
HAL Id: hal-03448521
https://hal.science/hal-03448521

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

The parallel drone scheduling problem with multiple
drones and vehicles

Nathalie Grangeon, Raïssa G Mbiadou Saleu, Laurent Deroussi, Dominique
Feillet, Alain Quilliot

To cite this version:
Nathalie Grangeon, Raïssa G Mbiadou Saleu, Laurent Deroussi, Dominique Feillet, Alain Quilliot. The
parallel drone scheduling problem with multiple drones and vehicles. European Journal of Operational
Research, 2021, �10.1016/j.ejor.2021.08.014�. �hal-03448521�

https://hal.science/hal-03448521
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

The Parallel Drone Scheduling Problem with Multiple Drones and Vehicles

Raïssa G. Mbiadou Saleua,∗, Laurent Deroussia, Dominique Feilletb, Nathalie Grangeona, Alain Quilliota

aUniversité Clermont Auvergne, LIMOS UMR CNRS 6158, 1 Rue de la Chebarde, 63178 Aubière Cedex, France

bMines Saint-Etienne, Univ. Clermont Auvergne, LIMOS UMR CNRS 6158, Centre CMP, F-13541 Gardanne, France

Abstract

Delivery of goods into urban areas constitutes an important issue for logistics service providers. One of the
most talked-about developments in recent years has been the potential use of unmanned aerial vehicles, or
drones, for transporting packages, food, medicine, and other goods. Delivery by drones o�ers new possibilities,
but also induces new challenging routing problems. In this paper, we address and extend the so-called Parallel
Drone Scheduling Traveling Salesman Problem. Basically, in this problem, deliveries are split between a
vehicle and one or several drones. The vehicle performs a classical delivery tour from the depot, while the
drones are constrained to perform back and forth trips. The objective is to minimize the completion time. We
extend the problem by considering several vehicles. We call it Parallel Drone Scheduling Multiple Traveling

Salesman Problem. We propose a hybrid metaheuristic for its solution. The procedure starts by building
a giant tour visiting all customers. Then, the giant tour is split in order to determine a set of vehicles
tours (each vehicle tour following the order de�ned by the giant tour) and a set of customers assigned to
drones. Thirdly, an improvement step move customers between vehicles or between vehicles and drones. We
also propose a Mixed Integer Linear Programming formulation and a simple branch-and-cut approach. The
proposed approach is validated via an experimental campaign on instances taken from the CVRPLIB1 library.
Computational experiments comparing several variants of the hybrid metaheuristic give some insights on this
drone delivery system.

Keywords: routing, drone delivery, city logistics, m-TSP, ILS, dynamic programming

1. Introduction

The E-commerce boom and new urban restrictions on truck tra�c have led to innovative models of parcel
distribution. In December 2013, the chief executive o�cer of the largest online retailer Amazon Je� Bezos
shared with the world his vision of using �ying robots to deliver products. �I know this looks like science

�ction. It's not� he assured of the service called Amazon Prime Air [3]: a drone designed to deliver packages
in just 30 minutes (Figure 1). Using unmanned aerial vehicles (UAVs) for door-to-door deliveries seemed
like a laughable pipe dream when Amazon tossed out that fanciful idea. Even though, some people didn't
�nd the concept so far-fetched, many other companies and logistics providers started getting interested in
experimenting with drone delivery. In August 2014, Google revealed its drone delivery project called wing

[47], with experiments run in Australia (Figure 2). In September 2014, DHL Deutsche Post, Germany's
privatized postal system, launched its parcelcopter, a helicopter-style drone which could deliver medications
and urgently needed goods to the remote North Sea island of Juist [13] (Figure 3). In 2016, the American
courier company UPS has launched tests on the use of drones to deliver parcels to remote or hard-to-reach
areas. In February 2017, they successfully tested a drone delivery method in which a drone (called HorseFly)
is launched from the roof of a delivery truck [1] (Figure 4). Many other companies like Alibaba [22], Autralia

∗Corresponding author
Email addresses: raissa.saleu@isima.fr (Raïssa G. Mbiadou Saleu), laurent.deroussi@uca.fr (Laurent Deroussi),

feillet@emse.fr (Dominique Feillet), nathalie.grangeon@uca.fr (Nathalie Grangeon), alain.quilliot@isima.fr (Alain
Quilliot)

1Capacited Vehicle Routing Problem LIBrary

Preprint submitted to XXX May 3, 2021

Post [17] or DPD Group [15] have launched similar projects. Drones have also been deployed for humanitarian
logistics [49].

Di�erent types of integration of drones into last-mile delivery have been investigated by companies and
academics. Drones can be used alone or in combination with other means of delivery such as traditional
trucks. In the combined operations of aerial drones and trucks, synchronization may or may not be required:

• Synchronization occurs when UAVs travel on trucks that not only perform their delivery tours but also
serve as a mobile depot for UAVs. In this process, a UAV can be loaded with a package from a truck,
deliver the package and return to a truck (potentially the same) for a next delivery. In the meanwhile,
trucks continue their tours.

• Synchronization is not required when UAVs and vehicles perform independent tasks. Typically, both
execute independent deliveries from a central distribution center.

Most studies have been carried out with the prospect of making drones and trucks work in tandem, drones
taking o� from the trucks and next landing back while those trucks are themselves involved into delivery
tasks. This approach is likely to prevail when distribution centers are far from customers. But, as pointed
out in [28], if distribution centers are small, deeply embedded in a urban area and close to customers, direct
deliveries with drones are possible. This process is simpler to implement by the logistics provider since it
will not require any synchronization protocol. The provider will just have to split tasks between trucks and
drones. In addition, having drones and trucks working in parallel will also ensure more robustness to the
global delivery process.

In this paper, we are interested in the latter, that is, deliveries performed by drones and vehicles (trucks)
in parallel, without synchronization. Vehicles perform classical parcel delivery tours; drones repeat single-
customer back-and-forth trips. We propose a hybrid metaheuristic combining Iterated Local Search and
Dynamic Programming. This heuristic is inspired from a heuristic that we developed previously for a simpli-
�ed problem, where the �eet of trucks was limited to a single vehicle [29]. Note that generalizing the heuristic
necessitates signi�cant changes, as will be seen in Section 4.

The paper is structured as follows. In Section 2, we discuss upon the most relevant related literature.
Section 3 de�nes our problem formally and provides a Mixed Integer Linear Programming (MILP) formula-
tion. We propose a hybrid metaheuristic to solve the problem in Section 4. Section 5 presents experimental
results. Section 6 concludes the paper.

2. Related work

The problem of parcel delivery with drones has received increasing attention these last years. Proposals for
drone delivery vary widely, with drones being used independently or in conjunction with deliveries by trucks.
This review focuses on routing problems involving truck-drone combination for parcel delivery. However,
we note that works on drone-only delivery systems can be found in [14, 39, 42, 8, 43, 7, 41]. Most of these
studies assume that a drone can lift multiple packages within its maximum payload and serve customers in a
service area of given radius. The main constraints are on weight, battery energy and customers time windows.
Additionally, apart from package delivery applications, many works investigate the potential of UAVs in other
non-military applications like disaster management, rescue operations, agriculture or healthcare. A survey
about the use of UAVs for civil applications is provided by Otto et al. [33].

The problem of combining a drone with a traditional delivery truck for parcel delivery was �rst formally
de�ned by Murray and Chu [31]. They introduced two di�erent problems: the Flying Sidekick Traveling

Salesman Problem (FSTSP), where deliveries are performed by a single vehicle and a single drone working
in tandem (the drone travels on the truck and can temporarily �y to make a delivery on its own) and the
Parallel Drone Scheduling Traveling Salesman Problem (PDSTSP), where a vehicle and a �eet of drones
operate separately from the depot. Figure 5 illustrates a standard delivery system with a truck and the
two proposed delivery systems with drones. MILP formulations and greedy construction heuristics for both
problems were provided.

2

Figure 1 Amazon Prime Air Figure 2 Google Wing

Figure 3 DHL Parcelcopter Figure 4 UPS HorseFly

Figure 5 Illustration of FSTSP and PDSTSP vs truck-only delivery

3

Since then, many studies have explored di�erent variants of truck-drone combination for parcel delivery.
Considering works related to the FSTSP, the single-truck single-drone variant (also called TSP with drone,
TSP-D) is addressed in many papers. Agatz et al. [2] provided a MILP formulation and a route �rst -

cluster second heuristic. Ponza [37], Daknama and Kraus [10], Marinelli et al. [27], Ha et al. [19], Yurek
and Ozmutlu [48], freitas et al. [18], and Schermer et al. [40] proposed neighborhood-search based heuristics.
Bouman et al. [5] provide exact solution approaches based on dynamic programming.

Other works consider a single-truck and multiple UAV's. Problems in this class assume that from each
truck stop one or several drones can be launched. Chang et al. [6] and Ferrandez et al. [30] proposed
clustering based heuristics to �nd truck stops from where drones are launched. Tu et al. [44] called this
problem TSP-mD and they proposed an adaptive large neighborhood search (ALNS) heuristic. In [32], the
same problem is called mFSTSP and the authors provided a MILP formulation and a three-phases heuristic
solution approach.

The case involving both multiple trucks and multiple UAVs is considered in [24] where autonomous
drones are allowed to �y from a delivery truck, make deliveries, and �y to any available truck nearby. A
MILP formulation and an algorithm based on insertion heuristics are provided. Wang et al. [46] studied the
so-called Vehicle Routing Problem with Drones (VRPD) in which a drone launched from a truck must be
picked up by the same truck at the same or at a di�erent location. A worst-case analysis on the bene�ts
achieved using drones is provided. This line of research is pursued by the same authors in [36]. Pugliese and
Guerriero [38] extended the VRPD by considering time window constraints. The problem is modeled as a
variant of the vehicle routing problem with time windows (VRPTW) where each vehicle is equipped with
drones (VDRPTW). A MILP formulation is proposed.

Literature related to the PDSTSP is more limited. In our previous work [29], we proposed an iterative two-
step heuristic, composed of: a coding step that transforms a solution into a customer sequence, and a decoding
step that decomposes the customer sequence into a tour for the vehicle and series of trips for the drone(s).
Decoding was expressed as a bicriteria shortest path problem and carried out by dynamic programming.
Dell'Amico et al. [12] presented a set of matheuristic methods. Kim and Moon [23] considered a variant of
the PDSTSP in which UAVs can not only be deployed from the depot but also from dedicated drone stations.

Ham [20] studied a multi-truck multi-depot variant of the PDSTSP considering two di�erent types of
drone tasks: drop-o� and pickup. After a drone �nishes a delivery task, it can either �y back to the depot
to deliver the next parcels or �y directly to another customer to pick up a returned parcel. The problem is
solved with a constraint programming approach.

Ulmer and Thomas [45] studied a dynamic version of the PDSTSP. They called their problem Same-
Day Delivery Routing Problem with Heterogeneous Fleets (SDDPHF). The SDDPHF considers two �eets of
vehicles and drones that deliver goods from the depot to customers who dynamically request services. When
a new customer request arrives, a dispatcher has to decide whether or not to accept the customer for the
same-day delivery and determine the according assignment and routing decisions. The SDDPHF takes into
account a time window for each request, the loading time for both vehicles and drones, the time to drop o� a
package from a vehicle or a drone as well as the recharging or battery swap time for drones. The objective is to
maximize the expected number of customers served the same day. To solve the problem, the authors proposed
an adaptive dynamic programming approach called parametric policy function approximation (PFA).

In another class of truck-drone combination problems, all deliveries are assigned to UAVs: trucks are only
used to carry the UAVs. Mathew et al. [28] called this problem Heterogeneous Delivery Problem (HDP). They
proved that the HDP is NP-hard and proposed an e�cient reduction to the Generalized Traveling Salesman
Problem. In [35], Poikonen introduced the multi-visit drone routing problem (MVDRP) which considers a
tandem between a truck and a drone. The drone can take o� from the truck with one or more packages
to deliver to customers. The drone may return to the truck to swap/recharge batteries, pick up a new set
of packages, and launch again to customer locations. The goal of the MVDRP is to minimize completion
time. To solve the problem, the author proposed a �exible heuristic. The solution method is extended to
a truck and multi-drones model, named k-MVDRP. In [4], Othman et al. introduced two settings of the
problem. In the �rst setting, while the drone is making a delivery, the truck is not allowed to wait at the
last rendez-vous point nor to intercept the drone at any rendez-vous point more than once. Conversely, in
the second setting, the truck is allowed to wait for the drone at the last rendez-vous point or to re-visit a

4

rendez-vous point multiple times. They modeled this problem as a problem of �nding a special type of path
in a graph with a special structure, and proposed a polynomial-time approximation algorithm for each of
the problem settings. Luo et al. [26] studied the two-echelon cooperated ground vehicle and its carried UAV
routing problem (2E-GU-RP) which considers a set of targets, each of whom must be served exactly once by
the UAV. They provided an integer programming model and two heuristics.

