
HAL Id: hal-03455026
https://hal.science/hal-03455026

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Green power aware approaches for scheduling
independent tasks on a multi-core machine

Ayham Kassab, Jean-Marc Nicod, Laurent Philippe, Veronika Sonigo

To cite this version:
Ayham Kassab, Jean-Marc Nicod, Laurent Philippe, Veronika Sonigo. Green power aware approaches
for scheduling independent tasks on a multi-core machine. Sustainable Computing : Informatics and
Systems, 2021, 31, pp.100590 . �10.1016/j.suscom.2021.100590�. �hal-03455026�

https://hal.science/hal-03455026
https://hal.archives-ouvertes.fr

Green Power Aware Approaches for Scheduling Independent Tasks

on a Multi-core Machine*

Ayham Kassab, Jean-Marc Nicod, Laurent Philippe, Veronika Rehn-Sonigo
FEMTO-ST Institute, Université Bourgogne Franche-Comté / CNRS / ENSMM

F-25000 Besançon, France
[ayham.kassab|jean-marc.nicod|laurent.philippe|veronika.sonigo]@femto-st.fr

August 18, 2021

Abstract

The energy consumption of large Information and
Communications Technology structures such as data
and computation centers along with the correspond-
ing carbon footprint are on the rise. Green comput-
ing has become an indispensable solution to face the
resulting economical and environmental challenges.
Powering these centers with renewable energy sources
is however a challenge since these sources cannot
guarantee a constant power supply due to their fluc-
tuating power production. We here tackle the prob-
lem of scheduling independent tasks on a multi-core
machine within a predicted renewable power enve-
lope that varies over time. We evaluate the com-
plexity of different instances of the problem from a
theoretical point of view. We propose several heuris-
tics, including genetic algorithms, and we conduct
experiments to assess their performance. For some
particular cases we compare the performance of these
heuristics to optimal solutions.

Keywords Task scheduling - optimization - com-
plexity - heuristics - renewable energy sources - par-
allel machines - green computing

*This work was supported in part by the Agence Na-
tionale de la Recherche: DATAZERO (contract “ANR-15-
CE25-0012”) project and EIPHI Graduate school (contract
”ANR-17-EURE-0002”). Computations have been performed
on the supercomputer facilities of the Mésocentre de calcul de
Franche-Comté – Besançon.

1 Introduction

The increasing demand on computational resources
pushes computing and data center operators to ex-
pand their IT infrastructures, but the growing ca-
pacity of these centers is accompanied with rising
concerns about their carbon footprint. As the elec-
tricity consumption of Information and Communica-
tions Technology is estimated to reach up to 20%
of the world consumption by 20301, which will cor-
respond to 5.5% of the global CO2 emissions, the
resulting environmental impact underline the neces-
sity of greener computing. Over the course of the
last few years, many efforts have addressed the en-
ergy efficiency of IT infrastructures. The proposed
solutions vary from reducing the power consumption
of IT components, such as CPUs and hard disks, to
addressing the energy efficiency on the whole facility
level such as cooling and electricity transport sys-
tems as early mentioned by Khargharia et al. in [21].
On the other hand, as the nature of the used energy
source highly impacts the carbon footprint, comput-
ing and data center operators are deploying renew-
able energy sources to support their increasing power
demand, and, at the same time, to reduce their envi-
ronmental impact.

Renewable sources can be used in different scenar-
ios. Several operators are choosing to build their new
data centers in northern countries, whose advanced

1https://theshiftproject.org

1

renewable production is attractive. Other operators
sign a green energy contract with energy suppliers.
This actually means that the consumed energy could
be a mix of green and brown energy but enough green
energy is being produced and added to the grid to
off-set the supplied brown energy. Other high perfor-
mance computing (HPC) and data centers use on-site
renewable energy. This means that the energy is pro-
duced by on-site renewable energy sources.

The challenge with on-site energy production is the
variability of the production of most renewable en-
ergy sources (e.g., solar panels and wind turbines)
while, in order to perform any computation, enough
power must be available to cover the power consump-
tion of the environment (cooling, power distribution,
etc.) and of the computation units. It follows that
a system solely powered by on-site renewable sources
may have different computational capacities at dif-
ferent intervals of time if no power storage units, like
batteries, are used. On the other hand, using bat-
teries to stabilize the power input over time, has a
cost since between 15 and 20% of the power is lost
when charging and discharging the batteries [22]. It
is thus worth trying to run as much computations as
possible directly with the produced power , which
in turn implies that the workload can be scheduled
over time depending on the available power, i.e., tasks
do not have deadline. This is, for instance, the case
of the workflow of a HPC application, composed of
tasks with different computation densities that are
run in batch mode and thus tolerate delay. Then
workload management, scheduling, is needed to effi-
ciently match the workflow with the variable green
power production. Ideally, intensive computations
should be run when the power production is high,
and the less dense computations when the power pro-
duction is lower. The issue is thus to run as many
tasks as possible under the constraint of the available
and variable power to finishing the tasks as soon as
possible. We thus consider both the makespan and
the total flowtime objectives.

The research scope of the paper is the problem of
scheduling the execution of HPC applications on a
computing center powered solely by renewable en-
ergy sources. As the whole problem is complex [28],
it must be handled in several steps. In this paper,

we concentrate on the classical optimization problem
of running a set of independent sequential tasks on a
multi-core machine, the P ||Cmax problem, with the
additional constraint of a power supply that varies
over time. So the main problem to be solved is
to schedule tasks depending on the available power,
which means that a task cannot be run when there
is not enough power available, even if there is a
free core. The objective is to assess the behavior
of scheduling algorithms in this particular case. The
contributions of the paper are: (i) a theoretical study
to determine the complexity of several scenarios of
this optimization problem, (ii) the proposition of sev-
eral scheduling heuristics that integrate the power
constraint, and (iii) a comparison of the performance
of these heuristics based on simulations. Note that, to
our knowledge, this paper is the first research work
that addresses the theoretical aspect of scheduling
tasks under power availability constraints.

The paper is organized as follows. In Section 2
we summarize the related work on energy, schedul-
ing and computation. In Section 3 we define the
model and the limitations of the tackled problem.
In Section 4 we present a theoretical study to deter-
mine the complexity of several scenarios of this opti-
mization problem. We demonstrate that the general
case of this problem is NP-Hard in the strong sens.
In Section 5 we propose several heuristics that take
the power variation into account. In Section 6 we
presents the experiments done to assess the heuristics
performance and their results. Finally we conclude
in Section 7. Note that this paper is an extended
work from these two preceding papers: [19, 18]. In
particular it presents a wider study on the heuristics
performance, including a comparison of the distance
from the results of the heuristics to the optimal solu-
tions for specific scenarios.

2 Related Work

Researchers from many fields addressed the energy ef-
ficiency in big Information and Communication Tech-
nology infrastructures such as computating and data
centers. The proposed solutions vary from switch-
ing off unused servers [29] to integrating renewable

2

sources into the power supply of the data center [1].
Many surveys such as [26], [10], [20], [27], [34] give
a wide range of technologies and tools that are de-
ployed at different levels of the center to reduce its
energy consumption.

2.1 Combined software and hardware
IT management

Many works propose solutions that control both the
system software components, scheduling policies for
example, and the hardware components such as pro-
cessors and memory chips. Sheikh et al. [34] gave
a comprehensive presentation of the main technique
issues (hardware and software) for energy aware
scheduling of workflows on different types of archi-
tectures (from single to parallel architectures). A
common energy management technique on the hard-
ware level is Dynamic Voltage and Frequency Scaling
(DVFS) [36], which reduces the power consumption
of a processor by lowering its clock rate frequency
and supply voltage. As a result, the processor be-
comes slower and the execution time is thus longer.
Since energy equals power times duration, if DVFS is
not applied appropriately, in some cases, the overall
energy consumption might be worse than running the
same job on higher voltage and finishing the execu-
tion earlier. DVFS can be applied during processor
slack periods, which is accomplished independently in
modern processors using on-chip controllers [14, 16].

In [38], the authors combine DVFS with an energy-
efficient scheduling algorithm that takes into account
the Service Level Agreement (SLA) to decide when
to run the processors at lower frequencies. Each job
has a maximum and a minimum frequencies Fmax

and Fmin, and by knowing the maximum and the
minimum operating frequencies of each server, the
algorithm selects the server that operates within the
frequency limits required by the job and at the same
time ensures that the job cannot overuse the re-
sources. In [37], two scheduling algorithms are pro-
posed. The proposed algorithms apply DVFS at slack
times to reduce the energy consumption without in-
creasing the total scheduling length. In addition, a
green SLA is developed to offer users the option to
consume less energy at the expense of increasing the

execution time within an affordable limit.
High performance computing providers sign an en-

ergy contract with the electricity supplier agreeing
on a certain level of power supply during the dura-
tion of that contract. If the power consumption ex-
ceeds the supply value specified in the contract, the
price of electricity per additional Watt is penalized
by the supplier. Therefore, most HPC centers de-
ploy power capping techniques to avoid going past
the power supply limit. A power cap is a value given
in watt which the system power consumption must
not exceed. Many techniques can be used to per-
form power capping such as DVFS, or simply switch-
ing off certain computational nodes [30]. Server level
power capping can also be achieved by setting some
of the server components to sleep mode, and throt-
tling the CPU by inserting idle cycles. For multi-
threaded workloads, thread packing can be used to
control the number of active cores of a processor,
therefore limiting its power consumption, [31]. In [7]
the total energy consumption over a period of time
is limited by setting an energy budget, regardless of
the instantaneous power consumption levels during
that time. Sheikh et al. in [33] proposed a compre-
hensive overview of thermal-aware task scheduling on
multi-core architectures. Controlling processor tem-
perature, by avoiding hotspots for instance, appears
mandatory to optimize energy consumption of pro-
cessors since, in some cases, energy-aware scheduling
alone may not be efficient enough.

Zhang et al. in [39] presented a grid that is made
out of several geographically distributed data centers
powered by renewable sources. The idea is to over-
come the downsides of using renewable sources, which
are uncertainty and variation in available power lev-
els, by taking advantage of the fact that different
weather conditions in different locations would lead
to different available power levels. By using inter
data center virtual machine migration, data centers
with extra workloads than their local energy produc-
tion can export these jobs to other data centers with
extra production, taking the network capacity into
account.

Goiri et al. in [11] proposed a scheduler for parallel
batch jobs in a data center powered by both a green
energy source and the electrical grid (GreenSlot).

3

Prediction of the amount of solar energy that will be
available in the near future is done using historical
data and weather forecasts. Then, jobs are sched-
uled in a way that maximizes the green energy con-
sumption while meeting their deadlines. By matching
the workload with the predicted green energy level
(scheduling more jobs at times where the green en-
ergy production level is high), and with the usage
of brown energy is necessary to avoid the violation of
job deadlines, it schedules these jobs at times where
brown energy prices are cheap.

Khargharia et al in [21] proposed a scalable hierar-
chical framework dedicated to large scale e-business
data centers using game theory to globally optimize
power and performance at runtime considering per-
formance/watt as a metric.

Compared to these works, we tackle the schedul-
ing of tasks on only one infrastructure. This infras-
tructure is solely powered by renewable sources which
introduces a variable power constraint in the schedul-
ing process. We do not target reducing the energy
consumption, as it is done with DVFS. We rather
aim to exploit the available power as well as pos-
sible which transforms the problem into using as
much power as possible, when the latter is available.
The novelty of this work is that our problem is thus
power constrained, with variations over time, rather
than energy budget constrained or optimized. This
simplifies the optimization problem since optimizing
the power use requires to optimize only one objective
(e.g. makespan or flowtime) while energy based prob-
lems are usually bi-criteria problems (e.g. energy and
makespan).

2.2 IT management via software

Scheduling policies are a good example of software
level solutions that can be used to tackle the energy
efficiency in HPC systems. In [17] a 2-phase algo-
rithm based on list scheduling considers two objec-
tives, minimizing the makespan, which is the execu-
tion time of all the submitted jobs, and minimiz-
ing the total energy consumption. The results show
a trade-off between the performance and the energy
consumption. Lam et al. in [23] presented a trade-off
between the energy consumption and the flowtime of

a job, which is the time elapsed from the submis-
sion of the job until it is completion. In [3, 35],
the authors addresse both the makespan and the to-
tal flowtime objectives while minimizing the energy
consumption.

