We have using (82)

Pk
1 =

sk−1∑
l=0

(2µk+sk−1)l+sk−1∑
m=(2µk+1)l

sk∑
k1=0

sk∑
k3=0

1m−2µkl+k3(2µk−1)+1=1C
k
sk,l,m,k1,k3

Xk1+k3Y m+k1

=

sk∑
k1=0

C k
sk,0,0,k1,0X

k1Y k1 .

Furthermore, for k1 ∈ {0, . . . , sk}, we have using the definition (80) of C k
sk,l,m,k1,k3

that

C k
sk,0,0,k1,0 =

{
0 if k1 ≥ 1,

A k
sk,0,0

|αk| if k1 = 0.

Furthermore, using the equality (78) and the asymptotic expansion (42), we have

A k
sk,0,0

= −sgn(αk)ϖ
′
k(τk) =

1

|αk|
.

We then have
C k
sk,0,0,k1,0 = A k

sk,0,0
|αk| = 1.
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Therefore, we have proved that
∀sk ∈ N\ {0} , Pk

1 = 1. (91)

Theorem 1 implies that there exist two positive constants C, c such that

∀(n, j) ∈ N∗ × Z,

∣∣∣∣∣G n
j −

K∑
k=1

znkκ
j
k

n
1

2µk

Hβk

2µk

(
nαk − j

n
1

2µk

)∣∣∣∣∣ ≤
K∑

k=1

C

n
1

µk

exp

−c

( |nα− j|
n

1
2µk

) 2µk
2µk−1

 . (92)

The estimate (92) deduced from Theorem 1 gives us the same leading term for the asymptotic behavior of G n
j

as expected from [RSC15, Theorem 1.2].
• We now compute the polynomials Pk

2 . We have using (82)

Pk
2 =

sk−1∑
l=0

(2µk+sk−1)l+sk−1∑
m=(2µk+1)l

sk∑
k1=0

sk∑
k3=0

1m−2µkl+k3(2µk−1)+1=2C
k
sk,l,m,k1,k3

Xk1+k3Y m+k1

=

sk∑
k1=0

1µk=1C
k
sk,0,0,k1,1X

1+k1Y k1 + C k
sk,0,1,k1,0X

k1Y 1+k1 + C k
sk,1,2µk+1,k1,0X

k1Y 2µk+1+k1 .

Furthermore, for k1 ∈ {0, . . . , sk}, we have using the definition (80) of C k
sk,l,m,k1,k3

that

C k
sk,0,1,k1,0 =

{
0 if k1 ≥ 1,

A k
sk,0,1

αk|αk| if k1 = 0,

C k
sk,1,2µk+1,k1,0 =

{
0 if k1 ≥ 1,

A k
sk,1,2µk+1α

2µk+2
k |αk| if k1 = 0,

C k
sk,0,0,k1,1 = A k

sk,0,0
α−1
k |αk|

k1∑
k2=0

(
k1
k2

)
(−1)k1−k2

k2 + 1

2µk

=

{
0 if k1 ≥ 2,

A k
sk,0,0sgn(αk)

2µk
if k1 = 0, 1.

Also, using the equality (78) and Lemma 25, we have

A k
sk,0,0

= −sgn(αk)ϖ
′
k(τk),

A k
sk,0,1

= −sgn(αk)ϖ
(2)
k (τk),

A k
sk,1,2µk+1 = −sgn(αk)ϖ

′
k(τk)

ϖ
(2µk+1)
k (τk)

(2µk + 1)!
.

Thus, for all sk ∈ N\ {0},

Pk
2 = 1µk=1

(
−ϖ′

k(τk)

2µk

)(
X +X2Y

)
− α2

kϖ
(2)
k (τk)Y − α2µk+3

k ϖ′
k(τk)

ϖ
(2µk+1)
k (τk)

(2µk + 1)!
Y 2µk+1. (93)

Theorem 1 thus implies that there exist two positive constants C, c such that for all (n, j) ∈ N∗ × Z∣∣∣∣∣G n
j − znkκ

j
k

K∑
k=1

1

n
1

2µk

Hβk

2µk
(Xn,j,k) +

1

n
1

µk

Pk
2

(
Xn,j,k,

d

dx

)
Hβk

2µk
(Xn,j,k)

∣∣∣∣∣ ≤
K∑

k=1

C

n
3

2µk

exp
(
−c |Xn,j,k|

2µk
2µk−1

)
(94)

with Xn,j,k := nαk−j

n
1

2µk

.

