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Topological band theory strongly relies on prototypical lattice models with particular symmetries. We report
here on a theoretical and experimental work on acoustic waveguides that are directly mapped to the one-
dimensional Su-Schrieffer-Heeger model. Starting from the continuous two-dimensional wave equation, we
use a combination of monomode approximation and the condition of equal-length tube segments to arrive
at the wanted chiral symmetric discrete equations. It is shown that open or closed boundary conditions lead
automatically to the existence of topological edge modes. We illustrate by graphical construction how the edge
modes appear naturally owing to a quarter-wavelength condition and the conservation of flux. Furthermore,
the transparent chirality of our system, which is ensured by simple geometrical constraints allows us to study
chiral disorder numerically and experimentally. Our experimental results in the audible regime demonstrate the
predicted robustness of the topological edge modes.

DOI: 10.1103/PhysRevB.103.224309

I. INTRODUCTION

The field of topological insulators, first discovered in the
context of the quantum Hall effect [1], has found many appli-
cations to classical wave systems, whether it is in photonics
[2], mechanics [3], or acoustics [4,5] among others. A key
aspect of materials/structures with topological phases is that
they host modes localized on their boundaries or on designed
interfaces, with properties that are robust to continuous defor-
mations or the addition of special types of disorder.

For one-dimensional systems, the most famous example
of nontrivial topology is given by the Su-Schrieffer-Heeger
(SSH) model [6,7]. This is the simplest two-band model where
a topological phase transition occurs at band inversion coming
with gap closing. This discrete model belongs to the BDI class
and as a consequence, in its topological phase, the system
hosts localized modes on its edges. In particular, the chiral
symmetry of the 1D SSH model guarantees that these edge
modes have zero energy, a property that is maintained upon
adding chiral disorder.

*antonin.coutant@univ-lemans.fr

The very appealing property of a localized mode with a
locked disorder-insensitive frequency has generated a lot of
interest in reproducing the behavior of the SSH model using
acoustic wave systems. Most of the approaches to date are
based on coupled resonator systems [8–13]. There, to mimic
the SSH model, the resonating acoustic cavities play the role
of the atoms and the hoppings are realized by connecting
tubes. The hopping strength is tunable by changing the cross-
sectional areas of the tubes. The link with the SSH model is
justified a posteriori through a tight-binding approximation
(TBA) with fitted coupling coefficients. Another approach
is based on waveguide phononic crystals [14–18] where the
analysis of the band diagram owing to Zak phase enables the
identification of topological properties of band gaps. In all
these approaches, there is an analogy with the discrete SSH
model. However, the two main ingredients of this model, the
energy and the couplings, are not obtained through explicit or
simple expressions of the acoustic system.

In this paper, we report on an acoustic SSH lattice model
based on a different approach. The idea relies on considering
acoustic waveguides made of segments of alternating cross
sections but more importantly, equal lengths [19–24]. Starting
from the 2D wave equation, for slender waveguide segments,
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we use a continuous monomode 1D approximation. Then, the
choice of segments of equal length leads us to an explicit map-
ping with the 1D SSH model. On one hand, the SSH coupling
coefficients are directly given by the ratios of cross sections,
and hence are easily tunable for numerical or experimental
purposes, in contrast to all the previous acoustic approaches.
On the other hand, the SSH energy appears naturally as a
simple function of the acoustic frequency.

The monomode approximation used here, remains valid as
long as the wavelength is large compared to the widths of the
waveguide segments. Consequently, in contrast to TBA, our
approximate discrete model is valid over a broad frequency
range: from zero frequency up to the first cut-off frequency
of the waveguide for which the 1D monomode approximation
is broken. Surprisingly, the topological transition that accom-
panies the band inversion appears exactly for the case of the
simplest of all waveguides, the one with constant cross section
(this will be shown in Fig. 2). Another key consequence of
our approach, and the explicit mapping to the 1D SSH model,
is that chiral symmetry is ensured to be preserved as long as
the lengths of the segment are kept equal. This allows us to
identify to what type of disorder the system is immune to.

