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Abstract—In this paper, we propose a new design for single
sensor compressive HDR light field cameras, combining multi-ISO
photography with coded mask acquisition, placed in a compressive
sensing framework. The proposed camera model is based on a
main lens, a multi-ISO sensor and a coded mask located in the
optical path between the main lens and the sensor that projects
the coded spatio-angular information of the light field onto the
2D sensor. The model encompasses different acquisition scenarios
with different ISO patterns and gains. Moreover, we assume that
the sensor has a built-in color filter array (CFA), making our
design more suitable for consumer-level cameras. We propose a
reconstruction algorithm to jointly perform color demosaicing,
light field angular information recovery, HDR reconstruction, and
denoising from the multi-ISO measurements formed on the sensor.
This is achieved by enabling the sparse representation of HDR
light fields using an overcomplete HDR dictionary. We also provide
two HDR light field data sets: one synthetic data set created using
the Blender rendering software with two baselines, and a real
light field data set created from the fusion of multi-exposure low
dynamic range (LDR) images captured using a Lytro Illum light
field camera. Experimental results show that, with a sampling
rate as low as 2.67%, using two shots, our proposed method yields
a higher light field reconstruction quality compared to the fusion
of multiple LDR light fields captured with different exposures,
and with the fusion of multiple LDR light fields captured with
different ISO settings.

Index Terms—HDR, light fields, data sets, compressive sensing

I. INTRODUCTION

Efficient, high quality capture of light fields is a key research
challenge in the development of new imaging techniques. By
capturing both the spatial and angular variations in the light
incident onto the sensor and encoding this as a 4D data set, a
light field enables detailed capture, representation and analysis
of scenes and objects, and is recognized as an underpinning
technology in computational photography. Light field imaging
has enabled a range of research and emerging applications
in areas ranging from computer graphics [1], [2], [3], [4]
and everyday photography [ to computer vision [6], [7],
microscopy [8l], [9] and displays [10]] to name a few. Due to
the complexity inherent to light field capture, current cameras
and imaging systems are limited to low dynamic range (LDR)
capture. High dynamic range (HDR) light field capture still
requires multiple exposures to cover the desired dynamic range.

Designing a compact light field camera is a difficult task as
there is a trade-off between spatial resolution, angular resolution
and visual quality. Current systems are either based on non-
portable camera arrays [L1], [6], or a single sensor with a lenslet
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array [12], [5], or a coded mask [13], [14], [15]], [L6] placed
in front of the sensor. Effort has been in parallel dedicated to
the design of 2D HDR imaging solutions, based on new sensor
technologies [17], [18], by merging multiple images captured
at different exposures with a standard camera, or by placing
optical elements with spatially varying transmittance in front
of the image sensor [19]], [20].

The problem of HDR light field acquisition using a 2D
sensor remains an open and challenging problem despite the
recent advances in both 2D HDR imaging and compressive
LDR light field acquisition. The main challenge here is indeed
the reconstruction of an HDR light field from a single LDR
image recorded on a monochrome sensor equipped with a
Color Filter Array (CFA). This single monochrome image
hence should encode not only the HDR information of the
scene, but also angular and spectral measurements of the light
field. To address this problem, we introduce a novel framework
for compressive capture of HDR light fields combining multiple
ISO photography with mask-based coded projection techniques.
To solve the HDR imaging problem, a possible approach
would be to place a filter of spatially varying transmittance in
front of the sensor in order to record different exposures in
adjacent pixels of the sensor, as in [19] for 2D HDR imaging.
However, this solution would require increasing the exposure
time to compensate for the light attenuation induced by the
filter. Instead, we consider a design where a color coded
mask is placed in front of a multi-ISO sensor with per-pixel
control over the ISO value, e.g. [21]], or with solutions such as
the "magic lantern" firmware for dual-ISO HDR photography
[22]. In order to improve the quality of the reconstructed
HDR light field, we can increase the number of recorded
measurements by increasing the number of shots and apply the
same reconstruction method jointly on all the captured shots.

Our compressive HDR light field imaging framework cap-
tures a coded image with a varying per pixel gain encoding the
scene. The sensor image captured through the mask, the varying
per pixel gain, and the CFA, encodes spatial, angular, and
color intensity variations in the scene. This coded projection
image compresses the incident scene radiance information
such that the full HDR light field can be recovered as a
tractable inverse problem. To solve this, we present a novel
joint spatio-angular-HDR reconstruction algorithm using a
trained dictionary specifically designed for HDR light field
reconstruction. The joint reconstruction includes a confidence
matrix based on the pixel intensity and acquisition noise,
effectively performing denoising as an integral part in the
reconstruction.



In order to evaluate our approach we have created an HDR
light field benchmark data set that will be made publicly
available. The data set consists of synthetic and real HDR
light fields rendered in Blender or captured with a Lytro Ilum
camera using multiple exposures in a variety of challenging
lighting conditions.

The main contributions in this paper can be summarized as:

« A novel single sensor camera design for capturing HDR

light fields, combining multi-ISO photography and coded
mask acquisition principles.

« A novel joint spatio-angular-HDR light field reconstruction

algorithm that is robust to noise.

« A novel over-complete dictionary tailored to HDR data.

« A novel HDR light field data set with synthetic and natural

image data intended for evaluations and performance
benchmarks.

To evaluate our approach we perform an investigation of
different per pixel ISO/gain patterns and sensor parameter
configurations. More precisely, we consider three ISO patterns,
a full random pattern as well as more structured block-based
and row-based interlacing patterns. We report results for each
pattern in order to investigate whether full randomness, due
to increased incoherence with the dictionary, could improve
the reconstruction performance. While we observed improved
performance for random per-pixel ISO, we acknowledge the
fact that these types of sensors have not reached the commercial
market yet, and that row-based and block-based patterns enable
cheaper and easier hardware implementations; the row-based
interlacing ISO pattern has been utilized for HDR imaging
using off-the-shelf consumer cameras [23]].

To expand the analysis of our method, we assess how
the proposed approach performs when increasing the number
of captures, referred to as shots in what follows, and we
assess its robustness to noise. The results show that the
proposed camera architecture and the joint spatio-angular-HDR
yields a higher reconstruction quality as compared to fusing
multiple LDR light fields, captured with different exposures,
using traditional methods [24]. In other words, our method
outperforms traditional methods based on exposure bracketing
given only 2.6% of the total number of pixel samples (assuming
two shots). We also compare our results with a two step
method of recovering the light field from the 2D compressed
measurements followed by the reconstruction of the HDR
values using a state-of-the-art deep learning method [25] on
each reconstructed view.

II. RELATED WORK

a) HDR imaging: In recent years, several techniques and
architectures have been proposed for extending the image sensor
dynamic range, by using a computational element that measures
the pixel saturation time, i.e., the time to attain full potential
well capacity, [27]. However, such detection of saturation for
each pixel is not easy to implement. Other CMOS sensor
designs have been proposed with multi-bucket pixels enabling
time-multiplexed exposures [21], by modifying the readout
circuits [18], [17] to improve the pixel dynamic range, or by
adapting their sensitivity [28]. A quantitative study of HDR
image sensors can be found in [29].
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(a) Camera architecture

(b) Coded mask and three examples of ISO patterns

Fig. 1: (a) The camera architecture is composed of a main lens, a
coded mask, and a photo-sensitive sensor equipped with a CFA on top
(the right side of the sensor plane) and a ISO pattern behind (the left
side of the sensor plane). (b) Examples of coded masks (top-left) and
three ISO patterns: Random, Row-based, and Block-based overlaid
on top of the Bayer CFA pattern. These images are included for
illustrative purposes and do not represent an attenuation mask since
the gain is applied after the acquisition and that the gain/[SO amplifies
the signal rather than attenuating it.