Dayarian et al. [11] introduced another original truck-drone combination problem where delivery vehicles
are regularly resupplied by drones. Resupply can take place whenever a delivery vehicle is stationary and a
drone can land on the vehicle's roof. The problem is named Vehicle Routing Problem with Drone Resupply
(VRPDR). The authors presented several policy function approximations to analyze di�erent routing and
assignment strategies.

Table 1 reports the main papers dealing with UAVs and vehicles performing independent tasks. Columns
#V and #D indicate the number of vehicles and drones, respectively.

Reference Problem #V #D Drone Solution methods
capacity

Murray and Chu [31] PDSTSP 1 m 1 MILP, heuristics
Saleu et al. [29] PDSTSP 1 m 1 MILP, iterative two-step heuristic
Dell'Amico et al. [12] PDSTSP 1 m 1 MILP, matheuristic
Ulmer and Thomas [45] SDDPHF k m 1 Adaptive dynamic programming
Ham [20] PDSTSP drop&pickup k m ≥ 1 Constraint programming
This work PDSMTSP k m 1 MILP, hybrid metaheuristic

Table 1 UAVs and vehicles performing independent tasks

The table clearly shows that when the �eet is limited to a single truck, authors have focused on the
PDSTSP. Furthermore, it shows that the natural extension of this problem to a �eet composed of multiple
trucks have not been investigated so far. In this paper, we �ll this gap by investigating this extension.

3. The Parallel Drone Scheduling Multiple Traveling Salesman Problem

In this section, we introduce the Parallel Drone Scheduling Multiple Traveling Salesman Problem (PDSMTSP),
provide a MILP formulation and describe a simple branch-and-cut solution method.

3.1. Problem statement

Let G = (N ∪{0}, A) be a complete directed graph where N = {1, . . . , n} is the customer set and 0 is the
depot. A �eet of K vehicles and a �eet of M drones are available. Each vehicle delivers customers with a
single tour starting from the depot, visiting a subset of customers and returning back to the depot. Drones
are constrained to perform back and forth trips between the depot and the customers, delivering a single
customer in each trip. Some customers are not eligible for drone delivery, because of practical constraints
such as the limited payload or the �ying range of drones. The subset of customers that can be served by a
drone is denoted Nd. These customers are consistently called drone-eligible in the rest of the paper. Figure
6 depicts a solution of the PDSMTSP on an instance with 10 customers, among which 5 are drone-eligible.

A travel time tij is incurred when a vehicle goes through an arc (i, j) ∈ A. A travel time t̂i is incurred
when a drone serves a customer i ∈ Nd (t̂i includes take-o�, back and forth �ight trips, service and landing
times). Assuming that both the vehicles and the drones can start from the depot at time 0, the objective of
the PDSMTSP is to minimize the delivery completion time, i.e., the time at which all the vehicles and all
drones are back to the depot, with the service of all customers carried out.

Clearly, the choice of completion time for the objective function is motivated by previous works on
the subject and is somehow academic. In practice, service quality or other types of costs are likely to be
considered, among which those related to: vehicle usage, energy, human resources, maintenance, logistics
operations. . . Even so, completion time nicely re�ects the objective of limiting as much as possible the time
devoted to distribution and could equivalently represent a constraint on the time available for deliveries.

5

depot

1

2

3

4

5

6

7

8

9

10

vehicle 1

vehicle 2

drone 1

drone 2

Not drone-eligible

Drone-eligible

Legend:Legend:

Figure 6 A set of 10 customers served by 2 vehicles and 2 drones.

3.2. MILP formulation

In this section, we express the PDSMTSP with a MILP formulation. We introduce the following decision
variables:

• zi = 1 if customer i is visited by a vehicle, 0 if it is visited by a drone (i ∈ N);

• xijk = 1 if arc (i, j) belongs to vehicle tour k, 0 otherwise ((i, j) ∈ A, 1 ≤ k ≤ K);

• wij = 1 if arc (i, j) belongs to a vehicle tour, 0 otherwise ((i, j) ∈ A);

• yim = 1 if customer i is assigned to drone m, 0 otherwise (i ∈ Nd, 1 ≤ m ≤M);

• T ≥ 0 indicating the completion time.

The model is:

minimize T (1)

6

subject to

T ≥
∑

(i,j)∈A

tijxijk (1 ≤ k ≤ K) (2)

T ≥
∑
i∈Nd

t̂iyim (1 ≤ m ≤M) (3)

zi = 1 (i ∈ N \Nd) (4)∑
1≤m≤M

yim = 1− zi (i ∈ Nd) (5)

wij =
∑

1≤k≤K

xijk ((i, j) ∈ A) (6)

∑
(i,j)∈A

wij = zi (i ∈ N) (7)

∑
(0,j)∈A

x0jk ≤ 1 (1 ≤ k ≤ K) (8)

∑
(i,j)∈A

xijk =
∑

(j,i)∈A

xjik (i ∈ N, 1 ≤ k ≤ K) (9)

∑
j∈S

∑
l∈N∪{0}\S

wjl ≥ zi (S ⊆ N,S 6= ∅, i ∈ S) (10)

zi ∈ {0, 1} (i ∈ N) (11)

xijk ∈ {0, 1} ((i, j) ∈ A, 1 ≤ k ≤ K) (12)

wij ∈ {0, 1} ((i, j) ∈ A) (13)

yim ∈ {0, 1} (i ∈ Nd, 1 ≤ m ≤M) (14)

T ≥ 0 (15)

The objective (1) is to minimize completion time T . Constraints (2) and (3) give lower bounds on T
expressed by completion times of each vehicle and drone. Constraints (4) ensure that customers that are
not drone-eligible are served by a vehicle. Constraints (5) guarantee that every drone-eligible customer is
also served, either by a vehicle or a drone. Constraints (6) and (7) express that if a customer is served by a
vehicle, it is assigned to a vehicle tour. Constraints (8) stipulate that each vehicle leaves the depot at most
once. Constraints (9) ensure �ow conservation for vehicle tours. Subtour Elimination Constraints (SEC) are
provided by constraints (10). These constraints ensure that given a non empty subset of customers S ⊆ N ,
if at least one customer in S is visited by a vehicle, there exists at least one outgoing arc from S. Finally,
constraints (11) to (15) de�ne decision variables.

3.3. Branch-and-cut procedure

The model described in the previous section could be used to solve exactly the problem with a MILP
solver, but, because of the weak LP relaxation quality and the exponential size of subtour elimination con-
straints (9), it may only allow solving very small-size instances. In order to address slightly larger instances,
we implemented a simple branch-and-cut algorithm in which subtour elimination constraints (SECs) are dy-
namically added to the formulation. When, at any node of the branch-and-bound tree, the �ow supported
by the linear relaxation contains a subtour, the corresponding SEC is added to the formulation.

The branch-and-cut is implemented with CPLEX and exploits the possibilities o�ered by this solver. We
respectively use Lazy Constraint Callbacks and User Cut Callbacks to add SECs when incumbent solutions
are integer or fractional. We implemented two separation algorithms to cover these two cases.

The separation of SECs for integer solutions amounts to detecting a circuit in a graph. This is achieved
by a simple search algorithm on the graph de�ned by arcs (i, j) with wij > 0. Any circuit not connected to
the depot gives a new SEC.

7

When the incumbent solution is fractional, we build an auxiliary graph Gaux = (Vaux, Aaux) such that
Vaux = {0} ∪ {i ∈ N : zi > 0} and Aaux = {(i, j) ∈ A : wij > 0}. With each arc (i, j) ∈ Aaux, we
associate a capacity cij = wij . Then, for each customer i ∈ Vaux, we apply Ford and Fulkerson algorithm
[16] to compute the maximal �ow between the depot and i. Given i ∈ Vaux, capacity constraints ensure that
the maximal �ow cannot exceed zi. If it is less than zi, the customers not reached during the search for an
augmenting chain form a set S from which a new SEC is generated.

4. Hybrid Metaheuristic

In this section we describe the solution approach that we proposed. As already explained, it extends a
procedure developed in [29] for the case with a single vehicle (PDSTSP). We quickly recall this procedure
below.

The procedure starts by building a TSP tour τ (also called giant tour) visiting all the customers. This
tour is then decomposed into a subsequence τvehicle and a complementary subset πdrones, which respectively
give a tour for the vehicle and a set of customers assigned to the drones. This decomposition is performed
by dynamic programming, with a labeling mechanism. Vehicle tour τvehicle is then reoptimized with the
Lin-Kernighan heuristic [21]. The assignment of customers from πdrones to individual drones is solved as a
Parallel Machine Scheduling (PMS) problem with a greedy heuristic. The next step is to reconstruct a new
giant tour that will be used for the subsequent iteration. This is carried out by inserting in the vehicle tour
all the customers served by drones, with a randomized best insertion strategy.

The solution method developed for the PDSMTSP basically follows the same idea, but with some im-
portant changes. Decomposing the giant tour τ becomes much harder because a tour is expected for each
one of the K vehicles. To preserve acceptable computing times, we heavily restrict the possibilities in the
decomposition. Roughly speaking, vehicle tours will correspond to successive subsequence of τ : having two
subsequences that overlap is not allowed. For that reason, the quality of the decomposition cannot be en-
tirely ensured and we introduce some quick local search operators to intensify the search. The heuristic
is coined hybrid metaheuristic to re�ect the fact that it combines components from di�erent paradigms (a
global framework similar to an iterated local search, dynamic programming to decompose the giant tour, a
greedy algorithm to optimize drone operations. . .) as will be detailed hereafter.

In Section 4.1, we describe in more details the general scheme of the heuristic. Section 4.2 presents the
di�erent local search moves implemented. The decoding procedure, decomposing the giant tour, is detailed
in Section 4.3.

4.1. General scheme of the hybrid metaheuristic

We adopt the following notation. A solution S is represented as a vector of K customer sequences
and M sets (τ1, τ2, . . . , τK , π1, . . . , πM), where τ1, τ2, . . . , τK indicate the visit order of the customers for the
K vehicles and π1 to πM the sets of assigned customers for the M drones. We denote c1k(S) the com-
pletion time for vehicle k in solution S and c2m(S) the completion time for drone m. Finally, c(S) =
max(c11(S), . . . , c

1
K(S), c21(S), . . . , c

2
M (S)) is the solution cost. To illustrate the notation, let us consider the

solution depicted in Figure 6: the solution vector is ((1, 10, 9), (5, 6, 7, 8, 4), (3), (2)).

The general scheme of the heuristic is summarized in Algorithm 1 and is explained hereafter.

Initialization (Lines 1 and 2). We initialize the algorithm with a giant TSP tour τ where a vehicle is
visiting the depot and all the customers. This tour is obtained with a nearest-neighbor construction
procedure. It provides a starting solution (τ1 = τ, τ2 = ∅, . . . , τK = ∅, π1 = ∅, . . . , πM = ∅), where all
the customers are visited by the �rst vehicle in the order of sequence τ . No customers are assigned to
other vehicles nor to the drones.

Decoding (Line 4). Procedure split decomposes sequence τ inK complementary subsequences: τ1, τ2, . . . , τK
for customers assigned to the K vehicles and a set πdrones for customers assigned to the �eet of drones.
This complex procedure is detailed in Subsection 4.3.

