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To the editor: 128 

The Brunauer-Emmett-Teller (BET) equation is arguably one of the most used equations in physical 129 

chemistry and porosimetry. Since its conception in the 1930s1 to estimate open surfaces whilst 130 

working with adsorbents of the time such as Fe/Cu catalysts, silica gel, and charcoal, it has found 131 

widespread use in the characterisation of synthetic zeolites.2 Furthermore, it gained considerable 132 

momentum following the discovery of more complex porous materials such as mesoporous silicas,3 133 

porous coordination polymers (PCPs),4 metal-organic frameworks (MOFs),5 and covalent organic 134 

frameworks (COFs).6 Novel porous materials are of significant academic and industrial interest due 135 

to their applications in gas storage and separation,7–10 catalysis,11 and drug delivery,12 and the BET 136 

area is their de facto standard for the characterisation. It has been recognized by the International 137 

Union of Pure and Applied Chemistry (IUPAC) as “the most widely used procedure for evaluating 138 

the surface area of porous and finely-divided materials”,13,14 and it has been an International 139 

Organization for Standardization (ISO) standard for surface area determination since 1995.15 Whilst 140 

concerns over the applicability of the BET theory for microporous materials are important, it remains, 141 

arguably, the most important figure of merit for porous materials. Given the broad use of the BET 142 

equation, it is not surprising to see that much has been written on the applicability and the accuracy 143 

of the BET theory – that is, its model of the adsorption process – and on the reproducibility of the 144 

raw data, i.e. the adsorption isotherm.16–20  145 

The advent of materials with more complex pore networks and dynamic frameworks through 146 

material design strategies such as reticular chemistry has boosted interest in BET theory (Figure 147 

S1) and given rise to reported BET areas in excess of 8,000 m2 g-1.8,21,22 Often, these modern 148 

materials have complex adsorption isotherms that are more problematic or ambiguous to fit to the 149 

BET model, e.g. several steps can occur due to different pore types and/or flexibility being present 150 

in the material.23 Whilst adsorption rigs capable of ultra-low pressure (<10-5 mbar) recordings have 151 

been developed, reliance on manual calculations of BET areas remains commonplace. In this 152 

context, ‘manual’ refers to the judicious selection of the optimal pressure range by a scientist, be it 153 

through a self-developed spreadsheet or commercial software. This raises the question of the 154 

reproducibility of BET calculations from the same measured isotherm but from different assessors.  155 

The eponymously named Rouquerol criteria (Section S2, Supplementary Information) aim to 156 

ensure good practice in identifying a valid fitting range, and, as such, they have found widespread 157 

acceptance in the literature and have been adopted in both IUPAC and ISO standards.13–15,17,18,24,25 158 

Despite this safeguard, we herein propose that current BET area calculations are many times 159 

irreproducible for two reasons: first, the Rouquerol criteria are indeterminate in identifying the correct 160 

mailto:df334@cam.ac.uk
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fitting region, as they apply to multiple regions simultaneously. Second, even if they were 161 

determinate, they are too cumbersome and lengthy to be systematically implemented and are 162 

therefore often neglected in practice.  163 

To prove our hypothesis and to assess the current spread of BET calculation results, we have 164 

shared a set of 18 experimental isotherms representing four classes of porous materials (zeolites, 165 

mesoporous silicas, MOFs, and COFs) with 60 laboratories with expertise in adsorption science and 166 

synthesis of porous materials. In this round-robin exercise, we asked the researchers to calculate 167 

the BET areas in the way they saw most fit. More details about the specific materials and the 168 

adsorption isotherms, sampled both from our laboratory and from the NIST/ARPA-E database,26 are 169 

included in the Supplementary Information, Section S12. To avoid any recognition bias, all 170 

isotherms were anonymised and scaled off arbitrarily.  171 

In parallel, we have developed a computational approach to calculating BET areas that only 172 

requires the adsorption isotherm as input data. The BET Surface Identification (BETSI) algorithm, 173 

steps through all possible fitting regions and outputs a full distribution of BET areas that are 174 