Alternative approaches have been proposed for HDR imaging
acquisition that consist of placing an optical mask with a
spatially varying transmittance in front of the image sensor.
The mask allows recording different exposures of the scene
on adjacent pixels of the sensor [19]. Spatially varying sensor
gains have also been considered in [22] for capturing high
dynamic range (HDR) images in a single shot. The HDR
image is reconstructed using an algorithm based on the sensor
noise model to suppress the image noise and remove saturated
values [30]], [31]], [32]. The authors in [33]] and [34] propose
an architecture that is independent of the sensor, in which
the light is split using some optical element, e.g. a pyramid-
shaped mirror or a refracting prism, and redirected toward
a set of sensors associated with absorptive filters to produce
images with different exposures. In [35], an optical design is
proposed with a rank-1 phase pattern, where the diffractive
optic point spread function (PSF) is jointly optimized with the
reconstruction method that recovers the latent HDR scene from
the input measurement. A joint design of a spatially-varying
modulation mask and of the HDR image reconstruction network
is proposed in [20].
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Fig. 2: The imaging pipeline corresponding to the camera architecture shown in Fig. [I| represents the optical projection of light field data on
the sensor and the digitization at the sensor using a noise model inspired by [26]] to take into account different gain variations.

Another type of approach for HDR imaging, following the
principles of epsilon photography [36], involves taking a series
of images with different exposure times with a standard camera
through exposure bracketing, and then combining them into an
HDR image using a hat function [24] or fusion weights based
on the statistical characteristic of the sensor noise [26], [37].
The merging can also be performed using either patch-based
methods [38]], [39]], [40], low rank matrix completion (LRMC)
[41], [42], [43], [44], and more recently deep learning methods
[45]. A model of per pixel intensity variations, observed when
the camera parameters are varied, is proposed in [36], inspired
by the confocal stereo method [46].

Methods also exist to reconstruct an HDR image from one
single LDR image by hallucinating missing information in
under and over-exposed regions, using either convolutional
neural networks [47], [48], [49], [25]], or convolutional sparse
coding [50]]. A comprehensive review of the subject is provided
in [51].

Even though the proposed design is related to some of
the above approaches, in particular using spatially varying
exposures for capturing HDR images, here we consider multi-
ISO sensors together with a coded mask that allows us
to compress a light field in both the spatial and angular
dimensions.

b) Light field imaging: Over the past decades, a range of
acquisition devices have been developed for efficient capturing
of 4D light fields, from multi-view imagers [1], [11]], [6] to
multi-view coders which encode angular information of 4D
light fields onto 2D sensor images from which the light field
views can be recovered. More compact acquisition devices have
been designed by modifying the architecture of conventional
cameras, e.g. using micro-lens arrays (MLA) placed on the
optical path before the camera sensor [12], [3], to capture the
light field passing through the main lens.

Alternatively, coded mask designs have been considered
instead of MLA to modulate 4D light fields into 2D projections
on the sensor. Different reconstruction algorithms can then be
used to restore the light field from its 2D coded projection
[13], [14], [15]. The light field acquisition and reconstruction
problems are formulated by a compressive sensing framework,
in which the sensing matrix is materialized by a coded physical
mask. Thanks to the use of a coded mask, instead of recording
a spatial multiplex of 2D slices of the light field, as in micro-
lens based camera architectures, the photosensor records a
set of linear measurements from which a higher resolution
light field can be reconstructed. Babacan et al. [52] place a
randomly coded mask on the aperture plane to obtain incoherent

measurements of the light field. Multiple shots are captured as
random linear combinations of angular images by separately
opening one region of the aperture and blocking the light in
the others. Marwah et al. [[14] propose to place a monochrome
mask between the aperture and sensor planes to record optically
coded projections on a single image sensor, while Miandji et
al in [53]] and [[15] use respectively a random binary mask or
a moving color coded mask affixed to the sensor to extract
incoherent measurements.

While the previous methods rely on patch-based dictionaries
with a sparsity assumption for light field reconstruction from
the set of sparse measurements, Heide et al. [54] employ
learned convolutional sparse coding features to synthesize
light field views. Light fields can also be reconstructed from
a set of measurements using convolutional neural networks
(CNN) [53], [s6l, [57], given a pre-defined coded mask. In
contrast, Inagaki et al. [58] optimizes the mask pattern together
with the parameters of the reconstruction algorithm in an
end-to-end auto-encoder learning framework. Moreover, a
learned convolutional network architecture is used in [59] to
compute the coded sub-aperture images, from which the light
field is reconstructed using an iterative optimization approach
with a deep spatio-angular regularization prior. Note that an
attenuating mask placed in the optical path of a lens-based
camera is considered in [60] to compute refocused images at
full sensor resolution for layered Lambertian scenes.

c) HDR light field imaging: To the authors’ knowledge,
the problem of HDR light field acquisition has only been
addressed in [61] and [62]]. The authors in [61] apply a spatio-
temporal exposure pattern while capturing frames of a light
field with a camera array. Four different exposures are captured
by neighboring cameras of the camera array. The captured set
of frames is used to estimate local point spread functions (PSF)
and depth maps, and to segment the scene into regions sharing
PSFs of similar shapes at similar depths. The local PSF are
also used for motion-deblurring of all image segments at each
exposure. The authors in [62] propose an HDR light field
acquisition method based on multiple plenoptic captures with
varying exposures. The method recovers the highly saturated
pixels using the lower exposure captures by computing a
weighted low rank approximation of the matrix formed by
all the aligned views, with weights defined as a function of the
pixels saturation level. The non-saturated pixels are associated
to the maximum weight indicating a high confidence, while
the fully saturated pixels having low confidence, hence a null
weight.

In contrast with the above methods, we propose an acquisi-
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tion design that considers the combination of spatially varying
ISO photography principles with those of light field acquisition
on a single 2D sensor using coded masks. Our proposed unified
framework reconstructs the HDR light field from a single 2D
coded projection on the sensor by solving HDR reconstruction,

demosaicing, and light field recovery problems simultaneously.

The reconstruction problem is placed in a compressive sensing
framework that we briefly recall below.
d) Compressive sensing: The compressive sensing theory
[63] relies on the assumption that the signal is sparse (or
compressible) in some transform domain like wavelets, discrete
cosine transform (DCT), or dictionaries learned from large
datasets. This framework has been already considered for
extending the dynamic range of video imaging from interlaced
exposures in [64]], where sparse coding with learned dictionaries
is used for jointly solving deinterlacing and alleviating the noise
that arise in interlaced video imaging with different exposures.
In the context of compressed acquisition of light fields using
coded masks, original light fields can be restored by solving
a basis pursuit denoising (BPDN) problem [65], given an
overcomplete dictionary as described in [[14]], [15].

ITII. PROPOSED FRAMEWORK
A. Compressed LDR acquisition of light fields

a) Light field parameterization: In the following sections
we will denote the light field as L(x,y,u,v, ) describing the
radiant flux in the wavelength A along the direction passing
through two points (z,y) and (u,v) located on two reference
planes. Here, (z,y) and (u,v) are usually called spatial (pixel)
and angular (view) coordinates respectively. For the sake of
simplicity, we assume that the light field L is sampled in
three color channels (red, green and blue), and according to
a regular rectangular grid with angular resolution v = v, 1,
and spatial resolution n = ngn,. We then denote by L €
R3¥" the column vector which represents the sampled and
vectorized version of L, with the following arrangement L =
{L(j’c)}lgjgu,ce{mG,B}? where L(J’C) € R” denotes the >\C'
color component of the j-th sampled viewpoint. In other words,
L represents the collection of v viewpoints, each of which is
of the size n, x n, pixels.

b) Mask-based compressive light field sensing: We con-
sider a mask-based light field camera architecture equipped
with standard optical components: a main lens, an amplitude

coded mask (also called attenuation mask) placed between the
main lens and the camera sensor, and eventually a color filter
array (CFA) mounted directly on the sensor. The architecture
is depicted in Fig. [T} The colour coded mask implements the
sensing matrix with transmittance or attenuation factors that
depend on the wavelength (or colour component) of the light
ray. Casting this operation in a compressed sensing framework,
this mask performs a spectro-angular compression of the light
field. However, classical sensors have in-built color filter arrays
(CFA) which can be seen as equivalent to a mask that samples
the color of each measurement recorded on the sensor. The
actual equivalent sensing mask is the combination of the color
coded sensing mask and of the sensor CFA.