8

Algorithm 1 General scheme of the hybrid metaheuristic

1: τ ← solveTSP ()
2: bestSol← (τ rec1 = τ, τ rec2 = ∅, . . . , τ recK = ∅, πrec1 = ∅, . . . , πrecM = ∅)
3: while the computing time limit is not reached do
4: (τ1, τ2, . . . , τK , πdrones)← split(τ)
5: (τopt1 , τopt2 , . . . , τoptK)← reoptimizeTSP (τ1, τ2, . . . , τK)

6: (πopt1 , . . . , πoptM)← optimizePMS(πdrones)

7: (τ imp1 , τ imp2 , . . . , τ impK , πimp1 , . . . , πimpM)← improveSol(τopt1 , τopt2 , . . . , τoptK , πopt1 , . . . , πoptM)

8: if solution (τ imp1 , τ imp2 , . . . , τ impK , πimp1 , . . . , πimpM) is better than bestSol then

9: bestSol← (τ imp1 , τ imp2 , . . . , τ impK , πimp1 , . . . , πimpM)
10: end if
11: τ ← buildGiantTour(bestSol)
12: end while

Route reoptimization (Line 5). Every vehicle route τ1 to τK is reoptimized with the TSP Lin-Kernighan
heuristic, using Helsgaun's implementation [21].

Drone assignement (Line 6). The output of the decoding procedure does not provide a detailed planning
for the drones; it only indicates which customers will be served by drones. The assignment of customers
to individual drones is a PMS problem and is solved with the well-known longest processing time
heuristic [34].

Local search (Line 7). Procedure improveSol performs local search moves to improve the current solution.
These moves and the local search strategy are described in Subsection 4.2.

Update of the current solution (Lines 8 and 10). The new solution (τ imp1 , τ imp2 , . . . , τ impK , πimp1 , . . . , πimpM)
is compared with bestSol and the latter is updated if needed. A solution S is considered to be better
than another solution S′ if one of the two following conditions hold:

• c(S) < c(S′)

• c(S) = c(S′) and

K∑
k=1

c1k(S) +

M∑
m=1

c2m(S) <

K∑
k=1

c1k(S
′) +

M∑
m=1

c2m(S′)

This way, when two solutions have the same objective value, the one that minimizes the sum of com-
pletion times is preferred.

Construction of the new giant tour (Line 11). The tours of the best solution are �rst concatenated in
a random order. Then, customers assigned to drones are randomly inserted. The resulting giant tour
is optimized with 2-opt.

Note that this algorithm can be interpreted as an Iterated Local Search [25] (ILS). Each iteration of the
algorithm ends with a local optimum. This local optimum is perturbed by randomly constructing a new
giant tour and decoding this giant tour. The new solution is then improved by local search until a new local
optimum is found. The main focus, and originality, of our algorithm is the way the perturbed solution is
obtained. The objective at this step is to both avoid restarting from a random solution and being attracted to
the same local optimum. The giant tour construction procedure ensures that a large quantity of information
from the best solution is preserved. The projection to the space of permutations enables large moves in the
solution space, and thus limits the risk that the same local optima are repeatedly explored.

The drawback of this approach is the time spent when decoding solutions. Di�erent mechanisms have
been implemented to limit this time. However, this step remains the bottleneck of the algorithm. Seeing the
complexity of each iteration, we decided to accept new solutions according to a better-walk mechanism, that
is, only improving solutions are accepted.

The three main novelties of this algorithm compared to the one developed in our previous work [29] are:

9

• The introduction of ad hoc local search moves to complement the decomposition procedure and converge
towards better solutions.

• The modi�cation of the split procedure to handle multiple vehicles, with new label de�nition, extension
rules, lower bounds and upper bounds.

• The introduction of the Iterated Local Search framework to improve the exploration of the search space.

4.2. Local search

Figures 7 and 8 describe the di�erent types of local search moves that we implemented, respectively
between a vehicle and a drone, or between two vehicles:

• Tranfer move (Figure 7(a), Figure 7(b)): a drone-eligible customer is transferred from a vehicle to a
drone or from a drone to a vehicle.

• Exchange move drone-veh (Figure 7(c)): a drone-eligible customer in a vehicle tour and a drone cus-
tomer are exchanged.

• Relocate move (F Figure 8(a)): a customer located in a vehicle route is moved to another vehicle route.

• Exchange move veh-veh (Figure 8(b)): two customers of two di�erent vehicle routes are interchanged.

• Cross move (Figure 8(c)): two sequences of customers are exchanged by crossing two edges in two
di�erent routes.

The moves are applied until a local optimum is obtained. If the maximal completion time is due to a vehicle,
the above order is followed when applying moves. If it is by a drone, the search is limited to the transfer and
exchange moves, in this order. A �rst improvement strategy is employed: as soon as an improving move is
found, the solution is updated and the neighborhoods are explored again from the beginning.

In all cases, the search is restricted to neighbor solutions that involve the vehicle or drone with the
maximal completion time. Indeed, no improvement is possible otherwise. When a customer is moved from
this vehicle/drone, it is �rst tentatively moved to the vehicles/drones with minimum completion time.

The transfer neighborhood has a size O(n×M) when the transfer is from a vehicle to a drone, O(n×|Nd|)
otherwise. The size for the exchange move between a drone and a vehicle is also O(n × |Nd|). Other
neighborhoods have a size O(n2). Every solution in every neighborhood can be evaluated in constant time
O(1).

4.3. Decoding procedure split(τ)

In this section, we explain how K vehicle tours and a set of customers assigned to drones are extracted
from a sequence τ with the split procedure. We introduce the following notation. i <τ j indicates that i
precedes j in τ ; j = predτ (i) means that j is the direct predecessor of i in τ ; equivalently, j = succτ (i)
means that j is the direct successor of i. Given i and j with i <τ j, timeτ (i, j) is the path length (in terms
of the sum of travel times) from i to j by following arcs in τ ; to simplify further notation, timeτ (i, i) is also
introduced and set to 0.

Procedure split(τ) decomposes sequence τ by assigning each customer to one of the vehicles (sequences
τ1, . . . τK) or to the set of drone customers (set πdrones). It respects the following constraints: if i <τ j and
i, j ∈ τk then i <τk j; if i <τ j, i ∈ τk and j ∈ τl with k 6= l, then k < l. Intuitively, these constraints mean
that the decoding procedure cut sequence τ in K pieces: each piece contains the customers assigned to a
vehicle plus some other customers assigned to drones.

We perform this decomposition by introducing an acyclic directed graph and solving a multi-criteria
shortest path problem [9] by dynamic programming.

10

prei i suci

drone

prei suci

i

drone

(a) transfer from a vehicle to a drone

i suci

j

drone

i j suci

drone

(b) transfer from a drone to a vehicle

prei i suci

j

drone

prei j suci

i

drone

(c) exchange move drone-veh

Figure 7 Local search operators between a vehicle and a drone (left-hand side: before the move; right-hand side: after the move)

11

prei

i

suci

j sucj

prei

i

suci

j sucj

(a) relocate move

prei

j

suci

prej

i

sucj

prei

j

suci

prej

i

sucj

(b) exchange move veh-veh

i suci

j sucj

i suci

j sucj

(c) cross move

Figure 8 Local search operators between two vehicles (left-hand side: before the move; right-hand side: after the move)

De�nition of the acyclic graph

We introduce Gτ = (V τ , Aτ) an acyclic graph de�ned as follows. V τ = {0, 1, 2, . . . , n, n + 1} represents
the set of customers completed by two copies of the depot: the original depot 0 and its copy n + 1. In the
multi-creteria shortest path problem, 0 will be the origin and n + 1 the destination. Given i and j in V τ ,
with i 6= j, arc (i, j) exists in Aτ if and only if the two following conditions are both satis�ed:

• i <τ j

• all the customers between i and j in τ are drone-eligible: i <τ µ <τ j ⇒ µ ∈ Nd

With every arc (i, j) ∈ Aτ , we associate a cost vector (c1ij , c2ij). The �rst cost component c1ij represents the
cost incurred if a vehicle travels directly from i to j: c1ij = tij . The second cost component c2ij represents the
corresponding cost induced for the drones. If the vehicle travels directly from i to j, all customers µ in-between

(which by de�nition of Aτ are all drone-eligible) are assigned to the drones: c2ij =
1

M
×

∑
{µ∈V τ : i<τµ<τ j}

t̂µ.

This value does not exactly give the contribution of these customers to the completion time of the drones,
which could only be obtained by solving a PMS problem, but provides an optimistic (lower-bound) value and
a good approximation.

Figure 9 shows an illustrative example for an instance with 5 customers. Customers 2 and 4 are not
drone-eligible. The vehicle travel cost matrix is reported in Table 2(a) in which we add the copy of the depot
(node 6). Table 2(b) presents the drone-trip costs for drone-eligible customers. We assume τ = (1, 2, 3, 4, 5)
and a single drone.

Dynamic programming scheme

Paths starting from node 0 in graph Gτ can be matched with partial decompositions of sequence τ . The
information about this decomposition is captured in a label associated with the path. A label is de�ned with

12

0 1 2 3 4 5 6
0 0 8 9 11 6 8 0
1 0 10 7 10 12 8
2 0 13 8 6 8
3 0 11 7 11
4 0 5 6
5 0 8
6 0

(a) Vehicle cost matrix tij

Customer 1 3 5
Drone cost 16 12 20

(b) Drone cost vector t̂i

Table 2 Illustrative instance

0 1 2 3 4 5 6
8,0 10,0 13,0 11,0 5,0 8,0

9,16 8,12 6,20

Figure 9 Graph Gτ for the instance of tables 2(a) and 2(b), with τ = (1, 2, 3, 4, 5).

the following attributes:

• nveh is the index of the current vehicle; the tours (sequences τk) of vehicles with index k < nveh are
known; the tours of vehicles with index k > nveh are still empty;

• cpreV eh is the cost of the longest of the tours that are already known ;

• ccurV eh is the cost of the current vehicle tour;

• cdrone is the approximated drone cost;

• pred is the label from which this label was obtained.

We note L = (nveh, cpreV eh, ccurV eh, cdrone, pred). Equivalently, the atributes of a label L are denoted
nveh(L), cpreV eh(L) and so on.

The dynamic programming procedure is described in Algorithm 2. The principle is to progressively
associate a list of labels L(i) with each node i of Gτ . At the initialization, L(i) is set to ∅ for every node i
(Line 1). The procedure then starts by assigning label (1, 0, 0, 0, ∅) to L(0) (Line 2).

The procedure goes through the graph from the origin depot node 0 to the destination depot node n+ 1
by following the order de�ned in sequence τ . Function increment on Line 5 is introduced for this purpose.
The list of labels L(i) of a given node i is obtained by extending labels in the list of labels of its predecessor
nodes (Lines 6-19). For any predecessor node j and any label L of L(j), two possible extensions may occur:

1. A �rst extension is to add arc (j, i) to the current vehicle tour. The new generated label L′ is de�ned
by (Line 8): 

nveh(L′) = nveh(L)

cpreV eh(L′) = cpreV eh(L)

ccurV eh(L′) = ccurV eh(L) + c1ji

cdrone(L′) = cdrone(L) + c2ji

pred(L′) = L

2. A second extension consists in closing the tour of the current vehicle and starting a new vehicle tour
with an available vehicle. This extension is not allowed when: j = 0, i = n + 1 or nveh(L) = K;
furthermore, the extension is not considered when pursuing with the current vehicle does not increase

13

the current global cost: indeed, it would then be suboptimal to start the tour of a new vehicle (Line
12). When the extension is carried out, the new label L′ is given by (Line 13):

nveh(L′) = nveh(L) + 1

cpreV eh(L′) = max(cpreV eh(L), ccurV eh(L) + tj,0)

ccurV eh(L′) = t0,i

cdrone(L′) = cdrone(L) + c2ji

pred(L′) = L

In order to limit the number of labels generated in the lists as the procedure advances in the graph, some
bounding mechanisms (Lines 9 and 14) and a dominance rule (Lines 10 and 15) are introduced. These two
components are detailed below.

At the end, the vehicle tours are retrieved through a backtracking mechanism based on attribute pred and
starting with the best label found in L(n+1), i.e., the label that minimizesmax(cpreV eh(L), ccurV eh(L), cdrone(L)).
Nodes that are not in the vehicle tours are assigned to the drones.

