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Abstract

This paper presents and studies in detail
a hybrid method of uncertainty prop-
agation for the case where knowledge
regarding some parameters of a physi-
cal model is represented by probability
measures, while others are represented
by possibility measures or belief func-
tions.

Keywords: (Random) Fuzzy Numbers,
Probability, Possibility, Belief func-
tions, dependence.

1 Introduction

Currently, decisions regarding the management
of polluted sites very often rely on an evaluation
of risks for man and the environment. Such an
evaluation is typically performed with the help
of models that simulate the transfer of pollutants
from a source to a vulnerable target, for different
scenarii of exposure. Due to time and financial
constraints, information regarding model param-
eters is often incomplete. So the knowledge re-
ally available on model parameters is often vague.
This leads to uncertainty that needs to accounted
for in the decision-making process.
Uncertainty regarding model parameters may
have essentially two origins [12]. It may arise
from randomness due to natural variability result-
ing from heterogeneity or stochasticity. Or it may
be caused by imprecision due to lack of informa-
tion resulting, for example, from systematic mea-
surement error or expert opinions. Imprecision
and randomness are often confused in risk anal-

ysis. It may occur in practice, that some param-
eters of empirical models can be represented by
probability distributions (variability) while oth-
ers are better represented by possibility distribu-
tions (partial ignorance), or by belief functions of
Shafer (variability and partial ignorance). Most
researchers typically use either one or the other
of these modes of uncertainty representation. But
fewer are interested following in the combination
of these different modes of representation (prob-
ability, possibility, belief function) in the same
computation of risk.
Let T:Rn → R be a function (model) of n argu-
ments xi (x = (x1, ...,xn)). The knowledge on
parameters xi can be represented by means of a
probability, a possibility distribution or a mass
function. The main issue is thus to carry the un-
certainty attached to the variables over to T (x)
with the least possible loss of initial information.
This is uncertainty propagation. Generally, in the
evaluation of risks for man and the environment,
one tries to estimate PT(X)(]−∞,e]), the probabil-
ity that some pollutant concentrations be less than
an absorbed dose limit e for example.
One can distinguish between three important is-
sues [10] [12]: the first is how to represent the
available information faithfully [1], the second is
how to account for dependencies, correlations be-
tween the parameters in the propagation process
(linear, non linear monotone dependency, interac-
tion ...). For example the assumption of stochas-
tic independence between parameters can gener-
ate too optimistic results [7] [8]. The last issue is
the choice of the propagation technique [2] [9].
Kaufmann and Gupta [16] introduced hybrid
numbers which simultaneously express impreci-
sion (fuzzy number) and randomness (probabil-



ity). Ferson and Ginzburg [13] extended the ap-
proach of Kaufmann and used hybrid arithmetic
to treat risk analysis [14]. We can consider hybrid
numbers as random fuzzy numbers, which in fact
can be encoded by means of belief functions (see
further on).
In Section 2, we explain the hybrid method [13]
[15] in detail. In Section 3, we study the links be-
tween the hybrid method and the random set ap-
proach [2] using the belief functions of Dempster-
Shafer [2] to propagate uncertainties. In Section
4, we discuss the postprocessing step proposed
by Guyonnet et al. [15] and propose alternative
postprocessings for the hybrid method. We can
see the ”postprocessing” as a way to estimate the
probability of events such that ]−∞,e] from the
results of the random fuzzy computation. We also
present the postprocessing method of Ferson [13]
[14] and compare it with our approach. We will
compare results of the hybrid method with the
random set approach on a synthetic example in
Section 5.

