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Steady transition fronts in nonlinear lattices are among the most important dynamic coherent structures. We

use the Fermi-Pasta-Ulam model with piecewise linear nonlinearity to show that there are exactly three distinct

classes of such fronts which differ fundamentally in how (and whether) they produce and transport oscillations.

To make this Hamiltonian problem analytically transparent, we construct a quasicontinuum approximation gen-

erating all three types of fronts and then show that the interconnection between different classes of fronts in the

original discrete model is the same as in the quasicontinuum model. The proposed framework unifies previ-

ous attempts to classify the transition fronts as radiative, dispersive, topological or compressive and categorizes

them instead as different types of dynamic defects.

Dynamic switching fronts in discrete systems are highly

nonlinear far-from equilibrium coherent structures playing an

important role in the energy transmission from macro to mi-

croscales. They are observed in both integrable and non-

integrable Hamiltonian systems [1, 2], can be topological or

non-topological [3–5], spreading or compact [6], compressive

or undercompressive (non-Lax) [7], stable or unstable [8]. To-

gether with solitons and breathers, they play a crucial role as

building blocks in complex nonlinear wave patterns emerging

generically in mechanical systems ranging from crystals [9–

11], and metamaterials [12–15] to nanomechanical systems

[13, 16–18]. Similar concepts have been applied to describe

transport properties of many nonmechanical dispersive sys-

tems as well [19–23].

Despite the ubiquity of transition fronts, the relation be-

tween different classes of such mobile nonlinear structures

remains obscure. In this Letter we take a well known proto-

typical system, the Fermi-Pasta-Ulam (FPU) model [24, 25]

and present a unifying description of the three main types

of transition fronts which we identify as subkinks, shocks

and superkinks. All of them have been previously treated

as mostly unrelated: subkinks as subsonic phase boundaries

[26], shocks as classical supersonic shock waves [27, 28] and

superkinks as supersonic activity waves [29]. To identify the

universality classes of such localized flow defects, we use the

simplest choice of nonlinearity by assuming that the interac-

tions are piecewise linear. Such interactions were introduced

in the original FPU paper [24] and have since been employed

for the description of various dynamic nonlinear phenomena,

e.g. [30–32].

To make the problem amenable to analytic study, we first

construct a quasicontinuum (QC) version of the FPU system,

which is compatible with all three types of fronts. It can be

viewed as a higher order version of the ‘good’ Boussinesq

approximation which keeps the elastic energy local but fo-

cuses instead on the nonlocality of the kinetic energy [33].

In this simplified framework it becomes transparent, for in-

stance, why some kinks are radiative and others are not, and

why some shocks are dispersive, while others are not. We then

return to the original discrete (D) system and obtain a general

traveling wave solution of the piecewise linear FPU system,

which incorporates as special cases all three types of fronts.

We show that the interrelation between different classes of

transition fronts in the D and QC models is exactly the same.

We recall that the FPU system describes the Hamiltonian

dynamics of a mass-spring chain with mass displacements

un(t) satisfying a potentially infinite system of equations

ρh
d2un(t)

dt2
= σ

(

un+1 − un

h

)

− σ

(

un − un−1

h

)

, (1)

where h is the equilibrium distance between the masses m =
ρh, where ρ is the mass density. In terms of the strain variables

εn(t) = (un+1(t) − un(t))/h the piecewise linear macro-

scopic stress-strain relation can be written as σ(ε) = E1ε, for

ε < εc and σ(ε) = E2ε − σ0 for ε > εc, where εc is the

critical (switching) strain and E2 > E1 are the elastic moduli

of the two ‘phases’. The stress jump at the critical strain, en-

suring continuity of the piecewise quadratic elastic energy, is

∆σ = σ0 − (E2 − E1)εc, which may vary from positive to

negative.

As we vary the parameter ∆σ and the velocity of the

front, we obtain three types of transitions: subkinks (subsonic

kinks), intersonic shocks and superkinks (supersonic kinks),

shown schematically in panels (a), (b) and (c) of Fig. 1. They

were first formally identified as separate solutions in [32, 34],

and the goal of the paper is to reveal their interconnections in

the framework of the FPU model.
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Figure 1. Distinct cases of traveling wave solutions: (a) subsonic

kinks, V < c1 < c2, (b) shocks, c1 < V < c2, (c) supersonic kinks,

c1 < c2 < V . The driving force is G = S2 −S1, where S1,2 are the

areas cut by the Rayleigh line ρV 2 = (σ(ε+)−σ(ε−))/(ε+ − ε−).

Numerical simulations show stable propagation of all three

types of transition waves; see Fig. 2. If the constant veloc-

ity of the front is V , we find that the subkinks exist when

http://arxiv.org/abs/2104.05649v1
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V < c1 < c2 (Fig. 2(a)), shocks when c1 < V < c2 (Fig.