Algorithm 2 Procedure split(τ)

1: L(i)← ∅ for 0 ≤ i ≤ n+ 1
2: L(0)← {(1, 0, 0, 0, ∅)}
3: i← 0
4: while i <τ n+ 1 do

5: increment i
6: for all j subject to (j, i) ∈ Aτ do

7: for all L ∈ L(j) do
8: L′ ← extend L by adding arc (j, i) to the current tour
9: if L′ is not pruned by bounding mechanisms then
10: insert with dominance L′ in L(i)
11: end if

12: if extending L by starting a new vehicle tour should be considered then

13: L′ ← extend L by adding arc (j, 0) to the current tour and starting a new tour with arc (0, i)
14: if L′ not pruned by bounding mechanisms then
15: insert with dominance L′ in L(i)
16: end if

17: end if

18: end for

19: end for

20: end while

21: L∗ ← best label in L(n+ 1)
22: derive τ1, τ2, , τK by backtracking from L∗

23: πdrones ← nodes not in τ1 ∪ τ2 ∪ ∪ τK

Insertion with dominance

When a label has to be added to a list of labels, dominance tests are tried. These tests are done with all
the labels in the list, both to check whether the new label should be discarded or if an existing label should
be removed. The dominance rule is very simple. Given a node i ∈ τ and two labels La and Lb in L(i), La
dominates Lb if the following inequalities are all satis�ed:

nveha ≤ nvehb

max
(
cpreV eh(La), c

curV eh(La) + ti,0, c
drone(La)

)
≤ max

(
cpreV eh(Lb), c

curV eh(Lb) + ti,0, c
drone(Lb)

)
ccurV eh(La) ≤ ccurV eh(Lb)
cdrone(La) ≤ cdrone(Lb)

14

Upper bound generation

The bounding mechanisms rely on three upper bounds that are computed before starting the dynamic
programming algorithm, for a given sequence τ . A �rst upper bound UB1 is given by the value of the
best solution found so far by the hybrid algorithm. The other bounds rely on Algorithm 3. This algorithm
computes the minimal cost χ(i, k) that can be achieved to serve all customers up to i in the order of sequence
τ using k vehicles (i ∈ τ , 1 ≤ k ≤ K). Compared to Algorithm 2 the possibility to serve customers with
drones is ignored. Algorithm 3 applies the following recursion:


χ(i, 1) = timeτ (0, i) + ti,0 (i ∈ τ),
χ(0, k) = 0 (2 ≤ k ≤ K),

χ(i, k) = min
j<τ i

(
max

(
χ(j, k − 1), t0,succτ (j) + timeτ (succτ (j), i) + ti,0

))
(i ∈ τ : i 6= 0, 2 ≤ k ≤ K).

(16)

The recursion introduces vertex j at which the last route starts, computes the associated completion time
and states that χ(i, k) is given by the best splitting point j.

Algorithm 3 Procedure decompose(τ)

1: χ(i, 1)← timeτ (0, i) + ti,0, ∀i ∈ τ
2: χ(0, k)← 0, ∀k = 2..K
3: for k = 2..K do
4: i← 0
5: while i 6= n+ 1 do
6: i← succτ (i)
7: χ(i, k)← min

j<τ i

(
max

(
χ(j, k − 1), t0,succτ (j) + timeτ (succτ (j), i) + ti,0

))
8: end while
9: end for
10: return χ

Upper bounds UB2 and UB3 try to circumvent the extra di�culty of having multiple vehicles. They
both aggregate the K vehicles into a single one. To do so, we introduce what we call the vehicle acceleration
coe�cient α = α(K), which approximates the speedup needed for a single vehicle to execute the same set of
deliveries than a �eet of K vehicles in the same amount of time. The two bounds di�er in the value of this
coe�cient. Then, a heuristic split procedure is used to determine the customers assigned to drones and those
assigned to the speedy vehicle. Algorithm 3 is �nally used to determine the K vehicle tours for the latter.

More precisely, the second upper bound UB2 works as follows:

1. Determine the acceleration coe�cient α = χ(n+1,1)
χ(n+1,K) ; this coe�cient approximates the gains obtained

when K vehicles are used instead of 1;

2. Apply procedure split(τ) assuming a single vehicle, changing costs c1ij to
tij
α to account for the accel-

eration, deactivating the bounding mechanisms and keeping only the best label at each node;

3. Consider the subsequence τ ′ obtained with this procedure and re-apply Algorithm 3 to decompose it
into K vehicles tours τ1, τ2, ..., τK (these tours can be obtained backwardly from χ(n+ 1,K));

4. Solve the PMS problem with the longest processing time heuristic for the remaining customers;

5. Compute the completion time and set UB2 to this value.

The third upper bound UB3 is obtained as UB2 but changing the acceleration coe�cient α to K. UB is
set as the best (minimal) upper bound among these three bounds: UB = min(UB1, UB2, UB3).

15

0 1 2 3 4 5 6
8,0 10,0 13,0 11,0 5,0 8,0

9,16 8,12 6,20

081324334351SP (i):

Figure 10 Values SP (i) for the graph of Figure 9 (M = 1).

Lower bound generation

We introduce a lower bound LBtot(i, L) on the minimal completion time that can be achieved when
extending a label L associated with a customer node i. LBtot(i, L) requires to precompute value SP (i) of
the shortest path in Gτ between i and n+ 1, with modi�ed arc costs set to c1ij +M × c2ij . Values SP (i) are
computed for all nodes i with a single backward exploration of the acyclic (topologically-ordered) graph Gτ .
They indicate the minimal total distance that will be traveled by the vehicles and drones between i and n+1
in the solution space de�ned by the split(τ) procedure. Figure 10 reports SP (i) for the example introduced
with Figure 9.

Then, given i ∈ τ and L ∈ L(i), the total distance traveled by vehicles nveh(L) to K and by the M
drones is at least ccurV eh(L)+M × cdrone(L)+SP (i). Hence, at least one of those vehicles or drones cannot
complete its duty before time LBtot(i, L) with:

LBtot(i, L) =
ccurV eh(L) +M × cdrone(L) + SP (i)

K − nveh(L) + 1 +M

Bounding mechanism

A label L ∈ L(i) is pruned if one the following rules applies:

• R1: max
(
cpreV eh(L), ccurV eh(L) + ti,0, c

drone(L)
)
≥ UB;

• R2: LBtot(i, L) ≥ UB.

Rule R1 identi�es labels whose completion time is already at least UB. Rule R2 applies lower bound
LBtot(i, L).

Figure ?? illustrates the split(τ) subroutine on the graph presented in Figure 9, with K = 2 and M = 1.
List L(i) is reported under every node i. In Figure ??(a), the bounding mechanisms are not applied. Labels
can only be removed by dominance. Dominated labels are crossed out. The best label is indicated in red with
a '*' symbol beside in list L(6), as well as labels from which it inherits (and that allow to reconstruct the
di�erent vehicle tours). In Figure ??(b), the bounding mechanisms are reinserted. Applied on this sequence,
the upper bound generation algorithms provide an upper bound UB = 27. The bounding rules enabling to
delete a label are reported at the right of the strikethrough label. In this �gure, L(6) = ∅ because the upper
bound cannot be improved. In both cases, the vehicle tours obtained with the procedure are: τ1 = (0, 1, 2, 0)
and τ2 = (0, 4, 5, 0). Customer 3 is assigned to the drone. The cost of the solution is 27.

5. Experiments and results

In this section, the e�ectiveness of the proposed solution method is examined. The environment used for
the computational work is Intel core(TM) i5-6200U CPU @ 2.30Ghz 2.40Ghz; 8GB RAM; Windows 10; 64
bits. Solution methods are implemented in C++ language.

The MILP of Section 3.2 is solved by using IBM Concert Technology and CPLEX 12.6 on an Intel(R)
Xeon(R) CPU E5-2670 0 @ 2.60 GHz with 2x8 cores 25M cache and 62.5GB of RAM.

16

0 1 2 3 4 5 6
8,0 10,0 13,0 11,0 5,0 8,0

9,16 8,12 6,20

(1,0,0,0)* (1,0,8,0)* (1,0,18,0)*

(2,16,9,0)

(1,0,9,16)

(1,0,31,0)

(2,27,11,0)

(2,16,22,0)

(1,0,22,16)

(2,18,11,16)

(1,0,42,0)

(2,42,6,0)

(2,27,22,0)

(2,16,33,0)

(1,0,33,16)

(2,33,6,16)

(2,18,22,16)

(1,0,26,12)

(2,27,6,12)*

(2,16,17,12)

(1,0,17,28)

(2,18,6,28)

(1,0,47,0)

(2,48,8,0)

(2,42,11,0)

(2,27,27,0)

(1,0,31,12)

(2,32,8,12)

(2,27,11,12)*

(2,16,22,12)

(1,0,22,28)

(2,23,8,28)

(1,0,55,0)

(2,48,16,0)

(2,42,19,0)

(2,27,35,0)

(1,0,39,12)

(2,32,16,12)

(2,27,19,12)*

(2,16,30,12)

(1,0,30,28)

(2,23,16,28)

(1,0,48,20)

(2,42,12,20)

(2,27,28,20)

(1,0,32,32)

(2,27,12,32)

(2,16,23,32)

(1,0,23,48)

(a)

0 1 2 3 4 5 6
8,0 10,0 13,0 11,0 5,0 8,0

9,16 8,12 6,20

(1,0,0,0) (1,0,8,0) (1,0,18,0)R1

(2,16,9,0)

(1,0,9,16)

(2,16,22,0)R1,R2

(1,0,22,16)R1

(2,18,11,16)R2

(2,16,17,12)

(1,0,17,28)R1

(2,18,6,28)R1

(2,16,22,12)R1 (2,16,23,32)R1,R2

(b)

Figure 11 Illustration of the split procedure on the graph of Figure 9, without or with the bounding mechanisms (K = 2,
M = 1). The last element of the de�nition of a label (pred) has not been represented for the sake of simplicity

17

5.1. Problem instances

Not being aware of any instances in the literature for the PDSMTSP, we have selected 20 instances from
the CVRPLIB (a repository of instances for the Capacited Vehicle Routing Problem). Instances have been
chosen among those with the depot near the barycenter of all customers. Instance size varies between 50 and
199 customers. The 20 instances are:

• 5 instances from set CMT (Christo�des, Mingozzi and Toth, 1979):
CMT1, CMT2, CMT3, CM4, CMT5

• 3 instances from set E (Christo�des and Eilon, 1969):
E-n51-k5, E-n76-k8, E-n101-k8

• 2 instances from set M (Christo�des, Mingozzi and Toth, 1979):
M-n151-k12, M-n200-k16

• 7 instances from set P (Augerat, 1995):
P-n51-k10, P-n55-k7, P-n60-k10, P-n65-k10, P-n70-k10, P-n76-k5, P-n101-k4

• 3 instances from Uchoa et al. (2014) benchmark:
X-n110-k13, X-n115-k10, X-n139-k10

The number of customers in instances CMT1 to CMT5 is 50, 75, 100, 150 and 199, respectively. In other
instances, the number of nodes (customers and depot) is indicated in the name, after letter 'n'. To adapt
these instances to our problem, we modi�ed the �eet size and introduced drones. Precisely, we arbitrarily

set K = d�eet size2 e and M = b�eet size2 c. These values are reported in result tables. For all instances,
we assume that all customers are drone eligible. We use the Manhattan distance for the vehicles and the
Euclidean distance for drones. This is made possible because customers are represented by their coordinates
x and y in all instances.

5.2. Limitation of the number of labels in procedure split(τ)

Seeing that the number of generated labels in procedure split(τ) can grow exponentially according to
instance sizes, we proposed a method to limit this number. This method complements bounding mechanisms,
previously presented, that might not be enough. The method is based on a threshold Tmax that will limit
the number of labels at a node x ∈ τ to at most K ×Tmax. To do so, we �rst group labels according to their
value nveh(L) . Then, in each group, we sort labels in the increasing order of value cpreV eh(L)+ ccurV eh(L)+
cdrone(L) and only keep the Tmax �rst labels.

To analyze the e�ciency of this method, we conducted a set of experiments by varying parameter Tmax.
We only considered the �ve CMT instances, which represents a sample of instances with di�erent sizes. For
each instance, we generated 25 sequence τ with a randomized version of the nearest neighbor heuristic. Then,
for each sequence, we applied procedure split(τ) with di�erent values of Tmax. Table 3 presents aggregated
results. In the table, we report the average (Avg), maximum (Max) and standard deviation (SD) of the
number of labels generated in the procedure, the relative error related to the di�erence of completion time
value without and with limitation of labels and the computing time.