The paper is organised as follows. In Sec. II we describe
the acoustic waveguide and show its explicit mapping with
the SSH model. In Sec. III we compute the set of eigenmodes
for a finite waveguide with different boundary conditions, and
discuss the presence of topological edge and interface modes.
The influence of disorder is analyzed in Sec. IV, and in Sec. V,
we present the experimental results.

II. FROM 2D HELMHOLTZ TO SSH MODEL

We consider an acoustic waveguide, as shown in Fig. 1(a),
composed of periodically arranged segments of length � with
two different cross sections SA and SB. For a lossless fluid
in the linear regime with time harmonic dependence e−iωt ,
the acoustic pressure field p(x, y) is governed by the 2D
Helmholtz equation

∂2 p

∂x2
+ ∂2 p

∂y2
+ k2 p = 0, (1)

with Neumann boundary conditions, ∂n p = 0 at the bound-
aries, corresponding to zero normal velocity at the rigid wall
[solid black lines in Fig. 1(a)]. Here k = ω/c with ω the
angular frequency and c the sound velocity.

For sufficiently low frequencies, when only one mode is
propagating in each waveguide (monomode assumption), it is
possible to make the approximation that, in each segment, the
acoustic wave is governed by the one-dimensional (1D) wave
equation

d2 p

dx2
+ k2 p = 0, (2)

where the pressure p(x) depends only the axial coordinate x.
The most important part in this simple 1D approximation is in
the jump conditions at each cross section S changes:

[p] = 0,

[
S

d p

dx

]
= 0, (3)

FIG. 1. (a) A sketch of a 2D acoustic waveguide composed of
segments of the same length � and different cross sections SA and
SB. (b) Under the monomode approximation the acoustic pressure
depends only on the axial coordinate x. On this axis, we can identify
the points where the cross sections change. (c) The explicit map onto
the SSH discrete model. [(d),(e)] The dispersion relation of the SSH
model as given by Eq. (15).

enforcing actually continuity of acoustic pressure and flow
rate [19,20]. Here [X ] = X + − X − denotes the difference at
each cross section. At this stage, we have reduced the initial
2D continuous problem [Fig. 1(a)] to a 1D continuous approx-
imation [Fig. 1(b)].

Now, we can derive the corresponding discrete equations
by focusing only on the acoustic pressure at the points of
cross-section area changes. From Eq. (2), the trick is to write
the following expressions corresponding to the solutions of
Eq. (2) for the segments between xA

n , xB
n and xB

n−1, xA
n respec-

tively,

p
(
xB

n

) = cos k� p
(
xA

n

) + sin k�

k
p′(xA+

n

)
, (4)

p
(
xB

n−1

) = cos k� p
(
xA

n

) − sin k�

k
p′(xA−

n

)
, (5)

where prime denote d/dx. Here, the continuity of pressure
Eq. (3) has been already used, leading to no differentiation
between pressure at left (–) and right (+). The pressure deriva-
tives are discontinuous at the cross section changes, but we
remark that they can be eliminated using the relations given
by Eq. (3); indeed multiplying Eq. (4) by SA, Eq. (5) by SB,
and summing yields

SA p
(
xB

n

) + SB p
(
xB

n−1

) = (SA + SB) cos k� p
(
xA

n

)
. (6)

Following directly the same lines, but around x = xB
n , we

obtain

SA p
(
xA

n

) + SB p
(
xA

n+1

) = (SA + SB) cos k� p
(
xB

n

)
. (7)
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Eventually, the entire periodic waveguide is described by the
following equations connecting acoustic pressure at consecu-
tive changes of section as

sBn + tBn−1 = E (k)An, (8)

tAn+1 + sAn = E (k)Bn, (9)

where An ≡ p(xA
n ) and Bn ≡ p(xB

n ),

s = SA

SA + SB
, t = SB

SA + SB
. (10)

and

E (k) = cos k�. (11)

For the infinite system, it corresponds to the eigenvalue prob-
lem HX = EX with

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0 s
s 0 t

t 0 s

s 0 . . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

and the vector X containing the unknown pressure values An

and Bn, X = (. . . , An, Bn, . . .)
T . Note that here for our acous-

tic problem, the coupling coefficients are positive, smaller
than unity, and satisfy the relation [see Eq. (10)]:

s + t = 1. (13)