Genetic algorithms represent another common
method for optimization problems. In [24], each
gene represents the allocation of a task to a processor
and the voltage of that processor. The proposed algo-
rithm has two objectives, minimizing the makespan
and minimizing the total energy consumption. In
our problem, using renewable energy sources makes
finding the best utilization of the instant power the
focus of the work, rather than reducing the energy
consumption.

Sheikh et al in [32] propose a multi-objective evo-
lutionary algorithm that aims at optimizing simulta-
neously the makespan, the consumption and the tem-
perature peaks. The proposed approach for schedul-
ing tasks is able to obtain an optimization upon these
three metrics. This process is not very time consum-
ing contrary to what one can sometimes observe with
genetic algorithms.

In [4], a genetic algorithm is proposed to minimize
due date violations of batch tasks in a cloud data
center while respecting the renewable power envelope
and the resource constraints. Grange et al. [13] pro-
pose in 2018 an algorithm for scheduling batch tasks
powered by renewable energy sources and at the same
time connected to the electrical grid. Their algorithm
takes into account the availability of the renewable
energy and the cost of brown energy to lower the op-
erational cost while respecting due date constraints.
In our work we do not consider due dates, since HPC
applications do not have due dates when submitted
to a computation center. We focus on more HPC
related objectives such as minimizing the makespan
and the total flowtime.

3 Model

In this section, we define all the formal and technical
requirements of the proposed model.

As previously said we concentrate in this work
on the classical P ||Cmax problem. The execution

4

resource is thus a parallel platform, where several
identical execution units process independent tasks.
Practically, we consider a parallel machine with mul-
tiple CPU cores as execution units. The platform
thus consists of a set C = {C1, C2, . . . , Cc} of c cores
Cj that represent the execution units. Note that,
since we consider a single parallel machine, network
problems do not have to be taken into account.

We add to this problem the constraint that the
power supply of the platform is provided solely by
renewable energy sources. As such power supply is
not stable and varies over time, the available power
is represented at each time t by a value Φavailable(t).
For technical reasons, a real power supply always pro-
vides a constant power supply, at least during a time
interval. We thus assume that the available power
is a constant value Φavailable

x over an interval of time
∆x, (Cf. Figure 1). For a given time horizon H, the
available power is thus modeled by a list of X inter-
vals ∆x of length δx, such that

∑X
x=1 δx = H. So

the technical requirement is to have such an inetrval
list before running the scheduling algorithm. This
list could be provided by the power management sys-
tem as in [28] so that we have a static knowledge of
available power, at least until the time horizon H.
This power is shared by all the cores of the machine.

In the P ||Cmax problem, the tasks are modeled
by a set T = {T1, T2, . . . , Tn} of n sequential inde-
pendent tasks. Each task Ti is characterized by an a
priori known processing time pi and the requirements
are hence to statically know which task will be run
and its processing time. To introduce the power di-
mension in this problem, we consider that running a
task on one core generates an extra power consump-
tion [9] which varies over time depending on whether
the task intensively computes or not. In order to keep
the task model simple and usable in an optimization
problem, we approximate the power consumption as
follows: we assume that each task Ti has a constant
power demand, which is its largest power need ϕi

over its lifetime. This way, we guarantee that the
real power consumption fits in the allocated power
envelope. When a task Ti is executed on a core Cj ,
the total power consumption of Cj hence increases by
ϕi.

When the parallel machine is running, it consumes

T1 T2 T3 T4 T5

T6 T7 T8

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

t

Φ(t)

Figure 1: Illustrating example for the optimization
problem: A set of tasks to be scheduled in the given
power envelope.

T1 T2

T3

T4

T5

T6

T7

T8

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

t

Φ(t)

Figure 2: Example of a schedule

at any time at least its static power P stat. With our
task model, when the machine does not process any
tasks, the power consumption is exactly P stat, oth-
erwise it increases depending on the executed tasks.
The cores are not considered to have an independent
power consumption when they are idle because they
belong to the same machine. Since the static power
has a constant value P stat for the entire time hori-
zon H, we can deduce for each period of time ∆x the
remaining power which is available for task computa-
tion, i.e., Φx = max(Φavailable

x − Φstat, 0). Hence we
only consider Φx as the available power to run the
tasks in the scheduling problem.

Table 1 summarizes the notations used in the re-
mainder of the paper. For interested readers, addi-
tional definitions for the model, used in the complex-
ity proofs of the problems, are given in A.

5

t

Φ(t)

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

δ2

δ7

ϕi

l1

E1 = ∆2 ∪∆3 ∪∆4 ∪∆5

b1 f1
l2

E2 = ∆7 ∪∆8

b2 f2

Figure 3: Illustrative example for intervals
(∆1, . . . ,∆8), available power on time and time
slots (E1, E2) in which the task Ti, with power need
ϕi, could be scheduled.

4 Optimization Problems and
Complexity Study

Using the preceding model, we consider static opti-
mization problems where the number of the tasks,
their energy consumption, their duration and the
available power are known in advance. Static prob-
lems are sometimes far from real practical cases but
tackling such problems is however necessary to for-
mally prove the complexity of the optimization prob-
lems related to real cases. Note that, for readability
reasons, the theorem proofs are given in the Appen-
dices.

4.1 Notations and objectives

Graham et al. defined the α|β|γ notation that char-
acterizes a scheduling optimization problem [12]. In
this notation the α value gives the characteristics of
the execution platform: 1 for one machine, P , Q or R
for parallel machines respectively identical, uniform
or unrelated. The β value gives the task characteris-
tics and/or constraints: pi = p for tasks of the same
size, prec for precedence between tasks, pmtn if tasks
can be preempted, etc. The γ value gives the crite-
ria to be minimized as, for instance the makespan
Cmax or the (total) flowtime [2],

∑
Ci, where Ci is

the completion time of task Ti.
To express the constraint of limited available

power, we propose to add ϕi ≤ Φx for one ma-
chine problems and

∑
ϕi ≤ Φx for parallel machine

variable definition

T set of tasks
Ti task i
n number of tasks
pi processing time of Ti
ϕi power needed by Ti

C set of cores
Cj jth core of the parallel machine
c number of cores

∆x interval with constant power
Φx useful power in interval ∆x

δx length of ∆x

X number of consecutive intervals ∆x

H total length of the interval set

Table 1: Summary of the notations

problems to the Graham notation. This enforces
that the power needed by one (ϕi) or several tasks
(
∑
ϕi) must be lower than the power provided by

the energy sources (Φx). For example the problem
1|ϕi ≤ Φx|Cmax is a one machine problem where we
target makespan minimization for independent tasks,
available power is not a constant over the time hori-
zon and each task has a power need different from
each other. If Φx variables are set to Φ, the available
power is constant over the considered period and if
ϕi variables are set to ϕ, every task needs the same
power to run.

Considering computing and data centers, two main
criteria are usually considered for minimization: the
makespan (Cmax) targets the minimization of the
completion time of a set of tasks and is thus rel-
evant for computing centers where applications are
composed of a set of tasks. In the case of several
tasks launched by different users, as in data centers,
then the flowtime (

∑
Ci) is more relevant as minimiz-

ing this criterion leads to minimizing the mean finish
time, which enforces a fair share of the resources be-
tween users.

6

4.2 One Machine Problems

We first tackle one machine problems as showing that
these problems are NP-Hard is a way to prove that
the more general parallel problems are NP-Hard as
well. Note that we keep here the one machine name
for the one core problem, actually a mono-core ma-
chine.

We consider the one machine problems for both ob-
jectives of makespan and flowtime and for the cases
with or without preemption. These cases are simple
without power constraint. We recall that each no de-
lay schedule (i.e., schedule without delay between the
tasks) is an optimal solution for the makespan objec-
tive and that the Shortest Processing Time (SPT) al-
gorithm gives an optimal solution for the flowtime ob-
jective. We show here that, with power constraints,
these problems are polynomial in the case of iden-
tical tasks (i.e., pi = p, 1 ≤ i ≤ n) and that the
problems where tasks have different processing times
are actually NP-Hard if preemption is not allowed.

We now consider different cases for the task pro-
cessing time and objective functions.

4.2.1 Problems without preemption

In computing centers one node is usually dedicated
to one user and no preemption is applied to tasks.
We assess here the complexity of the one machine
scheduling problem in that context.

Identical tasks pi = p and ϕi ≤ Φx The most
simple problem is when each task has the same com-
puting time pi = p and the available power envelope
is constant. To optimize our objective, we just have
to choose as many tasks as possible in each time slot,
considering the tasks in decreasing order of power re-
quirements (largest power need first). If the interval
length is not a multiple of the task size then the re-
maining time of this interval can be used to shift the
next tasks. Obviously this solution is optimal for the
makespan objective, as all tasks can be exchanged
with each other. Changing the task order does not
give a better solution and no place where a task could
be placed is left empty. For the flowtime, as each task
has the same processing time, any task permutation

within the schedule leads to the same optimal flow-
time.

Non-identical tasks The non-identical task prob-
lems, denoted respectively 1|ϕi ≤ Φx|Cmax and
1|ϕi ≤ Φx|

∑
Ci, are NP-Hard.

Theorem 1. Minimizing the makespan of the sched-
ule of a set of tasks (1|ϕi ≤ Φx|Cmax) to run in a
set of intervals is NP-Hard in the strong sense if the
tasks have different processing times pi.

The proof of Theorem 1 is given in appendix B.1.

Theorem 2. Optimizing the flowtime of the schedule
of a set of tasks (1|ϕi ≤ Φx|

∑
Ci) to run in a set of

intervals is NP-Hard in the strong sense if the tasks
have different processing times pi.

The proof of Theorem 2 is given in appendix B.2.

4.2.2 Problems with preemption

In the case of data centers where the tasks to be
processed are requests, these tasks can be preempted.
We thus consider the impact of preemption on the
scheduling problem complexity.

The 1|ϕi = ϕ ≤ Φx, pmtn|Cmax problem, where all
tasks need the same power to run, accepts a poly-
nomial solution. Remember that without power con-
straints non delay schedules are optimal. With power
constraints it is however not possible to always have
non delay schedules as some of the intervals ∆x may
not provide enough power Φx to schedule a task. The
general idea is to avoid leaving intervals empty when
there are still unscheduled tasks. For this purpose we
schedule tasks with the following policy: at the be-
ginning of a new interval or when a task is finished,
we schedule the task (or the remaining part of a task)
which wastes the less power (min(Φx − ϕi)). If an-
other task than the current running task is selected,
the running task is preempted and rescheduled later.
We call this algorithm Less Wasting Remaining Task
(LWRT).

Theorem 3. Algorithm LWRT gives an optimal so-
lution for the 1|ϕi ≤ Φx, pmtn|Cmax problem.

7

The proof of Theorem 3 is given in appendix B.3.
Figures 4 and 5 illustrate the case where a LWRT

task is or is not scheduled at each interval change or
when a task is completed. On Figure 4 task T2 is not
preempted at the end of interval ∆2. As a result task
T4 is scheduled later because of its large power need
and interval ∆5 is not used. On Figure 5 task T2 is
preempted at the end of interval ∆2 and Task T4 is
executed instead. As Task T2 needs less power to run
it can be executed in interval ∆5 which improves the
makespan.

T1 T2 T3 T4 T4T5 T6 t

Φ(t)

Figure 4: Illustrating example for the LWRT algo-
rithm, T2 is not the LWRT task for interval ∆3, T4
must be run here.

T1 T2 T2T3T4 T4 T4T5 T6 t

Φ(t)

Figure 5: Illustrating example for the LWRT algo-
rithm, part of T4 has been swapped with T2 which
can be executed sooner than T5, the makespan is op-
timal.

The complexity of the problem 1|ϕi ≤
Φx, pmtn|

∑
Ci is still open. We have counter

examples that SPT (Shortest Processing Time) does
not always give the optimal result as due to power
constraints it can be necessary to schedule longer
tasks before short ones. Even if the complexity of
this case remains an open problem, we suspect it to
be NP-Hard.

4.3 Parallel Problems

We consider here the problem of scheduling a set of
tasks on the cores of a parallel machine.