As expected, results show that when Tmax increases, the number of labels generated in procedure split(τ)
and the computing time increase while the relative error decreases. In view of these results, we considered that
the best trade-o� between solution quality (low error rate) and execution time was obtained with Tmax = 60.
For the remainder of the experiments, when it is indicated that labels are limited, we keep this value.

5.3. Solution with the branch-and-cut algorithm

In this section, we report the results obtained when solving the PDSMTSP with the branch-and-cut
algorithm presented in Section 3.2. We limit these experiments to the smallest instances (n ≤ 100). The
time limit is set to 3 hours (10800 seconds). Results are detailed in Table 4.

18

Instance Tmax #LabGen Error (%) CPU (s)

Avg Max SD Avg Max SD Avg Max SD

CMT1 (50,3,2)

10 32592.76 41065 3221.32 11.96 22.61 6.32 0.05 0.06 0.004
20 58203.16 71635 5515.62 10.44 27.54 6.79 0.06 0.07 0.01
30 77896.36 96438 7897.76 9.22 27.54 6.32 0.09 0.12 0.02
40 93623.92 116711 10518.46 7.86 19.40 6.06 0.08 0.10 0.013
50 105935.48 134491 12916.17 6.99 19.40 5.98 0.09 0.13 0.019
60 116271.88 148682 14477.09 5.72 19.40 5.62 0.13 0.20 0.03
70 125979.28 161281 15664.12 4.88 19.40 5.37 0.12 0.16 0.02
80 135242.32 171434 16660.01 4.71 16.69 5.11 0.13 0.20 0.03

CMT2 (75,5,5)

10 119888.48 145406 12242.51 18.66 29.76 5.06 0.12 0.16 0.01
20 224724.88 259763 22649.44 13.41 25.28 4.93 0.17 0.22 0.02
30 317329.20 360712 29324.43 11.03 24.42 4.90 0.28 0.38 0.05
40 398036.44 442525 34354.79 9.48 20.93 4.50 0.32 0.46 0.06
50 467528.88 525287 40268.87 8.84 21.40 5.02 0.41 0.59 0.09
60 529162.64 605701 46719.84 6.96 19.75 4.04 0.66 0.99 0.15
70 586593.72 676084 51625.91 6.17 17.44 3.70 0.58 0.90 0.13
80 639260.80 733429 55147.65 5.67 17.44 3.71 0.68 1.15 0.16

CMT3 (100,4,4)

10 170724.80 217266 16096.19 16.43 25.62 4.83 0.19 0.25 0.02
20 314293 393205 32492.02 14.18 21.49 4.37 0.24 0.32 0.03
30 448786.28 549272 44498.56 12.80 22.03 4.82 0.42 0.71 0.09
40 567207.48 690704 58322.19 11.98 19.17 4.43 0.49 0.71 0.10
50 677780.20 824038 70712.04 11.45 17.95 4.55 0.65 0.96 0.13
60 779789.40 943959 81315.07 10.21 17.95 4.52 1.02 1.54 0.26
70 867494.60 1047865 91286.82 9.77 16.95 4.10 0.98 1.52 0.24
80 947767.12 1142010 102206.65 9.17 16.95 3.98 1.21 2.08 0.31

CMT4 (150,6,6)

10 547245.72 609538 39888.51 20.98 29.52 4.36 0.55 0.67 0.04
20 1045624.48 1172400 74623.51 19.64 27.11 4.42 0.77 0.88 0.06
30 1514593.56 1737610 115363.92 18.33 25.71 4.10 1.28 1.60 0.17
40 1947959.24 2246024 149516.15 17.14 26.04 4.84 1.57 1.96 0.18
50 2359557.20 2750357 177303.68 16.40 23.81 4.45 2.10 2.67 0.25
60 2730814.68 3206762 209068.25 15.36 23.81 4.41 2.63 3.30 0.32
70 3079424.64 3607688 233764.46 15.12 22.97 4.17 3.28 4.15 0.49
80 3396502.48 3996079 258893.28 13.83 20.95 3.94 3.73 4.74 0.47

CMT5 (199,9,8)

10 1419540.92 1643841 108970.19 22.94 33.33 3.94 1.58 2.13 0.20
20 2711808.24 3096235 195440.91 21.49 28.73 2.84 2.37 3.63 0.37
30 3929397.12 4468400 284471.40 20.36 27.59 2.73 3.22 4.36 0.47
40 5063679.84 5739811 348592.79 19.70 26.52 2.43 4.37 6.08 0.67
50 6142347.12 6936879 427684.42 18.71 27.31 2.53 5.80 8.99 1.16
60 7177526.08 8181177 486045.38 17.96 24.35 2.04 7.20 10.71 1.36
70 8146948.64 9243250 567250.70 16.91 24.14 2.94 9.24 15.42 2.08
80 9029270.76 10223006 635457.72 15.66 23.80 3.18 10.57 16.40 2.21

Table 3 Impact of parameter Tmax on a set of �ve representative instances

19

The table is organized as follows. Gap1 is the percentage gap between the value of the linear relaxation
zlr at the root node (the integrity constraints are relaxed but the SECs are applied) and the cost of the best
integer solution zub (Gap1 = 100 × zub−zlr

zub
). Gap2 is the percentage gap between the best lower bound zlb

and zub (Gap2 = 100× zub−zlb
zub

). #Nodes gives the number of nodes explored in the branch-and-cut tree (a
zero indicates that the process ended at the root node. #LC and #UC report the number of SECs added
with LAZYCONSTRAINTCALLBACK (used to search for constraints violated by an integer solution) and
USERCUTCALLBACK (used to search for constraints violated by a fractional solution), respectively. CPU
is the computing time in seconds. #Veh and #Dro provide the number of vehicles and drones used in the
best integer solution. #D.C. is the number of customers assigned to the drones in this solution. C.T. is its
completion time (zub).

Instance Branch-and-cut details Solution details

Gap1 (%) Gap2 (%) #Nodes #LC #UC CPU (s) #Veh. #Dro. #D.C. C.T.

CMT1 (50,3,2) 22.79 22.41 20100 51 23726 10668.5 3 2 11 188
CMT2 (75,5,5) 97.20 97.20 957 49 20101 10653.8 0 1 75 3630.86
CMT3 (100,4,4) 96.45 96.45 732 44 14515 10650.8 1 4 94 4537.11
E-n51-k5 (50,3,2) 22.79 22.41 20210 50 23302 10668.8 3 2 11 188
E-n76-k8 (75,4,4) 95.73 95.73 2954 38 13712 10606 0 4 75 2975.51
E-n101-k8 (100,4,4) 96.45 96.45 732 44 14515 10650.4 1 4 94 4537.11
P-n51-k10 (50,5,5) 64.74 64.63 2896 47 26372 10616.4 4 5 13 230
P-n55-k7 (54,4,3) 67.24 67.05 5834 94 17239 10651.9 3 3 11 308
P-n60-k10 (59,5,5) 65.87 65.73 5842 48 23596 10560.4 5 5 12 246
P-n65-k10 (64,5,5) 83.69 83.68 2782 76 19446 10615.6 5 5 14 580
P-n70-k10 (69,5,5) 96.86 96.86 2570 44 18956 10644.1 1 5 68 3166.25
P-n76-k5 (75,3,2) 35.26 35.23 2776 70 15555 10620.2 3 2 11 280
P-n101-k4 (100,2,2) 93.20 93.19 991 39 14748 10581.5 1 2 99 4725.47

Table 4 Exact solution of the PDSMTSP with the branch-and-cut algorithm

In Table 4, we can see that the branch-and-cut algorithm largely fails to solve the PDSMTSP in 3 hours.
No optimal solutions are found (or, at least, no proven optimal). Furthermore, after 3 hours, and even for
the smaller instances, gaps remain very large.

5.4. Hybrid metaheuristic and variants

In this section, we �nally evaluate the hybrid metaheuristic, called HM hereafter. In order to investigate
how results are impacted by the di�erent components in HM, we introduce several variants and compare
our results to those obtained with these variants:

HMb. The reconstruction of the giant tour is modi�ed (Line 11 of Algorithm 1). We consider a parameter
X. The idea of this new giant tour reconstruction is to concatenate the �rst X vehicle tours of the best
solution in a random order and then insert the customers assigned to the drones and the customers of
the remaining K −X vehicles via best insertion. Initially the value of X is set to X = K. This value
changes and is updated as follows: if the current solution is better than bestSol (Line 8 of Algorithm
1), the value of X is set to K (we intensify the search around the new best solution) otherwise the
value of X is set to max (0, X − 1) (we decrement X if X > 0 to diversify).

MS. The giant tour (Line 11 of Algorithm 1) is generated with a randomized nearest-neighbor heuristic.
In our implementation, one of the three nearest neighbors is randomly chosen. This randomization is
also introduced at the initialization of the algorithm (Line 1 of Algorithm 1). Compared to HM, the
learning component is lost, and the iterative mechanism is that of a standard multi-start instead of an
ILS (see Algorithm 4).

HM(LL), HMb(LL), MS(LL). The three heuristicsHM,HMb andMS, are declined in a second version.
In these new versions, labels are limited using the technique presented in Section 5.2. Every elementary
iteration of the algorithm should then be less e�cient but faster.

20

HM(UB), HMb(UB), MS(UB). The three heuristics HM, HMb and MS, are declined in a third ver-
sion. In these new versions, the decoding procedure is restricted to the computation of the upper
bounds: both the lower bound and the labeling algorithm are deactivated. Every elementary iteration
of the algorithm should then be even less e�cient but faster.

Algorithm 4 Multi-start heuristic MS

1: bestSol← (τ rec1 = ∅, τ rec2 = ∅, . . . , τ recK = ∅, πrec1 = ∅, . . . , πrecM = ∅)
2: while explorationT ime ≤ timeLimit do
3: τ ← solveTSP ()
4: (τ1, τ2, . . . , τK , πdrones)← split(τ)
5: (τopt1 , τopt2 , . . . , τoptK)← reoptimizeTSP (τ1, τ2, . . . , τK)

6: (πopt1 , . . . , πoptM)← optimizePMS(πdrones)

7: (τ imp1 , τ imp2 , . . . , τ impK , πimp1 , . . . , πimpM)← improveSol(τopt1 , τopt2 , . . . , τoptK , πopt1 , . . . , πoptM)

8: if solution (τ imp1 , τ imp2 , . . . , τ impK , πimp1 , . . . , πimpM) is better than bestSol then

9: bestSol← (τ imp1 , τ imp2 , . . . , τ impK , πimp1 , . . . , πimpM)
10: end if
11: end while

Table 5 presents the completion times (C.T.) obtained with the 9 heuristics, i.e., HM and the 8 variants,
for the 20 instances and the branch-and-cut upper bounds found with a time limit of 3 hours. An additionnal
column (LB) shows the values of the lower bound obtained at the end of the branch-and-cut. In the 9
heuristics, the computing time limit is set to 1000 seconds. Best solutions are highlighted in bold. An integer
value for the completion time usually indicates that a vehicle is the critical resource. This is due to the use of
the Manhattan distance for vehicles, with integer coordinates for customers. When the value of completion
time is a real number, the critical resource is a drone.

Tables 6 to 8 give more details on the execution of the heuristics. In Table 6 details are provided for
methods HM, HMb andMS. Table 7 is about variants with limited labels in procedure split(τ): HM(LL),
HMb(LL) and MS(LL). Table 8 considers variants with upper bounds only: HM(UB), HMb(UB) and
MS(UB).

In Tables 6 and 7, the following information is reported. Column #Split reports the average number
of calls to procedure split(τ). #Lb gives the average number of labels generated in procedure split(τ)
(summed over all nodes and including labels eventually deleted by the di�erent labels pruning mechanisms).
Del is the percentage of labels deleted with the label pruning mechanisms. Column gD gives the average
gap between the drone completion time found by procedure split(τ) (assuming a single drone with a speed
multiplied by M) and the completion time obtained after having applied the LPT heuristic. TSplit, TOpt and
TLS indicate the computing time spent in procedure split(τ), reoptimization (reoptimizeTSP (τ1, τ2, . . . , τK)
and optimizePMS(πdrones)) and local search (improveSol(τopt1 , τopt2 , . . . , τoptK , πopt1 , . . . , πoptM)), respectively.
#D.C. is the number of customers assigned to the drones. C.T. gives the completion time.