2 Joint propagation of fuzzy numbers
and probabilities

2.1 Methodology and discussion

Let us assume k < n random variables (X1, ...,Xk)
taking values (x1, ...,xk) and n − k possi-
bilistic variables (Xk+1, ...,Xn) taking values
(xk+1, ...,xn).
We explain in this section how to propagate the
uncertainties generated by (Xi)i=1...n through T
with the hybrid method. There are two steps (see
Fig.1 [15]) that combine a Monte Carlo technique
with the extension principe [6]. We first perform
a Monte Carlo sampling of the random variables,
thus processing variability (probability). The val-
ues thus obtained are then fixed (X1 = x1, ...,Xk =
xk) and fuzzy interval analysis is used to estimate
T . The knowledge on the value of T (X) becomes
a fuzzy subset. Random sampling is resumed and
the process is performed in an iterative fashion
to obtain a sample (F1, ...,Fm) of fuzzy subsets.
T (X) becomes a fuzzy random variable [17]. The
Monte Carlo method has been criticized by Fer-
son [9] because it presupposes the independence
of random variables. In the case where we know
that random variables are independent, the Monte
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Figure 1: Schematic of the ”hybrid” method

Carlo method is correct. It is worthwile noticing
that within a Monte Carlo approach the rank cor-
relation (non linear monotone dependency) be-
tween the random variables [4] can be taken into
consideration (if known). Even if we can account
for some dependencies between random variables
with Monte-Carlo, it is necessary to be aware that
the Monte Carlo method cannot account for all
forms of dependency.
We must be careful with the extension principle
because it also underlies an assumption on pos-
sibilistic variables. In fact the presence of im-
precision on XK+1, ...,Xn generates two levels of
dependencies. The first one is a dependency be-
tween information sources attached to variables
and the second one is a dependency between
variables themselves. The extension principe
[6]:∀u ∈ R

πT (u)= sup
xk+1,...,xn ,T (x1,...,xn)=u

min(π1(xk+1), ...,πn(xn))

first assumes strong dependence between infor-
mation sources pertaining to possibilistic vari-
ables, i.e. on the choice of confidence levels or
α-cuts induced by these confidence levels. For in-
stance, one expert gives confidence degrees (sets)
to two possibilistic variables A and B. That is if
we know that A has a small imprecision then B
will have a small imprecision. However, this form
of dependency does not suppose any dependence
between possibilistic variables. The use of ”min”
assumes the non-interaction of Xk+1, ...,Xn, which
expresses a lack of knowledge about the links be-
tween the values of Xk+1, ...,Xn and a lack of com-
mitment as to whether Xk+1, ...,Xn are linked or



not. The hybrid method also supposes indepen-
dence between the group of probabilistic and pos-
sibilistic variables. It raises the following ques-
tion for this method: how to take into considera-
tion dependencies between the possibilistic vari-
ables, and between the random and possibilis-
tic variables if such dependencies exist and are
known?

3 Uncertainty propagation in the setting
of the random sets

Belief functions [18] encompass possibility and
probability theory. We will consider two vari-
ables and a continuous function T to illustrate
the links between the propagation results obtained
with the random set approach and the hybrid ap-
proach. Let X be a discrete random variable with
ΩX = {x1, ...,xm} and pi = P(X = xi), Y a possi-
bilistic variable. We denote π the possibility dis-
tribution of Y and πα the α-cuts of π. Focal el-
ements for X are singletons ({xi})i=1...m and the
mass distribution is equal to (pi)i=1..m because
X is discrete. We choose a discrete probability
for the sake of clarity. Note however that if X
has a probabilistic assignment function, by dis-
cretizing it, focal elements can be disjoint inter-
vals and pi can be equal to the surface under
the probability distribution function for each dis-
joint interval. Focal elements for Y are denoted
(πα j) j=1...q with αq > 0 and are nested. We de-
note (ν j = α j − α j+1) j=1...q the mass distribu-
tion associated to (πα j) j=1...q. We thus encode
probabilistic and possibilistic variables as belief
functions. With the hybrid method, T (X ,Y ) is
a discrete random fuzzy subset. That is, we ob-
tain m fuzzy numbers (πi

T )i=1...m with probabil-
ity (pi)i=1..m. With the random set approach [2]
we obtain mq focal elements (intervals) with mass
distribution (piν j)i=1...m, j=1...q and focal elements
Ti j = T (xi,πα j). We have the following result: ∀A
measurable set

PlT (A) =
m

∑
i=1

piΠi
T (A)

BelT (A) =
m

∑
i=1

piN
i
T (A)