2(b,c)) and superkinks when c1 < c2 < V (Fig. 2(d)), where

c1,2 =
√

E1,2/ρ are two characteristic speeds. Note that in

the case of shocks we observe different behaviors depending

on the value of ∆σ: either a traveling wave with stationary

profile (Fig. 2(b)) or a dispersive shock profile with spreading

profile (Fig. 2(c)). Some links between subkinks and shocks

were established in [27, 28], while superkinks remain so far a

disconnected class of transition fronts [29, 35].
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Figure 2. Different regimes of front propagation initiated by

Riemann-type initial conditions with different left strain εl and ∆σ:

(a) subkink (εl = 5, ∆σ = 2.5); (b) conventional shock (εl = 25,

∆σ = 2.5); (c) dispersive shock (εl = 25, ∆σ = 0); (d) superkink

(εl = 5, ∆σ = −1.5). Here E1 = 1, E2 = 1.5, ρ = 1, h = 1,

εc = 1 and t = 300.

To obtain a unified description of all these types of tran-

sition waves, we first turn to the classical continuum limit

h → 0. This yields the nonlinear wave equation, which can

be represented as the first-order system εt = vx, ρvt = σx,

where ε(x, t) = ux and v(x, t) = ut are the strain and par-

ticle velocity, respectively. This system has discontinuous

solutions which satisfy Rankine-Hugoniot (RH) conditions

JvK+ V JεK = 0, ρV JvK + Jσ(ε)K = 0, where JfK ≡ f+ − f−
is the jump between the values on the right and on the left and

V is the velocity of the front.

There are five variables to be determined: v±, ε± and V ;

see Fig.1. Due to piecewise linearity, two characteristics with

velocities ±c1,2 can be defined on both sides of the jump. Fig.

3 shows the actual arrangement of characteristics for subkinks

(V < c1), shocks (c1 < V < c2) and superkinks (V > c2).

If V < c1 or V > c2 there are two incoming characteristics

on the front which reduces the number of unknowns to one

and therefore an additional condition is needed to find V . If

c1 < V < c2, there are three incoming characteristics, and

no additional conditions are needed. In this sense kinks are

undercompressive (non-Lax), while shocks are compressive.

The scale-free approximation adopted in continuum me-

chanics does not reveal why an additional macroscopic con-

dition is needed in the case of subkinks and superkinks and

why the case of shocks has to be subdivided into two sub-

cases, as suggested by our simulation results. To this end
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Figure 3. Characteristics η ± (c1,2 ± V )t = const of the continuum

problem in the moving frame with η = x−V t in phase 1 (blue) and

phase 2 (red): (a) subkinks, V < c1; (b) shocks, c1 < V < c2; (c)

superkinks, V > c2. Here η = x− V t.

we need a QC approximation carrying internal length and/or

time scales [36, 37]. Following the arguments in [33], we

choose to work with internal time scales and build upon the

approach proposed in [38, 39]. Setting x = nh, εn(t) =
ε(x, t) and σ(εn(t)) = σ(x, t), one can rewrite the equa-

tions of motion as an advance-delay differential equation for

ε(x, t), which in Fourier space is given by ρh2d2ε̂/dt2 =

− sin2(kh/2)σ̂, where f̂(k, t) =
∫∞

−∞
f(x, t) exp (ikx) dx.

Using the Padé approximation 4 sin2(kh/2) ≈ (kh)2/(1 +
a1(kh)

2 + a2(kh)
4), where a1 = 1/12 and a2 = 1/240, and

then transforming back to physical space, we find that in our

QC approximation of the FPU system the displacement field

u(x, t) is governed by

ρ

(

1− a1
∂2

∂x2
+ a2

∂

∂x4

)

d2u

dt2
=

∂σ

∂x
(2)

where we used the scaling x̃ = x/h but dropped

the tildes. This equation can be also obtained from

the Hamiltonian principle with kinetic energy density

(ρ/2)
(

u2
t + a1(utx)

2 + a2(utxx)
2
)

and potential energy

density φ(ux) = (E1/2)u
2
x for ux < εc and φ(ux) =

(E2/2)(u
2
x− ε2c)−σ0(ux− εc)+ (E1/2)ε

2
c for ux > εc. The

same variational principle can be used to obtain jump condi-

tions at ux = εc.
Indeed, consider the action functional of the form

A =
∫

Ω L(u,i , u,ij , u,ijk) dq
1dq2, where q1 = x,

q2 = t, subscripts after comma indicate partial deriva-

tives and L = (ρ/2)(u2
t + a1u

2
tx + a2u

2
txx) − φ(ux).