From the previous complexity results we can de-
duce that P |

∑
ϕi ≤ Φx|Cmax and P |

∑
ϕi ≤

Φx|
∑
Ci problems are NP-Hard since parallel prob-

lems are generalizations of one machine problems.
Problems with preemption must however be inves-
tigated. For the P |

∑
ϕi ≤ Φx, pmtn|Cmax problem,

we have to schedule several tasks at the same time
such that the sum of their power needs

∑
ϕi is lower

than the available power Φx in each interval.
If the power needed by the tasks is the same

(P |
∑
ϕi ≤ Φx, ϕi = ϕ, pmtn|Cmax), then the prob-

lem is simple: in a given interval we execute as many
tasks as possible in parallel provided that the power
Φx and the constraint on the number of cores P are
respected. Then, at the end of a task, we schedule
another one and, at the end of the interval, we either
stop tasks if there is less available power than before
or start additional tasks if idle cores remain.

If the power needed by each task is different
(P |

∑
ϕi ≤ Φx, pmtn|Cmax), the problem is NP-

Hard.

Theorem 4. Minimizing the makespan of the sched-
ule of a set of power heterogeneous preemptive
tasks to run in a set of intervals (P |

∑
ϕi ≤

Φx, pmtn|Cmax) is NP-Hard in the strong sense.

For interested readers, the proof of Theorem 4 is
given in appendix B.4.

Note that the proof highlights that the problem
P |

∑
ϕi ≤ Φ, pi = p, pmtn|Cmax is NP-Hard when

the tasks have the same size (pi = p).
For the flowtime objective, the P |

∑
ϕi ≤

Φx, pmtn|
∑
Ci problem, we can differentiate the

particular case where tasks have the same power need
ϕi = ϕ which is simple for the more general case
where tasks have different power needs. In the ϕi = ϕ
case the SPT algorithm, modified to take both the
available power and the number of core constraints
into account, gives an optimal solution even if the
tasks have different sizes. Then the problem where
the tasks have different power needs is NP-Hard as
the problem P |

∑
ϕi ≤ Φx, pi = p, pmtn|

∑
Ci is

equivalent to P |
∑
ϕi ≤ Φx, pmtn|Cmax since the

tasks do not need to be ordered as they are of the
same size. This implies that the more general case
P |

∑
ϕi ≤ Φx, pmtn|

∑
Ci is NP-Hard too.

8

5 Heuristics

After conducting the complexity study for different
scenarios of the problem in the previous section and
since the parallel problems are proven to be NP-Hard,
we propose in this section different heuristics to ad-
dress these problems. We focus on two general prob-
lems P |ϕi ≤ Φx|Cmax and P |ϕi ≤ Φx|

∑
Ci, i.e.,

parallel problems without preemption because pre-
emption is seldom used in the parallel application
context. As presented in Section 3, we consider in-
dependent sequential tasks to concentrate on the en-
ergy concerns, without adding other constraints like
communications. So the problem is to minimize the
makespan or the flowtime of a set of tasks under vari-
able power constraints.

All the proposed algorithms compute an ordered
task list that is then executed on a first come first
serve basis. We propose three types of heuristics that
take power constraints into consideration. The first
family is close to classical list based algorithms and
the order in the list is based on a single criterion
such as the processing time or the energy consump-
tion. The second family uses more complex criteria
to generate the list. The third family computes the
task list using a genetic algorithm.

5.1 Task scheduling

Once the task list is computed, the heuristics scan the
interval list using the Place Task() function (see Al-
gorithm 1) to find for each task the first time interval
where it can be scheduled.

The Place Task() function takes a task, its com-
puting time pi and its power need ϕi, and a starting
interval x to find the time when the task is run. It
first iterates (Lines 1-6), starting at ∆x, on the inter-
val list to look for a time slot where the task can be
placed, i.e., a list of consecutive intervals with enough
power (ϕi < Φx) and cores (ncx > 0). If enough in-
tervals are found then the task power need is removed
from the time slot intervals (Lines 7-9). The function
returns true if the task is placed, false otherwise.

The Place Task() function thus schedules a task in
the earliest possible time slot. Note that it is possible
that a task is scheduled after another task that is or-

Algorithm 1: PlaceTask(pi, ϕi, x)

Input:
pi, ϕi: processing time, power consumption of task Ti
x: index of ∆x, interval search starting point

Data:
Φx: useful power in interval ∆x

δx length of interval ∆x

bx, fx: the beginning and the finishing time of ∆x

ncx: number of available cores in ∆x

found: boolean, initialized to true
timeSlot: list of intervals, initialized to ∅

Result:
TimeSlotAlloc: time slot allocation of task Ti

1 repeat
2 if (Φx < ϕi) ∧ (ncx < 0) then
3 found← false
4 else
5 found← true
6 timeSlot← timeSlot ∪∆x

7 x← x+ 1

8 until (
∑
δx = pi) ∨ (!found)

9 if found then
10 TimeSlotAlloc.i← timeSlot
11 for ∆x ∈ timeSlot do
12 Φx-=ϕi

13 ncx-=1}

14 return TimeSlotAlloc

dered further in the list, due to the power constraints
. The earliest possible time slot does not only mean
the earliest time slot with a free processing unit, but
also a time slot with enough available power to cover
the power need of the task. For example, in Figure 2,
let us suppose that list L = [T2, T1, T3, T4, ...]. We
notice that T2 comes before T1 in the list, yet T1 is
scheduled first because the available power level at
I1 is not high enough to schedule T2 which is hence
delayed till I2, the first interval with enough available
power.

Note also that the Place Task() function only
takes integer values effacefor the computing time.
The time slots are unitary and the task computing
times are integer so that a task can only finish at
the end of a time slot but not during a time slot. In
a previous paper [18] we present experiments based
on a Place Task() function that takes real values for
both the time slots and the task processing times.
This leads to very large computing times, some ex-

9

periments lasting more than one week. . Since the
results obtained on both experiment sets are not
significantly different, using integer values is reliable
enough for the experiments.

We detail the proposed heuristics in the rest of this
section.

5.2 Simple priority based algorithms

List algorithms are fast and simple, they consist of
two steps. In the first step, the tasks are sorted in
a queue based on a priority value, and, in the sec-
ond step, they are scheduled according to their or-
der in the queue in a greedy manner, i.e., using the
Place Task() function.

For the first step we use classical priorities for the
list algorithms. Random takes the task list as it is.
This naive approach is used to compare the other al-
gorithms with a non smart solution. LPT (Largest
Processing Time) sorts tasks by decreasing process-
ing times. This solution fosters long tasks which are
more difficult to place and usually gives good results
for the makespan minimization on parallel identical
machines when the number of tasks exceeds 50, as
shown in [5]. SPT (Shortest Processing Time) sorts
tasks by increasing processing times pi, as for flow-
time minimization an increasing pi order must be
preferred. These three algorithms are implemented
as they are defined in the literature. We just add the
Place Task() function to adapt them to the power
constrained context.

These three algorithms do not take however the
power constraints into consideration. We then pro-
pose new priorities for the list ordering that takes
the power need of the tasks into consideration. LPN
(Largest Power Need) sorts tasks by decreasing power
need ϕi. Tasks with large power needs are difficult
to place and scheduling them first may avoid using
later slots. LPTPN (Largest Processing Time Power
Need) sorts tasks by decreasing values of pi × ϕi.

Due to their priority, the LPT , LPN and LPTPN
algorithms are rather makespan oriented and they do
not produce appropriate solutions for the flowtime
minimization, while SPT rather targets this crite-
rion.

5.3 More complex priorities

To better address the bi-dimensional aspect of the
problem we propose two algorithms that do not sim-
ply rely on one value but rather try to take into ac-
count both constraints, power and time.

As both the processing time pi and the power need
ϕi are important values for scheduling the tasks, tak-
ing them independently only fosters one and ignores
the second. We thus propose algorithms that com-
bine both values. twoQs, for two queues, tries to
exploit the advantages of two priority assignments at
the same time, in a try to giving the priority to tasks
that might have high priority in one priority assign-
ment but would be scheduled towards the end of the
schedule in another. It sorts the tasks alternatively
by processing time and power need: it computes the
LPT and LPN lists and puts alternatively one of
each in the final list.

In the tasks to be scheduled there may be some
tasks that must absolutely be considered first be-
cause, if they are not, they will be placed in later
intervals and they will weight badly on the optimiza-
tion criterion. To avoid these cases, we propose a
priority that fosters the tasks with only few possibil-
ities of placement. This heuristics is called LPP for
least possible places. For each task, a list of all pos-
sible intervals where it can be scheduled is computed
and the tasks are sorted in the list by the number of
possible places where they can be scheduled.

5.4 Genetic scheduling algorithms

Genetic algorithms (GA) are designed for such prob-
lems where the search space is large and they have
proven to give good results in scheduling problems.
Using GA also allows us to verify if simple solutions,
such as our list based algorithm, can be improved by
randomly changing part of it and how far it can be
improved.

The first challenge in using GA is how to properly
represent the solutions as a chromosome. A solu-
tion could be represented in many ways, for example,
it can be presented as a task to machine allocation
scheme, or task to time interval assignment, or sim-
ply by setting the start time for each task. These

10

different representations affect the efficiency of the
GA. In a second step the solutions must be filtered
thanks to a fitness value . In all the implemented
solutions, the fitness is the optimization criteria, ei-
ther the makespan or the flowtime, and the lower the
fitness, the better the solution.

As a first try, we considered assigning each task to
a time interval. A chromosome representing a sched-
ule in this case consists of n genes, one for each task,
and the value in the i-th gene expresses the time inter-
val at which task Ti is scheduled for execution. Due
to the power constraints of our scheduling problem,
a solution is only valid if all tasks are scheduled in
time intervals where enough power is produced and
enough computing cores are available at that time,
since tasks are scheduled in parallel. This approach
leads to very long computing times and poor solutions
so that we changed the chromosome representation.

The chosen solution considers the order of the task
list to be a solution, a chromosome. The fitness value
is computed from this list by generating the schedule
with the Place Task() function. One advantage of
this approach is that all solutions are valid as long as
the available power curve is big enough to execute all
tasks, since the placement algorithm will always find
a valid interval of time for each task , no matter where
it is ordered in the list. Note that the implementation
of this representation of the problem is also simpler
and faster than in the preceding proposition, leading
to shorter computation times.

The chromosome representation and its corre-
sponding schedule is illustrated in Figure 6. A chro-
mosome is a list of integers [1 → n] that represents
the indices of all n tasks, and the place of an integer
in the chromosome, represents the order of its corre-
sponding task in the placement list. To create a new
solution, it is enough to shuffle this list of integers. .
This allows an easy implementation of most genetic
operators.

Algorithm 2 illustrates the main genetic algorithm.
The initial population size is set to 50. By setting X,
the number of intervals, high enough, we assume that
all initial chromosomes give a feasible schedule. Lines
[2→ 7] show the generation of the initial generation.
To improve the chances of finding a good solution, we
add 5 individuals as seeds to the initial population.

T15

0

T32

1

T63

2

T2

3

T95

4

T1

5

T73

6

T7

7

.. T40

9

Ci

To second step, placement algorithm

T32 T15

T2

T63

T95

T40

∆1 ∆2 ∆3 ∆4 ∆5

t

Φ(t)

fitness = Cmax

Figure 6: Illustrating example of a chromosome and
the corresponding schedule

For the makespan objective, as shown in the algo-
rithm, these five individuals are the priority queues
of list based heuristics that showed good potential
in early experiments: LPT , LPN , LPTPN , twoQs
and LPP . For the flowtime objective these individu-
als are Random, twoQs, SPT , LPN and LPP . The
other 45 individuals are randomly generated by shuf-
fling a list of integers [1→ n]. In Line 8, the fitness of
the population is calculated, and then, a population
is sorted according to the fitness of its individuals
in ascending order (Line 9). The elitism property is
expressed in Line 13, where the best ten individuals
are copied to the next generation. Then, 15 chromo-
somes are selected for 1-gene mutation [14→ 16], and
another 15 chromosomes are selected for chunk mu-
tation [17→ 19]. Finally, 20 additional chromosomes
are selected to perform 10 crossovers [20 → 23]. At
the end of each iteration, the fitness of the new off-
spring is calculated, and the new generation is again
sorted according to the fitness values. This process
is repeated from Line 10, until we go through nbI
iterations without improvement.