Where Πi
T (N i

T ) are the possibility (necessity)
measures associated to fuzzy numbers πi

T . PlT

(BelT ) is the plausibility (belief) measure associ-
ated to focal elements Ti j and mass distribution
(piν j)i=1...m, j=1...q . The calculation of PlT reads
as follow:

PlT (A) = ∑
(i, j), A∩Ti j 6= /0

piν j

PlT (A) =
m

∑
i=1

pi ∑
j=1...q, A∩Ti j 6= /0

ν j

so, PlT (A) =
m

∑
i=1

piPli
T (A)

For each i varying from 1 to n, we have Ti j ⊆ ...⊆
Tik ∀ j ≥ k. Thus Pl i

T (A) = Πi
T (A).

These results still hold when several probabilis-
tic variables are involved because the random set
approach presupposes the independence between
focal elements. These results do not apply with
more than one possibilistic variable. Indeed re-
call that fuzzy arithmetic presupposes a total de-
pendency between α-cuts. Let us see when the
two approaches are equivalent in the case where
there are several possibilistic and probabilistic
variables. Consider X , Y , two possibilistic vari-
ables encoded as belief functions by their focal
elements (πX

αi
)i=1...q , (πY

α j
) j=1...q and the mass dis-

tributions (νX
i )i=1...q , (νY

j ) j=1...q. Let two discrete
probabilistic variables Z, W be encoded by their
focal elements ({zk})k=1...m , ({wl})l=1...m and
the mass distributions (pZ

k )k=1...m, (pW
l )l=1...m.

With the random set approach, we define the
mass distribution (noted νi jkl ), associated to fo-
cal elements Ti jkl = T (πX

αi
,πY

α j
,{zk},{wl}) of

T (X ,Y,Z,W ), by:

∀i, j,k, l νi jkl = νX
i νY

j pZ
k pW

l

We thus assume independence of focal elements.
Put now

∀i, j,k, l; i = j νi jkl = νX ,Y
i pZ

k pW
l

∀i, j,k, l; i 6= j νi jkl = 0

The possibility distribution πX ,Y is characterized
by min(πX ,πY ) what correspond to nested carte-
sian products of α-cuts and νX ,Y

i is the mass asso-
ciated to the cartesian product πX

αi
×πY

αi
. We thus

assume a total dependency between focal ele-
ments associated to possibilistic variables. Hence,



if we want to estimate PlT (A) ∀A measurable set,
using the last definition of νi jkl , we still have:

PlT (A)= ∑
i,k,l; A∩Tiikl 6= /0

νX ,Y
i pZ

k pW
l =∑

k,l

pZ
k pW

l Πkl
T (A)

where Πkl
T are the possibility measures associated

to the fuzzy numbers πkl obtained by the hybrid
method.

4 Postprocessing of the hybrid method

4.1 The proposal of Guyonnet et al. [15]

Guyonnet et al. [15] propose to synthetise the ran-
dom fuzzy result into a single fuzzy subset de-
noted Fd . For each α-cut of the random fuzzy
subset obtained, Guyonnet et al. separately rear-
range the left side and the right side of sets in in-
creasing order. The set [Fin f α

d ,Fsupα
d ] is consid-

ered such that P(le f tside ≤ Fin f α
d ) = 1−d% and

P(rightside ≤Fsupα
d ) = d%. Varying α∈ [0,1], a

fuzzy interval Fd is thus built. The standard value
d = 95 is chosen. That is they eliminate 5% on the
left and on the right side and perform the union of
the rest.

Starting from this Fd , we now can try to esti-
mate the probability of events such that: ]−∞,e],
]e,+∞], ]e1,e2]. However, there are caveats with
this postprocessing. We get false estimates of
PT (X)([e1,e2]) with it. Indeed we treat indepen-
dently le f tside and rightside whereas rightside
is entirely determined by le f tside and conversely
since any α-cut is generated as a whole. The more
important problem is they confuse variability and
imprecision. It does not account for the probabili-
ties generated by the random variables and it thus
forgets this knowledge (frequency of each fuzzy
number). It may put excessive weights on ran-
domly generated fuzzy numbers located on the
extreme right and left parts of the result Fd . In-
deed they may obtain the same fuzzy number Fd

whether the Fi’s have large imprecision and small
variability as in Fig.2a, or are more precise with a
great variability as in Fig.2b.