The integration is over a two-dimensional space-time

domain Ω. The corresponding Euler-Lagrange equa-

tion ∂i (∂L/∂u,i − ∂j (∂L/∂u,ij) + ∂jk (∂L/∂u,ijk)) =
0 coincides with Eq. (2). Consider a propagating

jump surface Γ where JuK = 0. On such ’bro-

ken extremal the action principle imposes the follow-

ing dispersive RH (DRH) conditions[40]: J∂L/∂u,i −
∂j (∂L/∂u,ij) + ∂jk (∂L/∂u,ijk)Kni = 0, J∂L/∂u,ij −
∂k (∂L/∂u,ijk)Kninj = 0 and J∂L/∂u,ijkKninjnk = 0.

Here na is a normal vector to Γ, so n2 = −n1V . The kine-

matic compatibility conditions Ju,iK = µni, where µ is a

scalar, represent the mass balance V Ju,1K + Ju,2K = 0.

In what follows, we use dimensionless variables Ṽ = V/c1,

σ̃ = σ/E1, σ̃0 = σ0/E1 but drop the tildes. We also intro-

duce the main dimensionless parameter γ2 = E2/E1 > 1.

To find steadily moving transition fronts, we seek solutions of



3

Eq. (2) in the form of traveling waves ε(x, t) = ε(η), where

η = x−V t. If we place the front at η = 0 we must require that

the consistency condition ε(0) = εc is satisfied. We also need

to apply the boundary conditions 〈ε(η)〉 → ε± as η → ±∞
with constant limits ε±, where the angular brackets denote the

average over the short-wave oscillations.

Integrating (2) twice and taking into account the boundary

conditions we obtain the traveling wave equation

V 2

[

1− a1
d2

dη2
+ a2

d4

dη4

]

ε(η) = σ(η) + (V 2 − 1)ε+, (3)

where σ(η) = ε(η)H(η)+(γε(η)−σ0)H(−η). Since Eq. (3)

is piecewise linear, it can be solved explicitly in terms of four

nonzero roots of each of the characteristic equations ω±(k) =
kV , whereω2

+(k)/k
2 = ω2

−(k)/(γk)
2 = (1+a1k

2+a2k
4)−1

are the dispersion relations in the two linear regimes. For sim-

plicity, we assume that that γ <
√

12/7 and V <
√

12/7
in what follows (see [41] for the general case). Of partic-

ular importance are nonzero real roots, which correspond to

energy radiation (see Fig. 4). A single symmetric pair ±k±

0 5 10
k

ω+(k)

ω
−
(k)

ω = V k

k+D
k−D

k+QC

k−QC

Figure 4. Comparison of the dispersion relations (for real k) in D

(solid lines) and QC (dotted lines) models. In the picture the char-

acteristic equations for D and QC models have one positive real root

each, denoted by k±

QC and k±

D, respectively.

of such roots exists on each side when V < 1 (subkinks).

When 1 < V < γ (shocks), only ±k− remain, and in the

case of superkinks there are no nonzero real roots. The other

nonzero roots are purely imaginary and symmetric about the

real axis. To find the coefficients associated with the different

exponents, we need to apply at η = 0 the continuity condi-

tions JεK = Jdε/dηK = 0, together with the DRH conditions

a1Jdε/dηK = a2
q
d3ε/dη3

y
and

q
d2ε/dη2

y
= 0. To exclude

the energy flux from infinity, we must also impose the radia-

tion conditions ω′
+(k) > kV and ω′

−(k) < kV for positive

real roots of the corresponding characteristic equations. The

resulting solutions have the form

ε(η) = ε± + Λ±(η) + Φ±(η), η ≷ 0, (4)

Here the limiting values of strain ε± at η → ±∞ satisfy the

RH condition V 2 = (σ(ε+)− σ(ε−))/(ε+ − ε−). Excluding

the flux from infinity, we find that the radiation component

of the solution is zero ahead of the front in all three cases:

Λ+ ≡ 0. Behind the front, it has the form

Λ−(η) = 2α− cos (k−η + β−) (5)

for subkinks and shocks and equals zero for superkinks. The

third term Φ± in Eq. (4) describes the exponentially local-

ized boundary layers and involves a single exponent on each

side for subkinks and behind the front for shocks, while in

the other cases there are two exponential terms [41]. Together

with Eq. (5) and consistency condition, this implies that in the

range V < 1 (subkinks) there is one unknown coefficient on

+ side and three on − side. All of them can be found from the

four continuity/DRH conditions. When 1 < V < γ (shocks)

we have two coefficients on + side and three on − side, and

four conditions leave one of the constants undetermined. Fi-

nally, if V > γ (superkinks) there are two coefficients on each

side, so the solution is again fully specified by the four condi-

tions [41].

The physical nature of the transition fronts in Eq. (4) is re-

vealed by the structure of the roots of the characteristic equa-

tions, which describe the asymptotic behavior of the hetero-

clinic trajectories at η → ±∞. Thus, for V < 1 (sub-

kinks) the (non-generic) transition fronts correspond to center-

saddle to a center-saddle trajectories; such transitions are pos-

sible due to the higher order dispersion included into our QC

model. For 1 < V < γ (shocks) the heteroclinic orbits are

generic saddle-saddle to center-saddle. Finally, for γ < V
(superkinks) the transitions are (non-generic) saddle-saddle to

saddle-saddle connections.