It appears that the set of Eqs. (8) and (9) coincides exactly to
the SSH model, which is represented in Fig. 1(c). We note that
in the proposed acoustic waveguide, the hopping coefficients
s and t of the SSH model, Eq. (10), are given directly by
the geometrical cross-section ratios. This explicit and simple
expression of the hoppings has to be contrasted with the
one involved in the classical tight binding approximation that
requires local resonators (with the associated a priori narrow
band validity) and fitting of hopping coefficients. Furthermore
in our approximate 1D modeling, the acoustic pseudo-energy
E (k) = cos k� is the explicit analog of the energy of the SSH
model. It means that the eigenfrequencies k are obtained di-
rectly from the eigenvalues E of the SSH Hamiltonian H from

Eq. (12). All we need is the 1D approximation to remain valid,
which is true as long as (i) the aspect ratio of the segments are
small enough, and (ii) the wavelength is large compared to the
width of the waveguide. This 1D approximation is broadband
in the sense that it is valid from zero frequency to some upper
bound where the wavelength is no longer respecting condition
(ii). Consequently, the frequency range (from zero to the up-
per band frequency) can be as large as wanted by choosing
thin enough segments. Of course, when going to extremely
thin segments, taking care of the viscothermal losses will be
necessary. In the sequel, we consider segments of moderate
aspect ratio (typically of the order of 0.2), which are easily
constructed, exhibit minor losses, and where the 1D approxi-
mation is fairly accurate. We notice here that if the tubes have
different lengths, one cannot eliminate pressure derivatives
from Eqs. (4) and (5) to Eqs. (6) and (7), and hence, the
mapping with the SSH lattice model does not hold. As a result,
the edge modes that will be studied in the sequel will lose their
robustness to random changes (in some sense, different tube
lengths introduce a breaking of the chiral symmetry).

Now we follow what is offered by the SSH model. For the
case of infinite periodic waveguide, we may assume Bloch
wave solution given by An = Aeiqn and Bn = Beiqn where q is
the Bloch wave number and from Eqs. (8) and (9) we obtain
the following eigenvalue problem:(

0 s + te−iq

s + teiq 0

)(
A
B

)
= E (k)

(
A
B

)
. (14)

Equation (13) immediately shows that using the proposed
simple system we recovered the chiral 2 × 2 Hamiltonian
matrix of the periodic 1D SSH model where the coupling
coefficients are simply given by the ratios of the two different
cross sections. The dispersion relation can be found from
Eq. (14) as

E (k) = cos k� = ±
√

s2 + t2 + 2st cos q. (15)

This dispersion relation, emblematic of the SSH model, is
shown in Fig. 1(d) as a function of the energy E , while in
Fig. 1(e) we plot the dispersion relation in terms of the acous-
tic wavenumber k�/π .

Due to chiral symmetry [7], the spectrum is symmetric
around E (k) = 0, which corresponds to k� = (n + 1/2)π .
Here it is interesting to illustrate for our acoustic system the
corresponding band inversion process. This is shown in Fig. 2,

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

(a) (b) (c)

DD D

FIG. 2. The dispersion relation of the acoustic SSH for three different values of the coupling t = 0.3 (a), t = 0.5 (b), t = 0.7 (c). This
illustrates the band inversion of the model. The crossing of the two bands of the SSH model at s = t appears exactly for the simple waveguide
with constant cross section as shown in panel (b).
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where the waveguide spectrum is shown for three different
values of the cross-section ratio t . The most intriguing aspect
of the band inversion occurring at t = 1/2 is that it corre-
sponds to SA = SB, which means a flat waveguide as shown
in Fig. 2(b). Let us stress here that there is no need to compute
the topological Zak phase of the bands since our acoustic
waveguide is modelled by the discrete SSH system where the
topological transition is classically obtained from the winding
number [7].

III. FINITE SYSTEM

To further investigate the acoustic SSH model, in this sec-
tion, we consider waveguides of finite size (finite number of
segments), and study their eigenmodes. For this, we must
solve an eigenvalue problem for a finite sized matrix (the
Hamiltonian H), which size corresponds to the number of
sites in the lattice model. We then compare the results with
two-dimensional numerical simulations using a finite element
method.