We can illustrate these problems more clearly
when combining intervals and probability. For in-
stance, let A, B be two independent random vari-
ables and C be an interval such that: P(A = 1) =
P(A = 2) = 0.5, P(B = 4) = 1/3, P(B = 6) = 2/3

T(x) T(x)

1 1

00

Large imprecision of each fuzzy number Fi Little imprecision of each fuzzy number Fi

PSfrag replacements

2a. Small variability of the sample 2b. Great variability of the sample

Fd

Figure 2: A same result Fd obtained by the post-
processing proposed by Guyonnet et al. on two
different possible results obtained by the hybrid
method.

and C = [1,2]. We compute T = (A+B)/C. With
the hybrid method, we obtain a random interval:
T1 = [2.5,5] with probability 1/6, T2 = [3.5,7]
with probability 2/6; T3 = [3,6] with probability
1/6 and T4 = [4,8] with probability 2/6. Putting
d = 20%, with this postprocessing we obtain Td =
[3,7], and we assign to it a mass equal to 1, which
is debatable. Indeed we eliminate the knowledge
(frequency) brought by A and B, i.e. variability.
As will be observed on some examples, the use of
Fd may put excessive weight on outlier fuzzy val-
ues, in the case of precise results with high vari-
ability, even if some outliers have been deleted
by the threshold d. The postprocessing proposed
by Guyonnet et al. is thus debatable. Better al-
ternative postprocessings can treat variability and
imprecision in the hybrid method.

4.2 Processing variability and imprecision
separately

We may wish to process variability and impreci-
sion separely. To evaluate the average impreci-
sion of T , we can estimate an average fuzzy num-
ber Fmean

d with:

Fmean
d =

1
m

m

∑
i=1

Fi

and compute the area under Fmean
d .

To estimate the variability of T , we can work with
a representative value vr

i of each fuzzy number Fi.
Then we can estimate a variance V of the form:

V =
1
m

m

∑
i=1

vr
i
2 −

2
m(m−1) ∑

j<i
vr

jv
r
i

where vr
i is a representative value of Fi. If V

is small, the variability is small as in Fig.2a for



example. As the representative value vr
i we can

choose the middle point of the mean interval [19]
which also is equal to the average of the pignistic
probability associated to Fi :

vr
i =

∫ 1

0

(supFα
i + in f Fα

i )

2
dα

V appears only as an indicator of result variabil-
ity. We could also to estimate a fuzzy variance
Fvariance

d . Let f be the function which estimate
the variance:

f : (x1, ...,xm) 7→
1
m

m

∑
i=1

xi
2 −

2
m(m−1) ∑

j<i

x jxi

To obtain Fvariance
d , we work by α-cut, we build

nested intevals Fvariance
d,α = [Fvariance

d,α ,Fvariance
d,α ]

while solving:

Fvariance
d,α = inf

xi∈Fi,α
f (x1, ...,xm)

Fvariance
d,α = sup

xi∈Fi,α

f (x1, ...,xm)

This fuzzy variance describes a potential variabil-
ity, because it scans all possible values of V com-
patible with the fuzzy data. Ferson et al. [11] pro-
pose an algorithm, which is of quadratic complex-
ity, for computing the exact lower bound F variance

d,α
of the sample variance for interval valued data.
However, they show that computing the exact up-
per bound F variance

d,α is NP-hard. There exists an al-

gorithm that computes F variance
d,α but it is exponen-

tial in the sample size. They propose an algorithm
which is of quadratic complexity, but it presup-
poses all the interval midpoints are definitely dif-
ferent from each other. Computing a fuzzy vari-
ance doesn’t appear straightforward, as we must
apply these algorithms for all α-cuts.