Additional insights can be obtained by looking at the en-

ergy balance in the three classes of fronts. According to a

continuum model the rate of energy dissipation on a front

is R = GV ≥ 0, where G = Jφ(ε)K − {σ(ε)}JεK, where

{f} = (f+ + f−)/2 [26, 42]. In our case G can be computed

explicitly:

G =
γ2 − 1

2
(ε+ε− − ε2c) +

σ0

2
(ε+ + ε− − 2εc). (6)

In the QC setting this energy does not disappear but is trans-

ferred, in the case of subkinks and shocks, at the relative ve-

locity ω′
−(k

−)− V into a short-length wave (with wave num-

ber k−) carrying it away from the front and propagating be-

hind it. This yields R = R+ + R−, where R± = G±V , with

G+ = 0 (no radiation ahead) for all three types of fronts,

G− = 2γ2(α−)2
(

1−
ω′
−(k

−)

V

)

for V < γ (subkinks and shocks) and G− = 0 for superkinks.

ε+ εc

ε
−

ε

G(ε, ε+)

G

(a)

ε+

εc ε
−

ε

G(ε, ε+)

G

(b)

ε+

εc

ε
−

ε

G(ε, ε+)

(c)

Figure 5. Different behavior of the dissipation function G(ε, ε+): (a)

subsonic kinks, V < 1, (b) shocks, 1 < V < γ, (c) supersonic

kinks, V > γ.

Further physical intuition can be developed if for all three

classes of fronts we consider the function G(ε, ε+) = φ(ε) −
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φ(ε+)−Σ(ε− ε+), where Σ(ε) = σ(ε+)+ (V 2/2)(ε− ε+),
introduced in [43]. It represents energy variation along the

Rayleigh line which ensures the conservation of the macro-

scopic mass and momentum and the reference is chosen so

that G(ε+, ε+) = 0 and G(ε+, ε−) = −G ≤ 0. As we see

in Fig. 5, for subkinks, in addition to dissipation, there is a

barrier that needs to be overcome and the required energy is

transmitted by dispersion from downstream. For shocks, there

is no barrier but there is dissipation. Finally, for superkinks,

there is no dissipation, but there is an anti-barrier and energy

transferal by dispersion is still necessary, but now from up-

stream. Since the barriers exist in the case of kinks and not

shocks, the former are topological, while the latter are non-

topological flow defects.
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Figure 6. Admissibility sets of solutions of the QC problems. In

the blue region we observe ε(η) ≤ εc when η < εc, and the dashed

curves mark the threshold ε− = εc. The insets show examples of the

strains ε(η). Here γ2 = 1.5, εc = 1, and we set ε+ = 0 for shock

solutions. The corresponding diagram for the D problem is shown in

[41].

The condition of admissibility for the obtained solutions

takes the form ε(η) > εc for η < 0 and ε(η) < εc for

η > 0. Fig. 6 shows that only some of the stationary shock so-

lutions are admissible in the QC problem, which agrees with

the numerical results for the D model in Fig. 2. Numerical

simulations for the QC model show that in the domain of non-

admissibility stationary shocks are replaced by spreading dis-

persive shock waves (DSW) [41]. This result, known for the

D model with convex energy (our ∆σ ≤ 0 ), was previously

linked to the low dimensionality and the absence of dissipa-

tion [44]. By allowing regimes with ∆σ ≥ 0, we recover

the stationary shocks, because due to non-convexity, large-

amplitude lattice waves, transmitting radiated energy away

from the moving front, can now be accommodated.

The bilinear nature of the stress-strain relation allows one

to find explicit representations for all three classes of fronts

also in the D problem. To find traveling waves in this case, we

need to solve the equation

V 2 d
2ε

dη2
= σ(η + 1) + σ(η − 1)− 2σ(η). (7)

where σ(η) is defined as in (3). The Fourier transform of (7)

yields

(ω2
+ − k2V 2)ε̂+ + (ω2

− − k2V 2)ε̂− =
ω2
− − ω2

+

ik
(ε+ − ε∗) ,

(8)

where ε̂±(k) =
∫∞

−∞
ε(η)H(±η)eikη dη, and we introduced

the notation ε∗ = σ0/(γ
2 − 1). Although the dispersion re-

lations in the D problem ω2
+(k) = ω2

−(k)/γ
2 = 4 sin2 (k/2)

are more complex than in the QC problem, the latter qual-

itatively captures the long-wave behavior, as can be seen in

Fig. 4. More precisely, the QC model operates with only four

approximate nonzero roots in the D problem that are closest

to the origin [36].