In Table 8, column #Iter represents the number of iterations of the main loop, TUB is the time spent to
compute the upper bound. Other columns are labeled as in tables 6 and 7.

In these tables, we can see that the two giant tour construction methods show very similar behaviors
(�rst line and second line of tables 6 to 8 for each instance). Both solution values and the set of execution
parameters shown in the tables are very similar. On the contrary, the multi-start variant (third line) is not
able to �nd solutions that are as good as those of these two methods. Not a single best solution is found
with this approach. It demonstrates the gains provided by the learning technique introduced in the ILS. On
the 13 instances for which the branch-and-cut was able to �nd a feasible solution (upper bound), we see that
most solutions are very far from those obtained with the heuristics. In a few case, the branch-and-cut �nds
solutions comparable with the worst heuristics. The lower bounds obtained with the branch-and-cut are not
very helpful neither. They however con�rm on some instances that the best heuristics �nd solutions that are
at worst of reasonable quality.

Eliminating labels in the decoding procedure does not have a clear impact on solution values. In most

21

Instance LB Method

HM HMb MS HM(LL) HMb(LL) MS(LL) HM(UB) HMb(UB) MS(UB) B&C

CMT1 (50,3,2) 145.86 168 168 188 166 168 196 174 174 204 188
CMT2 (75,5,5) 101.54 130.23 133.60 148 132 133.41 152 140 140 152 3630.86
CMT3 (100,4,4) 160.86 184 186 208 187.04 186.17 204 195.42 197.24 216 4537.11
CMT4 (150,6,6) 115.62 160.38 150 184 162 162 180 166 164 192
CMT5 (199,9,8) 72.65 138 139.29 152 140 138 154 142.04 140 152
E-n51-k5 (50,3,2) 145.86 168 168 182 168 168 180 168.86 174 196 188
E-n76-k8 (75,4,4) 126.95 154 154 168 156 156 182 161.86 174 196 2975.51
E-n101-k8 (100,4,4) 160.86 186 184 208 188 190.17 224 196 196 216 4537.11
M-n151-k12 (150,6,6) 116.23 154 158.96 186 164 162 182 168 169.88 182
M-n200-k16 (199,8,8) 80.69 144 148 162 148 146 156 152 152 168
P-n51-k10 (50,5,5) 81.34 111.07 114 118 112.69 114 122 118 118 133.25 230
P-n55-k7 (54,4,3) 101.46 128 128 138 128 126 142 130 132 148 308
P-n60-k10 (59,5,5) 84.30 114 116 124 114.86 116 124 122 120 124 246
P-n65-k10 (64,5,5) 94.62 126 126 138 128 126 142 134 131.36 154 580
P-n70-k10 (69,5,5) 99.23 129.29 128 138 136 132 146 138 136.56 158 3166.25
P-n76-k5 (75,3,2) 181.34 202 200 214 202 202 243.44 210 210 258 280
P-n101-k4 (100,2,2) 321.74 342.69 342 396 346 348 388 353.26 354 422 4725.47
X-n110-k13 (109,7,6) 1189.78 1864 1898 2080 1898 1898 2044 1926 1960 1970
X-n115-k10 (114,5,5) 1676.05 2258 2300 2658 2262 2274 2504 2316 2332 2862
X-n139-k10 (138,5,5) 1582.46 2928.64 2740 3144 2534 2492 2696 2594 2550 3022

Table 5 Solution values

cases results are very similar, even if most best values are found with the unrestricted split(τ) procedure. It
is however interesting to see that eliminating labels provide some robustness. For some di�cult instances,
like X-n139-k10, it avoid getting stuck in a di�cult decoding. On our set of instances, methods with label
elimination always reach at least 25 iterations in the imparted 1000 seconds. On the contrary, when the
number of labels is not limited in procedure split(τ), several cases with very few iterations, sometimes a
single, can be observed.

Completely avoiding exploration is however not enough. When decoding is only based on upper bounds,
solution quality signi�cantly decreases. Again, no best values are found with this setting.

Going into more details, with table 6 we can see that the number of calls to procedure split(τ) decreases
when the size of the instance increases. This was expected because the larger the size of the instance,
the larger the number of labels generated in the decoding procedure and the longer the computing time of
procedure split(τ). Table 6 also shows that dominance and bounding procedures are essential. They enable
to prune more than 95% of the labels in most cases. Unfortunately, for some instances, up to millions of
labels remain. For this reason, on large-sized instances (n > 60), about 70 to 90% of the computing time is
spent in the decoding procedure, 10 to 30% in the optimization step and 1 to 4% only in the local search.
On the contrary, when instances are smaller (n ≤ 60), the heuristics spend more time in the optimization
step (50 to 80% of the computing time). Finally, for almost all instances, gD has a value of less than 5%
except for a few cases with HM and HMb. It shows that aggregating drones in the decoding procedure has
a limited impact.

From Table 7, we can make the following additional observations. For instances of size n < 100, the time
spent in the decoding procedure is less than 35% of the running time. On the other hand, it takes about 40%
to 70% of the running time for the decoding procedure to be completed on larger instances (n ≥ 100). It shows
that eliminating labels in the decoding procedure surely accelerates the procedure. When the larger part of
the computing time was initially spent in procedure split(τ), it enables a large increase in the number of
iterations. Having an accelerated decoding with labels limitation leads to a lost of e�ciency of this decoding
and an increase in the time spent in the optimization step.

Finally Table 8 shows that, for the 3 variants, approximately 80% of the execution time is spent in the
optimization step. The computation of the upper bound is very fast (less than 30% of the execution time
in most cases). Most of the running time is spent in the optimization step. This was expected due to the
simplicity of the upper bound computation scheme which may lead to solution of low quality.

From Tables 6, 7 and 8, another important observation to be made is the few time spent in local search.
This shows that decoding and optimization components together are quite good enough to lead to solutions

22

Instance Execution details Solution details

#Split #Lb Del(%) gD(%) TSplit TOpt TLS #D.C. C.T.

CMT1 (50,3,2)
HM 1920 169688 96.27 2.16 290.45 606.22 18.14 8 168
HMb 1755 203593 96.26 2.03 340.73 566.92 19.48 8 168
MS 2548 881 97.69 0.001 70.51 852.54 14.81 10 188

CMT2 (75,5,5)
HM 527 865676 97.78 3.89 651.69 279.33 8.85 11 130.23
HMb 453 1009351 97.88 3.68 723.42 242.75 6.23 13 133.60
MS 1375 401662 98.72 2.62 323.19 626.44 6.30 16 148

CMT3 (100,4,4)
HM 195 2501797 98.20 2.49 881.77 105.99 2.04 17 184
HMb 135 3089482 98.22 2.55 930.39 72.42 1.72 15 186
MS 1696 22831 99.07 0.01 156.16 772.92 8.07 16 208

CMT4 (150,6,6)
HM 51 9172075 98.97 3.03 955.19 42.57 1.00 17 160.38
HMb 40 9611465 98.97 3.72 966.96 32.58 0.73 18 150
MS 234 3990575 99.31 0.05 848.35 138.38 1.32 24 184

CMT5 (199,9,8)
HM 33 17588386 99.29 4.60 959.96 44.89 0.78 19 138
HMb 23 19889825 99.29 5.77 987.09 28.56 0.57 14 139.29
MS 25 15430506 99.45 0.28 978.73 27.86 0.37 27 152

E-n51-k5 (50,3,2)
HM 1927 167681 96.32 2.08 277.97 616.89 19.09 9 168
HMb 1709 204593 96.27 2.02 348.56 560.89 19.15 9 168
MS 2864 1109 97.98 0.001 76.31 846.46 9.44 8 182

E-n76-k8 (75,4,4)
HM 555 876503 97.61 2.82 713.09 247.92 6.01 13 154
HMb 454 1020952 97.69 2.56 766.15 201.69 5.90 12 154
MS 1983 174313 98.56 3.87 215.29 719.07 4.89 14 168

E-n101-k8 (100,4,4)
HM 162 2706778 98.17 2.56 897.93 87.58 1.81 16 186
HMb 145 2890459 98.21 2.43 904.11 82.45 2.01 15 184
MS 1758 25273 99.06 0.004 165.52 760.12 8.55 16 208

M-n151-k12 (150,6,6)
HM 45 9457220 98.95 3.25 958.30 37.46 0.80 25 154
HMb 41 10503649 98.96 2.67 965.91 34.80 0.65 17 158.96
MS 193 4395453 99.29 0.34 844.65 145.07 1.34 24 186

M-n200-k16 (199,8,8)
HM 25 18639347 99.26 3.97 983.16 30.20 0.62 20 144
HMb 16 22132150 99.28 4.61 1010.45 20.36 0.42 19 148
MS 24 16384011 99.45 1.01 991.39 22.97 0.41 25 162

P-n51-k10 (50,5,5)
HM 1221 223455 96.83 6.16 317.52 607.45 12.10 11 111.07
HMb 1095 254528 96.94 5.98 352.82 579.69 11.86 10 114
MS 1825 118732 98.16 0.02 154.68 790.60 7.95 11 118

P-n55-k10 (54,5,5)
HM 1624 183464 96.99 3.68 232.50 672.05 15.44 7 128
HMb 1459 229487 96.99 3.55 293.84 621.46 16.16 7 128
MS 2168 3839 98.60 0.005 68.51 862.47 10.54 8 138

P-n60-k10 (59,5,5)
HM 973 361918 97.23 5.18 424.83 509.61 10.46 11 114
HMb 932 403321 97.39 4.99 457.95 481.91 10.16 11 116
MS 1442 160015 98.42 0.01 174.40 768.30 9.02 14 124

P-n65-k10 (64,5,5)
HM 783 504060 97.43 5.09 509.63 399.71 11.12 11 126
HMb 709 582851 97.51 4.81 579.55 371.07 8.39 12 126
MS 1554 276576 98.44 0.01 282.48 661.43 8.03 14 138

P-n70-k10 (69,5,5)
HM 646 694435 97.61 4.21 626.20 327.40 7.47 11 129.29
HMb 569 778133 97.69 3.98 666.11 295.18 7.12 13 128
MS 1439 310237 98.59 0.01 293.67 655.65 5.33 15 138

P-n76-k5 (75,3,2)
HM 883 696083 97.37 1.20 628.64 309.95 9.73 11 202
HMb 657 842403 97.35 1.11 707.73 246.43 9.25 10 200
MS 2747 1367 96.81 0.40 123.94 781.10 12.49 11 214

P-n101-k4 (100,2,2)
HM 149 2403670 97.37 0.69 923.65 68.45 1.22 17 342.69
HMb 96 2757296 97.29 0.59 945.61 50.45 1.07 17 342
MS 1818 5678 97.45 0.002 154.54 767.80 9.78 20 396

X-n110-k13 (109,7,6)
HM 71 6129616 98.48 5.68 945.97 52.87 1.42 16 1864
HMb 56 6810276 98.54 6.80 952.17 42.57 1.49 12 1898
MS 254 3235309 99.09 0.05 831.01 156.30 1.31 17 2080

X-n115-k10 (114,5,5)
HM 26 8970734 98.37 3.39 986.31 14.70 0.45 15 2258
HMb 24 8953906 98.44 4.31 1009.97 13.59 0.61 17 2300
MS 295 2263434 99.04 0.04 854.58 131.20 1.52 20 2658

X-n139-k10 (138,5,5)
HM 1 77374287 98.56 1.18 3056.25 0.70 0.08 23 2928.64
HMb 1 82009638 98.55 5.85 3726.85 0.68 0.13 23 2740
MS 1 47270494 98.07 2.18 1798.23 0.56 0.05 24 3144

Table 6 Decoding with procedure split(τ) (complete decoding)

23

Instance Execution details Solution details

#Split #Lb Del(%) gD(%) TSplit TOpt TLS #D.C. C.T.