The performance of genetic algorithms is based
not only on the representation of the solution but
also on the genetic operators, selection, mutation and
crossing, implementation. In the literature, several
propositions are available for these operators but, as
we could not find any study that would answer the
questions of which crossover to use for this kind of

11

Algorithm 2: geneticAlgorithm(T ,∆, nbI)

Data: T , ∆: set of tasks, set of intervals
nbI: number of iterations without enhancement

Result: task list order
1 stopCounter ← 0
2 currentGeneration[0] ← LPT(T , ∆)

3 currentGeneration[1] ← LPTPN(T , ∆)

4 currentGeneration[2] ← twoQs(T , ∆)

5 currentGeneration[3] ← LPN(T , ∆)

6 currentGeneration[3] ← LPP(T , ∆)

7 currentGeneration[5:50] ← 46 random solutions
8 calculatePopulationFitness(currentGeneration)
9 currentGeneration.sort()/* by ascending fitness */

10 while stopCounter ≤ nbI do
11 oldBest ← currentGeneration[0]

12 nextGeneration ← []

13 nextGeneration[0:10] ← currentGeneration[0:10]

14 for i=1 to 15 do
15 mutant ←

mutation(selection(currentGeneration))
16 nextGeneration.append(mutant)

17 for i=1 to 15 do
18 mutant ←

chunckMutation(selection(currentGeneration))
19 nextGeneration.append(mutant)

20 for i=1 to 10 do
21 C1, C2 ← selection(currentGeneration)
22 newC1, newC2 ← crossOver(C1, C2)
23 nextGeneration.append(newC1, newC2)

24 calculatePopulationFitness(nextGeneration)
25 nextGeneration.sort()
26 currentBest ← nextGeneration[0]

27 currentGeneration ← nextGeneration

28 if oldBest − currentBest = 0 then
29 stopCounter++
30 else
31 stopCounter← 0

32 return currentBest

problems? Which selection to use for this kind of
problems? We decide to assess several propositions.
For the selection function we test two types of se-
lections that are usually used in GA, wheel selection
and random selection. For the crossover function we
test three types of crossover: a one point crossover
and two crossovers that use two points. The muta-
tion operator raises the questions as it just needs to
change one randomly chosen value. We present these
operators in the following.

The 1-gene mutation operator, simply referred to

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C

1 2 3 4 5 6 7 8 9 18 11 12 13 14 15 16 17 10 19 20

mutation(C)

Figure 7: mutation(C)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C

1 2 3 4 17 18 19 8 9 18 11 12 13 14 15 16 5 6 7 20

chunkMutation(C)

Figure 8: chunkMutation(C)

as mutation in Algorithm 2, is illustrated in Figure 7.
Two genes of the selected chromosome are randomly
chosen, and their values are interchanged. The chunk
mutation operator in Line 18 of the algorithm uses
the same technique but two chunks of random size
between 1 → 10 at two randomly selected points of
the chromosome are swapped as shown in Figure 8.

In this study, we evaluate four GA configurations
and we test each configuration using both wheel and
random selections. The first configuration applies
only the mutation operators as the characteristics of
our problem might suggest that applying too many
modifications on a candidate solution might eventu-
ally be as arbitrary as randomly generating a new
one. This approach is named noX, for no crossover,
and, combined with the two selection operators, ran-
dom (R) and wheel selection (W), we get the noX−R
and noX −W algorithms.

Algorithm 3: onePointCrossOver(C1, C2)

Data: C1 /* chromosome 1 with n tasks */

1 C2 /* chromosome 2 with n tasks */

Result: newC1, newC2: 2 new chromosomes each with n
tasks

2 n← length(C1)
3 p ← intRand(0, n)/* integer random value: 0 ≤p< n

*/

4 newC1 ← C1[0:p]/* p values between 0 and p-1 */

5 newC2 ← C2[0:p]

6 newC1 ← newC1 + C2 r newC1

7 newC2 ← newC2 + C1 r newC2

8 return newC1 , newC2

12

C1

C2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 18 4 8 14 7 17 12 15 11 1 9 20 16 19 6 13 3 10 2

p

C2rC1[0:p]

18 14 17 12 15 11 20 16 19 13

newC1 = C1[0:p] + C2rC1[0:p]

1 2 3 4 5 6 7 8 9 10 18 14 17 12 15 11 20 16 19 13

Figure 9: OnePointCrossOver(C1, C2)

Mutating only one gene or even a chunk of genes
limits the exploration of the search space. Crossover,
on the other hand, allows wider exploration of the
search space by applying bigger changes on candi-
date solutions. In this paper we assess three differ-
ent crossovers described in the literature. The first
one is the common 1-point crossover illustrated in
Algorithm 3. A crossover point is randomly selected
where both parent chromosomes are split between the
first, the head, and the second, the tail. In a typical
1-point crossover, the two chromosomes would swap
tails with each other. In our case however, this can-
not be done this simply, because the same task could
appear in the head of one chromosome and in the
tail of the other. After the crossover the task would
be twice in one chromosome, while it completely dis-
appears from the other. To overcome this difficulty,
each child chromosome keeps its parent’s head, while
the genes of its tail (the remaining tasks) are ordered
according to their order in the other parent. The 1-
point crossover algorithms are named 1pX. With the
two selection operators we have 1pX−R, for random
selection, and 1pX −W , for wheel selection.

In 1-point crossover, up to n−1 genes could change
after a crossover, which could be arbitrary enough to
lower the quality of a provided a good seed. 2-point
crossover operators provide a solution for this prob-
lem. The changed part of a chromosome is limited
by two points instead of just one which gives more
control on the percentage of the chromosomes that
gets modified.

The first 2-point crossover we test is called Or-
der Crossover, OX. It is illustrated in Algorithm 4.
Two crossover points p1 and p2 are randomly cho-

Algorithm 4: orderCrossOver(C1, C2)

Data: C1 /* chromosome 1 with n tasks */

1 C2 /* chromosome 2 with n tasks */

Result: newC1, newC2: 2 new chromosomes each with n
tasks

2 n← length(C1)
3 p1 ← bn× rand(0, 1)× 0.15c
4 p2 ← bn× (rand(0, 1)× 0.15 + 0.85)c
5 newC1 ← C1[p1:p2]

6 newC2 ← C2[p1:p2]

7 temp1, temp2 ← [], []
8 for i = 0 to n− 1 do
9 if C2[(i+ p2)%n] 6∈ newC1 then

10 temp1.append(C2[(i+ p2)%n])

11 if C1[(i+ p2)%n] 6∈ newC2 then
12 temp2.append(C1[(i+ p2)%n])

13 newC1 ← temp1[n−p2:n−p2+p1] + newC1 +
temp1[0:n−p2]

14 newC2 ← temp2[n−p2:n−p2+p1] + newC2 +
temp2[0:n−p2]

15 return newC1 , newC2

C1

C2

temp1

temp1[*] ∈ (C1[p2:p1]∩C2[p2:p2])

newC1 = temp1[n−p2:n−p2+p1] + C1[p1:p2] + temp1[0:n−p2]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p1 p2

5 18 4 8 14 7 17 12 15 11 1 9 20 16 19 6 13 3 10 2

3 2 18 1 20 19

1 20 19 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3 2 18

Figure 10: orderCrossOver(C1, C2)

sen in such a way that p1 < p2. Each parent chro-
mosome Cparent passes its middle genes to the child
Cparent[p1 : p2] → Cchild[p1 : p2]. Then, the genes
in the edges of the child, starting from Cchild[p2 + 1]
circling back to Cchild[p1 − 1], are reordered accord-
ing to their order in the other parent starting from
p2 + 1 circling back to p2. This algorithm is illus-
trated in Figure 10. The first new off-spring newC1

is composed of the middle part of the first parent
C1[p1 : p2]. The subset of the rest of the genes of
C1 starting from C1[p2 + 1]: [18,19,20,1,2,3] is re-
ordered as these genes appear in C2[p2 +1]→ C2[p2]:
[3,2,18,1,20,19]. The ordered subset is then added to
the first off-spring newC1 in the same circular man-

13

Algorithm 5: middleCrossOver(C1, C2)

Data: C1 /* chromosome 1 with n tasks */

1 C2 /* chromosome 2 with n tasks */

Result: newC1, newC2: 2 new chromosomes each with n
tasks

2 n← length(C1)
3 p1 ← intRand(0, n)/* integer random value:

0 ≤p1< n */

4 p2 ← intRand(0, n)
5 if p1 < p2 then
6 newC1, newC2 ← orderCrossOver(C1, C2)

7 else
8 if p1 = p2 then
9 newC1 ← mutation(C1)

10 newC2 ← mutation(C2)

11 else
12 newC1 ← C1[0:p2] /* p2 task indices */

13 newC2 ← C2[0:p2]

14 for i = 0 to n− 1 do
15 if C2[i] ∈ C1[p2:p1] then
16 newC1.append(C2[i])

17 if C1[i] ∈ C2[p2:p1] then
18 newC2.append(C1[i])

19 newC1 ← newC1+C1[p1:n]
20 newC2 ← newC2+C2[p1:n]

21 return newChromo1 , newChromo2

ner. The algorithms that use this crossover operator
are named OX − R and OX −W when associated
with random and wheel selections respectively.

Finally, we test a classical 2-point crossover. Each
child has the same edges as its parent Cparent[0 :
p1 − 1]→ Cchild[0 : p1 − 1] and Cparent[p2 + 1 : n]→
Cchild[p2+1 : n]. The genes in the middle of the child
Cchild[p1 : p2] are reordered according to their posi-
tion in the parent Cparent. This operator is detailed
in Algorithm 5. Figure 11 illustrates an example of

C1

C2

temp = C1[p2:p1] in order of C2[0:n]

newC1 = C1[0:p2] + temp + C1[p1:n]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 18 4 8 14 7 17 12 15 11 1 9 20 16 19 6 13 3 10 2

p2 p1

8 14 12 15 11 9 13 10

1 2 3 4 5 6 7 8 14 12 15 11 9 13 10 16 17 18 19 20

Figure 11: middleCrossOver(C1, C2)

this operator. The operator is named Middle Cross
Over and the corresponding algorithm are MX − R
and MX − W for random and wheel selections re-
spectively.

It is worth noticing that, in a previous paper [18],
we have also proposed binary search based schedul-
ing algorithms. The idea behind this family of algo-
rithms was to fix a time horizon and try to schedule
the tasks in the time slots that better fit their power
needs, to reduce the power waste. The time horizon
was then reduced, when the algorithm found a sched-
ule shorter than the current time horizon or increased
otherwise, using a binary search technique. The fam-
ily of algorithms however did not give good results
while taking large computing times. For this reason
we do not include them in this paper.

6 Experiments

In this section, we present the experiments conducted
in order to assess the performance of the heuristics
proposed in the previous section. We developed a
python script2 that implements the heuristics, cal-
culates the resulting schedules and presents the per-
formance of each heuristic depending on the studied
objective. With the script we run experiments using
different methods to generate the experimental input
data sets, either based on real world data, or using
random generation within a specified range and fol-
lowing a distribution law. Since the computation of
a schedule by a heuristics is deterministic, the set-
tings of the experiments only depend on the input,
the experimental input data sets.

An experimental input data set consists of two
parts, the workload and the power envelope available
for the task executions (interval list). The workload
is represented by a list of tasks that is passed to the
scheduler for execution. The methods used to gener-
ate these values differ from one experiment to another
and we detail them in the following. The overall aim
of the different data generations is twofold: first to
allow a performance evaluation of our heuristics un-
der a broad spectrum of conditions; and second a

2The source files are available on GitHub http://github.

com/laurentphilippe/greenpower

14

http://github.com/laurentphilippe/greenpower
http://github.com/laurentphilippe/greenpower

comparison to a known optimal solution.
Note that, for all the experiments, we consider that

the computational platform consists of a parallel ma-
chine with 16 cores and we set the time unit to 6
minutes, 1/10 of an hour.

6.1 Task list models

We recall that each task Ti is characterized by two
main values, its processing time pi and its power con-
sumption ϕi.

Feitelson model From the analysis of real work-
load logs, Lublin and Feitelson present in [25] a model
of workload generation based on a hyper-gamma dis-
tribution. In the Feitelson task model based ex-
periments, we use this distribution law to generate
pi values in order to produce tasks with processing
times that are close to real data. The hyper-gamma
law is based on two gamma laws, of parameters
α = 4.2/β = 0.94 for the first and α = 312/β = 0.3
for the second, with a probability of 0.685 for the first
gamma law following a uniform law. We thus first
draw a uniform random value to decide which law
to use when generating the pi value and we repeat
this for the whole task list. The resulting task lists
contain 100 tasks per list, with a range of processing
times between 1 and 500 time units. This model how-
ever does not include the power consumption of the
tasks, so that we use random generation of ϕi with
a uniform distribution law between 1 power unit and
ϕimax . In the experiments ϕimax ranges between 15
and 150 power units, by steps of 15.