Eq. (8) can be solved by the Wiener-Hopf technique, and

the solution once again takes the form of Eq. (4) that includes

radiative (Λ±(η)) and exponentially localized (Φ±(η)) com-

ponents; see [41] for the details. In the generic case admis-

sible subkink and shock solutions feature a single radiation

mode (5) propagating behind the front, where the wave num-

ber k− is now the positive root of the characteristic equation

ω−(k) = V k for the D problem, while Λ+ ≡ 0. In the su-

perkink case, Λ± ≡ 0. For both types of kinks, the limiting

states are fully determined by V via

ε± = ε∗ +
εc − ε∗

R

(

1− V 2

γ2 − V 2

)∓1/2

,

where R = 1 for superkinks and R = k−/k+ for subkinks.

In the case of shocks one of the limiting states remains a free

parameter, which agrees with both continuum and QC approx-

imations. The admissibility diagram for the D model is similar

to the one shown in Fig. 6 for the QC model [41].

To conclude, we presented the framework revealing the in-

tricate relations between various classes of transition fronts

in non-integrable FPU system. To achieve analytical trans-

parency, we constructed a minimal QC model based on the

higher order approximation of the kinetic energy. Compari-

son with the exact solution of the FPU system shows that the

chosen approximation adequately describes the complex in-

terrelation between different types of transition fronts. The

obtained front solutions can be interpreted as microscopic de-

scriptions of Whitham shocks [45, 46]. They correspond to

heteroclinic traveling waves of the original dispersive model

that can connect not only critical points but also periodic or-

bits. To capture such connections, a higher order QC model is

necessary, and the ensuing rich variety of transition fronts can

be attributed to degrees of freedom brought by higher order

QC approximation of FPU. To build bridges between differ-

ent types of transition fronts we draw upon different physi-

cal considerations, including characteristics, barriers, critical

manifolds and kinetic relations, which all point to the exis-

tence of exactly three universality classes of transition fronts.
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a. D model: numerical simulations We solved the FPU

system numerically using Runge-Kutta method (algorithm

ode45 from Matlab) on a finite lattice of N = 1000 springs

with Riemann initial conditions

εn(0) =

{

εl, n < 500,

0, n ≥ 500,

dεn
dt

(0) = 0

and free boundary conditions. The duration of simulation was

chosen to prevent any boundary effects on the front dynamics.

In each simulation we varied εl and ∆σ = σ0 − (E2 −
E1)εc, while keeping all other parameters fixed. As described

in the main text, we found that depending on these two varied

parameters, four types of transition fronts form (subkinks, sta-

tionary shocks, dispersive shocks waves and superkinks). In

particular, we found that superkinks (c1 < V < c2) can only

appear if ∆σ < −εc(E2 − E1) < 0.

b. QC model: explicit solution The structure of solution

of the QC model is determined by the roots of the charac-

teristic equations ω2
±(k) − V 2k2 = 0. Due to the symme-

try of the functions involved it suffices to seek nonzero roots

with ℑk > 0 and ℜk > 0. There is also a double root at

k = 0, providing a linear contribution to the solution with

only a constant term ultimately entering due to the assump-

tion of boundedness. The nonzero roots k
(j)
± , j = 1, 2, 3, 4

possess the symmetry k
(3)
± = −k

(1)
± and k

(4)
± = −k

(2)
± . The

analysis of the remaining algebraic problem shows that

k
(1)
+ = ip, k

(2)
+ = s, V < 1,

k
(1,2)
+ = ip1,2, 1 < V < V∗,

k
(1,2)
+ = id± f, V > V∗

(1)

and

k
(1)
− = iq, k

(2)
2 = r, V < γ,

k
(1,2)
− = iq1,2, γ < V < V∗∗,

k
(1,2)
− = ig ± w, V > V∗∗,

(2)

where V∗ =
√

12/7, V∗∗ = γ
√

12/7 > V∗, and p, s, p1,2,

d, f , q, r, q1,2, g and w are explicitly known real and positive

functions of V .

For subkinks (V < 1), the solution takes the form

ε(η) =
{

ε− +B1e
qη +B2 cos(rη) +B3 sin(rη), η < 0

ε+ +A1e
−pη, η > 0,

(3)

where we have applied the radiation and boundary conditions.

The consistency condition yields ε++A1 = εc and ε−+B1+

B2 = εc. Together with the remaining jump conditions this

yields the following linear system for the coefficients in (3):

−C0A1 +B1 +B2 = b

pA1 + qB1 + rB3 = 0,

p2A1 − q2B1 + r2B2 = 0,

p3A1 + q3B1 − r3B3 = 0,

where

C0 =
V 2 − 1

V 2 − γ2
, b = (1− C0)εc +

σ0
V 2 − γ2

.

For V > 1 the structure of the roots in (1) and (2) changes

depending on the value of V relative to the thresholds V∗ and

V∗∗, the existence of which is an artifact of the QC approxi-

mation. To account for this, it is convenient to introduce

λ1,2 =

{

−p1,2, 1 < V < V∗
−d± if, V > V∗

and

µ1,2 =

{

q1,2, γ < V < V∗∗
g ± iw, V > V∗∗.