CMT1 (50,3,2)
HM(LL) 2231 102388 94.05 2.90 164.58 706.18 32.57 8 166
HMb(LL) 1853 107130 93.57 2.88 158.58 653.23 43.40 7 168
MS(LL) 2696 3114 98.39 0.001 72.44 853.68 12.66 7 196

CMT2 (75,5,5)
HM(LL) 1071 419731 96.24 3.57 338.56 565.05 26.75 14 132
HMb(LL) 902 428728 96.45 3.34 310.76 558.85 33.29 13 133.41
MS(LL) 1284 241493 97.87 0.007 192.13 760.15 5.93 15 152

CMT3 (100,4,4)
HM(LL) 920 630959 93.05 4.23 407.14 496.82 27.10 18 187.04
HMb(LL) 883 647251 93.08 3.59 410.27 457.01 26.71 17 186.17
MS(LL) 1692 26008 97.89 0.01 135.04 794.69 8.17 17 204

CMT4 (150,6,6)
HM(LL) 401 2209683 96.24 3.59 616.58 322.68 16.54 18 162
HMb(LL) 405 2238685 96.87 3.03 594.03 314.67 17.48 20 162
MS(LL) 778 817197 98.24 0.01 376.63 574.26 4.85 28 180

CMT5 (199,9,8)
HM(LL) 180 5645118 98.02 4.21 743.80 223.56 7.97 23 140
HMb(LL) 188 5711948 98.4297 3.25 720.29 229.33 8.68 21 138
MS(LL) 304 3507043 98.82 0.09 647.20 332.00 1.70 35 154

E-n51-k5 (50,3,2)
HM(LL) 2242 100780 94.29 3.12 160.78 705.68 33.02 7 168
HMb(LL) 2141 108046 93.49 2.77 172.09 649.58 34.40 8 168
MS(LL) 2323 2001 97.86 0.50 67.30 868.55 5.66 10 180

E-n76-k8(75,4,4)
HM(LL) 1313 345500 94.57 3.14 319.37 564.96 34.84 15 156
HMb(LL) 1250 349315 94.66 2.96 317.68 523.16 33.00 16 156
MS(LL) 1573 130334 98.21 5.33 146.87 791.73 7.77 20 182

E-n101-k8 (100,4,4)
HM(LL) 921 629648 93.06 4.15 405.20 497.80 26.59 18 188
HMb(LL) 826 654237 93.05 3.87 415.56 453.82 25.66 18 190.17
MS(LL) 1490 247410 98.53 0.004 211.90 725.76 6.92 17 224

M-n151-k12 (150,6,6)
HM(LL) 401 2228103 96.43 3.46 613.81 323.70 18.07 23 164
HMb(LL) 410 2258814 96.84 2.63 600.45 310.26 17.16 20 162
MS(LL) 849 888681 98.09 0.01 368.20 583.89 5.08 26 182

M-n200-k16 (199,8,8)
HM(LL) 202 5140018 97.76 3.75 724.95 237.31 10.03 24 148
HMb(LL) 208 5258553 98.30 3.06 705.40 236.05 9.69 20 146
MS(LL) 434 2347860 98.69 1.37 544.48 421.49 2.76 31 156

P-n51-k10 (50,5,5)
HM(LL) 1495 160311 95.84 5.92 206.31 694.00 23.35 10 112.69
HMb(LL) 1425 171177 95.99 5.72 212.75 648.58 21.99 10 114
MS(LL) 1826 112113 97.75 1.50 135.88 812.67 6.47 12 122

P-n55-k10 (54,5,5)
HM(LL) 1747 139775 95.84 4.75 168.45 720.44 25.52 8 128
HMb(LL) 1690 150711 95.52 4.39 178.89 667.40 25.66 8 126
MS(LL) 2389 14359 98.48 0.01 78.90 852.62 10.24 11 142

P-n60-k10 (59,5,5)
HM(LL) 1311 235830 96.25 5.19 253.27 648.90 23.03 12 114.86
HMb(LL) 1303 250511 96.37 4.79 258.56 605.59 21.65 10 116
MS(LL) 1787 116243 98.14 0.01 132.04 809.75 8.28 12 124

P-n65-k10 (64,5,5)
HM(LL) 1234 299012 96.11 4.81 296.03 606.55 24.45 11 128
HMb(LL) 1188 306392 96.45 4.56 285.63 583.53 22.02 9 126
MS(LL) 1594 189110 97.84 0.63 175.28 769.47 7.49 15 142

P-n70-k10 (69,5,5)
HM(LL) 1179 354052 95.99 3.81 326.20 574.87 26.53 12 136
HMb(LL) 1058 361613 96.42 3.65 313.53 562.61 23.10 10 132
MS(LL) 1603 208460 97.86 0.16 188.34 754.99 7.18 15 146

P-n76-k5 (75,3,2)
HM(LL) 1655 262675 94.42 2.09 259.27 613.38 31.95 11 202
HMb(LL) 1440 275681 93.89 1.81 276.87 569.41 28.21 10 202
MS(LL) 2236 1101 96.51 0.002 90.35 839.46 4.58 9 243.44

P-n101-k4 (100,2,2)
HM(LL) 1179 439302 93.36 0.78 292.53 604.22 18.60 18 346
HMb(LL) 1138 463067 93.09 0.78 299.16 559.76 19.74 16 348
MS(LL) 1276 1366 96.43 0.75 64.43 882.19 6.85 19 388

X-n110-k13 (109,7,6)
HM(LL) 508 1502768 96.31 7.16 583.05 350.33 21.81 19 1898
HMb(LL) 510 1491711 96.47 6.06 577.05 328.85 21.97 15 1898
MS(LL) 933 734380 98.14 0.01 342.45 612.55 4.78 18 2044

X-n115-k10 (114,5,5)
HM(LL) 616 1207908 93.83 5.92 592.19 327.68 29.34 17 2262
HMb(LL) 653 1204199 94.22 4.02 568.99 310.53 31.50 18 2274
MS(LL) 1376 284800 97.98 0.006 251.63 683.53 6.86 17 2504

X-n139-k10 (138,5,5)
HM(LL) 385 2069330 92.49 7.73 690.26 207.10 34.70 26 2534
HMb(LL) 296 1986166 92.49 7.61 670.71 218.65 40.42 19 2492
MS(LL) 1409 48399 98.81 0.006 208.41 719.99 7.14 25 2696

Table 7 Decoding with limited procedure split(τ) (label elimination)

24

Instance Execution details Solution details

#Iter gD(%) TUB TOpt TLS #D.C. C.T.

CMT1 (50,3,2)
HM(UB) 2299 1.80 58.74 784.98 51.70 10 174
HMb(UB) 2275 1.72 51.63 830.11 37.41 10 174
MS(UB) 2228 0.003 54.62 891.56 10.13 9 204

CMT2 (75,5,5)
HM(UB) 1318 2.85 67.49 800.17 42.48 14 140
HMb(UB) 1371 2.81 64.33 827.78 33.03 16 140
MS(UB) 1367 0.01 70.08 885.80 6.89 15 152

CMT3 (100,4,4)
HM(UB) 1068 2.17 86.60 780.01 38.91 17 195.42
HMb(UB) 1307 2.18 88.23 787.96 34.99 17 197.24
MS(UB) 1621 0.005 114.62 824.06 7.81 21 216

CMT4 (150,6,6)
HM(UB) 710 2.52 166.51 696.51 46.37 25 166
HMb(UB) 718 2.51 172.37 713.95 34.37 22 164
MS(UB) 992 0.02 211.78 728.63 5.40 27 192

CMT5 (199,9,8)
HM(UB) 430 3.19 297.64 611.46 24.33 26 142.04
HMb(UB) 424 3.05 310.84 613.63 16.58 27 140
MS(UB) 615 0.02 378.96 576.42 3.56 34 152

E-n51-k5 (50,3,2)
HM(UB) 2250 1.80 54.27 813.95 39.84 10 168.82
HMb(UB) 2153 1.68 50.34 833.54 37.28 9 174
MS(UB) 3177 0.17 79.70 835.66 13.94 13 196

E-n76-k8(75,4,4)
HM(UB) 1604 2.23 66.60 807.95 37.60 14 161.86
HMb(UB) 1382 2.21 61.48 829.50 34.21 14 162
MS(UB) 2077 0.005 95.73 828.64 9.55 16 186

E-n101-k8 (100,4,4)
HM(UB) 1317 2.20 90.14 782.18 36.48 19 196
HMb(UB) 1211 2.13 86.73 797.36 33.91 17 196
MS(UB) 1604 0.01 121.34 811.58 7.8 20 216

M-n151-k12 (150,6,6)
HM(UB) 698 2.66 174.18 710.21 34.59 26 168
HMb(UB) 671 2.53 172.67 731.71 25.73 25 169.88
MS(UB) 861 0.01 204.83 746.78 4.27 27 182

M-n200-k16 (199,8,8)
HM(UB) 423 2.85 289.41 625.17 20.70 29 152
HMb(UB) 407 2.88 289.58 626.62 21.08 29 152
MS(UB) 545 0.77 307.89 651.94 3.68 30 168

P-n51-k10 (50,5,5)
HM(UB) 1342 5.04 41.89 862.75 27.59 14 118
HMb(UB) 1195 4.91 45.17 826.71 55.80 13 118
MS(UB) 1882 0.43 56.55 889.16 7.15 14 133.25

P-n55-k10 (54,5,5)
HM(UB) 1262 2.87 52.25 831.88 35.11 10 130
HMb(UB) 1678 2.91 51.91 795.34 67.06 7 132
MS(UB) 2413 0.002 74.88 853.80 11.24 11 148

P-n60-k10 (59,5,5)
HM(UB) 1381 4.42 51.95 841.48 30.17 13 122
HMb(UB) 1564 4.39 56.32 822.68 36.12 14 120
MS(UB) 1722 0.02 63.50 879.45 7.93 12 124

P-n65-k10 (64,5,5)
HM(UB) 1369 4.09 56.85 817.76 39.89 12 134
HMb(UB) 1489 3.96 59.04 815.87 39.92 15 131.36
MS(UB) 1510 0.007 63.82 883.64 6.59 17 154

P-n70-k10 (69,5,5)
HM(UB) 1314 3.12 62.40 792.90 53.37 15 138
HMb(UB) 1414 3.12 62.92 809.69 41.53 13 136.56
MS(UB) 1358 0.004 65.22 884.86 6.18 20 158

P-n76-k5 (75,3,2)
HM(UB) 1782 1.09 74.51 749.87 54.73 11 210
HMb(UB) 1808 1.07 72.22 778.88 47.46 14 210
MS(UB) 1547 1.23 73.03 868.26 7.40 13 258

P-n101-k4 (100,2,2)
HM(UB) 1471 0.65 75.15 775.19 34.40 19 353.26
HMb(UB) 1491 0.62 71.99 791.42 34.22 17 354
MS(UB) 2369 1.39 119.92 784.19 11.01 20 422

X-n110-k13 (109,7,6)
HM(UB) 922 5.35 116.61 763.39 38.94 17 1926
HMb(UB) 751 5.29 111.39 783.22 35.63 18 1960
MS(UB) 963 0.02 138.06 816.56 4.69 18 1970

X-n115-k10 (114,5,5)
HM(UB) 1005 2.79 116.02 730.93 55.49 20 2316
HMb(UB) 961 2.68 116.86 752.25 47.41 19 2332
MS(UB) 1121 0.67 136.63 808.88 5.44 24 2862

X-n139-k10 (138,5,5)
HM(UB) 1029 3.03 152.88 696.88 54.09 25 2594
HMb(UB) 806 2.96 152.67 711.63 51.821 22 2550
MS(UB) 1144 0.1 208.01 731.57 5.71 29 3022

Table 8 Decoding with upper bounds only

25

of good quality. However, local search still helps improving the solution.

5.5. Additional experiments

In order to go deeper into the evaluation of the methods and the understanding of the results, we carried
out two additional experiments. First, we ran HM on all instances changing the position of the depot (now
located at the bottom left corner) in order to see how our heuristic behaves when the depot is on the outskirts.
Second, to discuss the bene�t of adding drones in delivery operations, we ranHM on all instances considering
that all deliveries are made only by vehicles (0 % of drone eligible customers). Table 9 presents these results,
with reported information similar to that of previous tables.