Exponential model Feitelson’s model although
realistic is based on workload logs collected from only
three sites which limits the experiments to the range
of values collected for that sample of data. Therefore,
to explore a wider set of parameters, we use for our
second set of experiments synthetic workloads, with
random generation for both pi and ϕi. The ϕi gen-
eration parameters are kept similar to the previous
experiment. The processing times of tasks however
range between 1 time unit and pimax

. We use an expo-
nential distribution law where most generated sam-
ples will fall around the mean value pmax/2, while

less values fall towards both limits of the range. This
means that tasks that are too hard or too easy to
schedule occur with less probability.

The size of the generated tasks varies in this case
on both time and power axes, representing tasks
with different processing times and different compu-
tational density. We generate 100 groups of lists of
tasks. For each 10 group, the maximum processing
time in each task list pimax

varies from 10 to 100 time
units, with an increment of 10. While the maximum
power consumption in a task list for each 10 group
ϕimax

varies from 15 to 150 power units, with an in-
crement of 15. In total, we test 100 combinations
of (pimax , ϕimax). For each combination, in order to
get statistically stable results, 150 different lists of
tasks are generated with consideration to the speci-
fied (pmax, ϕmax) couple. Each task list is composed
of 100 tasks.

“Tasks From Intervals” model Since it is not
possible to find the optimal solution of an NP-Hard
problem in polynomial time, we propose two meth-
ods to measure how far the proposed heuristics are
from the optimal. The first method, named Tasks
From Intervals (TFI), consists in generating a set of
tasks starting from a given time interval set. Given
a set of time intervals representing a power envelope,
we generate a set of tasks that will totally fill the
intervals using Algorithm 6.

The input of Algorithm 6 is a power interval list.
In this list we randomly choose an interval as a start-
ing point ∆start. The power consumption ϕi of the
generated task is randomly chosen in [1,Φstart] and
limited by ϕmax, and the processing time pi is chosen
between [∆start → ∆stop], where ∆stop is the last in-
terval before the available power drops below ϕi. The
task is added to the task set, and then its power con-
sumption is remmoved from all the intervals involved
in its generation. The process is repeated until all the
available energy is used. Lower thresholds for ϕi and
pi are used to avoid generating too small and too
many tasks. Therefore all the tasks can fit in the in-
tervals and totally fill them. We hence have generated
an optimal solution with a makespan of ∆max. We
also take more or less intervals to generate between

15

Algorithm 6: Tasks generation from intervals
Input: interList: power interval list
Data:
inter: interval
∆start,∆stop begining and end of interval inter
Φstart: power available in inter
ϕi, pi: power and processing time of task ti

Result: taskList: task list
1 begin
2 while length(interList) 6= 0 do
3 inter ← random(0, length(interList))
4 Φstart ← inter.power
5 ϕi ← min(ϕmax, random(1,Φstart)
6 ∆stop ← getLastInterval(ϕi)
7 pi ← random(∆start,∆stop)
8 ti ← newTask(ϕi, pi)
9 taskList.add(ti)

10 for i ∈ [∆start,∆stop] do
11 i.power ← i.power − ϕi

12 if i.power = 0 then
13 interList.remove(i);

14 return taskList

90 and 110 tasks per list. Since the tested heuristics
are expected to find a makespan that is longer than
this optimal value, we repeat the power envelope two
times in order to make sure that the Cmax calculated
by the heuristics would fit within the time horizon.
The ratio between the Cmax found by a heuristics and
the optimal value is the distance from the optimal for
this heuristics, disOPT = Cmax ÷∆max.

6.2 Power interval model

Let recall that the power envelope is discretized into
time intervals ∆x of length δx.

Realistic model A realistic model is used to gen-
erate the power envelope that represents the various
renewable power supply. Based on real collected his-
torical data [15], this model can produce a realistic
power envelope that corresponds to a given number
of wind turbines and a given area of solar panels in
square meters. We consider that the generated power
envelope is accessible by all computation units only
for tasks execution. All the energy needed to power
on the computation units and to support the IT in-

Algorithm 7: Intervals generation from tasks
Input: taskList: task list
Data:
inter: interval
si, ei: start and end time of task ti
ϕi, pi: power and processing time of task ti

Result: interList: power interval list
1 begin
2 interList = newinterList(maxTime)
3 for inter ∈ interList do interList.add(inter(0)
4 for ti ∈ taskList do
5 scheduled← true
6 repeat
7 si ← random(0,H− pi)
8 ei ← si + pi
9 for inter ∈ [si, ei] do

10 if inter.nbCores = 0 then
11 scheduled← false

12 if scheduled then
13 for inter ∈ [si, ei] do
14 inter.nbCores← inter.nbCores− 1
15 inter.power ← inter.power + ϕi

16 until not scheduled

17 return taskList

frastructure is thus previously deducted. We parti-
tion the power envelope into unified intervals ∆x with
length of δ = 1 time unit. This interval length cor-
responds well with the fluctuation frequency seen in
renewable power supplies. Each time interval list con-
tains 10 000 intervals, representing in total the power
envelope.

“Intervals From Tasks” model A second
method, named Intervals From Tasks (IFT), to mea-
sure the distance of the heuristic generated schedules
from optimal is is based on the generation of the
power envelope from a set of tasks.

In this method, given in Algorithm 7, we take each
task from a task set and randomly choose a starting
point within the time horizon H. We then check in
the corresponding time intervals that last as long as
pi (between si and ei) that enough cores are avail-
able. If a core is available for all that duration, the
algorithm increases the level of available power by
ϕi, or makes another try otherwise, until the task is
scheduled. Since we consider a 16 cores platform, up

16

to 16 tasks can overlap over one or more time inter-
vals, and the power level in such intervals is the sum
of all the concerned over lapping tasks. The gener-
ated intervals have irregular lengths in this set of ex-
periments. Similarly to the case of TFI, the total area
under the generated power envelope equals the total
area of the set of used tasks. Therefore, the optimal
solution is the end of the last time interval ∆max. For
this data generation method, we use semi-synthetic
workloads with pi values based on Feitelson’s traces
and randomly generated ϕi.

6.3 GA settings

We evaluate the GAs with different types of
crossovers, without crossover, and evaluate the effect
of wheel vs. random selection. For each GA the stop-
ping condition (nbI in Algorithm 2, number of gen-
erations without any improvement) is set to 50. Note
that other computations have shown that a value of
10 gives poorer results. The fitness value used to
evaluate each chromosome is either Cmax or

∑
Ci

depending on the optimization objective. All com-
pared chromosomes are solutions for the same case,
same sets of time intervals and sets of tasks, there-
fore, the Cmax and

∑
Ci are fair fitness value to use

for comparison.

6.4 Evaluation metrics

The finish time of the last task, the makespan, is
a natural objective to optimize the power envelope
use since its optimization allows to reduce the whole
execution time of the task set. It cannot however be
used as a reference metric for performance assessment
since it depends on the processing times of the tasks.
A set of larger tasks indeed always gives a longer
makespan than a set of shorter ones. The makespan is
also subject to the distribution of the available power
ϕi in the intervals, and in particular intervals with
low power. We thus propose normalized metrics that
do not depend on the pi and ϕi values.

We selected two metrics to characterize the per-
formance of the studied algorithms. The first met-
ric compares, experiment by experiment, the number
of times an algorithm achieves the best Cmax. This

comparison is fair since the experiment settings used
to compute two makespan values are the same. The
best Cmax value allows to understand on which set
of input values an algorithm behaves the best. In a
similar manner we can compute the second and third
best makespan. This metric however does not allow
to quantify the distance between the algorithms.

To compare the distance between two heuristics on
a same data set, we define a metric called NM for
normalized metric. This metric takes the heuristic
makespan and the best computed makespan and nor-
malizes their difference to the power envelope size.
NM =

∑
out ÷

∑
total: we calculate the energy,

pi × ϕi, of all the tasks executed after the best Cmax

(
∑
out), and divide it by the total area of the set of

tasks (
∑
total). This metric is fair because all heuris-

tics are compared to each other on the same data set
and the result is normalized on both the processing
time and the power need as it uses the power surface.
The NM value allows to compute a qualitative re-
sult given by an algorithm since it gives a distance to
the best known value. Note however, that this metric
cannot be used for the fitness in the genetic algorithm
as it is based on the best schedule which can only be
computed once all the algorithms are run. We take
the average of this metric for each heuristic over 150
execution. The lower the better.

Minimizing the sum of the completion times of the
tasks, the flowtime, leads to minimize the mean fin-
ish time. We selected this metric since it fosters
the fair share of the resources between users. To re-
move the dependency of the classic flowtime metric
from input values, we define a normalized value PER-
FLOW to evaluate the total flowtime as PERFLOW
= (

∑
(Ci−uselessi))/

∑
pi, where Ci is the comple-

tion time of task Ti and uselessi is the sum of the
lengths of the intervals, between 0 and Ci, where no
task can be scheduled because there is not enough
available power.

6.5 Results

In this section we present the results of our experi-
ments. The whole computations took around 80 000
hours on the local computing center, mainly because
the heatmaps and the genetic algorithms are very

17

ϕimax

N
o
rm

a
li
z
e
d

M
e
tr
ic

0.00

0.05

0.10

0.15

0.20

0.25

50 100 150

OX
twoQs
LPTPN
noX
LPT
1pX
LPP
LPN
MX

Figure 12: Average NM for experiment 6.5.1

time consuming. The figures are generated using the
R statistical environment.

6.5.1 Feitelson tasks and realistic power en-
velopes

In our first experiment we aim to reproduce real-
world conditions. For this purpose we combine Fei-
telson model based tasks which emulate real work-
load traces in terms of processing times with realistic
power envelopes. We use the hyper-gamma distribu-
tion of the Feitelson model (see Section 6.1) to gen-
erate 10 groups of 150 task lists with 50 tasks each.
Between the 10 groups the pi values of a task list
are the same while ϕimax

ranges between 15 and 150
power units by steps of 15. The same 150 lists of
10 000 intervals generated using the realistic model
were used across all ten experimental setups.

Figure 12 presents the average NM evaluation
metric from 150 executions for each heuristic over
10 experimental setups. Note that we have removed
the SPT heuristics to make the figure more readable
since it gives poor results that flatten the rest of the
curves. From the figure we can say that in general
genetic algorithms perform better than list based al-
gorithms. Between the list algorithms, we notice that
the policy that orders the task list based on the least
possible places for each task along with the policies

15

30

45

60

75

90

105

120

135

150

10 20 30 40 50 60 70 80 90 100
pimax

ϕ
i m

a
x

winner

LPP

LPT

LPTPN

MX

noX

OX

twoQs

Figure 13: Best average NM for experiment 6.5.2

that take in consideration both the processing time pi
and the power consumption ϕi of tasks like LPTPN
and twoQs outperform the policies that consider only
one priority criteria such as LPT and LPN .

6.5.2 Exponential tasks and realistic power
envelope

In order to test the versatility and the limitations of
our heuristics, in this experiment we use a synthetic
workload that is scheduled in a realistic set of inter-
vals. We use this synthetic workload to explore the
heuristics behavior on a broader set of tasks and, in
particular, the heuristics performance depending on
the tasks properties. Here pimax and ϕimax vary be-
tween 10 → 100 and 15 → 150 with steps of 10 and
15 respectively. 100 combinations of (pimax

, ϕimax
)

couples are therefore tested, each one is represented
as a square in Figure 13, for each combination 150
task lists are created, each task list contains 100
tasks. The maximum pi and ϕi values that can oc-
cur in a task list are limited to the corresponding
(pimax

, ϕimax
) couple. The same 150 lists of 10 000 in-

tervals generated using the realistic model were used
across all 100 squares.

Since the results of the experiment are three di-
mensional, two input values (pi and ϕi) and one re-
sult value (the best heuristics), we use a heatmap to
represent them where the color of the square corre-

18

spond to the winner heuristics. Each square in Fig-
ure 13 represents the average NM over 150 execu-
tions at the corresponding pimax

and ϕimax
. We no-

tice that, as the processing time of the tasks increases
(higher pimax

or towards the right on the heatmap),
the more squares are won by genetic algorithms com-
pared to list based algorithms, and that, as the power
consumption of the tasks increases (higher ϕimax

or
towards the top on the heatmap), a list based algo-
rithm that considers both the time and power dimen-
sions of tasks gives the best solution in most cases,
while twoQs that gives an edge to the time dimension
performs better when the power consumption of the
tasks becomes lower. We also notice that LPP wins
in the upper left corner of the heatmap (low pimax

and high ϕimax
) where tasks have high average power

consumption, yet their short processing times do not
put them in high priority using LPTPN . LPP fa-
vors those tasks that are harder to place regardless
of their dimensions.