The coded mask which is separated from the sensor by
a small distance is a random mask as in [14], [15], [57].
For a given mask and CFA pattern, incoming light rays are
therefore filtered by the implemented coded mask and the CFA
before they reach the photo-sensitive layer of the sensor. This
forms a 2D image on the sensor which represents an optical
coded-projection of the scene. Multiple coded projections can
be obtained by changing the mask and/or CFA pattern. In
practice, one can simply consider mechanical system which
allows slightly translating the physical mask around a reference
position to create different mask patterns, and thus different
coded projections of the same scene.

Based on the compressed sensing paradigm for single-sensor
light field photography as in [14], [[15], the (optical) imaging
equation for the light field L is expressed as:

I=®L, 2)
where I € R™" denotes the vector gathering the captured
coded projections of L, and ng denotes the number of captured
images (also called number of acquisitions or number of shots).
Since we assume a CFA-equipped sensor, we utilize the dual-
mask camera model for incorporating an attenuation mask
and a CFA that was proposed in [66]. Here, we assume that
the sensor is of the same size as the monochromatic angular
image L) (ie. n, x n, pixels). The matrix & € R"="*3vn
is called the “coded projection matrix” describes the filtering
and the integration of light rays on each pixel of the sensor.
This matrix is in fact the product of two matrices [67], a
sensing matrix representing the color coded mask and another
matrix corresponding to the CFA integrated within the sensor.
The product is performed as an element-wise multiplication in



the spatial domain. In other words, each pixel in the CFA is
multiplied by all the angular values in ® corresponding to the
pixel, since each CFA pixel affects all the incoming light rays

to the corresponding pixel; see [66] for a detailed formulation.

The expanded form of the above equation is given in (TJ),
on top of the page, where each sub-matrix ®(:¢*) € R"*" is
diagonal (c.f. [66]], Section V.B for detailed explanations on
$U-e9)). From a compressive sensing perspective, the images I,
which are spectro-angular compressed versions of the original
light field L, can be seen as the set of measurements with
respect to the sensing operator . We define the sampling
rate (with respect to ®) as the ratio between the number of
recorded measurements and the total number of measurements

in the original data:

R _ mgn N
sampling — 3y - 3 .

For example, given a color (full RGB) light field with v = 5x5

views, the sampling rate of a two-shot acquisition (i.e. ng = 2)

is about 2.67%.

c) Noise model for multi-ISO sensor: To describe the
noise at the sensor level where each pixel can have different
gain values (corresponding to different ISO settings), we
first consider the compound-Gaussian noise model of [26]].
According to [26], the electronic signal before the amplification
stage on each pixel is corrupted by mixed Poisson-Gaussian
noise accounting for photon and dark current shot noise,
readout noise, and spatial noise. Given the coded projections
I describing the radiant power incident on the sensor and
the exposure time ¢, the pre-amplification measurements I (in
electron) can be expressed as:

I=P [t(I + Idark)} + Dyead ) (3)
where P denotes the Poisson noise generator (i.e., P(A) is a
Poisson variable of parameter A), I, € R™ represents the
(eventually) spatially-varying dark current level (in electrons
per second) of the sensor, and n,¢,q Which follows the Gaussian
distribution (0,02, ) denotes the electronic read-out noise
(in electrons). For the sake of simplicity, we assume that, on
average, one photon generates one photo-electron in (i.e.
the quantum efficiency is assumed to be 100%). In practice,
sensors on consumer cameras possess much lower quantum
efficiency coefficient (e.g. front-illuminated sensors are around
50-60% quantum-efficient [68]).

While raw sensor image intensity is often assumed to be
ideally linear with the number of generated electrons; in
reality, non-linearities may occur at different stages during the
procedure of conversion from electrons to digital units (DUs)
[69], [[70]. More interestingly, there are image sensors which
are intentionally designed to obtain a theoretical non-linear
response of the form of a power function [71], [72]. In the
context of HDR imaging, these sensors enable nonuniform
sampling (quantization) at the analog-to-digital converter
(ADC) level and thus allow efficient use of ADC bit-depth
to encode specific ranges of light intensity. For the sake of
simplicity, let us assume in the scope of this work that the sensor
response follows a simple power law ()% (where the value
depends on the sensor characteristics). By combining the noise
model in [26] and the non-linear sensor response function, one

can express the digitized output images as follows:
Ty = min { o, M+ 10)7 +0guan )+ 4)

where H is a diagonal matrix called the “gain matrix” (in
DU per electron), Iy and I,,x (in DU) are respectively the
camera offset (i.e., the camera’s black level) and the maximal
pixel intensity, and ngyyan (in DU) which follows the [—1/2, 1/2]-
uniform distribution represents the noise component induced
by the quantization process at the ADC. We note that each
diagonal entries of H is the gain of the corresponding pixel
and equals to the product between the camera’s electron-to-DU
conversion rate and the amplification factor associated with the
pixel ISO value. To simplify the pipeline, we assume that each
pixel’s amplification factor and its ISO setting are proportional,
and we consider an amplification factor of 1 for ISO 100.
Accordingly, if the pixel’s capacity (also full well depth) is
FWD (in electrons) and the ADC resolution is nypts (in bits),
the theoretical gain can be computed as follows:
ISO  2mvies — 1
h=— X ————
100 FWD

where ISO denotes the associated ISO value of this pixel for
a given acquisition setting. Here, % and % represent
the amplification factor and the electron-to-DU conversion rate
respectively. To summarize, the imaging chain is depicted in
Fig. 2}

d) Calibration of multi-ISO sensors: To handle sensors
with different gain settings, we calibrate the readout noise, for
each gain/ISO setting. Each digital pixel value is independently
transformed to an estimate of the number of photoelectrons
reaching the sensor per unit time. To compensate for the readout
noise and dark current noise bias, we subtract a bias frame
from each observation I; as

T= H " [() T )

where each entry i of T denotes the approximation of the
incident radiant power representing the actual observations
from which we try to recover the entire HDR light field. The
bias frame Iy;,5 is computed as the average of a large set of
black images captured with the same camera settings as the
observations but with the lens covered, so that no photons
reach the sensor.

The variance of these observations can be estimated from
the black frame as

6—’[21 = HthIl + &rQead (Hl) + CA7-(21111an7 (6)
and variance can be used as a measure of uncertainty of our
input observation I; by using the following:
H 2. < Lo (H;)]

&2 ’

i

m:

)

Reconstructing the light field L from its compressed and
recorded projections I; requires not only the estimation of
the original viewpoints, i.e., recovering the parallax, but also
the full RGB color values of each pixel (i.e., performing
demosaicing), in the presence of sensor noise.