Then for shocks (1 < V < γ) we have

ε(η) =
{

ε− +B1e
qη +B2 cos(rη) +B3 sin(rη), η < 0

ε+ +A1e
λ1η +A2e

λ2η, η > 0.

(4)

The consistency condition yields ε+ + A1 + A2 = εc and

ε− +B1 +B2 = εc, and the linear system for the coefficients

in (4) becomes

−C0(A1 +A2) +B1 +B2 = b

λ1A1 + λ2A2 − qB1 − rB3 = 0,

λ21A1 + λ22A2 − q2B1 + r2B2 = 0,

λ31A1 + λ32A2 − q3B1 + r3B3 = 0.

(5)

This system of four equations does not allow one to find all

five unknown coefficients, which means that the structure of

shocks is not fully determined internally. The solution will

be fully defined if we provide an additional condition, for in-

stance, ε+ = 0, which means that A1 +A2 = εc.

Finally, in the range V > γ the solution reads

ε(η) =

{

ε− +B1e
µ1η +B2e

µ2η, η < 0

ε+ +A1e
λ1η +A2e

λ2η, η > 0,
(6)
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where ε+ + A1 +A2 = εc, ε− +B1 +B2 = εc, and the co-

efficients can be found explicitly by solving the linear system

−C0(A1 +A2) +B1 +B2 = b,

λ1A1 + λ2A2 − µ1B1 − µ2B2 = 0,

λ21A1 + λ22A2 − µ2
1B1 − µ2

2B2 = 0,

λ31A1 + λ32A2 − µ3
1B1 − µ3

2B2 = 0.

To check numerical stability of the obtained solutions we

also performed direct numerical simulations of an initial value

problem. We used a finite domain x ∈ (0, H), where H =
200, and adopted the Riemann initial conditions:

ε(x, 0) =

{

εl, x < H/2,

0, x ≥ H/2,

∂ε

∂t
(x, 0) = 0.

We set first and second spatial derivatives to zero at the bound-

aries and used the finite-difference method detailed in [1].

Fig. 1 shows the results of the simulations, where we fix

εr = 0 and vary εl and ∆σ. As in D problem discussed in the
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Figure 1. Different regimes of front propagation when E1 = 1,

E2 = 1.5, ρ = 1, εc = 1 and h = 1 at t = 50: (a) subkink

(εl = 6, ∆σ = 2.5); (b) conventional shock (εl = 10, ∆σ = 2.5);

(c) dispersive shock (εl = 10, ∆σ = 0); (d) superkink (εl = 6,

∆σ = −1.5).

main text, we see the formation of subkinks, conventional and

dispersive shocks and superkinks, depending on the choice of

∆σ and εl.
c. Discrete (D) model: explicit solution Up to a com-

mon constant, represented in the Fourier space space by a

delta function, the function ε̂(k) = ε̂+(k) + ε̂−(k) can be

written as a sum of the general solution χ̂±(k) of the homo-

geneous problem and a particular solution χ̂±
0 (k) of the inho-

mogeneous problem, which accounts for the boundary condi-

tions. Then in the Fourier space the D problem reduces to

L(k)
[

χ̂+(k) + χ̂+
0 (k)

]

+
[

χ̂−(k) + χ̂−
0 (k)

]

= (1− L(k))/(ik) (ε+ − ε∗) ,
(7)

where L(k) = L+(k)/L−(k), L±(k) = (ω2
±(k) + (0 +

ikV )2), with 0± ikV = lims→0+(s± ikV ).
A particular solution can be represented as a sum of func-

tions belonging to the null spaces of the operators L±(k):

L+(k)f̂+(k) = 0, L−(k)f̂−(k) = 0. (8)

In what follows, we consider the generic case when V is non-

resonant (V 6= ω′
+(k) and V 6= ω′

−(k) for any real k). We

define the sets Z = Z+
r ∪Z−

r ∪Z+
c ∪Z−

c and P = P+
r ∪P−

r ∪
P+
c ∪ P−

c of nonzero roots, where

Z±
r = {z : L+(z) = 0, z 6= 0, ℑz = 0, ω′

+(z) ≷ V },

P±
r = {p : L−(p) = 0, p 6= 0, ℑp = 0, ω′

−(p) ≷ V },

Z±
c = {z : L+(z) = 0, ℑz ≷ 0},

P±
c = {p : L−(p) = 0, ℑp ≷ 0}.

(9)

Then solutions of (8) can be written in the form

f̂+(k) = 2π[A+δ(k) + iB+δ
′(k)] +

∑

kj∈Z

C
(+)
j δ(k − kj),

f̂−(k) = 2π[A−δ(k) + iB−δ
′(k)] +

∑

kj∈P

C
(−)
j δ(k − kj).