Different types of boundary conditions (BC) can be con-
sidered, open with Dirichlet BC or hard wall with Neumann
BC, and in the next sections we are looking at these different
BC’s for a finite waveguide system.

A. Open boundary conditions and an even number of cross
section changes

We first consider finite waveguides made of 2N + 1 seg-
ments and 2N cross section changes, where both ends have
a cross section SB and are open to the exterior, as shown in
Fig. 3(a). Equilibrium with the exterior pressure imposes the
boundary condition of vanishing pressure at these ends (we
neglect radiative losses, which vanish in the limit of small
cross sections). In the lattice representation, this boundary
condition amounts to having a site on the left (resp. right)
end that is only connected to a right (resp. left) neighbor, i.e.,
B0 = AN+1 = 0. This is represented in Fig. 3(a). We compute
the discrete set of eigenmodes, which are the eigenvectors of
the Hamiltonian

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 s 0 . . . 0

s 0 t
...

0 t 0 . . .
...

. . .
. . . t 0
t 0 s

0 . . . 0 s 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

and the eigenvalue problem EX = H · X with X =
(A1, B1, . . . , AN , BN )T . Bulk modes can be obtained as
superpositions of right and left going Bloch waves [i.e.,
eigenvectors of Eq. (14)]. Assuming E > 0, we look for
modes of the form(

An

Bn

)
= αeiqn

(
1

eiφ(q)

)
+ βe−iqn

(
1

e−iφ(q)

)
, (17)

where φ(q) = arg(s + teiq ), and α and β are complex ampli-
tudes to be determined. Requiring that the end sites are only
one-side connected (or equivalently, the pressure vanishes on

0

0.5

1

1.5

Anti-symmetric edge mode

Symmetric edge mode

open B.C. open B.C.

0 10.5

(a)

(b)

(c)

(d)

FIG. 3. Open boundary conditions and even cross section
changes. (a) Schematic representation of the waveguide config-
uration with open boundary conditions and the lattice model
corresponding to the one-dimensional limit of the waveguide. The
symmetric (b) and antisymmetric (c) edge modes as obtained nu-
merically for a waveguide with 2N + 1 = 11 and t = 2/3. (d) The
spectrum of the same waveguide of 2N + 1 = 11 segments as a
function of t .

the open ends) leads to the relation α = −β, and the equation

sin((N + 1)q + φ(q)) = 0, (18)

which has to be solved for 0 < q < π to obtain bulk modes
and their eigenenergies. Interestingly, the phase φ(q) is related
to the so-called Zak phase, which characterize the topology of
the SSH model. Based on this, Eq. (18) can be used to demon-
strate the bulk-edge correspondence in this model [25] (see
also [24] for a higher-order topology context). Each solution
for the Bloch wave number q gives an eigenenergy through
the relation E (q) = |s + teiq| [with its opposite −E (q) being
also an eigenenergy by chiral symmetry].

We now compute the spectrum for varying cross sections
using both the 1D discrete model [direct diagonalization of
(16)] and 2D numerical simulations (finite element method).
They are shown in Fig. 3(d), with a good agreement between
the discrete and continuous models. We see two distinct cases:
if s > t , all eigenvalues are concentrated in bands of the infi-
nite model and correspond to bulk modes; if s < t we see two
eigenvalues inside the gaps. These isolated eigenvalues corre-
spond to eigenmodes localized on the edges (symmetrically or
antisymmetrically), and are the topologically protected modes
of the SSH model [7]. The hybridization of these two edge
states induces a small energy splitting near t = 1/2. The 2D
modes are shown in Figs. 3(b) and 3(c).
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open B.C. open B.C.

0

0.5

1

1.5

10 0.5

(a)

(b)

(c)

FIG. 4. Same as in Fig. 3 but for the case of open boundary
conditions and even cross-section changes.