In the following, we describe two different reconstruction
methods. In the first method, the data is captured with multi-
shot coded projections using a single ISO for each shot; i.e.



the captured coded images are LDR. We then reconstruct a
light field corresponding to each ISO separately using an LDR
dictionary. The reconstructed LDR light fields are merged view-
per-view using a 2D HDR image reconstruction method from
multiple exposures [24], to reconstruct the HDR light field. This
method is taken as a baseline for comparisons to our approach
since both compressive LDR light field reconstruction, as well
as HDR image fusion algorithms are well-researched topics.
The second approach jointly performs light field reconstruction
with parallax, color demosaicing and HDR reconstruction,
which is the main contribution in this paper.

B. Individual Light Field Reconstruction and Fusion

For the purpose of comparisons in the evaluation of our
approach, this section describes a variant of the above light
field capture and reconstruction method. In this approach, we
recover the HDR light field in two steps. First, we capture a
set of differently exposed LDR light fields, each reconstructed
from a 2D coded projection image but without the spatially
varying gain, i.e. as in [14], [13]. The exposure variation is
captured by varying the ISO for the full sensor between the
different exposures. In a second step, the output HDR light
field can then be recovered by merging the LDR light fields
using any standard method for HDR fusion, for an overview
see [[73].

The LDR light field reconstruction is carried out in the
following way. Let I, be the vector formed by the recorded
measurements of the light field at a given ISO setting, h;. The
recorded measurements are first calibrated by subtracting a
L(ﬁlvhi)AY — Ibias} as explained in Section

or the sparse coefficients of the light

black frame as fhi =

T-A] We then solve

field as follows
3

using one dictionary Dy pr learned from LDR light fields
[66]. The LDR light field at each ISO can thus be reconstructed
as Lhi = DLDRa;‘”.

Once the light fields have been reconstructed at the different
ISOs h;,i = 1...k, we use the multiple exposure method
presented by Debevec and Malik to recover the HDR light
field. For the examples used in our evaluations, see Table m

As another type of reference for the evaluation, we also use
HDR light fields captured as described above but where the
exposure time is varied between the exposures instead of the
ISO. The LDR light fields are recovered as described in (]3[),
and the HDR light field is computed using the method in [24].
The results are shown in Table as a basis for comparison.

a*,i” = arg min Hih - @DLDRaH + ulle1,
[0

C. Joint Light Field Reconstruction and HDR Recovery

To jointly recover the spatio-angular information of the light
field, as well as performing demosaicing and HDR recovery,
we solve the following dictionary-based minimization per 4D
patch

1 2
o = argmin Hw(cbDHDRa - 1) Hz + e, ©)

where T denotes the vector containing the calibrated observa-
tions obtained from (3 based on the noise model introduced

in @. The diagonal matrix W contains the measurement
uncertainty for each pixel based on the saturation and noise es-
timation obtained from (7). Similar to previous work [[14], [15],
we consider 4D light field patches in order to preserve inter-
view angular consistency, as well as efficient reconstruction of
the parallax.

We consider a prior on the light field L, by assuming that L
is sparse when it is represented by a suitable dictionary Dypg.
The sparse vector representing the light field L is denoted as
a. Since the reference light field contains high dynamic range
values, the trained dictionary should as well contain HDR
atoms. Therefore, we train the dictionary from a set of HDR
light field data sets created in this paper. In practice, due to
the large size of light field data, we train the dictionary Dypr
using small patches of size 5 X 5 X 9 x 9 x 3 obtained by
dividing the light field of 5 X 5 views into patches of spatial
dimension 9 x 9 to reduce the learning time of dictionaries; the
last dimension defines the spectral domain and in this paper we
assume RGB light fields. The reconstruction is performed on
light field patches of the same size as the dictionary atoms, and
the patches of the final reconstructed light field are computed
by averaging pixels on overlapped patches. In the experiments,
we used an overlapping distance of 5 pixels for spatial patches
of size 9 x 9. The dictionary Dypg is trained on light field
patches using the K-SVD algorithm |

The dictionary-based sparse recovery problem in (9) can be
solved with various solvers, e.g. OMP [75], LARS [76], and
ISTA [[77], as used in [14], [15]], [66] with different acquisition
schemes. In the experiments reported here, we used the ADMM
[78] method to solve the I; constrained minimization problem

in (9).

Fig. 3: Thumbnails of the tone mapped training set from the real
HDR light fields: from left to right and top to bottom, Bike Closeup
2, Bike Close up 4, Building Closeup 4, Window close up 2, Window
close up4, Outdoor 2, Dude 2, Glass 2, Car close up3.

IThe K-SVD toolbox is available at http://www.cs.technion.ac.il/ ron-
rubin/software.html



Fig. 4: Thumbnails of real HDR light fields (tone mapped) created
from multiple LDR captures used in the test set: from left to right and
top to bottom, Bike, Building, Trophy, Pendulum, Window, Begonia,
Plane, Cactus.

Fig. 5: Thumbnails of our tone mapped synthetic HDR light fields:
from left to right and top to bottom, Barbershop, Cars, Classroom,
Cosmos, Pabellon. We used Classroom and Pabellon as the test set,
while the rest were used for training, with a baseline of 1, 3, 5 for
each.

IV. RESULTS
A. Data sets

One of the key challenges for research on the acquisition
and reconstruction of HDR light field is the availability of
data sets. To the best of our knowledge there is a lack of
HDR light field data sets, except for the one in [79] which
contains six static light-fields captured by a camera mounted
on two linear axes using exposure bracketing at each view
point. This data set however has a large baseline between the
neighboring views and is not suitable for evaluating a single
sensor light field camera. We, therefore, created the following
two publicly available data setsﬂ Each light field in these data
sets is accompanied with a histogram to show the dynamic
range.

Natural HDR light field data set: To create this data set, we
used exposure bracketing to capture 5 exposures, that are 1IEV
apart, of static scenes using the Lytro Illum camera. To decode

the captured light fields we used the toolbox from [8Q], [81].

Multi-exposed light fields are then merged using the fusion
method in [24] to create natural HDR light fields. This data
set consists of light field images of a variety of environments
from outdoor to indoor with different illuminations. We have

Zhttps://computergraphics.on.liu.se/hdrlf/

used 17 scenes with an angular resolution of 5 x 5 views and
a spatial resolution of 505 x 354, which was divided into 9
light fields for training an HDR dictionary Dypr (see Fig. EI),
and 8 light fields for testing (see Fig. ).

Synthetic HDR light field data set: We have created a
synthetic light field data set using Blender [82] that contains 5
scenes, which we call Barbershop, Cars, Cosmos, Classroom,
and Pabellon. Each light field contains 5 X 5 views with a
resolution of 960 x 540. Each scene has been rendered with
5 different baselines. Therefore, in total, we have created 25
rendered HDR light fields. The baseline here is defined as
the distance in millimeters between the neighboring virtual
cameras that reside on a plane in Blender. Fig. [5| shows central
views of these light fields. Three light fields are used for
training an HDR dictionary, Dypgr, namely Barbershop, Cars,
and Cosmos, each with a baseline of 1 and 3. We used the
Classroom light field with baselines of 1, 3 and 5 and the
Pabellon light field with baselines of 1, 3, 5 and 20 as the test
set to evaluate our method, see Section [V-C|

B. Evaluation Scenarios

To evaluate the proposed acquisition schemes and the joint
spatio-angular-HDR reconstruction we compared different
configurations for the spatially varying gain/ISO patterns using
different ISO values. As shown in Fig. [[] we compared row-
based, per-pixel random, and block-based gain patterns. We
used the following three sets of 4 ISO values in a single capture:
(100, 400, 800, 1600), (100, 800, 1600, 3200), and (100, 1600,
3200, 6400). We also considered a dual ISO pattern with the
following ISO values (100, 1600). The exposure time for each
shot is set as ¢ = 1/240 second.