The first two terms in both expressions correspond to dou-

ble zeroes of L±(k) at k = 0 and describe linear func-

tions f±(η) = A± + B±η in the physical space. Since

solutions must be bounded, we set B± = 0. In addition,

since the boundary conditions are of long-wave type, we have

C
(±)
j = 0. Given that 2πδ(k) = 1/(0− ik) + 1/(0+ ik), we

have

χ̂±
0 (k) =

ε±
0∓ ik

, (10)

where we used the fact that 〈ε(η)〉 → ε± at η → ±∞ and set

A± = ε±.

To find the general solution χ̂±(k) of the homogeneous

equation, we use the Wiener-Hopf technique [2–4]. It requires

the elimination of the singularity at zero on both sides of the

equation and is based on the factorizing the kernel function

in the form L(k) = L+(k)L−(k), where the superscripts ±
specify functions that are analytic in ℑk ≷ 0, respectively

(here L±(k) should not to be confused with L±(k) denoting

the characteristic functions ahead and behind the front). If we

divide (7) by L−(k) and multiply by ik, to remove a singular-

ity at k = 0, we obtain

L+(k)
[

−ε∗ − ik(χ̂+(k) + χ̂+
0 (k))

]

=
1

L−(k)

[

ik(χ̂−(k) + χ̂−
0 (k)) + ε∗

]

.
(11)

Using L(0) = (1 − V 2)/(γ2 − V 2), L(−k) = L(k)
and the fact that L(k) ∼ 1 when k → ∞, we can write

L±(k) = exp
(

± 1
2πi

∫∞

−∞

LogL(ξ)
ξ−k dξ

)

, where Log(z) is a

principal value of the logarithm. The functions L±(k) are

free of zeros and poles in their domains of analyticity and can
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be further factorized as L±(k) = l±(k)L0
±(k), where the

first and second factors involve real and non-real roots of the

characteristic equations, respectively.

More specifically, consider the sets Z+
r ∪ Z−

r and P+
r ∪P−

r

of nonzero real roots defined in (9). These roots correspond to

radiated lattice waves; due to the symmetry about the origin,

it suffices to only consider positive roots. When the sets are

nonempty for given V , they contain an odd number of pos-

itive real roots, given by 2l + 1 and 2m + 1, respectively.

We arrange these roots in the ascending order: zj < zj+1,

j = 1, . . . , 2l, and pj < pj+1, j = 1, . . . , 2m. Applying

the radiation condition, one can show that the function l−(k)
should contain zeros z2j−1, j = 1, . . . , l+1 and poles p2j−1,

j = 1, . . . ,m+ 1, with the odd indices that belong to the sets

Z−
r and P−

r in (9), respectively, whereas the remaining zeroes,

z2j , j = 1, . . . , l, and poles, p2j , j = 1, . . . ,m, contribute to

l+(k) and are contained in Z+
r and P+

r , respectively. Phys-

ically, this ensures that the radiated waves carry the energy

away from the front.

Next, we note that in the case of superkinks (V > γ) both

functions L±(k) have no nonzero real roots (and hence no ra-

diated waves). For shocks (1 < V < γ) only L−(k) has such

roots, with m = 0 for V below the first resonance velocity

V1 > 1 such that ω′
2(k) = V1k for some real k, m = 1 for V

between the first and second resonance velocities, etc. Finally,

for subkinks (V < 1) each of the characteristic equations has

at least one positive real root, with l andm each increasing by

one when the corresponding resonance velocity is crossed. In

view of this, we have

l±(k) =

{

R±1, V < 1 or V > γ,

iR±1(0 ∓ ik)±1, 1 < V < γ,
(12)

where R = (
l
∏

j=1

z2j
m+1
∏

j=1

p2j−1)/(
l+1
∏

j=1

z2j−1

m
∏

j=1

p2j) for sub-

kinks (V < 1) and R = (
m+1
∏

j=1

p2j−1)/(
m
∏

j=1

p2j) for shocks

(1 < V < γ), while for superkinks the absence of radiation

implies R = 1.

We now consider the asymptotic behavior of the functions

L±(k). Depending on the type of the front we obtain

L±(k) =

√

1− V 2

γ2 − V 2
+O(k), k → 0,

V < 1 or V > γ,

L±(k) = i

√

V 2 − 1

γ2 − V 2
+O(k), k → 0,

1 < V < γ

(13)

and

L±(k) = R∓1 +O

(

1

k

)

, k → ∞,

V < 1 or V > γ,

L±(k) = R∓1k±1 +O
(

k−1±1
)

, k → ∞,

1 < V < γ

(14)

One can also show that near the real singularities

1

L+(k)
=

ω2(z2j)− (z2jV )2

2z2jV i|ω′
1(z2j)− V |

L−(z2j)
1

0− i(k − z2j)
,

k → z2j,

and

L−(k) =
ω1(p2j−1)− (p2j−1V )2

2p2j−1V i|ω′
2(p2j−1)− V |

×
1

L+(p2j−1)