4.3 Computing upper and lower cumulative
distributions.

The use of belief functions [18] enables variabil-
ity and imprecision to be processed in a com-
mon framework. Let (πi)i=1...m be the sample
of random fuzzy numbers resulting from the hy-
brid method. Let pi be the probability associ-
ated at fuzzy number πi. We encode each πi with
focal elements (πα

i )iα and the mass distribution

associated (να pi)iα. We obtain a random sam-
pling of intervals (πα

i )i,α with a mass distribution
(να pi)i,α. Then, we can estimate, ∀ A measurable
set, PlT (A) and BelT (A) such that:

PlT (A) = ∑
(i,α); πα

i ∩A6= /0
να pi

BelT (A) = ∑
(i,α); πα

i ⊆A

να pi

This homogeneous technique yields:

PlT (A) = ∑
i

piΠi(A)

BelT (A) = ∑
i

piNi(A)

If the Monte Carlo method yields distinct fuzzy
numbers, then pi = (1/m) in this case. Let
us compare the Guyonnet et al. [15] postpro-
cessing with PlT (] − ∞,e]) and Bel(] − ∞,e])).
For the sake of clarity, in Fig.3 three possi-
bilistic distributions are shown with their asso-
ciated probabilities to help us in the compari-
son. Value pi represents the probability to ob-
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tain the fuzzy number πi. With the homogeneous
postprocessing, we get PlT (]−∞, t∗]) = 1 if and
only if ∀i = 1...m Πi(] − ∞, t∗]) = 1. That is
t∗ = maxi{in f (core(πi))}. We have also PlT (]−
∞, t∗]) = 0 if and only if ∀i = 1...m Πi(]−∞, t∗]) =
0. That is t∗ = mini{in f (support(πi))}. With the
Guyonnet et al. method, we build for each α-
cut the following intervals: Fd,α = [Fin f α

d ,Fsupα
d ]

such that Proba(le f tside ≤ Fin f α
d ) = 1−d% and

P(rightside ≤ Fsupα
d ) = d% (see Sec.4.1). We



study only the left part, that is upper probabil-
ity. Note Fin f α

d = F−1
le f t,α(1−d%) where Fle f t,α is

the cumulative distribution function encoded by
the probabilities pi. We have: F−1

le f t,α(1− d%) =

∑m
i=1 π−1

le f t,i(α)δ[p0+...+pi−1,p0+...+pi[(1 − d%). If

d 6= 100%, the construction of F−1
le f t,α will neces-

sarily imply:

f or α = 0, F−1
le f t,0(1−d%) ≥ t∗

f or α = 1, F−1
le f t,1(1−d%) ≤ t∗

ΠT : e 7→]−∞,e] obtained by Guyonnet et al. and
PlT : e 7→]−∞,e] obtained by homogeneous post-
processing are increasing. We can conclude for
d 6= 100% it exists a value tc such that ΠT (]−
∞, tc]) = PlT (]−∞, tc]) (see Fig.4). With a similar
reasoning, we can also conclude it exits a value tr

such that BelT (]−∞, tr]) = NT (]−∞, tr]). Thus we
can say that with hybrid postprocessing according
to [15], we will be more conservative on the right
side of tc and less conservative on the left side of
tc than our homogeneous postprocessing.
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4.4 Comparison with Ferson postprocessing
method

Ferson [13] [14] treats variability and imprecision
separately with random fuzzy numbers. In fact,

he fixes a degree of confidence (an α-cut) and
is interested in the upper and lower cumulative
probability distributions at this α-cut encoded by
(pi)i. Thus if we are optimistic, we use the upper
P1 and lower P1 cumulative distributions at α = 1,
but if we are pessimistic one uses the upper P0 and
lower P0 cumulative distributions at α = 0. We
thus obtain two pairs of upper and lower cumu-
lative distributions (see Fig.5). The gap between
Pα and Pα represents the imprecision due to pos-
sibilistic variables.
We use the same notations as in Section 4.3
and compare this postprocessing with the pre-
vious one. With the homogeneous postprocess-
ing, we have random intervals (πα

i )iα associ-
ated to a mass distribution (να pi)iα. Note that
πα

i = [aiα,aiα]. For instance PlT (] − ∞,e]) =

Values of T(X)

cu
m

ul
at

iv
e 

di
st

ri
bu

tio
n

0

1

PSfrag replacements

α = 0 α = 0α = 1 α = 1

P0 P1
P0

P1

Figure 5: Postprocessing of Ferson with a sample
of random fuzzy numbers equal to 10.