Algorithm noX OX MX 1pX
Time (s) 1415.25 1714.32 1737.58 723.71

Algorithm LPT LPN LPP twoQs
Time (s) 0.099 0.093 13.67 0.126

Table 2: Average computation times in experi-
ment 6.5.2 (sec)

Table 2 gives the average computation times for
the heuristics. We see that the GA based heuristics
take more than 1000 times to calculate the schedules
than the simpler heuristics. Yet they do not outper-
form the much faster and much simpler list based
algorithms. This is due to the fact that the fitness
value used in GAs is Cmax, therefore, GAs focus on
optimizing the solution on the time dimension only.
This hypothesis is enforced by Figure 14. Yet some
list algorithms are still able to provide better NM
values because NM is a two dimensional evaluation
metric. Recall that NM cannot be used as the fitness
value in GA because it cannot be calculated until all
other algorithms are run.

Figure 14 shows the number of times a heuristic
finds the best Cmax in the 150 executions. We can
see that all the tested genetic algorithms find the best

Cmax much more often than the list algorithms al-
though they do not win every case in the heatmap.
This is explained by their fitness value that targets
Cmax instead of NM as previously explained. Note
that the best solution can be found by several al-
gorithms, which explains why the left right square
(simple cases with small pi and ϕi values) is red for
almost all the heuristics. We calculated as well how
many times each algorithm found the second and the
third best Cmax (not presented in the paper) and
the results confirm that the genetic algorithm always
finds shorter makespans than list based algorithms.

Our last experiment with this set of data assesses
the heuristics performance regarding the total flow-
time. All the runs are won by the SPT heuristics and
we therefore do not present a heatmap but rather
present in Figure 15 the distance of each list algo-
rithm from the best PERFLOW.

As part of this experiment, we modify the fitness
function in GA to consider

∑
Ci instead of Cmax

and we use as seeds solutions from heuristics that
proved in previous experiments that they give better
PERFLOW results than others such as SPT . Our
results show that the tested GA indeed improves the
initial seed solution provided by SPT in all the tested
cases. Figure 16 presents how far GA was able to
improve the SPT average PERFLOW, we notice that
the bigger the tasks get on both time and power axes,
the less efficient SPT gets compared to GA.

6.5.3 Tasks From Intervals and realistic
power envelopes

In this experiment we generate 150 lists of 10 000 in-
tervals generated using the realistic model. Similarly
to the previous experimental settings, both pimax

and
ϕimax

vary between 10 → 100 and 15 → 150 with
steps of 10 and 15 respectively. 100 combinations of
(pimax , ϕimax) couples are therefore tested. For each
combination 150 task lists are generated from the 150
realistic interval lists. The aim of this experiment is
to create a special case of datasets in which the op-
timal solution is known in order to calculate how far
the solutions found by the proposed heuristics are
from the optimal.

Figure 17 presents the average distance from the

19

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(a) LPP

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(b) LPTPN

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(c) twoQs

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(d) LPT

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(e) 1pX

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(f) OX

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(g) MX

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
20
40
60
80
100
120
140

(h) noX

Figure 14: Number of times each algorithm finds the best Cmax

Algorithm noX OX MX 1pX
Time (s) 774.75 954.59 960.41 400.80

Algorithm LPT LPN LPP twoQs
Time (s) 0.017 0.015 3.39 0.039

Table 3: Average computation times in experi-
ment 6.5.3 (sec)

optimal over 150 executions for each heuristic using a
unified scale to make the comparison clearer. We note
that all GAs are closer to the optimal than the list
based heuristics. This is however at a cost of much
higher computation times as shown in Table 3. On
the other hand the simple twoQs and LPT heuristics
give close to optimal results, with less than 5% of
difference in the cases where the power need ϕi is
small and in most cases the difference is under 10%
which is quite good.

Figure 18 shows the NM results for the heuristics
in this experiment. Each square represents the av-
erage NM over 150 executions at the corresponding
(pimax

and ϕimax
). From this figure we can see that

in most cases the genetic algorithms outperform the
list based algorithms for this experiment, except for

some cases where twoQs finds better average NM .

6.5.4 Feitelson tasks and Intervals From
Tasks

This experiment is designed to create another spe-
cial case of datasets in which the optimal solution
is known in order to calculate how far the solutions
found by the proposed heuristics are from the opti-
mal. We use the same 10 groups of 150 task lists gen-
erated in the experiment presented in Section 6.5.1 to
generate 10 groups of 150 lists of intervals. Each in-
terval list represents a power envelope under which
the area (time times power) is equal to the area rep-
resented by the ensemble of the task list used to gen-
erate it

∑
pi × ϕi for Ti ∈ T

Figure 19 presents the average distance from the
optimal from 150 executions for each heuristic over 10
experimental setups. We can note that the distance
to the optimal value is larger in this experiment than
in the previous one. This probably means that the
optimal solution is more difficult to find in this case.
This also shows that, in particular cases, the best al-
gorithms are not able to find solutions closer than
about 18% of the optimal one. Similar to the previ-

20

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
30
40
50
60
70
80
90
100
110

(a) LPP

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100

0

2

4

6

8

10

(b) LPTPN

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
0
1
2
3
4
5
6

(c) twoQs

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100

5
10
15
20
25
30
35

(d) LPN

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100

10

15

20

25

30

(e) Random

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100

0

2

4

6

8

(f) LPT

Figure 15: PERFLOW distance from the best PER-
FLOW

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
2

4

6

8

10

12

Figure 16: Average PERFLOW distance Between
SPT and GA.

ous experiment, these best solutions come from the
genetic algorithms. The difference between the list
based heuristics and the genetic algorithms is about
the same compared to the previous experiment, but
it stays more stable when the power need varies.

Globally the results of these experiments are that
the power dimension which is added to the classical
scheduling problem makes the search for a good solu-
tion harder. This can be seen as the performance
of the list based algorithms, in particular the one
of LPT that usually has good performance on this
problem, degrades when the power need increases.
In the general case, where the tasks are generated
from an exponential law, the list based algorithms
behave better and the huge computation time taken
by the genetic algorithms is not worth it. On the
other hand, the findings of the experiments that con-
sider particular cases (Feitelson, known optimal solu-
tion) show that genetic algorithms are closer to the
optimal in these cases. This probably means that the
heatmap contains some tricky cases which are better
handled by a heuristics as twoQs. Finally, on all the
realistic cases (Feitelson) the genetic algorithms al-
low to improve the schedule by 5 to 10 % at a cost
of (very) long computation times. Moreover, the dif-
ference of computation times between both classes of

21

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(a) LPP

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(b) LPT

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(c) LPTPNN

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(d) twoQs

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(e) noX

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(f) 1pX

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(g) OX

pimax

ϕ
i m

a
x

50

100

150

20 40 60 80 100
1.00

1.05

1.10

1.15

1.20

1.25

1.30

(h) MX

Figure 17: Distance from the optimal in experiment 6.5.3

15

30

45

60

75

90

105

120

135

150

10 20 30 40 50 60 70 80 90 100
pimax

ϕ
i m

a
x winner

1pX

MX

noX

OX

twoQs

Figure 18: Best average NM for experiment 6.5.3

algorithms shows that there is only little interest in
improving the genetic algorithm performance.

7 Conclusion

In this paper, we tackle the problem of scheduling
the execution of a set of sequential tasks on a parallel
machine powered solely by renewable energy sources.

The contribution of this work is a study on the
problem of scheduling tasks on a parallel machine
under power constraints. In particular we set the
question of the theoretical complexity of the problem,
of how to take the power constraints into account in
the scheduling and of which scheduling algorithm is
efficient.

To answer these questions, we provide formal com-
plexity results on scheduling problems on one ma-
chine as well as on more general parallel problems.
Our complexity results prove that the general case
of both optimization problems of minimizing the
makespan and the total flowtime is NP-Hard. Fur-
ther, we propose new power aware scheduling heuris-
tics that take power constraints into consideration
and we conduct experiments based on simulations to

22

ϕimax

D
is

ta
n

ce
fr

om
op

ti
m

al

1.5

1.25

1.30

1.35

50 100 150

OX
twoQs
LPTPN
noX
LPT
1pX
LPP
LPN
MX

Figure 19: Distance from the optimal in experi-
ment 6.5.4

evaluate and compare the performance of the pro-
posed algorithms in different experimental settings.

The innovation of our experimental study is that
we propose two experiments in a special case where
the optimal solution is known. These experiments al-
low to calculate the distance of the proposed heuris-
tics from the optimal solution. Whereas theoretically
estimating the optimal solution in such complex op-
timization problems is a complicated and time con-
suming task.

Our results show that all tested GA configurations
find shorter makespans than list based algorithms,
between 5 to 10%, but are much more expensive in
computations.

For future work, we are working on the multi-
machine problem, with powering on/off machines, to
takes execution platforms as clusters into considera-
tion. We also work on the addition of batteries and
their management policies to limit the loss of power
in the intervals where no more tasks can be run. Sev-
eral other directions will be explored in the future. A
first direction could be to develop other algorithms,
for instance using the results of [6]. Another is to
implement the heuristics on a real platform to assess
their behavior with real applications.

References

[1] Martin Arlitt, Cullen Bash, Sergey Blagodurov,
Yuan Chen, Tom Christian, Daniel Gmach,
Chris Hyser, Niru Kumari, Zhenhua Liu, Man-
ish Marwah, et al. Towards the design and op-
eration of net-zero energy data centers. In Ther-
mal and Thermomechanical Phenomena in Elec-
tronic Systems (ITherm), 2012 13th IEEE In-
tersociety Conference on, pages 552–561. IEEE,
2012.

[2] Peter Brucker. Scheduling Algorithms. Springer
Heidelberg, 2007.

[3] David P. Bunde. Power-aware scheduling for
makespan and flow. Journal of Scheduling,
12(5):489–500, Oct 2009.

[4] Stephane Caux, Paul Renaud-Goud, Gustavo
Rostirolla, and Patricia Stolf. It optimization for
datacenters under renewable power constraint.
In European Conference on Parallel Processing,
pages 339–351. Springer, 2018.

[5] Stéphane Chrétien, Jean-Marc Nicod, Laurent
Philippe, Veronika Rehn-Sonigo, and Lamiel
Toch. Using a sparse promoting method in linear
programming approximations to schedule paral-
lel jobs. Concurrency and Computation: Prac-
tice and Experience, 27(14):3561–3586, 2015.

[6] Federico Della Croce and Rosario Scatamacchia.
The longest processing time rule for identical
parallel machines revisited. Journal of Schedul-
ing, Dec 2018.

[7] Pierre-François Dutot, Yiannis Georgiou, David
Glesser, Laurent Lefevre, Millian Poquet, and Is-
sam Rais. Towards energy budget control in hpc.
In Proceedings of the 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid
Computing, pages 381–390. IEEE Press, 2017.

[8] M. R. Garey and D. S. Johnson. Computers
and Intractability, a Guide to the Theory of NP-
Completeness. W.H. Freeman & Co, 1979.

23

[9] Y. Georgiou, D. Glesser, and D. Trystram.
Adaptive resource and job management for lim-
ited power consumption. In 2015 IEEE Interna-
tional Parallel and Distributed Processing Sym-
posium Workshop, pages 863–870, May 2015.

[10] Marco E. T. Gerards, Johann L. Hurink, and
Philip K. F. Hölzenspies. A survey of offline al-
gorithms for energy minimization under deadline
constraints. Journal of Scheduling, 19(1):3–19,
Feb 2016.

[11] Íñigo Goiri, Md E Haque, Kien Le, Ryan
Beauchea, Thu D Nguyen, Jordi Guitart, Jordi
Torres, and Ricardo Bianchini. Matching renew-
able energy supply and demand in green data-
centers. Ad Hoc Networks, 25:520–534, 2015.

[12] R. L. Graham, E. L. Lawler, J. K. Lenstra,
and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and
scheduling: a survey. Annals of discrete mathe-
matics, 5(2):287–326, 1979.

[13] Léo Grange, Georges Da Costa, and Patricia
Stolf. Green it scheduling for data center pow-
ered with renewable energy. Future Generation
Computer Systems, 86:99–120, 2018.