We compared the proposed joint multi-ISO HDR light field
acquisition scheme to the two reference methods explained
in Sec. in which HDR light fields are recovered using
standard exposure fusion, [24], from a set of different LDR
light field exposures captured by varying the global sensor
ISO and the exposure time. We have also compared our joint
reconstruction with reconstruction in two-steps, where an LDR
dictionary is used for recovering an LDR light field, followed
by a deep learning approach for estimating the HDR light field
[23]] from the obtained LDR light field.

In the experiments described below, the metrics used for
evaluating the HDR reconstruction quality are PU2-PSNR and
PU2-SSIM [83]], as well as HDR-VDP2 [84]. To calculate
the HDR-VDP2 we have set the following display parameters:
Display resolution is set to [1920, 1200] for a display size of
24 inches and a viewing distance of 0.5 meter. For natural
light field scenes, Window, Begonia, Cactus, Plane, Bike,
Trophy, and Pendulum, we have used peak luminance values
of [1000, 1000, 1000, 700, 5000, 7000, 1000, 1000] in cd/m?,
respectively. For the synthetic data sets, Classroom and
Pabellon, we used peak luminance values of 1000 and 700 in
cd/m?, respectively.

C. HDR light field reconstruction results

To evaluate the reconstruction results, we trained two HDR
dictionaries: one trained on synthetic HDR light fields, and



CFA Sensor with 1, 2, 3 shots and with 4 ISO values: 100, 400, 800, 1600.
Joint Reconstruction
PU2 SSIM
0.9133 ; 0.9400 ; 0.9422

ISO Pattern
Block-based

PU2 PSNR
29.41 ; 30.29 ; 30.49

HDR VDP2
55.21 ; 57.93 ; 58.28

Row-based 31.55;32.73 ; 32.79 0.9106 ; 0.9407 ; 0.9444 55.85 ; 58.43 ; 58.70
Random ISO 31.09 ; 32.84 ; 32.38 0.9072 ; 0.9409 ; 0.9445 55.63 ; 58.46 ; 58.79
| Individual ISO reconstruction with 4 shots with ISOs: 100, 400, 800, 1600 with exposure time: 0.004
PU2 PSNR PU2 SSIM HDR VDP2
31.25 0.9142 54.18

TABLE I: Results of the proposed joint reconstruction algorithm in comparison with individual ISO reconstructions averaged over 8 real
light fields in the test set. The acquisition scheme assumes a CFA sensor, four ISO values (100,400, 800 and 1600) with three different ISO
patterns: block-based, row-based and random. Results for each light field are shown in Table [VII]in the Appendix. The regularization strength,
w in (@), has been set to 0.0001. These results have been achieved with 1,2 and 3 acquisitions (shots). The exposure time has been set to
0.004 seconds. The stopping criterion of the ADMM algorithm is set to 27 %, Moreover, we set v = 2.2.

(d) Captured LDR image

Fig. 6: LDR sensor image and the reconstruction results of the Cactus light field assuming a CFA sensor with four ISO values (100, 400,
800 and 1600) in a row-based pattern using one, two, and three shots.

(e) Reconstructed from two shots (f) Reconstructed from three shots

Number of shots vs. HDR-VDP2.2 Number of shots vs. HDR-VDP2.2
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Fig. 7: The effect of number of shots on the reconstruction quality with two gain patterns: Random and row-based.

one on real HDR light fields (see Sec.[[V-A) using the K-SVD  where 5x 5 is the angular dimension, 9x 9 the spatial dimension,
algorithm [85], with an over-completeness factor of 2.7. We and 3 for the spectral domain. To train each dictionary, for
divided the light field into patches of dimension 5x5x9x9x 3, synthetic and natural light fields, we randomly extracted 300000



HDR-CNN + dictionary learning - ISO values: 100, 400, 800, 1600

Light Field PU2 PSNR PU2 SSIM HDR VDP2

Bike 20.35 ; 25.23 ; 25.22 ; 19.35 0.8542 ; 0.8629 ; 0.8617 ; 0.8373 54.90 ; 55.05 ; 54.61 ; 46.15
Building 20.71 ; 23.79 ; 19.15 ; 8.58 0.8709 ; 0.8785 ; 0.8484 ; 0.5988 53.02 ; 52.31 ; 45.42 ; 41.20
Trophy 19.11 ; 21.69 ; 19.24 ; 23.37 0.8518 ; 0.8935 ; 0.8652 ; 0.8949 47.97 ;5334 ; 49.12 ; 48.17
Pendulum 19.93 ; 18.43 ; 19.89 ; 15.95 0.8528 ; 0.8407 ; 0.8511 ; 0.7834 52.28 ; 51.61 ; 49.31 ; 46.78
Window 23.89 ; 27.40 ; 24.90 ; 10.03 0.8054 ; 0.8054 ; 0.7850 ; 0.5174 51.08 ; 50.46 ; 44.09 ; 41.15
Begonia 18.94 ; 26.14 ; 16.94 ; 11.70 0.8738 ; 0.9062 ; 0.8218 ; 0.4750 55.04 ; 54.14 ; 52.81 ; 49.23
Cactus 18.76 ; 21.02 ; 25.55 ; 18.17 0.8413 ; 0.8504 ; 0.8627 ; 0.8149 52.49 ; 52.23 ; 51.98 ; 48.21
Plane 18.48 ; 18.55 ; 16.14 ; 17.78 0.7897 ; 0.8115 ; 0.7695 ; 0.7912 50.68 ; 53.91 ; 52.82 ; 50.16
Average 20.02 ; 21.53 ; 20.88 ; 15.62 0.8425 ; 0.8561 ; 0.8332 ; 0.7141 52.18 ; 52.88 ; 50.02 ; 46.38

TABLE II: Reconstruction with the proposed dictionary learning method and HDR-CNN method for four different gain values:
100, 400, 800, 1600. The light field reconstruction parameters are the same as the ones used for Table
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(a) HDR-CNN [23] - ISO = 800 - PU2-SSIM = 0.8849
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(b) Our method - 1 Shot - PU2-SSIM = 0.9056
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(¢) Our method - 2 Shot - PU2-SSIM = 0.9161
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(d) Our method - 3 Shots - PU2-SSIM = 0.9168

|
| i

(e) Ground truth

Fig. 8: Comparison of epipolar plane image (EPI) of the Window
scene. The central row has been selected for display. The EPI is
scaled 10x for presentation. Our result is simulated with the row-
based pattern with ISO values = {100, 400, 800,1600}. The light
field reconstruction parameters are similar to Table IV_H}

patches from the corresponding training set. The spatial patch
size, which is set to 9 X 9 in our experiments, was chosen such
that we obtain adequate number of patches for training while
keeping the training time tractable. In practice, larger patch
sizes lead to a better reconstruction quality, as long as we have
an adequate number of patches and that the training time is
reasonable. The sparsity parameter for the K-SVD algorithm
is set to 10 and the maximum number of training iterations
is set to 20. Since we use overlapping patches (in the spatial
domain), after reconstructing each light field patch using the
ADMM algorithm, we take the average of pixels in overlapping
regions to obtain the final result. In the results reported here,
we consider half overlapping, i.e., an overlap of 5 pixels for a
spatial patch size of 9 x 9 pixels.