⋆ When µk ≥ 2, the asymptotic expansion (42) implies that ϖ
(2)
k (τk) = 0. Thus, the equality (93) becomes

Pk
2 = −α2µk+3

k ϖ′
k(τk)

ϖ
(2µk+1)
k (τk)

(2µk + 1)!
Y 2µk+1. (95)
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⋆ We now look at the case µk = 1. The equality (93) becomes

Pk
2 =

(
−ϖ′

k(τk)

2

)(
X +X2Y

)
− α2

kϖ
(2)
k (τk)Y − α5

kϖ
′
k(τk)

ϖ
(3)
k (τk)

6
Y 3.

As we said in the introduction of the paper, the polynomials satisfying Theorem 1 are not unique. We will now
propose a more convenient choice of polynomials to replace Pk,sk,2. Using Lemma 1, if we define the polynomial

Qk
2(X,Y ) =

(
−2βkϖ

′
k(τk)− α2

kϖ
(2)
k (τk)

)
Y +

(
−2β2

kϖ
′
k(τk)− α5

kϖ
′
k(τk)

ϖ
(3)
k (τk)

6

)
Y 3 ∈ C[X,Y ]

we have
Pk

2

(
.,

d

dx

)
Hβk

2 = Qk
2

(
.,

d

dx

)
Hβk

2 . (96)

We can then replace Pk
2 with Qk

2 in the estimate (94) when µk = 1. This allows us to express the second term
of the asymptotic expansion using a linear combination of derivatives of Hβk

2 since Qk
2(X,Y ) does not have any

terms where X intervenes. We notice that the asymptotic expansion (42) implies that

ϖ
(2)
k (τk)

2
=

βk

α3
k

. (97)

Using Lemma 25 and equality (97), we can prove that actually

Qk
2(X,Y ) = − 1

6z2k

(
z2kM3(κk)− 3zkM2(κk)M1(κk) + 2M1(κk)

3
)
Y 3. (98)

We will see in Section 5.3.1 that, in the probabilistic case we presented in the introduction of the paper that
motivated our result, this expression of Qk

2 gives exactly the second term of the asymptotic expansion (1) when
we apply the local limit theorem (which is fortunate).

5.3 Numerical examples
In this section, we consider some examples of elements a ∈ ℓ1(Z) which satisfy the conditions of Theorem 1 and
see how sharp the estimations we found are.

5.3.1 Probability distribution : real non negative sequences

First, we consider the case where a has real non negative coefficients. If we introduce the sequence b = (a−j)j∈Z,
then b is the probability distribution of some random variable X supported on Z. We observe that Lb = La,
so, recalling that bn = b ∗ . . . ∗ b, we have

∀n ∈ N∗,∀j ∈ Z, bnj = G n
j .

We will settle on a ∈ ℓ1(Z) such that aj = 0 for j ̸= −1, 0, 1 and

a−1 = 2/3, a0 = 1/6, a1 = 1/6.

This sequence verifies Hypothesis 1. In this case, we have r = p = 1. Also, F (1) = 1 and

∀κ ∈ S1\ {1} , |F (κ)| < 1.