1

0 + i(k − p2j−1)
, k → p2j−1,

with similar expressions for the negative real singular points.
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Figure 2. Admissibility sets of solutions of the D problem. In the

blue region we observe ε(η) ≤ εc when η < εc, and the dashed

lower boundary of the region marks the threshold ε− = εc. The

insets show examples of the strains ε(η). Here γ2 = 1.5, εc = 1,

and we set ε+ = 0 for shock solutions. The corresponding diagram

for the QC problem is shown in the main text; the two diagrams differ

significantly only at small V < 1, where the QC model, as expected,

does not capture the inadmissibility of slow subkink solutions.

Using the asymptotic estimates (14) at k → ∞, recalling

(11), (10) and applying the Liouville theorem, we conclude

that

L+(k)

[

−ε∗ − ik

(

χ̂+(k) +
ε+

0− ik

)]

=
1

L−(k)

[

−ε∗ + ik

(

χ̂−(k) +
ε−

0 + ik

)]

=M(k),

(15)

where M(k) = ψ0 + ψ1k. By (14), both sides of (15) are

constant at infinity when V < 1 or V > γ. Therefore, we

must set ψ1 = 0 for these velocity ranges. The solution in the

Fourier space is

χ̂±(k) =
ε∗ − ε±
0∓ ik

+
ψ0 + ψ1k

0∓ ik

[

L±(k)
]∓1

. (16)

Inverting this relations, we can reconstruct the strains in the

physical space:

ε(η) = ε∓ +
1

2π

∫ ∞

−∞

χ̂∓(k)e−ikη dk, η ≶ 0. (17)

Using (16) and recalling the asymptotic behavior of theL±(k)
in (13) and (14), we can determine the constants ψ0 and ψ1,
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keeping in mind that ψ1 = 0 in the subkink and superkink

regimes, as noted above. For subkinks (V < 1) and su-

perkinks (V > γ), this yields ψ0 = (1/R) (εc − ε∗). Then

the equilibrium states are

ε± = ε∗ +
εc − ε∗
R

(

1− V 2

γ2 − V 2

)∓1/2

. (18)

For the shocks (1 < V < γ) we obtain instead

ψ0 = i

√

γ2 − V 2

1− V 2
(ε− − ε∗) , ψ1 =

εc − ε∗
R

,

Thus, although in all three cases we have ε− =
L(0) (ε+ − ε∗) + ε∗, which is equivalent to the RH condi-

tion V 2 = [σ(ε+)− σ(ε−)]/(ε+ − ε−), in the case of shocks

the limiting states ε± are not uniquely determined by V , i.e.

there is no condition equivalent to (18) we have for subkinks

and superkinks, and one of these variables is prescribed inde-

pendently.

The solution (17) in all three cases can be expressed in the

form ε(η) = ε∓+Λ∓(η)+Φ∓(η), η ≶ 0. Here Φ∓(η) are

exponentially decaying functions given by the infinite sums

over the non-real roots defined in (9):

Φ−(η) =
∑

p∈P
−

c

ω2
1(p)− (pV )2

2p2V (ω′
2(p)− V )

(ψ0 + ψ1p)

L+(p)
eipη

Φ+(η) =
∑

z∈Z
+
c

ω2
2(z)− (zV )2

2z2V (ω′
1(z)− V )

L−(z)(ψ0 + ψ1z)e
izη,

where we recall (9), and Λ∓(η) correspond to radiation. For

subkinks (V < 1), we have

Λ−(η) = 2

m+1
∑

j=1

α−
j cos (p2j−1η + β−

j ),

Λ+(η) = 2

l
∑

j=1

α+
j cos (z2jη + β+

j ),

where the second sum is zero when l = 0. For shocks

(1 < V < γ), there is no radiation ahead of the front, so

Λ+(η) ≡ 0, while the form of Λ+ has the same form as above.

The real coefficients α±
j and β±

j can be found using the polar

representation of the complex numbers from

α−
j e

−iβ−

j =
L+(p2j−1)

[

ω2
1(p2j−1)− (p2j−1V )2

]

2p2j−1V i [V − ω′
2(p2j−1)]

× (ψ0 + ψ1p2j−1)

α+
j e

−iβ+

j =
L−(z2j)

[

ω2
2(z2j)− (z2jV )2

]

2z2jV i [ω′
1(z2j)− V ]

(ψ0 + ψ1z2j),

with the corresponding values of ψ0 and ψ1; only the first of

these is relevant for shocks. Finally, for superkinks (V > γ)

there is no radiation either ahead or behind the propagating

front, and so in this case Λ−(η) = Λ+(η) ≡ 0.

The admissibility diagram for the D model is shown in

Fig. 2.
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