B. Open boundary conditions and an odd number
of cross section changes

Next, we consider a modified configuration, which is ob-
tained by taking out the last segment on the right-hand side of
the previous one [11]. Doing so, the segments on the left end
and right end have different cross-section values. At the level
of the lattice model, this amounts to having an odd number
of sites (2N − 1) and B0 = BN = 0. This new configuration is
shown in Fig. 4(a), and corresponds to the Hamiltonian

H =

⎛
⎜⎜⎜⎜⎜⎝

0 s 0 . . . 0

s 0 t
...

0 t 0 . . . 0
...

. . .
. . . t

0 . . . 0 t 0

⎞
⎟⎟⎟⎟⎟⎠

, (19)

and the eigenvalue problem EX = H · X with X =
(A1, B1, . . . , BN−1, AN )T . Bulk modes can again be obtained
as superposition of Bloch waves as in Eq. (17), but the
equation for the extra site now leads to the simpler equation

sin((N + 1)q) = 0, (20)

which again has to be solved for 0 < q < π . The main ad-
vantage of this new configuration is that there is always a
unique edge mode: if s > t it is localized on the right end,
and if s < t it is localized on the left end. The edge mode
for t = 2/3 is shown in Fig. 4(b). In Fig. 4(c), we show the
spectrum for varying cross sections. The second advantage of
this configuration is that the edge mode has a closed-form
expression. Indeed, the eigenvalue problem can be written
as 2N − 1 equations, which coincide with Eqs. (8) and (9)
for n = 1..N − 1. For E = 0, the two equations are indepen-

dent. Moreover, the boundary conditions require B0 = BN =
0, which implies Bn = 0 for all n. Equation (8) is straightfor-
ward to solve and leads to the edge mode(

An

Bn

)
= α0

(
1
0

)
(−s/t )n, (21)

where α0 is a normalization constant. This corresponds to
p(xA

n ) = α0(−s/t ) and p(xB
n ) = 0.

Hence, this configuration displays an edge state for all
parameter values. This could appear as a contradiction of the
bulk boundary correspondence, since the topological invariant
(Zak phase or winding number [7]) changes when passing
through the Dirac point at s = t . We recall that this apparent
paradox is resolved when one notes that the two edges in
the SSH model with an odd number of sites correspond to
different choices of unit cells [26]. Indeed, a given edge is
compatible with a choice of unit cell if the chain ends on the
edge with a whole unit cell (the same discussion extends to
2D systems such as honeycomb lattices [25,27]). Moreover,
different unit cells lead to different winding numbers. Hence,
the bulk boundary correspondence is restored by looking at
each boundary separately, and the winding number going with
the compatible unit cell. In the present configuration, this
calculation gives 1 edge mode on the left and 0 edge mode
on the right when s < t , and the inverse for s > t .

C. Closed boundary conditions and an odd number cross
section changes

We now consider the same configuration as in the previ-
ous subsection, but with closed walls on both ends, hence
changing the boundary conditions: The acoustic velocity now
vanishes on both ends. For the lattice model, this introduces
two particular sites on both sides. These sites obey a different
equation due to the boundary condition. Using a procedure
similar to Sec. II, we have that E (k)B0 = A1, and E (k)BN+1 =
AN . This leads to the Hamiltonian

H =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

s 0 t
...

0 t 0 . . . 0
...

. . .
. . . t

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

, (22)

and the eigenvalue problem H · X = EX with X =
(B0, A1, B1, . . . , AN , BN )T . Note that the matrix H is not
Hermitian, but it can be made so by a similarity transformation
(we will address this in Sec. IV). This configuration, its
spectrum and edge mode are shown in Fig. 5. We see that
the results are very similar to the previous configuration (see
Fig. 4). In view of the experimental implementation, this last
configuration is preferred because open ends induce radiative
losses while closed walls does not. Similar to Eq. (21) the
edge mode has a closed-form expression(

An

Bn

)
= α0

(
0
1

)
(−s/t )−n. (23)

Notice that the edge mode is now localized on the other side
of the system, as is manifest from Eq. (23).
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closed B.C. closed B.C.

0

0.5

1

1.5

(a)

(b)

10 0.5

(c)

FIG. 5. Same as in Fig. 3 but for the case of closed boundary
conditions and even cross section changes.