The function F satisfies that
F (eiξ) =

ξ→0
exp(−iαξ − βξ2 + o(ξ2))

where α = E(X) = 1
2 and β = V (X)

2 = 7
24 . We have µ = 1 in this case and Hypothesis 2 is satisfied with K = 1,

κ1 = 1 and z1 = 1. It also directly satisfies Hypothesis 3 since K = 1. Since K = 1, we lose the subscript k in
most the notations that follow. The sequence a verifies Hypotheses 1, 2 and 3, so we can apply Theorem 1. As
an example, we will apply Theorem 1 for s = 2 and use the calculations of Section 5.2 to determine the terms
of the asymptotic expansion:

39



• Using the equality (91) on Pk
1 , the leading order term of the asymptotic expansion given by Theorem 1 is

1√
n
Hβ

2

(
nα− j√

n

)
=

1√
4πβn

exp

(
−|j − nα|2

4βn

)
=

1√
2πV (X)n

exp

(
−|j − nE(X)|2

2V (X)n

)
.

• We notice that using the moments function Mn defined with (86), we have

∀n ∈ N, Mn(1) = (−1)nE(Xn).

Using the equalities (96) and (98) that respectively links the polynomials Pk
2 and Qk

2 and allows us to compute
the polynomial Qk

2 , the second order term of the asymptotic expansion given by Theorem 1 is

1

n

(
−1

6
(M3(1)− 3M2(1)M1(1) + 2M1(1)

3)

)(
Hβ

2

)(3)
(Xn,j)

=
E((X − E(X))3)

6(2β)2n

(
H

1
2
2

)(3)(Xn,j√
2β

)

=

q1

(
Xn,j√
V (X)

)
n

where Xn,j :=
nE(X)−j√

n
and the function q1 : R → R is defined as

∀x ∈ R, q1(x) := −E((X − E(X))3)

6
√
2πV (X)2

(x3 − 3x)e−
x2

2 .

Theorem 1 then states that there exist two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z, |Err(n, j)| ≤ C

n
3
2

exp
(
−c |Xn,j |2

)
, (99)

with Xn,j =
nE(X)−j√

n
and

Err(n, j) := G n
j − 1√

2πV (X)n
exp

(
−|Xn,j |2
2V (X)

)
−

q1

(
Xn,j√
V (X)

)
n

.
The estimate (99) is exactly the asymptotic expansion of the elements bnj = G n

j we expected via the local
limit theorem (see [Pet75, Chapter VII, Theorem 13] for more details). This behavior is represented on Figure
7 where we even see that the remainder n

3
2Err(n, j) seems to scale like f

(
nα−j√

n

)
. This would correspond to

the next term in the asymptotic expansion of G n
j .

5.3.2 The O3 scheme for the transport equation

We will now consider an example linked to finite difference schemes. We consider the transport equation

∂tu+ a∂xu = 0, (t, x) ∈ R+ × R

with Cauchy data at t = 0. The O3 scheme is an explicit third order accurate finite difference approximation
of the previous transport equation. We refer to [Des08] for a detailed analysis of this scheme. It corresponds to
the numerical scheme (5) for a ∈ ℓ1(Z) such that aj = 0 for j /∈ {−2,−1, 0, 1} and

a−2 = −λa(1− (λa)2)

6
, a−1 =

λa(1 + λa)(2− λa)

2
, a0 =

(1− (λa)2)(2− λa)

2
, a1 = −λa(1− λa)(2− λa)

6
,

with λ = ∆t
∆x > 0. The parameter λa is the Courant number. We have in this case that r = 2 and p = 1. For

λa ∈]− 1, 1[\ {0}, we have that F (1) = 1 and

∀κ ∈ S1\ {1} , |F (κ)| < 1.
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Figure 7: On the left : A representation of n
3
2 maxj∈{−nr,...,np} |Err(n, j)| depending on n. As expected knowing

that −r < α < p, we see that the function is bounded and even seems to converge. On the right : We fixed
n = 100 and represented j ∈ Z 7→ n

3
2Err(n, j).

Also, there exists β ∈ R∗
+ such that

F (eiξ) =
ξ→0

exp(−iλaξ − βξ4 + o(ξ4)).

We have µ = 2 in this case and Hypothesis 2 is satisfied with K = 1, κ1 = 1 and z1 = 1. Since K = 1, we
lose the subscript k in most the notations that follow. The sequence a verifies hypotheses 1, 2 and 3, so we can
apply Theorem 1. As an example, we will apply Theorem 1 for s = 3 and λa = 1

2 .
• Using the equality (91), we have

P1 = 1.