consistent under the Rouquerol criteria. We further propose an addition to the criteria that makes, 175 

for the first time, an unambiguous assignment of BET areas from an adsorption isotherm possible: 176 

the ideal fitting range ends on the highest permissible pressure point under all criteria, representing 177 

the end of the bulk adsorptive activity of the material, i.e. the isotherm knee. Further, it is chosen as 178 

having the lowest percentage error under the last Rouquerol criterion. Further details on the BETSI 179 

algorithm and the extension of the Rouquerol criteria can be found in Section S3, and a more 180 

detailed description in Section S14. The source code is fully published under GitHub 181 

https://github.com/fairen-group/betsi-gui.  182 

Figure 1 shows the comparison between BET areas calculated by researchers in the round-183 

robin evaluation and using BETSI. Bar a few exceptions, virtually no two groups of experts reported 184 

identical BET areas for any given isotherm. The results are fully tabulated and graphically 185 

represented in Section S4 and Section S5 respectively. We observed a spread of at least 300 m2 186 

g-1 for each isotherm; however, that number was significantly higher for some individual isotherms. 187 

For NU-1104, a modern MOF with substantial porosity22 the highest estimate of 9,341 m2 g-1 and the 188 

lowest estimate of 1,757 m2 g-1 differed by an astonishing 7,584 m2 g-1, making the highest estimate 189 

more than five times higher than the lowest one. Most groups (90%) reported using the Rouquerol 190 

criteria in their manual calculation, 23% used a commercial software package, and 6% used a self-191 

developed code. Full details on each individual group’s methods can be found in Section S13. 192 

https://github.com/fairen-group/betsi-gui
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 193 

Figure 1 | Round-robin results and BETSI results. Distribution of BET areas from identical isotherms as 194 
calculated by 60 laboratories with expertise in adsorption science and synthesis of porous materials in red. 195 
Superimposed are normalised probability distribution functions obtained by kernel density estimation. 196 
Predictions under BETSI are shown in blue alongside, and the ‘optimal’ BET area in yellow.   197 

 198 

Under BETSI, on the other hand, whilst multiple BET areas are passed as valid, the spread of 199 

values was considerably narrower than that obtained by manual calculation (Figure 1; for full BETSI 200 

results, see Section S6 and further comparative data Section S7, Section S8, and Section S9). 201 

From this, both our first and second hypotheses are substantiated: since BETSI calculates all valid 202 

BET areas, it proves that the Rouquerol criteria by themselves are indeterminate and that even full 203 

compliance does not guarantee an unambiguous answer. Besides, since the spread of all valid BET 204 

areas is narrower than that obtained in the round-robin exercise, it demonstrates how the manual 205 

and systematic implementation of the Rouquerol criteria is difficult and often neglected in practice. 206 

For instance, in the case of NU-1104, the range of estimates decreases from 7,500 m2 g-1 in the 207 

social study to 235 m2 g-1 under BETSI.  208 

Interestingly, some isotherms returned under BETSI much larger spreads of results than others, 209 

suggesting that they BET model does not describe them as naturally and thus they were more 210 

susceptible to problems associated with the Rouquerol criteria; a trend that was mirrored in the 211 

round-robin evaluation. To further investigate the goodness of the isotherm fittings, we define the 212 

BETSI Variation Coefficient as the relative standard deviation of BETSI results, and the Pass Rate 213 

as the number of BET fits that pass under the Rouquerol criteria as a fraction of all potential fits. 214 
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Further, the Hit Rate expresses the fractional number of BET areas calculated in the round-robin 215 

exercise that lie within the BETSI range. Figure 2 demonstrates the correlation between the Pass 216 

Rate, the BETSI Variation Coefficient, and the Hit Rate. Simply put, the more BET fits are valid, the 217 

greater the spread of possible BET areas is, and the more likely researchers are to satisfy the 218 

Rouquerol criteria in manual calculations; an alternative representation can be found in Section S10. 219 

From Figure 2, we classify adsorption isotherms into three broad categories, types A, B and C. 220 