D. Graphical construction of the edge mode

In our acoustic waveguides, from the very definition of the
pseudo energy Eq. (11), it appears that the first zero-energy
mode (E = 0) of the SSH model corresponds to a quarter
wavelength (k� = π/2, i.e., λ/4 = �) pressure field in each of
the segment of length �. Then, it is possible to have a very
simple and hopefully enlightening explanation of this edge
mode that is of graphical nature. In Fig. 6, we display this
construction for both the case of open waveguide [zero pres-
sure at the extremity in Fig. 6(a)] and of hard wall termination
[zero derivative of the pressure in Fig. 6(b)].

In Fig. 6(a) for an open waveguide, we see how the edge
mode is able to comply with the succession of cross section

open B.C.

closed B.C.

(a)

(b)

FIG. 6. Graphical construction of the edge modes corresponding
to the case of open (a) and closed (b) boundary conditions. The
dashed lines at point B1 illustrate the reduction of slope and thus
of the oscillation amplitude.

(a)

(b)

FIG. 7. Graphical construction of interface modes by connect-
ing two semi-infinite periodic waveguides of different topologies.
(a) antisymmetric case obtained from Fig. 6(a). (b) symmetric case
obtained from Fig. 6(b)

changes: starting from the edge boundary condition p = 0,
due to the λ/4 = � relation, each decrease of cross section (as
at point A1) is properly ignored (here p′ = 0 and the change
is transparent) whilst each increase of cross section (as at
point B1) induces a reduction of the slope and consequently
a reduction of the oscillation amplitude. The mechanism of
zero-energy edge mode is the same for the hard wall case
[Fig. 6(b)] starting from the left extremity where p′ = 0. In
this construction, once again, we can see that what is the
important point to map to SSH model is the identical length
of each of the waveguide segments.

Incidentally, we can remark that interface modes obvi-
ously exist in our acoustic waveguide; they follow exactly
the same graphical construction as seen in Fig. 7. They are
represented on the interfaces joining two semi-infinite peri-
odic parts with different topology. We see that it corresponds
simply to unfolding the two previous edge configurations:
Fig. 7(a) coming from Fig. 6(a) and Fig. 7(b) from Fig. 6(b).

IV. DISORDER

We now introduce disorder in the closed system by chang-
ing the cross section Sm of each segment (m ∈ [1; 2N]). We
keep the length � constant in order to preserve the chiral
symmetry of the SSH model. Indeed, we can rederive the
discrete equations as in Sec. II. Again, we exploit continuity of
pressure and acoustic flow rate at each cross-section change.
Let us start by considering the pressure at the position x = xA

n .
As before, we integrate the 1D Helmholtz equation (2) from
xB

n−1 to xA
n and then from xB

n to xA
n , and eliminate pressure

derivatives using acoustic flow rate conservation. We then do
the same starting from x = xB

n . We obtain the two sets of
equations:

E (k)An = S2n−1

S2n−1 + S2n
Bn−1 + S2n

S2n−1 + S2n
Bn, (24)

with n ∈ [1; N],

E (k)Bn = S2n

S2n + S2n+1
An + S2n+1

S2n + S2n+1
An+1 (25)

with n ∈ [0; N]. Notice that the closed boundary conditions
are easily implemented, as they correspond to defining extra
cross-section values S0 = S2N+1 = 0.

Now, the set of Eqs. (24) and (25) presents a technical
difficulty, as it does not define a Hermitian eigenvalue problem
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FIG. 8. (a) The edge mode in the periodic case (without dis-
order). [(b)–(d)] The edge modes for three different disorder
realizations of strength δS = 0.3 as obtained numerically. (e) The
eigenfrequency spectrum of a disorder realization as a function of the
disorder strength δS. (f) The probability density of the eigenvalues
for a set of 103 disorder realizations.

due to asymmetric coupling coefficients. To remedy this, a so-
lution is to use normalized pressure values instead of physical
ones. For this, we define

Ãn = √
S2n−1 + S2nAn, (26a)

B̃n = √
S2n + S2n+1Bn. (26b)

The set of Eqs. (24) and (25) can now be written as a
disordered SSH model with symmetric coupling s j :

E (k)Ãn = tn−1B̃n−1 + snB̃n, (27a)