• Using the equality (95) and Lemma 25 to compute ϖ(3)(1), we have

P2 = 0.

• Using the equality (82) to express the polynomial P3 and Lemma 25 to compute the coefficients Al,m, we
numerically compute the polynomials P3:

P3 = p3Y
6

where p3 ≈ −1, 953125.10−3.
Theorem 1 then states that there exist two constants C, c > 0 such that

∀n ∈ N∗,∀j ∈ Z, |Err(n, j)| ≤ C

n
exp

(
−c |Xn,j |

4
3

)
, (100)

with Xn,j =
nα−j

n
1
4

and

Err(n, j) := G n
j −

3∑
σ=1

1

n
σ
4

Pσ

(
Xn,j ,

d

dx

)
Hβ

4 (Xn,j)

.
This behavior is represented on Figure 8 where we even see that the remainder nErr(n, j) seems to scale

like f
(

nα−j√
n

)
. Hence, the estimate (100) seems to be sharp.

6 Appendix: Proof of auxiliary results

6.1 Proof of the Lemma 2
We recall here the statement of Lemma 2.
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Figure 8: For these figures, we chose λa = 1/2. On the left : A representation of nmaxj∈{−nr,...,np} |Err(n, j)|
depending on n. As expected, the function seems to be bounded. On the right : We fixed n = 100 and
represented j ∈ Z 7→ nErr(n, j). We observe the exponential decay in j. Also, we can see a particular shape of
curve that arises that would correspond to the next term in the asymptotic expansion of G n

j .

Lemma (Lemma 2). For a ∈ ℓ1(Z) which verifies Hypotheses 1 and 2, we have that a−r and ap belong to D.

Proof We introduce the polynomial function g defined by

∀κ ∈ C, g(κ) :=

p∑
l=−r

alκ
l+r.

For all κ ∈ S1, Hypothesis 2 implies that

|g(κ)| = |κrF (κ)| = |F (κ)| ≤ 1.

Observing that g is not a constant function, the maximum principle for holomorphic functions [Rud87] allows
us to conclude that

|a−r| = |g(0)| < 1.

The same kind of argument allows us to conclude for the coefficient ap. □

6.2 Proof of the Lemma 9
We recall here the statement of Lemma 9.

Lemma (Lemma 9). For µ ∈ N∗, β ∈ C with positive real part and m ∈ N, there exist two constants C, c > 0
such that

∀x ∈ R,
∣∣∣Hβ

2µ

(m)
(x)
∣∣∣ ≤ C exp

(
−c|x| 2µ

2µ−1

)
.

Proof We fix η ∈ R that we will choose more precisely later. Integrating the function z 7→ (iz)m exp(izx−βz2µ)
on the rectangle depicted in the Figure 9 using the Cauchy formula and passing to the limit R → +∞, we obtain

∀η ∈ R, Hβ
2µ

(m)
(x) =

1

2π

∫
R
(i(t+ iη))mei(t+iη)xe−β(t+iη)2µdt.

Thus, ∣∣∣Hβ
2µ

(m)
(x)
∣∣∣ ≤ e−ηx

2π

∫
R
(t2 + η2)

m
2 exp

(
−ℜ

(
β(t+ iη)2µ

))
dt.
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Figure 9: Integrating path for the proof of Lemma 9.

Using Young’s inequality, we can show that there exists a constant c > 0 such that

∀t ∈ R, ℜ
(
β(t+ iη)2µ

)
≥ ℜ(β)

2
t2µ − cη2µ.

and thus there exists C > 0 independent from x and η such that∣∣∣Hβ
2µ

(m)
(x)
∣∣∣ ≤ C(1 + |η|m)e−ηx+cη2µ

.