The results from our joint multi-ISO reconstruction are
shown in Table [I| for real light fields. The table contains
comparisons to the baseline method described in Section [[II-B]
where 4 shots with 4 ISO values of 100, 400, 800, 1600
are captured and fused for each reference HDR light field.
To evaluate how the reconstruction quality varies with the
number of input images, we include results for 1 to 3 shots, as
well as different ISO patterns. As shown in Table [[} random
ISO patterns achieve slightly better reconstruction quality

@d stance

onsibl/

(a) Our method - 3 shots
Fig. 9: False-color comparison of the HDR values of the Trophy
and Window scenes. The reconstructions by our proposed method are
produced with the row-based pattern and 3 shots. The HDR images
above the false-color images show the saturated regions of the scene.

as compared to the the other ISO patterns. Increasing the
number of acquisitions from 1 shot to 2 shots shows significant
improvement, while having 3 shots only slightly affects the
reconstruction quality. Visual quality comparisons with respect
to the number of shots is presented in Fig. [6] followed by
quantitative results in Fig.[7} where we plot the number of shots
vs. HDR-VDP?2 for each natural light field in the test set. When
the number of samples increases, the accuracy of our algorithm
for recovering the light field baseline increases as well, see Fig.



CFA Sensor combined with row-based gain patterns
(using two ISO values: 100 and 1600) and with 1, 2 and 3 shots

Light Field PU2 PSNR PU2 SSIM HDR VDP2

Bike 28.03 ; 28.80 ; 28.63 0.9235 ; 0.9434 ; 0.9427 57.55 ; 60.93 ; 61.22
Building 29.92 ; 29.28 ; 29.22 0.8974 ; 0.9313 ; 0.9331 54.31 ; 56.05 ; 57.14
Trophy 29.52 ; 32.03 ; 32.42 0.9273 ; 0.9367 ; 0.9326 53.74 ; 52.84 ; 52.01
Pendulum 25.83 ; 25.65 ; 25.45 0.9027 ; 0.9196 ; 0.9197 55.61 ; 58.56 ; 58.74
Window 30.79 ; 32.34 ; 32.28 0.8966 ; 0.9397 ; 0.9484 53.96 ; 57.38 ; 58.55
Begonia 30.91 ; 30.16 ; 29.84 0.9356 ; 0.9490 ; 0.9481 56.67 ; 59.45 ; 59.11
Cactus 31.60 ; 32.68 ; 32.75 0.9040 ; 0.9439 ; 0.9483 54.35 ; 58.94 ; 59.56
Plane 29.15 ; 31.75 ; 32.19 0.9145 ; 0.9311 ; 0.9313 55.09 ; 55.28 ; 55.39
Average 29.47 ; 30.34 ; 30.35 0.9127 ; 0.9368; 0.9380 55.16 ; 57.43 ; 57.71

TABLE III: Reconstruction results of the proposed joint algorithm using a row-based pattern with two gain values and real light fields. The
regularization strength, 4 in (9) has been set to 0.0001. These results have been achieved with 1, 2, or 3 acquisitions. The exposure time has

been set to 0.041 seconds. The stopping criterion of the ADMM algorithm has been set to 27 ', Moreover, we set v = 2.2

CFA Sensor with fusion of 2, 3,4 captures at different exposures.

Light Fields PU2 PSNR PU2 SSIM HDR VDP2

Bike 31.46 ; 32.24 ;32.71 | 0.927 ;0.935; 0.938 | 56.99 ; 58.44 ; 58.79
Building 31.84 ; 32.37 ; 32.51 | 0.905; 0.908 ; 0.907 | 54.56 ; 54.63 ; 54.60
Trophy 35.88 ; 36.11 ; 36.22 | 0.955;0.957 ; 0.958 | 56.15; 56.30 ; 56.55
Pendulum 3047 ; 30.72 ; 30.90 | 0.926 ; 0.925; 0.926 | 54.93 ; 54.70 ; 54.62
Window 30.63 ; 31.03 ; 31.06 | 0.859 ; 0.871 ; 0.872 | 52.90 ; 53.09 ; 52.99
Begonia 33.93; 34.13 ; 3420 | 0.947 ; 0.949 ; 0.950 | 57.71 ; 57.94 ; 5791
Cactus 31.75; 31.89 ; 31.95 | 0.898 ; 0.902 ; 0.903 | 54.26 ; 54.40 ; 54.41
Plane 34.06 ; 34.16 ; 34.21 | 0.950 ; 0.951 ; 0.952 | 54.60 ; 54.71 ; 54.60
Average 32.50 ; 32.83 ; 32.97 | 0.921 ;0.925; 0.926 | 55.26 ; 55.53 ; 55.56

TABLE IV: Reconstruction results with compressive exposure bracketing. The acquisition scheme assumes a CFA sensor, and 2, 3, and
4 different exposures. The regularization strength, p in (9), has been set to 0.0001. The relative exposure times used for simulation are

[0.5, 8] for 2 shots, [0.5,2, 8] for 3 shots, and [0.5,2, 4, 8] for 4 shots. The stopping criterion of the ADMM algorithm has been set to 27 %,

Moreover, we set v = 2.2

and the supplementary vide To show the reconstruction
quality with respect to the true HDR values, i.e. without tone
mapping, in Fig. [0 we give false-color representations of the
reconstructed HDR images for the Trophy and Window scenes.
This figure shows that three shots are adequate for high quality
reconstruction.

ISO values vs. HDR-VDP2.2
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Fig. 10: Reconstruction quality with 3 different ISO values.

Following the introduction of the CNN-based architectures,
many methods have been proposed for solving the HDR recon-
struction task which have shown promising results. Therefore,
we also compare our method with CNN-based approaches.
Since, to the author’s knowledge, there exists no CNN-based
solution that would perform the joint light field reconstruction
and HDR recovery, we have compared with a state-of-the-

3http://clim.inria.fr/research/HDRLF-CS/index.html

art CNN-based method designed for reconstructing an HDR
image from a single LDR image [25]], that we applied on each
view of the LDR light field reconstructed from compressed
measurements. To do this, we first apply the dictionary-based
reconstruction method in [[66] to recover the full-resolution
LDR light field, and in the second step we apply the HDR-
CNN method on each view to recover the HDR values. The
results are given in Table [II| for 4 different ISO settings: 100,
400, 800, and 1600. As presented in Fig. [§] this two step
reconstruction is not able to recover the baseline between the
neighboring views, and the hallucination of saturated areas
lacks consistency between the views, which can also be seen
in the supplementary video.

Although there is no commercial implementation of a
sensor with per-pixel gain, a row-based ISO control of Canon
cameras has been utilized in previous work [22]]. Therefore, we
performed an evaluation using only 2 variations of gain on the
sensor with ISO settings (100, 1600) on the row-based pattern
to justify the chosen number of ISOs per single capture, see
Table [T} Comparing the results of Table [IIT] with that of Table
[ we observe that the higher number of gain variations leads
to a better reconstruction quality, as expected.

Table [[V] gives the results when fusing the reconstructed light
fields at different exposures. Note that, when capturing the light
field with 4 different exposures, the number of measurements
is 4 times higher than what is required by our method with a
multi-ISO sensor and with one shot. One should also note that
the camera setup for the results of Table [[V]is different from
our multi-ISO experiment. Despite having a fraction of the
measurements, our method in most cases can reconstruct the
scene better than the method based on capturing and merging
4 differently exposed LDR light fields by varying the exposure



CFA Sensor with 3 shots with 4 ISO values: 100, 400, 800, 1600. Noise level: none, low, medium, high.