[14] Daniel Hackenberg, Robert Schöne, Thomas
Ilsche, Daniel Molka, Joseph Schuchart, and
Robin Geyer. An energy efficiency feature sur-
vey of the intel haswell processor. In Interna-
tional Parallel and Distributed Processing Sym-
posium Workshop (IPDPSW), pages 896–904.
IEEE, 2015.

[15] M. Haddad, J/-M. Nicod, C. Varnier, and M.-
C. Péra. Mixed integer linear programming ap-
proach to optimize the hybrid renewable energy
system management for supplying a stand-alone
data center. In IEEE IGSC’19, USA, oct 2019.

[16] Johannes Hofmann, Dietmar Fey, Jan Eitzinger,
Georg Hager, and Gerhard Wellein. Analysis
of Intel’s Haswell Microarchitecture Using The
ECM Model and Microbenchmarks. In Interna-
tional Conference on Architecture of Computing
Systems, pages 210–222. Springer, 2016.

[17] Fredy Juarez, Jorge Ejarque, and Rosa M Ba-
dia. Dynamic energy-aware scheduling for par-
allel task-based application in cloud computing.
Future Generation Computer Systems, 78:257–
271, 2018.

[18] A. Kassab, J. M. Nicod, L. Philippe, and
V. Rehn-Sonigo. Scheduling independent tasks
in parallel under power constraints. In 46th
International Conference on Parallel Processing
(ICPP), pages 543–552, July 2017.

[19] Ayham Kassab, Jean-Marc Nicod, Laurent
Philippe, and Veronika Rehn-Sonigo. Assessing
the use of genetic algorithms to schedule inde-
pendent tasks under power constraints. In 2018
International Conference on High Performance
Computing & Simulation (HPCS), pages 252–
259. IEEE, 2018.

[20] Tarandeep Kaur and Inderveer Chana. En-
ergy efficiency techniques in cloud computing:
A survey and taxonomy. ACM Comput. Surv.,
48(2):22:1–22:46, October 2015.

[21] Bithika Khargharia, Salim Hariri, Ferenc Szi-
darovszky, Manal Houri, Hesham El-Rewini,
Samee Ullah Khan, Ishfaq Ahmad, and Mazin S
Yousif. Autonomic power & performance man-
agement for large-scale data centers. In 2007
IEEE International Parallel and Distributed
Processing Symposium, pages 1–8. IEEE, 2007.

[22] George Kyriakarakos, Dimitrios D Piromalis,
Konstantinos G Arvanitis, Anastasios I Dou-
nis, and George Papadakis. On battery-
less autonomous polygeneration microgrids: In-
vestigation of the combined hybrid capaci-
tors/hydrogen alternative. Energy Conversion
and Management, 91:405–415, 2015.

[23] Tak-Wah Lam, Lap-Kei Lee, Isaac K. K. To,
and Prudence W. H. Wong. Improved multi-
processor scheduling for flow time and energy.
Journal of Scheduling, 15(1):105–116, Feb 2012.

[24] Hongtao Lei, Rui Wang, Tao Zhang, Ya-
jie Liu, and Yabing Zha. A multi-objective

24

co-evolutionary algorithm for energy-efficient
scheduling on a green data center. Computers
& Op. Research, 75:103–117, 2016.

[25] Uri Lublin and Dror G. Feitelson. The work-
load on parallel supercomputers: modeling the
characteristics of rigid jobs. J. Parallel Distrib.
Comput., 63(11):1105–1122, 2003.

[26] Anne-Cecile Orgerie, Marcos Dias de Assun-
cao, and Laurent Lefevre. A survey on tech-
niques for improving the energy efficiency of
large-scale distributed systems. ACM Comput.
Surv., 46(4):47:1–47:31, March 2014.

[27] Eduard Oró, Victor Depoorter, Albert Garcia,
and Jaume Salom. Energy efficiency and renew-
able energy integration in data centres. strate-
gies and modelling review. Renewable and Sus-
tainable Energy Reviews, 42:429–445, 2015.

[28] J. Pierson, G. Baudic, S. Caux, B. Celik, G. Da
Costa, L. Grange, M. Haddad, J. Lecuivre,
J. Nicod, L. Philippe, V. Rehn-Sonigo, R. Roche,
G. Rostirolla, A. Sayah, P. Stolf, M. Thi, and
C. Varnier. Datazero: Datacenter with zero
emission and robust management using renew-
able energy. IEEE Access, 7:103209–103230,
2019.

[29] Issam Räıs, Anne-Cécile Orgerie, Martin Quin-
son, and Laurent Lefèvre. Quantifying the im-
pact of shutdown techniques for energy-efficient
data centers. Concurrency and Computation:
Practice and Experience, page e4471, 2018.

[30] Dineshkumar Rajagopal, Daniele Tafani, Yian-
nis Georgiou, David Glesser, and Michael Ott. A
novel approach for job scheduling optimizations
under power cap for arm and intel hpc systems.
In High Performance Computing (HiPC), 2017
IEEE 24th International Conference on, pages
142–151. IEEE, 2017.

[31] Sherief Reda, Ryan Cochran, and Ayse K
Coskun. Adaptive power capping for servers
with multithreaded workloads. IEEE Micro,
5(32):64–75, 2012.

[32] Hafiz Fahad Sheikh, Ishfaq Ahmad, and Dongrui
Fan. An evolutionary technique for performance-
energy-temperature optimized scheduling of par-
allel tasks on multi-core processors. IEEE Trans-
actions on Parallel and Distributed Systems,
27(3):668–681, 2015.

[33] Hafiz Fahad Sheikh, Ishfaq Ahmad, Zhe Wang,
and Sanjay Ranka. An overview and classifica-
tion of thermal-aware scheduling techniques for
multi-core processing systems. Sustainable Com-
puting: Informatics and Systems, 2(3):151–169,
2012.

[34] Hafiz Fahad Sheikh, Hengxing Tan, Ishfaq
Ahmad, Sanjay Ranka, and Phanisekhar Bv.
Energy-and performance-aware scheduling of
tasks on parallel and distributed systems. ACM
Journal on Emerging Technologies in Computing
Systems (JETC), 8(4):1–37, 2012.

[35] Akiyoshi Shioura, Natalia V. Shakhlevich, Vi-
taly A. Strusevich, and Bernhard Primas. Mod-
els and algorithms for energy-efficient scheduling
with immediate start of jobs. Journal of Schedul-
ing, 21(5):505–516, Oct 2018.

[36] Giorgio Luigi Valentini, Walter Lassonde,
Samee Ullah Khan, Nasro Min-Allah, Sajjad A
Madani, Juan Li, Limin Zhang, Lizhe Wang,
Nasir Ghani, Joanna Kolodziej, et al. An
overview of energy efficiency techniques in clus-
ter computing systems. Cluster Computing,
16(1):3–15, 2013.

[37] Lizhe Wang, Samee U Khan, Dan Chen, Joanna
Ko lOdziej, Rajiv Ranjan, Cheng-Zhong Xu, and
Albert Zomaya. Energy-aware parallel task
scheduling in a cluster. Future Generation Com-
puter Systems, 29(7):1661–1670, 2013.

[38] Chia-Ming Wu, Ruay-Shiung Chang, and Hsin-
Yu Chan. A green energy-efficient scheduling
algorithm using the DVFS technique for cloud
datacenters. Future Generation Computer Sys-
tems, 37:141 – 147, 2014.

[39] Liang Zhang, Tao Han, and Nirwan Ansari.
Renewable energy-aware inter-datacenter virtual

25

machine migration over elastic optical networks.
In Cloud Computing Technology and Science
(CloudCom), 2015 IEEE 7th International Con-
ference on, pages 440–443. IEEE, 2015.

A Others definitions used in
the model

To schedule a task Ti we need to guarantee that Ti
can be completed before the available power Φx be-
comes lower than its need ϕi. To be able to ex-
hibit such time slots we define the set Ej(ϕi) =
{E1,i, E2,i, . . . , EKi,i} of Ki eligible time slots. Let
bk,i and fk,i be respectively the beginning of the slot
Ek,i and its finish time. Then, for Ek,i = [bk,i, fk,i[,
the available power must be greater than ϕi, with
bk,i ≤ t < fk,i and Φk(t) ≥ ϕi. Formally, it exists
two integer values x and s such that the kth time
slot Ek,i is defined by Ek,i = ∆x ∪∆x+1 ∪ . . . ∪∆x+s

(x + s ≤ X) where at any time t ∈ Ek,i, Φ(t) ≥ ϕi

and at any time t ∈ ∆x−1 (x > 1) or t ∈ ∆x+s+1

(x + s + 1 ≤ X) Φ(t) < ϕi. So bk,i =
∑x−1

x′=1 δx′ and

fk,i =
∑X

x′=x+s δx′ (see Figure 3). If, considering
already scheduled tasks, it remains enough time to
perform task Ti in the duration lk,i = fk,i − bk,i that
time slot is an option to run Ti. When a time slot is
chosen to schedule a task, the corresponding power is
subtracted from available power in the intervals that
compose this time slot.

Finally, we consider an allocation function
A(i, j) = k that returns in which time interval Ek,i
the task Ti is scheduled on core Cj . Let Tk,j be a sub-
set of task set T that contains the tasks scheduled in
the time slot Ek,i on Cj . For every task Ti ∈ Tk,j , we
set A(i, j) = k. Note that

∑
i|Ti∈Tk,j

pi ≤ fk,i−bk,i =
lk,i.

Note that, in order to make the reading more un-
derstandable, the index j is removed from previous
notations for the one-machine problems, i.e., Ek,j be-
comes Ek.

Table 4 summarizes the notations used in the the-
orem proofs.

variable definition

Ej(ϕi) time slot: set of eligible time intervals
Ek,i kth eligible interval of Ej(ϕi)
bk,i beginning of time slot Ek,i
fk,i finish time of time slot Ek,i
K number of time slots in Ej(ϕi)
lk,i length of time slot Ek,i

Table 4: Summary of the notations

B Theorem proofs

B.1 Proof of theorem 1

Theorem 1 addresses the complexity of the makespan
optimization on one machine for a set tasks that have
different power consumptions and different process-
ing times.

Theorem 1. Minimizing the makespan of the sched-
ule of a set of tasks (1|ϕi ≤ Φx|Cmax) to run in a
set of intervals is NP-Hard in the strong sense if the
tasks have different processing times pi.

Proof. First note that, in the case where all tasks
need the same power to run ϕi = ϕ, a time interval
∆x either provides enough power to run a task or
not. The real amount of power provided during this
interval is not important as it is just a binary ques-
tion of enough power or not. The NP-Hardness of
the makespan minimization problem will be demon-
strated by proving first the problem where each task
needs a power ϕ (1|ϕi = ϕ ≤ Φ|Cmax) to be executed.

Intuitively the proof is based on a set of time slots
that provide enough power to run all the tasks, a
priori disjoint (the time slots between them do not
provide enough power). Then we define a set of tasks
such that it is necessary to solve a 3-Partition prob-
lem to schedule all the tasks in these intervals.

Let us consider the following decision problem:
given a time Z, is there a schedule where the last
task is completed before Z ? We assume that the al-
location respects the constraints of the problem, i.e.,
every task allocated to one time slot has enough time

26

to be completed before the end of the slot and the
power available into this time slot is greater or equal
to the sum of power needed by the tasks scheduled
in the time slot.

The problem is in NP: given a schedule it is easy
to check in polynomial time whether it is valid or not
before the time Z. The NP-Completeness is obtained
by reduction from 3-PARTITION [8] which is NP-
Complete in the strong sense.

Let us consider an instance I1 of 3-PARTITION:
given an integer B and 3H positive integers
a1, a2, . . . , a3H such that for all i ∈ {1, . . . , 3H},
B/4 < ai < B/2 and with

∑3H
i=1 ai = HB, does it

exists a partition I1, . . . , IH of {1, . . . , 3H} such that
for all h ∈ {1, . . . ,H}, |Ih| = 3 and

∑
i∈Ih ai = B ?