Whilst it is difficult to generalise about the shape of these isotherms, we offer some discussion about 221 

common features in Section S11. Type A isotherms fit the BET model ‘best’. Under BETSI, they 222 

have a relatively high Pass Rate and return a fairly narrow spread of results. Examples include 223 

materials such as Al fumarate, NU-1000, Zeolite-13X and MCM-41. Hit Rates greater than 70% are 224 

generally observed for these materials, suggesting that the majority of researchers did not struggle 225 

with the fittings. Type B isotherms only fit the BET model over a very limited range. These have 226 

extremely low Pass Rates, meaning that only a few BET fits are valid, which in turn will be spread 227 

narrowly. Examples include MOF-5, DMOF-1, NU-1104, HKUST-1, and NU-1105. For the latter, out 228 

of 9,409 hypothetical 10-point fits (the minimum point requirement for BET fits), only one is 229 

permissible under the Rouquerol criteria. Such prohibitively low Pass Rates make the correct BET 230 

assignment by hand virtually impossible and demonstrate the need for computational support. Type 231 

C isotherm fittings are arguably the most problematic. They have high Pass Rates and, 232 

concomitantly, they return large spreads of BET results. Typical materials that fit into this category 233 

are MIL-101, MIL-100, TPB-DMTP-COF and PCN-777. It is for these materials that the necessity to 234 

extend the Rouquerol criteria is demonstrated and the BETSI algorithm makes an unambiguous BET 235 

assignment possible.  236 
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 237 

Figure 2 | Isotherm classifications. Plot of the BETSI Variation Coefficient (relative standard deviation of 238 
BETSI results) against the Pass Rate (fraction of valid fits against all hypothetical ones). Bubble size scales 239 
with the Hit Rate, the fraction of results from the social study that lie within the BETSI range. Red symbols 240 
have a Hit Rate of zero. Note the positive correlation between all three parameters. Isotherm fit classifications. 241 
Type A fits have a relatively wide fitting window, within which multiple fits are possible, but return a relatively 242 
narrow spread of BET results. Type B fits have a narrow fitting window and concomitantly return a narrow set 243 
of spread of results. Type C fits have wide fitting windows, which translates to multiple passable fits and a wide 244 
spread of permissible BET areas. 245 

 246 

In conclusion, BET theory is a great success story. Developed in the 1930s for open surfaces, 247 

it continues to be applied to modern adsorbents with complex porosities. Despite the advances from 248 

classical density functional theory (DFT) methods, the BET area will likely continue playing a crucial 249 

role in porosimetry for decades to come, with impacts in energy research, transport, medical 250 

applications and climate-change mitigation. In light of these future developments, it will become 251 

increasingly important to share critical scientific metrics reliably to find a common language to report 252 

both academic and industrial progress. 253 

Here, we have demonstrated the difficulties in unambiguously determining BET areas from 254 

adsorption isotherms, which in turn affect the assessment of material quality and reproducibility. 255 

These problems arise from imperfect and insufficient manual calculations and can only be met using 256 

modern computational methods. BETSI is a step towards greater transparency and critical 257 
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assessment in reporting BET areas. We stress here that it is neither the function nor the purpose of 258 

BETSI to eliminate doubt and treat a particular BET area as ‘true’. Researchers should remain aware 259 

of the limitations of BET theory when applied to microporous adsorbents in general and when BET 260 

areas are reported, the pressure range and number of points used should always be stated. We 261 

further recommend here that isotherms must be reported transparently and in detail, i.e. semi-log 262 

representation to show the low-pressure regions. The ‘experiment’ is the adsorption isotherm – not 263 

the BET area.  264 

 265 

Online Content  266 

Any methods, additional references, source data, extended data, supplementary information, 267 

acknowledgements, peer review information; details of author contributions and competing interests 268 

are available at request. 269 

Isotherm data reported with this paper are included in the NIST/ARPA-E Database of Novel and 270 

Emerging Adsorbent Materials, https://adsorption.nist.gov, and may be accessed directly at 271 

https://adsorption.nist.gov/isodb/index.php?DOI=10.XXXX/YYYYY#biblio. 272 
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