Optimizing e−ηx+cη2µ

with respect to η yields the desired result. □

6.3 Proof of the Lemma 16
We recall here the statement of Lemma 16.

Lemma (Lemma 16, Inequalities in Bε⋆(τk)). There exists C > 0 such that for all τ ∈ Bε⋆(τk) and (n, j) ∈ Dk,
we have∣∣∣enτ (ejϖk(τ) − ejQs,k(τ)

)∣∣∣ ≤ Cn|τ − τk|2µk+s exp(nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|))

and∣∣∣∣∣enτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)∣∣∣∣∣ ≤ C
(
n|τ − τk|2µk+1

)s
exp(nℜ(τ−τk)+j(ℜ(φk(τ))+sgn(αk)|Rs,k(τ)|)).

Proof We begin with the first inequality. We define the holomorphic function S such that

∀z ∈ C, S(z) =
{

1 if z = 0,
sinh(z)

z else.

We consider (n, j) ∈ Dk and τ ∈ Bε⋆(τk). We have∣∣∣enτ (ejϖk(τ) − ejQs,k(τ)
)∣∣∣ = |j||ξs,k(τ)||τ − τk|2µk+s

∣∣∣∣S (j ξs,k(τ)(τ − τk)
2µk+s

2

)∣∣∣∣
exp

(
nℜ(τ) + j

(
ℜ(ϖk(τ))−ℜ

(
ξs,k(τ)(τ − τk)

2µk+s

2

)))
.

We observe that the function z ∈ C 7→ |S(z)| exp(−|z|) is bounded. Therefore, because the function ξk can
be bounded on Bε⋆(τk) and ℜ(τ) = ℜ(τ − τk),∣∣∣enτ (ejϖk(τ) − κj

ke
jφk(τ)

)∣∣∣
≲ n|τ−τk|2µk+s exp

(
nℜ(τ − τk) + j

(
ℜ(ϖk(τ))−ℜ

(
ξs,k(τ)(τ − τk)

2µk+s

2

))
+ |j| |ξs,k(τ)(τ − τk)

2µk+s|
2

)
.
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Since we have

j

(
ℜ(ϖk(τ))−ℜ

(
ξs,k(τ)(τ − τk)

2µk+s

2

))
+ |j| |ξs,k(τ)(τ − τk)

2µk+s|
2

≤ j
(
ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)

2µk+s|
)
.

The proof of the second inequality is similar. We define the holomorphic function Ψs such that

∀z ∈ C, Ψs(z) =
1

zs

(
ez −

s−1∑
l=0

zl

l!

)
.

We then have

enτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)
= (jRs,k(τ))

sΨs(jRs,k(τ))e
nτ+jφk(τ).

We observe that the function z ∈ C 7→ |Ψs(z)| exp(−|z|) is bounded. Therefore,∣∣∣∣∣enτ+jφk(τ)

(
ejRs,k(τ) −

s−1∑
l=0

(jRs,k(τ))
l

l!

)∣∣∣∣∣ ≲ (n|τ − τk|2µk+1)s exp(nℜ(τ − τk) + jℜ(φk(τ)) + |jRs,k(τ)|).

We can then conclude the proof of the second inequality. □

6.4 Proof of the Lemma 17
We recall here the statement of Lemma 17.

Lemma (Lemma 17, Inequalities on Γk,p). For (n, j) ∈ N∗ × Z such that sgn(j) = sgn(αk) and τ ∈ Γk,p, we
have

• Case A: ρk
(

ζk
γk

)
∈
[
−η

2 , εk,0
]

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ −nc⋆ℑ(τ − τk)

2µk − n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

,

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ −nc⋆ℑ(τ − τk)
2µk − n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

,

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ −nc⋆ℑ(τ − τk)
2µk − n

αk
(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

.

• Case B: ρk
(

ζk
γk

)
> εk,0

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ − n

αk
(2µk − 1)ARδkε

2µk

k,0 ,

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ − n

αk
(2µk − 1)ARδkε

2µk

k,0 ,

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ − n

αk
(2µk − 1)ARδkε

2µk

k,0 .

• Case C: ρk
(

ζk
γk

)
< −η

2

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk

,

nℜ(τ − τk) + jℜ(ϖk(τ)) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk

,

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ − n

αk
(2µk − 1)ARδk

(η
2

)2µk

.
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Proof In every case, the second inequality is a direct consequence of the first one. Furthermore, the proof of
the first and third inequalities are very similar. For the first one, we will use inequality (45) and the third one
will rely on inequality (46). Thus, we will focus in each case on the first inequality.