E (k)B̃n = snÃn + tnÃn+1, (27b)

with

sn = S2n√
(S2n−1 + S2n)(S2n + S2n+1)

, (28a)

tn = S2n+1√
(S2n+1 + S2n+2)(S2n + S2n+1)

. (28b)

We now compute the spectrum of a finite disordered
waveguide with 2N + 1 cross section changes and closed
boundary conditions. We take a fixed value of the cross section
S2n−1 = SA, and the values of S2n are uniformly random in the
interval [SB − δS, SB + δS]. The results are shown in Fig. 8.
For three different realizations of strong disorder, from finite
element solutions of the Helmholtz equation, we see that the
edge mode is preserved [Figs. 8(a)–8(c)]. The evolution of
eigenvalues as the strength of disorder δS is increased is dis-
played in Fig. 8(d). We see that the edge mode eigenfrequency
(always close to kl = π/2) is much more robust compared to
the neighboring bulk modes. We note here that the for the dis-
crete equations (27), the edge mode energy is exactly E = 0
in a chiral disorder, hence k� = π/2. The small frequency

deviations seen in the 2D model [Figs. 8(d)and 8(e)] originate
from the 1D monomode approximation, which is not fully
valid for some values of the cross ratio; see for example the
curved contour pressure lines in Fig. 8(c). A particularity
of the setup is that modes at kl = 0 and kl = π are exact
solutions of the 2D wave equation, making these eigenfre-
quencies insensitive to the chosen disorder. To get a clearer
view of the effect of disorder the probability distribution of
the eigenfrequencies are shown in Fig. 8(e).

Interestingly, for an odd number of cross section changes,
the edge mode has a closed form expression similar to Eq. (23)
[23]. Indeed, Eqs. (27) for E = 0 are solved by(

Ãn

B̃n

)
= α0

(
0
1

) n∏
j=1

(−t j/s j ). (29)

Notice that this is simply Eq. (23) with varying hopping coef-
ficients. This expression has various interesting consequences.
In the limit of semi-infinite system (N → ∞), one can define
the localization length of the zero-energy mode as

L−1 = − lim
n→∞

1

n
ln (max (|Ãn|; |B̃n|) ), (30)

which from Eq. (29) gives

L−1 = lim
n→∞

1

n

n∑
j=1

ln

∣∣∣∣ t j

s j

∣∣∣∣. (31)

At this level, the random variable ln |t j/s j | can be seen as a
(biased) random walk [28,29]. Using the ergodic theorem, the
spatial average (31) (i.e., time average in the analog random
walk) can be replaced by an average over disorder realisations.
Therefore, the localization length is given by

L−1 = 〈ln |t/s|〉 = 〈ln |t |〉 − 〈ln |s|〉, (32)

where 〈.〉 means average over disorder realisations. Notice that
L is finite whenever 〈ln |s|〉 < 〈ln |t |〉. When 〈ln |s|〉 = 〈ln |t |〉
we have L = ∞ but this does not mean the zero-energy mode
is extended. In fact, the zero-energy level for 〈ln |s|〉 = 〈ln |t |〉
is localized but decreases as O(e−λ

√
n) [28].

V. EXPERIMENTS

Our experimental setup is based on an acoustic waveguide
of rectangular cross section with a constant height of 1 cm.
The 1D SSH lattice is realized by changing the cross section
of the main waveguide every � = 2 cm. This is done by adding
aluminium blocks as shown in Fig. 9 where an example of
a specific choice of periodic configuration with two different
cross sections SA and SB is illustrated. In the experiments, the
waveguide is closed on the top by plexiglass plate. Measure-
ments of the acoustic pressure are done using microphones
at the different positions indicated in Fig. 9. Here, we choose
to work with closed boundary conditions which is achieved
by blocking the two ends of the waveguide using plexiglass
plates.