Light Fields HDR VDP2

PU2 PSNR PU2 SSIM

Classroom - baseline 1
Classroom - baseline 3
Classroom - baseline 5

57.41 ; 56.48 ; 55.23 ; 54.03
56.79 ; 55.77 ; 55.22 ; 54.07
52.48 ;51.94 ; 52.29 ; 51.77

25.55 ;25.94 ; 25.82 ; 25.64
28.05 ; 28.36 ; 28.19 ; 27.89
27.75 ; 27.80 ; 27.62 ; 27.38

0.9088 ; 0.9088 ; 0.9039 ; 0.8964
0.9312 ; 0.9319 ; 0.9260 ; 0.9172
0.9205 ; 0.9203 ; 0.9144 ; 0.9057

Pabellon - baseline 1 55.32 ; 55.35 ; 55.25 ; 54.92 27.16 ; 26.97 ; 26.92 ; 26.87 0.9078 ; 0.9022 ; 0.8999 ; 0.8967
Pabellon - baseline 3 55.93 ; 55.49 ; 55.31 ; 55.02 28.34 ; 28.14 ; 28.12 ; 28.10 0.9279 ; 0.9241 ; 0.9230 ; 0.9219
Pabellon - baseline 5 56.01 ; 55.66 ; 55.75 ; 55.82 28.71 ; 28.52 ; 28.50 ; 28.48 0.9317 ; 0.9283 ; 0.9272 ; 0.9261
Pabellon - baseline 20 50.69 ; 50.71 ; 50.41 ; 50.77 28.63 ; 28.42 ; 28.43 ; 28.40 0.8771 ; 0.8709 ; 0.8701 ; 0.8689

TABLE V: Evaluation of our method on the synthetic data set, Classroom and Pabellon, with four noise levels (none, low, medium, and high)
and a random ISO pattern. The baseline between the neighboring cameras increases from 1 to 5 for both data set and to 20 for Pabellon. The
camera noise parameters are given in Table We set = 0.001, v = 3.0, t = 0.041, and use 3 shots for this experiment. The ADMM

stopping criterion is set to 2716

time. The same observation holds also when comparing to the
baseline method that uses a distinct ISO setting for each shot
(see the bottom part of Table ). This can be explained by
the fact that the individual reconstruction method with 4 shots
proceeds in two steps: the method first separately reconstructs
4 LDR light fields using LDR dictionaries and then fuses
the images corresponding to the same viewpoint. First, the
separately reconstructed LDR light fields may not be fully
consistent in the angular dimension, hence the fusing may
blur edges and textures. In addition, the first step of LDR
light field reconstruction using LDR dictionaries may not work
well in saturated and under-exposed areas, and these errors
cannot be well recovered by the fusion of multiple-exposures.
In contrast, the joint reconstruction, thanks to the use of a
multi-ISO sensor, fully exploits the dynamic range information
available in a spatial pixel neighborhood, while taking into
account the angular information simultaneously. This allows
us to better recover intensity variations between neighbouring
pixels.

HDR algorithms are limited by the level of saturation that
they can handle. Fig. [I0] shows the accuracy as the ISO values
used are varied. By increasing the distance between the steps
of the ISO parameter, from (100, 400, 800, 1600) to (100, 800,
1600, 3200) and (100, 1600, 3200, 6400), the reconstruction
quality remains intact, even though we introduce saturation
on pixels that are amplified with higher gain values. This
shows the robustness of our algorithm in handling saturated
pixels, thanks to the joint recovery approach together with the
HDR dictionary. The robustness of our approach in handling
saturated pixels is also confirmed when using the synthetic
data set, where a higher percentage of pixels are saturated. We
present these results in what follows.

Noise Dark current E[I3,,] Readout noise o,caq
level (electrons/pixel/s) (rms electrons/pixel)
Low 0.1 1.1
Medium 1.0 2.0
High 10. 2.8

TABLE VI: Camera noise parameters used in the experiments reported
in Table [V] and Fig. [T1]

In addition to the real HDR light field data set, we have tested
our algorithm on the synthetic HDR light fields, introduced in
Section [[V-Al in order to have control over the level of disparity
of light fields and the noise level introduced by different sources
during the acquisition process. It should be noted that the
synthetic light fields have much larger per-pixel disparity than
that of our natural light fields; hence, making this data set

particularly challenging for reconstructing the baseline and
HDR values. We apply four different levels of noise to the
synthetic data set: none, low, medium, and high. More precisely,
the noise component before the amplification stage (see Fig.
[2) is simulated using (@) with the corresponding parameters
of the dark current and the read-out noise shown in Table
Afterwards, these noisy measurements are amplified and
quantized to produce output sensor images, as depicted in (@).
In our simulations, the parameter for non-uniform quantization
is set to v = 3. For all acquisitions, we set the exposure
time of each shot to ¢ = ﬁ second. We only perform noise
analysis on synthetic data set since the natural HDR light
field data set already contains some level of camera noise, and
adding extra noise to it would not be realistic. As illustrated in
Table [V] our algorithm works well in both noiseless and noisy
simulations, where the presence of different levels of noise
only marginally affects the reconstruction quality. To compare
the baseline reconstruction quality, the reader is referred to the
supplementary video.

Figure[TT]demonstrates the visual quality of the reconstructed
top-left view of the Classroom light field with different noise
levels. To evaluate the robustness of our proposed method to
larger per-pixel disparities, we have chosen different baselines
between the neighboring cameras, changing from 1 to 5 for the
Classroom and the Pabellon scenes. To consider an extreme
case, we have also tested baseline 20 for the Pabellon scene.
Note that such a large baseline is very challenging to reconstruct
and is not typically feasible to achieve using a compressive light
field camera setup. Yet, we consider it to show the robustness
of our reconstruction algorithm. As shown in the table, the
reconstruction quality only drops slightly when the disparity
increases. The dictionary training was performed on unseen
data sets with baselines 1, 3 and 5.

D. Limitations

As all learning-based methods, the recovery works well if
the HDR dictionaries have been trained using light fields in
the same disparity range as the disparity of the light fields to
be processed. Our experiments on synthetic data, where the
baseline is controlled by changing the distance between virtual
cameras, show that the proposed method is robust to relatively
significant increases in baseline, see Table E Note that the
dictionary training for the synthetic data was performed on light
fields distinct from the test set with a maximum baseline of 5.
Yet we observe that the Pabellon scene used for testing with
a baseline of 20 performs well compared to lower baselines.



(a) Sensor image

(d) Low noise level

(e) Medium noise level

(f) High noise level

Fig. 11: Reconstruction of Classroom obtained with random ISO pattern in four noise conditions: no noise, low, medium, and high noise level.

This shows the robustness of our method to changes in camera
baseline, although more light fields from a diverse set of scenes
are needed to fully confirm this. In addition, the compressed
light field acquisition framework works better if the correlation
between different views is high, i.e. if the disparity between
views is not too large. This is mainly due to the fact that
we extract 4D patches from light fields. However, the design
considered here, i.e., using one unique sensor for each capture
with the aperture size of a normal 2D camera, the disparity of
the captured views cannot be too large. Moreover, to recover
more views without degrading their quality would require to
increase the number of measurements, i.e., the dimension of
the sensor or the number of shots for a given sensor size.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel framework for
the acquisition and reconstruction of HDR light field images
on a single sensor with CFA and per-pixel gain amplification
(multi-ISO). The framework solves the problem of demosaicing,
HDR, and light field reconstruction jointly in a single step
using a learned HDR overcomplete dictionary. We showed
that by employing a compressive sensing framework, we
can recover a full-resolution HDR light field from a 2D
image with acceptable results, which we show quantitatively
and qualitatively. We evaluated our framework with different
scenarios such as different ISO patterns, varying ISO values,
and exposure times. We also investigated the impact of noise
on the reconstruction quality by introducing different noise
levels in the camera simulation pipeline. Our results show that
the proposed framework outperforms the individual light field
reconstruction with exposure bracketing when either the ISO
setting or the exposure time is changed for each shot.