We build the following instance I2 of our problem
with E(ϕ) = {E1, E2, . . . , E2H−1} = Eodd∪Eeven 2H−1
set of time slots Ex such that ∀t ∈ Ex, Φx = ϕ if x
is odd or Φx = 0 otherwise. Each time slot Ex has a
length is equals to fx− bx = lx = B. Thus, there are
H times slot Eh ∈ Eodd (i.e., |Eodd| = H). There are
3H tasks Ti ∈ T such that each Ti needs a power of
ϕ to be executed and its processing time is pi = ai
for all 1 ≤ i ≤ 3H = n. The problem is to find a
task to time slot assignment such that all the tasks
can be run in the defined time slots such that the
makespan is equals to (2H−1)B. Clearly, the size of
I2 is polynomial in the size of I1. We now show that
I1 has a solution if and only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ h ≤
H, task Ti is assigned to time slot Eh = [bh, fh[with
i ∈ Ih within the period and pi = ai. Then, with
A(i) = h meaning that task Ti is assigned to time
slot Eh, we have

∑
i|A(i)=h pi = l =

∑
i∈Ih ai = B

and therefore the constraint on the processing time
is respected for the H slots. We have a solution to I2.

Suppose that I2 has a solution. Let Th be the set
of tasks allocated to the slot Eh (we recall that if
Ti ∈ Th, A(i) = h) such that for all tasks Ti ∈ Th
with i ∈ Ih,

∑
i∈Ih pi = l = B. Because of pi = ai,

|Th| = |Ih| = 3. The length of the time slot l in which
the available power is ϕ has to be fully filled for all H
periods to be sure to complete the last task within the
slot EH = [bH , fH [at time t = fH = Z. Otherwise,
an other slot has to be used to complete unprocessed

tasks. Thus the solution is a 3-PARTITION and
we have proven that the addressed decision problem
is NP-Complete and thus minimizing the makespan
Cmax of a set of tasks with different processing times
and the same power need to run on one machine is
NP-Hard in the strong sense.

Since this problem 1|ϕi = ϕ ≤ Φ|Cmax is a special
case of 1|ϕi ≤ Φx|Cmax it proves that this problem is
also NP-Hard. This concludes the proof. �

B.2 Proof of Theorem 2

Theorem 2 addresses the complexity of the flowtime
optimization on one machine for a set tasks that have
different power consumptions and different process-
ing times.

Theorem 2. Optimizing the flowtime of the schedule
of a set of tasks (1|ϕi ≤ Φx|

∑
Ci) to run in a set of

intervals is NP-Hard in the strong sense if the tasks
have different processing times pi.

Proof. Let us consider the following decision prob-
lem: given a time Z is there a schedule where the
sum of the task completion times is less than Z ? We
assume that the allocation respects the constraints of
the problem.

The problem is in NP: given a schedule, it is possi-
ble to confirm in polynomial time whether this sched-
ule is valid or not and the sum of the task comple-
tion times is less than Z. The NP-Completeness is
obtained by reduction from the 1|ϕi = ϕ ≤ Φ|Cmax

problem that is proven NP-Complete in the strong
sense in Theorem 1.

Intuitively, the proof is based on the definition of a
set of disjoint intervals that all provide enough power
to run the tasks. The last interval is so far from
the previous one that, if we schedule a task in this
interval, then the flowtime is always larger than if
the tasks are scheduled in any order without using
this last interval. On the other hand scheduling the
tasks without using this last interval implies to solve
a 3-PARTITION problem.

Let us consider an instance I1 of 1|ϕi = ϕ ≤
Φ|Cmax described within the paper: given E(ϕ) =
{E1, E2, . . . , EH} the set of H qualified time slots
Eh to run tasks and whose length are all equal to

27

fh − bh = lh = l = B (1 ≤ h ≤ H) and given 3H
tasks Ti ∈ T such that each Ti needs the same power
ϕ to be executed and its processing time is pi for all
1 ≤ i ≤ 3H = n such that for all i ∈ {1, . . . , 3H},
B/4 < pi < B/2 and with

∑3H
i=1 pi = HB. Does

there exist a schedule T1, . . . , TH such that, for all
h ∈ {1, . . . ,H} and for all Ti ∈ Th, Ti is scheduled in
Eh (A(i) = h) and Cmax = fH ? Obviously, |Th| = 3
with 1 ≤ h ≤ H considering pi.

We build the following instance I2 of the problem
addressed in the beginning of the proof: 1|ϕi = ϕ ≤
Φ|

∑
Ci with the set E ′(ϕ) = E(ϕ) ∪ EH+1 of H + 1

qualified time slots (E described for I1), the same set
T of 3H = n tasks Ti with 1 ≤ i ≤ n = 3H. EH+1

is defined as a valid time slot (ϕ ≤ Φ(t) with bH+1 ≤
t < fH+1) such that bH+1 = n×fH . Considering this
problem instance, does there exist a schedule with
Z = n× fH ?

The size of I2 is polynomial in the size of I1. Let
us show now that I1 has a solution if and only if I2
does.

Suppose first that I1 has a solution. For 1 ≤ h ≤
H, task Ti is assigned to time slot Eh = [bh, fh[if
Ti ∈ Th. Then, we have

∑
i|Ti∈Th pi = l = B and

therefore the constraint on the processing time is re-
spected for the H slots and |Th| = 3. Considering the
schedule given by I1, it is possible to minimize the
flowtime within Eh (Fh =

∑
i|Ti∈Th(Ci − bh) with Ci

the completion time of Ti) by sorting the 3 tasks by
increasing processing time order. Then each time slot
Eh has its own flowtime Fh. As fh − bh = lh = l = B
for all 1 ≤ h ≤ H, it is possible to exchange task al-
locations from one time slot Eh1 to another time slot
Eh2 (h1 6= h2 and 1 ≤ h1, h2 ≤ H) without changing
the value of the makespan. Consequently, by sort-
ing Fh in increasing order and by reallocating tasks
Ti ∈ Th to the right time slot regarding its rank given
by the sort, the obtained flowtime for the whole task
set is the smallest possible. We have a solution to I2.

Suppose now I2 has a solution. If the flowtime
of the schedule is less than Z = n × fn, TH+1 = ∅,
otherwise since bH+1 = n × fn, if one task Ti is in
TH+1, the flowtime is not able to be less than n× fn
because the completion time of Ti is at least Ci =
bH+1+pi = n×fn+pi which is greater than Z. Thus,

all tasks are scheduled within E . Since
∑

i|Ti∈T pi =
HB and since fh − bh = l = B for all 1 ≤ h ≤ H
and |E| = H, the completion time of the last task is
fH = Cmax. We have a solution to I1.

By using the same valid arguments than within
the proof of Theorem 1, we can confirm that we have
proven that minimizing the flowtime of scheduling
a set of tasks with different processing times which
need the same amount of power ϕ to be performed
on one machine is NP-Complete in the strong sense.

Since this problem 1|ϕi = ϕ ≤ Φ|
∑
Ci is a special

case of 1|ϕi ≤ Φ|
∑
Ci, it is sufficient to prove the

NP-Completeness of 1|ϕi ≤ Φ|
∑
Ci. This concludes

the proof. �

B.3 Proof of Theorem 3

Theorem 3 states that the LWRT Algorithm is opti-
mal.

Theorem 3. The LWRT Algorithm gives an optimal
solution for the 1|ϕi ≤ Φx, pmtn|Cmax problem.

Proof. The optimally of the LWRT algorithm is
demonstrated by contradiction.

We consider that an optimal schedule S∗ does not
always run LWRT at each interval, starting from t =
0. We assume that interval ∆x is the first interval
such that it includes task Ti (S∗(Ti) = t) which is
not the LWRT task and such that T ′i , the LWRT
task, runs later (S∗(T ′i) = t′, t′ > t). As Ti is not the
LWRT task, then we have Φx−ϕi > Φx−ϕ′i and ϕi <
ϕ′i ≤ Φx. Since the power consumed by T ′i is higher
than the power consumed by Ti and since T ′i fits in
interval ∆x because it is the LWRT tasks for this
interval, then we can swap Ti and T ′i (or at least part
of them). Moreover, since Ti needs less power than
T ′i , it could be scheduled before t′ in an interval that
was not exploited by T ′i with more power. After this
step the resulting schedule is at least the same but it
could also have been improved by moving Ti before.
This result is a contradiction with the assumption
that S∗ is optimal and, given any schedule, we can
do better if we respect the LWRT order. Thus the
LWRT algorithm gives an optimal schedule, which
concludes the proof. �

28

B.4 Proof of Theorem 4

Theorem 4 states the complexity of the parallel prob-
lem.

Theorem 4. Minimizing the makespan of the sched-
ule of a set of power heterogeneous preemptive
tasks to run in a set of intervals (P |

∑
ϕi ≤

Φx, pmtn|Cmax) is NP-Hard in the strong sense.

Proof. The NP-Hardness of this problem will be
demonstrated by proving that the simpler problem
where the processing time of each task is one unit
of time (ut) is NP-hard in the strong sense. The re-
mainder of the proof is build on a similar pattern as
used within the proof of the theorem 1.

Let us consider the following decision problem:
given a horizon ofK intervals of time ∆k (1 ≤ k ≤ K)
where their length δk is equal to one unit of time
and where the available power is Φ(t) = Φk = Φ
(1 ≤ k ≤ K) and given 3 cores that share the
available power, is there a schedule that allocates
tasks over time such that the power needed by the
cores never exceeds Φ for every time interval ∆k

(1 ≤ k ≤ K)? In other words, if Tk ⊂ T is the set of
tasks that are scheduled within the time interval ∆k,
∀k ≤ K, is

∑
i|Ti∈Tk ϕi ≤ Φk = Φ? The problem is

in NP: given a schedule of K time intervals, it is easy
to check in polynomial time whether this schedule is
valid or not. The NP-Completeness is obtained by
reduction from 3-PARTITION.

Intuitively, we define a set of disjoint unit time in-
tervals that provide a same available power and 3
cores. Then we build a set of unit time tasks such
that we must solve a 3-Partition problem to be able
to schedule all the tasks in the intervals.

Let us consider an instance I1 of 3-PARTITION:
given an integer B and 3K positive integers
a1, a2, . . . , a3K such that for all i ∈ {1, . . . , 3K},
B/4 < ai < B/2 and with

∑K
i=1 ai = KB, does there

exist a partition I1, . . . , IK of {1, . . . , 3K} such that
for all k ∈ {1, . . . ,K}, |Ik| = 3 and

∑
i∈Ik ai = B?

We build the following instance I2 of our prob-
lem with K time intervals, each interval ∆k having
a length of time δk = 1 and with an available power
Φk = Φ = B for 1 ≤ k ≤ K. There are 3K tasks Ti in
T with pi = 1ut and ϕi = ai for all 1 ≤ i ≤ 3K = m.

Clearly, the size of I2 is polynomial in the size of I1.
We now show that I1 has a solution if and only if I2
does.

Suppose first that I1 has a solution. For 1 ≤ k ≤
K, task Ti is assigned to Tk within the period k with
i ∈ Ik and ϕi = ai. Then, we have

∑
i|Ti∈Tk ϕi =

Φk =
∑

i∈Ik ai = B and therefore the constraint on
the demand is respected for the K time intervals. We
have a solution to I2.

Suppose that I2 has a solution. Let Tk be the set
of cores allocated to the period k such that for all
tasks Ti ∈ Tk with i ∈ Ik,

∑
i∈Ik ϕi = Φk = Φ = B.

Because of ϕi, |Tk| = |Ik| = 3. Since the available
power Φ has to be consumed for the K time intervals
to process the scheduled tasks, the solution is a 3-
PARTITION.

We have proven that the problem where Φk = Φ
for every time interval ∆k (1 ≤ k ≤ K) and pi = 1
for every task Ti ∈ T (1 ≤ i ≤ n) is NP-Complete
in the strong sense. Since this problem is a special
case of the more general problem where the available
power Φk during each of the time intervals ∆k is dif-
ferent from each other and where the processing time
pi of each task Ti is also different from each other,
it is sufficient to prove the NP-Hardness of this asso-
ciated general optimization problem. This concludes
the proof. �

29

	Introduction
	Related Work
	Combined software and hardware IT management
	IT management via software

	Model
	Optimization Problems and Complexity Study
	Notations and objectives
	One Machine Problems
	Problems without preemption
	Problems with preemption

	Parallel Problems

	Heuristics
	Task scheduling
	Simple priority based algorithms
	More complex priorities
	Genetic scheduling algorithms

	Experiments
	Task list models
	Power interval model
	GA settings
	Evaluation metrics
	Results
	Feitelson tasks and realistic power envelopes
	Exponential tasks and realistic power envelope
	Tasks From Intervals and realistic power envelopes
	Feitelson tasks and Intervals From Tasks

	Conclusion
	Others definitions used in the model
	Theorem proofs
	Proof of theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