∑i,α να piIaiα≤e where Iaiα≤e = 1 if aiα ≤ e, other-
wise 0. We work with finite sums, that is i = 1...m
and α = 1...q. At i fixed, we have πi,α1 ⊆ πi,α2

∀α1 ≥ α2. Thus, we have ∀i,α; ∀e:

Iaiq≤e ≥ Iaiα≤e

Iai1≤e ≤ Iaiα≤e

Thus we have:

∑
i,α

να piIaiq≤e ≥ ∑
i,α

να piIaiα≤e

∑
i,α

να piIai1≤e ≤ ∑
i,α

να piIaiα≤e

Thus

∑
α

να ∑
i

piIai1≤e ≤ ∑
i,α

να piIaiα≤e ≤ ∑
α

να ∑
i

piIaiq≤e



Then

∑
i

piIai1≤e ≤ ∑
i,α

να piIaiα≤e ≤ ∑
i

piIaiq≤e

That is
P1 ≤ PlT (]−∞,e]) ≤ P0

With a similar reasoning, we also show that:

P0 ≤ BelT (]−∞,e]) ≤ P1

5 Numerical example

Consider two possibilistic variables A, B
(fuzzy numbers such that support(A)=[1,5],
core(A)=[2,3]; support(B)=[3,8], core(B)=[4,6]),
and one random variable C=Norm(7.5,1). We try
to estimate D = (A + B)/C. This expression D
commonly appears in risk assessment.
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Figure 6: Comparison of upper and lower cumu-
lative distributions obtained by the random set ap-
proach and the postprocessing hybrid methods.

We used Guyonnet (stars on Fig.6) Ferson (∗,�
on Fig.7) and our homogeneous postprocessing
methods (.,I on Fig.7 and Fig.6). We can
compare these postprocessings on Fig.6 with the
Dempster-Shafer (random set) approach of Sec.3
(◦,• on Fig.6) and a conservative Dempster-
Shafer approach (�,� on Fig.6) [2] [3] to es-
timate upper and lower cumulative distributions
of (A + B)/C. The conservative approach per-
forms propagation without assuming knowledge
on dependencies between variables. Dempster-
Shafer conservative approach produces an en-
veloppe (Belmin �, Plmax �) for all the results ex-

cept for the Guyonnet et al. postprocessing. In-
deed, the latter can sometimes be too conserva-
tive. It is due to the confusion between variability
and imprecision plus the deletion of the probabil-
ities (see sec.4.1). Belmin and Plmax remain the
most credible conservative bounds on the cumu-
lative distribution of (A+B)/C in the case where
we have no knowledge on dependencies. How-
ever, we can see that our postprocessing of the hy-
brid method (sec.4.3) is bracketed by Belmin and
Plmax. We thus have for instance with our homo-
geneous postprocessing: 0.6≤P( A+B

C ≤ 1.5)≤ 1.
We have no information on P( A+B

C ≤ 1) because
we only know: 0 ≤ P(A+B

C ≤ 1) ≤ 1.
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Figure 7: Comparison between Ferson and our
homogeneous postprocessing results.

6 Conclusion

This paper proposes an approach to jointly prop-
agate probabilistic and possibilistic uncertainty in
deterministic mathematical models, and a post-
processing technique based on belief functions
that computes imprecision and variability of the
results separately, and extracts upper and lower
cumulative distributions. Our proposal improves
over the postprocessing method of Guyonnet et
al. [15] which confuse variability and imprecision
and neglect probabilities. Our method described
in Section 4.3 seems to be an adequate approach
to treat in a common framework the imprecision
and the variability of the hybrid results knowing
that probabilistic variables are independent; infor-
mation sources on possibilistic variables are to-
tally dependent and finally, probabilistic and pos-



sibilistic variables are independent of each other.
Accounting for dependence is a very hard prob-
lem in the propagation process. Using ideas of
[4], we may try to find a method to take into
consideration some links or dependencies which
could exist between possibilistic variables.
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