This is the first exploration of the concept of HDR light field
acquisition on a single sensor using coded masks and multiple
ISO sensors simultaneously. We have performed a feasibility
study, using standard dictionary-based sparse recovery methods.
Although this allows us to validate the concept, future work
will be dedicated to improving the reconstruction algorithm by
considering deep learning techniques that have been shown to

be powerful for standard compressive light field acquisition.
Another direction for future research is the application of our
proposed technique on light field videos. By extending our
sensing model to take advantage of the coherence between
video frames, similar to [16], one can obtain HDR light field
videos using a single sensor equipped with CFA.
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CFA Sensor with 1, 2, 3 shots and with 4 ISO values: 100, 400, 800, 1600.

Block-based ISO

Joint Reconstruction

Light Fields

PU2 PSNR

PU2 SSIM

HDR VDP2

Bike 28.04 ; 28.77 ; 28.72 0.9237 ; 0.9445 ; 0.9441 57.48 ; 61.05 ; 61.41
Building 30.09 ; 29.40 ; 29.29 0.8986 ; 0.9340 ; 0.9356 54.35 ; 56.64 ; 57.32
Trophy 29.35 ; 31.69 ; 32.59 0.9301 ; 0.9442 ; 0.9432 54.05 ; 53.90 ; 52.87
Pendulum 26.00 ; 25.72 ; 25.51 0.9033 ; 0.9224 ; 0.9222 55.51 5 59.09 ; 59.72
Window 30.85 ; 32.27 ; 32.28 0.8966 ; 0.9397 ; 0.9483 54.03 ; 57.45 ; 58.53
Begonia 30.96 ; 30.10 ; 30.02 0.9359 ; 0.9510 ; 0.9505 56.82 ; 59.99 ; 59.72
Cactus 31.53 ; 33.00 ; 32.87 0.9038 ; 0.9458 ; 0.9505 54.32 5 59.13 ; 60.23
Plane 28.50 ; 31.38 ; 32.61 0.9147 ; 0.9390 ; 0.9439 55.12 5 56.21 ; 56.45

Row-based ISO

Joint Reconstruction

Light Fields

PU2 PSNR

PU2 SSIM

HDR VDP2

Bike 28.77 ; 30.36 ; 29.88 0.9259 ; 0.9554 ; 0.9533 58.16 ; 61.87 ; 62.25
Building 31.23 ; 31.00 ; 30.35 0.8973 ; 0.9296 ; 0.9298 54.73 ; 57.33 ; 58.21
Trophy 35.15 ; 36.11 ; 35.56 0.9479 ; 0.9559 ; 0.9517 55.33 ; 54.92 ; 54.21
Pendulum 28.77 ; 29.58 ; 29.12 0.9082 ; 0.9356 ; 0.9330 55.92 ; 59.47 ; 59.65
Window 31.25 ; 33.21 ; 33.50 0.8848 ; 0.9255 ; 0.9314 54.66 ; 57.58 ; 57.83
Begonia 32.37 ; 32.76 ; 32.76 0.9356 ; 0.9516 ; 0.9505 57.04 ; 59.90 ; 59.51
Cactus 32.02 ; 34.25 ; 34.47 0.9116 ; 0.9476 ; 0.9528 55.38 ; 59.76 ; 60.78
Plane 32.80 ; 35.58 ; 36.67 0.8739 ; 0.9243 ; 0.9528 55.56 ; 56.57 ; 57.17
Random ISO Joint Reconstruction

Light Fields PU2 PSNR PU2 SSIM HDR VDP2
Bike 28.68 ; 30.39 ; 29.87 0.9254 ; 0.9557 ; 0.9540 58.12 ; 62.11 ; 62.17
Building 31.24 ; 30.83 ; 30.15 0.8976; 0.9295 ; 0.9299 54.62 ; 57.50 ; 57.85
Trophy 31.73 ; 35.98 ; 35.57 0.9197 ; 0.9557 ; 0.9517 54.00 ; 55.11 ; 54.63
Pendulum 28.66 ; 29.67 ; 29.12 0.9090 ; 0.9358 ; 0.9328 55.85 ; 59.64 ; 60.05
Window 31.23 ; 33.21 ; 33.50 0.8842 ; 0.9255 ; 0.9316 54.68 ; 57.59 ; 5§7.95
Begonia 32.38 ; 32.79 ; 32.63 0.9358 ; 0.9521 ; 0.9502 56.97 ; 59.66 ; 59.69
Cactus 32.00 ; 34.28 ; 34.51 0.9121 ; 0.9480 ; 0.9533 55.48 ; 59.84 ; 60.85
Plane 32.77 ; 35.59 ; 36.68 0.8736 ; 0.9250 ; 0.9528 55.31 ; 56.24 ; 57.10
Average 31.09 ; 32.84 ; 32.38 0.9072 ; 0.9409 ; 0.9445 55.63 ; 58.46 ; 58.79

Individual ISO reconstruction with 4 shots with ISOs: 100, 400, 800, 1600 with exposure time: 0.004

Light Fields PU2 PSNR PU2 SSIM HDR VDP2
Bike 31.38 0.9324 58.91
Building 31.03 0.9022 54.89
Trophy 32.90 0.9506 54.31
Pendulum 29.88 0.9029 49.05
Window 29.83 0.8613 53.52
Begonia 33.14 0.9467 57.30
Cactus 31.47 0.9030 54.02
Plane 30.37 0.9144 51.40

TABLE VII: Results of the proposed joint reconstruction algorithm in comparison with individual ISO reconstructions for real light fields.
The acquisition scheme assumes a CFA sensor, four ISO values (100, 400, 800 and 1600) with three different ISO patterns: block-based,
Row-based and random. The regularization strength, x in (@), has been set to 0.0001. These results have been achieved with 1,2 and 3
acquisitions (shots). The exposure time has been set to 0.004 seconds. The stopping criterion of the ADMM algorithm is set to 2715
Moreover, we set v = 2.2

APPENDIX
Table [VI]] gives the results per real light field with 1, 2,

CFA Sensor with 3 shots with ISO values: 100, 400, 800, 1600.
and 3 shots, for th'e three ISO patterns (random, block-based Fixed Row-based 1SO Joint Reconstruction
and row-based) with ISO values of 100,400,800 and 1600. Light Fields PU2 PSNR | PU2 SSIM | HDR VDP2
Note that for the row-based pattern, we only use ISO 100 and gassmom - Easeiine é 353(2) 8323;‘ 223(2)
. T assroom - baseline 7.7 .93 R
1600. Table includes our results for the synthetic light Pabellon - baseline 1 2712 0.9078 5551
fields, Classroom and Pabellon, where we use the row-based Pabellon - baseline 3 28.17 0.9272 55.57

pattern but with four ISO values, namely ISO100, ISO400,
ISO800, and ISO1600. Finally, Fig. (12| shows the evolution of
the reconstruction quality (HDR-VDP2, PU-PSNR, PU-SSIM)
with increasing exposure time for 4 light fields and with the
random ISO pattern. As shown in this figure, our framework
is robust against saturation for most scenes and the quality of
the reconstruction starts to fade away when more than 15% of
the pixels are saturated, see Fig. [I2(d).

TABLE VIII: Results of our proposed joint reconstruction algorithm
for the synthetic HDR light field. The acquisition scheme assumes
four ISO values (100, 400, 800, 1600) varying spatially using Row-
based pattern. The exposure time is ¢ = 0.041s and 3 shots have been
captured. The regularization strength, 4 in (@), has been set to 0.0001
for Classroom and 0.001 for Pabellon. The stopping criterion of the
ADMM algorithm has been set to 27 *°. Moreover, we set v = 3.0.
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Fig. 12: Evolution of reconstruction quality (HDR-VDP2, PU-PSNR, PU-SSIM) with increasing exposure time for 4 light fields (Begonia,
Cactus, Plane, Window), with the random ISO pattern. (d) the reconstruction quality as a function of the percentage of saturated pixels (right),
with the random ISO patterns.
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