We consider (n, j) ∈ N∗ × Z such that sgn(j) = sgn(αk) and τ ∈ Γk,p. Using first the inequality (45), the
fact that τ ∈ Γk,p and finally the inequality (53), we have

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ nℜ(τ − τk)−

j

αk
Ψk(τp)

≤ −nc⋆ℑ(τ − τk)
2µk +

n

αk

(
γkτ

2µk
p − 2µkζkτp

)
.

• First, we consider the case A. Then, we have τp = ρk

(
ζk
γk

)
. Therefore,

γkτ
2µk
p − 2µkζkτp = −(2µk − 1)γk

( |ζk|
γk

) 2µk
2µk−1

≤ 0. (101)

• We consider the case B. Because τp = εk,0, we have

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ n

αk

(
γkε

2µk

k,0 − 2µkζkεk,0

)
.

We recall that ρk

(
ζk
γk

)
> εk,0 and that ρk

(
ζk
γk

)
is the only real root of −ζk + γkx

2µk−1 = 0. Therefore,

−ζk ≤ −γkε
2µk−1
k,0 and

γkτ
2µk
p − 2µkζkτp ≤ −(2µk − 1)γkε

2µk

k,0 ≤ 0. (102)

Using (56) to bound γk, we deduce the inequality (62).
• Finally, we place ourselves in case C. We have that τp = −η

2 , so

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)|ξs,k(τ)(τ − τk)
2µk+s|) ≤ n

αk

(
γk

(η
2

)2µk

+ 2µkζk
η

2

)
.

We recall that ρk

(
ζk
γk

)
< −η

2 and that ρk

(
ζk
γk

)
is the only real root of −ζk + γkx

2µk−1 = 0. Then,

ζk ≤ −γk
(
η
2

)2µk−1 and

γkτ
2µk
p − 2µkζkτp ≤ −(2µk − 1)γk

(η
2

)2µk

≤ 0. (103)

Using (56) to bound γk, we deduce the inequality (65). □

6.5 Proof of the Lemma 18
We recall here the statement of Lemma 18.

Lemma (Lemma 18). For (n, j) ∈ N∗ × Z such that sgn(j) = sgn(αk) and τ ∈ Γk,res, we have in all cases

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)
∣∣ξs,k(τ)(τ − τk)

2µk+s
∣∣) ≤ −n

η

2
,

nℜ(τ − τk) + j(ℜ(ϖk(τ)) ≤ −n
η

2
,

nℜ(τ − τk) + j(ℜ(φk(τ)) + sgn(αk)|Rs,k(τ)|) ≤ −n
η

2
.

Proof For the same reasons as for the proof of Lemma 17, we will only focus on the first inequality. We
consider (n, j) ∈ N∗ × Z such that sgn(j) = sgn(αk) and τ ∈ Γk,res. Using the inequality (45) and the facts
that ℑ(τ − τk)

2µk ≥ ℓ2µk

k,p and −η + iℓk,p + τk ∈ Γk,p, we have

nℜ(τ − τk) + j(ℜ(ϖk(τ)) + sgn(αk)
∣∣ξs,k(τ)(τ − τk)

2µk+s
∣∣) ≤ −nη − j

αk

(
−η −ARη

2µk +AIℑ(τ − τk)
2µk
)

≤ −nη − j

αk
Ψk(τp).
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We know that η + τp ≥ η
2 , so

−nη − j

αk
(τp −ARτ

2µk
p ) = −n(η + τp) +

n

αk

(
γkτ

2µk
p − 2µkζkτp

)
≤ −n

η

2
+

n

αk

(
γkτ

2µk
p − 2µkζkτp

)
.

We proved at the end of the proof of Lemma 17 that, in the three cases A, B and C, γkτ2µk
p − 2µkζkτp are

non positive (see (101), (102) and (103)). This concludes the proof. □
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