The total length of the waveguide is 40 cm. Since � = 2 cm
and due to the fact that we use closed boundary conditions
this corresponds to a SSH lattice model of 21 lattice sites (see
Sec. III and Fig. 9). To verify the appearance of the edge mode
in the acoustic system, we performed experiments using two
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FIG. 9. Experimental setup. (a) Side view of the waveguide
where the two different cross sections are indicated. Cross section
changes appear every �. In (b) we show the whole waveguide of total
length 40 cm, which is composed of N = 10 unit cells.

different cross sections SA = 0.5 × 1 cm2 and SB = 0.85 ×
1 cm2 corresponding to t = 0.63 = 1 − s. Note that according
to our analytical model the frequency of the edge mode is
simply given by k� = π/2 which for our setup corresponds
to f0 = 4.2875 kHz assuming a speed of sound in air of
c = 343 m s−1.

We use a source positioned at the end of the waveguide
where the edge mode is localized [top of Fig. 9 (b)] with a
sweep-sine signal. The spectrum as measured at 4 cm from
the source (corresponding to the 19th lattice site) is shown in
Fig. 10(a). The edge mode is clearly observed as indicated by
the large resonance peak around k� = π/2. The dashed verti-
cal line at this frequency denotes the corresponding numerical
result. For completeness, in Fig. 10(b) we show the spectrum
after averaging over the different positions, where the peaks
of the 21 modes are exposed, and the appearance band gap
centered around k� = π/2 is evident. Note that, as expected
the edge mode lies in the center of this gap (indicated by the
arrow).

To further confirm the appearance of the SSH edge mode
we also plot the experimentally obtained profile at the fre-
quency of the peak. The result is shown in Fig. 11(a) by
the red circles and it is compared both with the numerical
solution (solid line) and the discrete exact analytical solution
of equation (23) (black squares). The characteristic profile of
the edge mode with vanishing pressure at one sublattice (A in
our case) is recovered. It is quite remarkable that the profile
of the acoustic mode from experiments fits perfectly with the
analytical SSH discrete solution without any fitting parameter.

Next, we experimentally study the effect of disorder by
randomly changing the cross sections SB. In order to compare
with the corresponding periodic case of Figs. 10(a) and 10(b),
we choose the cross sections to be S2n = SB(1 + δS) where
δS ∈ [−0.35, 0.35] is a random number. A typical example of
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junctions. The dashed vertical lines indicate the frequency of the
modes as obtained numerically. [(c),(d)] Same as panel [(a),(b)] for
a disordered configuration with a mean value 〈t〉 = 0.63.

the spectrum of a disorder realization is shown in Fig. 10(c).
It is directly seen that the peak at the center of the gap is
robust to the disorder. We have measured a frequency shift
between the two edge modes of the ordered and disordered
lattice to be less than 0.2%. On the other hand, the rest of
the modes as indicated by the vertical dashed lines are shifted
due to disorder. Furthermore, to complete the experimental
analysis of the edge mode in the presence of disorder we
plot the corresponding profile in Fig. 11(b) confirming the
localization of this mode. Even in the presence of disorder
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FIG. 11. (a) The edge mode profile corresponding to the ex-
perimental setup as obtained by the analytical solution (squares),
numerical simulations (solid line) and experiments (circles). (b) The
same as (a) but for the case of a disorder realization.
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the exact analytical profile of the mode as given by Eq. (29)
captures perfectly the experimental results.

VI. CONCLUDING REMARKS

The approach followed here is to begin by finding a dis-
crete modeling of the continuous two-dimensional acoustic
wave equation. It appears that our waveguide setup can be
mapped to a dimer discrete model with chiral symmetry (the
SSH model), the band gap of which is closed at the edge of
the Brillouin zone for the trivial case of a uniform waveguide
[Fig. 2(b)]. This is different from the cases of previous acous-
tic waveguide analogues to SSH model where either the TBA
with fitted coupling was chosen or fine tuning of the length of
the waveguide segments led to band inversion through an acci-
dental degeneracy. Our acoustic Su-Schrieffer-Heeger lattice
has been validated by comparison with direct numerical com-
putations and experimental measurements. As a consequence
of the underlying chiral symmetry in our case, a topological

edge mode is obtained in every band gap of the continuum
model, without the need to calculate the corresponding Zak
phases of the bands, since the topological characterization is
directly inherited from the SSH model. We believe that the
simplicity and the versatility of our acoustic SSH platform
offers opportunities to inspect topological effects for acoustic
waves.
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