When analyzing Table 9, several observations can be made. When the depot is located on the outskirts,
the completion time increases and the number of customers assigned to the drones decreases as expected. We
also notice that the number of iterations of the algorithm increases as well as the time spent at each iteration
on reoptimization and on local search. The latter can certainly be explained by the fact that, with less
customers served by drones, vehicle tours are longer. The decrease of the time spent in the split procedure,
with a signi�cant decrease in the number of generated labels, is more di�cult to interpret. Probably, returns
to the depot are more impacting on label values, which helps dominance.

Considering the case of only using trucks, we generally observe a decrease of completion time ranging from
20% to 25%, except for instance X-n139-k10 which exhibits a particular behavior (a better completion time).
This is however easily explained by the fact that HM is not e�ective on this instance as already discussed.
Compared to the best heuristic (with value 2492), the result is consistent.

For the two rounds on experiments, it is however di�cult to comment about the absolute completion times
computed by our algorithms. Surely, it would be interesting to pursue these experiments with real instances,
in order to better interpret those values in terms of added-value of drone delivery for logistics providers.

6. Conclusion

The idea of parcel delivery by drones is gradually becoming a reality all over the world. This paper
investigated an extension of the PDSTSP where several vehicles and drones are combined for parcel delivery.
We coined this problem as PDSMTSP.

We proposed a hybrid metaheuristic adapted from the iterative two-step heuristic descibed in [29] for the
PDSTSP. Firstly, a giant tour visiting all customers is built. A second step uses dynamic programming for
e�ciently partitioning the customers of the giant tour between the set of vehicles and the �eet of drones
with the restriction that each vehicle route follows the order de�ned by the giant tour. Introducing several
vehicles has a huge computational impact on this step. To circumvent this di�culty, we introduced several
upper bounding and lower bounding techniques. In addition, the restriction imposed in the order of vehicle
routes can be very detrimental on e�ectiveness. In a thrid step, we apply local search to relax this constraint
and converge towards better solutions. The general scheme of the hybrid metaheuristic can be interpreted
as an Iterated Local Search.

Experiments conducted on instances taken from CVRPLIB allowed us to assess the performance of the
proposed heuristic. They demonstrated the importance of the decoding procedure, the bounding techniques
in this procedure and the learning mechanism of ILS in the heuristic. Unfortunately, this work being the
�rst paper on the PDSMTSP, no comparison with the literature was possible. We implemented a simple
branch-and-cut algorithm in an attempt of obtaining a comparison basis, but, unfortunately, no competitive
results could be obtained with this branch-and-cut.

A perspective of this work is to develop an exact solution framework. Branch-and-price could be a
promising approach. The partitioning between vehicles and drones would easily be managed, as it would only
a�ect the master problem, but the completion time objective would certainly be more challenging. Another
perspective is to better control the combinatorial explosion in procedure split(τ). Better compromises between
decoding quality and number of labels generated can certainly be achieved.

Among possible prospects, we are also thinking about casting our model or the split procedure into the
Constraint Programming (CP) framework and handle it through the use of CP tools. Still, we must take

26

Instance Execution details Solution details

Depot,%DE #Split #Lb Del(%) gD(%) TSplit TOpt TLS #D.C. C.T.

CMT1 (50,3,2)
center,100% 1920 169688 96.27 2.16 290.45 606.22 18.14 8 168
corner,100% 2414 71763 96.06 3.55 132.83 639.94 41.95 5 232
center,0% 2676 215 19.30 0 78.72 691.69 35.78 0 212

CMT2 (75,5,5)
center,100% 527 865676 97.78 3.89 651.69 279.33 8.85 11 130.23
corner,100% 937 505802 97.50 12.45 441.98 423.35 31.68 6 218
center,0% 1571 349 20.43 0 91.14 702.71 43.78 0 168

CMT3 (100,4,4)
center,100% 195 2501797 98.20 2.49 881.77 105.99 2.04 17 184
corner,100% 179 1529291 98.10 5.10 744.16 200.81 11.46 10 258.27
center,0% 1378 544 16.19 0 122.06 660.72 27.57 0 232

CMT4 (150,6,6)
center,100% 51 9172075 98.97 3.03 955.19 42.57 1.00 17 160.38
corner,100% 134 5410515 98.91 10.13 859.57 114.24 6.74 12 250
center,0% 796 827 14.85 0 233.37 581.12 22.48 0 178

CMT5 (199,9,8)
center,100% 33 17588386 99.29 4.60 959.96 44.89 0.78 19 138
corner,100% 47 13699887 99.25 20.79 925.43 63.14 5.55 16 234
center,0% 415 1215 14.53 0 363.56 518.59 16.91 0 156

E-n51-k5 (50,3,2)
center,100% 1927 167681 96.32 2.08 277.97 616.89 19.09 9 168
corner,100% 2609 68470 96.13 3.56 131.11 646.93 39.44 4 228
center,0% 2588 196 18.31 0 76.33 706.57 31.60 0 202

E-n76-k8 (75,4,4)
center,100% 555 876503 97.61 2.82 713.09 247.92 6.01 13 154
corner,100% 1200 465044 97.53 7.26 443.33 410.24 25.72 6 230
center,0% 1857 321 16.82 0 92.14 726.62 17.66 0 192

E-n101-k8 (100,4,4)
center,100% 162 2706778 98.17 2.56 897.93 87.58 1.81 16 186
corner,100% 1242 366864 98.41 2.99 197.77 622.66 35.81 3 266
center,0% 1581 632 13.36 0 115.76 697.33 21.04 0 234

M-n151-k12 (150,6,6)
center,100% 45 9457220 98.95 3.25 958.30 37.46 0.80 25 154
corner,100% 118 5424366 98.90 10.06 868.84 110.75 4.84 11 250
center,0% 681 828 15.36 0 192.97 535.44 154.47 0 182

M-n200-k16 (199,8,8)
center,100% 25 18639347 99.26 3.97 983.16 30.20 0.62 20 144
corner,100% 52 12862411 99.22 15.07 916.17 73.03 4.55 16 238
center,0% 382 1284 13.80 0 296.87 460.01 153.16 0 162

P-n51-k10 (50,5,5)
center,100% 1221 223455 96.83 6.16 317.52 607.45 12.10 11 111.07
corner,100% 1528 147259 95.67 17.45 265.27 551.97 53.83 7 194
center,0% 2087 193 22.98 0 66.18 765.55 31.43 0 140

P-n55-k10 (54,5,5)
center,100% 1624 183464 96.99 3.68 232.50 672.05 15.44 7 128
corner,100% 2133 104852 96.78 8.66 152.52 644.42 33.98 4 200
center,0% 2166 210 22.14 0 71.32 756.38 22.05 0 152

P-n60-k10 (59,5,5)
center,100% 973 361918 97.23 5.18 424.83 509.61 10.46 11 114
corner,100% 1554 183807 96.99 16.66 218.55 586.51 52.13 7 198
center,0% 1748 268 21.61 0 72.08 763.35 23.55 0 144

P-n65-k10 (64,5,5)
center,100% 783 504060 97.43 5.09 509.63 399.71 11.12 11 126
corner,100% 1323 278130 97.04 13.80 322.02 513.30 37.16 6 206
center,0% 1434 299 21.52 0 79.64 744.78 28.78 0 160

P-n70-k10 (69,5,5)
center,100% 646 694435 97.61 4.21 626.20 327.40 7.47 11 129.29
corner,100% 1157 371786 97.26 14.75 391.59 451.33 41.45 7 218
center,0% 1327 316 20.34 0 85.44 733.31 27.77 0 160

P-n76-k5 (75,3,2)
center,100% 883 696083 97.37 1.20 628.64 309.95 9.73 11 202
corner,100% 1841 291512 97.49 3.33 285.25 515.62 29.24 4 260
center,0% 1640 395 15.39 0 74.30 767.52 12.25 0 258

P-n101-k4 (100,2,2)
center,100% 149 2403670 97.37 0.69 923.65 68.45 1.22 17 342.69
corner,100% 462 1283694 97.37 1.61 689.36 252.76 5.78 9 382
center,0% 1011 757 6.67 0 55.75 822.14 5.30 0 420

X-n110-k13 (109,7,6)
center,100% 71 6129616 98.48 5.68 945.97 52.87 1.42 16 1864
corner,100% 145 3875320 98.34 21.02 888.09 81.53 15.19 10 3296
center,0% 1039 663 18.13 0 155.93 671.96 33.96 0 2066

X-n115-k10 (114,5,5)
center,100% 26 8970734 98.37 3.39 986.31 14.70 0.45 15 2258
corner,100% 129 4273478 98.24 10.82 919.12 60.80 6.91 8 3624
center,0% 1260 817 15.44 0 162.89 635.10 35.77 0 2636

X-n139-k10 (138,5,5)
center,100% 1 77374287 98.56 1.18 3056.25 0.70 0.08 23 2928.64
corner,100% 69 8206711 98.64 5.99 952.10 37.62 3.17 15 3750
center,0% 1030 1677 10.61 0 210.46 594.70 34.21 0 2844

Table 9 HM with di�erent parameters (depot at the left corner, 0% of drone eligible customers)

27

care of the fact that the model we have been studying here is weakly constrained: if we remove constraints
related to drone eligibility, we are mainly dealing with partition and permutation constraints, that means
cumulative constraints which are di�cult to propagate.

On another hand, another perspective of this work is to investigate more realistic models, taking account of
customer time windows, real-time tra�c or drone recharging for example. Then, these additional constraints
might be di�cult to integrate in our approach while they would easily be added to a CP model and help
propagation.

Finally, another interesting perspective would be to �nd more insights on the added-value of drone delivery
and on the respective sizing of the drone and vehicle �eets. This would basically require additional exper-
iments with modi�ed values for the two �eets, but would only be meaningful with more realistic instances
and problem de�nition.

Acknowledgments

This work was sponsored by a public grant overseen by the French National Research Agency as part
of the "Investissements d'Avenir" through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and
the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001). Financial support was also received from the
European Union through the European Regional Development Fund program (ERDF � AURA region) and
by the Auvergne-Rhône-Alpes region.

We thank reviewers for very accurate comments that helped a lot improving the quality of this paper.

References

[1] ABCNews, 2017. UPS tests launching drones from trucks equipped with battery chargers. https://

abcnews.go.com/Business/ups-tests-launching-drones-trucks-equipped-battery-chargers/

story?id=45650029. Accessed: 2021-04-01.

[2] Agatz, N., Bouman, P., Schmidt, M., 2018. Optimization approaches for the traveling salesman problem
with drone. Transportation Science 52, 965�981.

[3] Amazon, 2013. Amazon.com, Inc. Amazon Prime Air. http://www.amazon.com/primeair. Accessed:
2021-04-01.

[4] Bin Othman, M.S., Shurbevski, A., Nagamochi, H., 2017. Routing of carrier-vehicle systems with
dedicated last-stretch delivery vehicle and �xed carrier route. Journal of Information Processing 25,
655�666.

[5] Bouman, P., Agatz, N., Schmidt, M., 2018. Dynamic programming approaches for the traveling salesman
problem with drone. Networks 72, 528�542.

[6] Chang, Y.S., Lee, H.J., 2018. Optimal delivery routing with wider drone-delivery areas along a shorter
truck-route. Expert Systems with Applications 104, 307�317.

[7] Cheng, C., Adulyasak, Y., Rousseau, L.M., 2018. Formulations and exact algorithms for drone routing
problem. CIRRELT, Centre interuniversitaire de recherche sur les réseaux d'entreprise.

[8] Choi, Y., Schonfeld, P.M., 2017. Optimization of multi-package drone deliveries considering battery
capacity, in: Proceedings of the 96th Annual Meeting of the Transportation Research Board, Washington,
DC, USA, pp. 8�12.

[9] Climaco, J.C.N., Martins, E.Q.V., 1982. A bicriterion shortest path algorithm. European Journal of
Operational Research 11, 399�404.

[10] Daknama, R., Kraus, E., 2017. Vehicle routing with drones. arXiv preprint arXiv:1705.06431 .

28

https://abcnews.go.com/Business/ups-tests-launching-drones-trucks-equipped-battery-chargers/story?id=45650029
https://abcnews.go.com/Business/ups-tests-launching-drones-trucks-equipped-battery-chargers/story?id=45650029
https://abcnews.go.com/Business/ups-tests-launching-drones-trucks-equipped-battery-chargers/story?id=45650029
http://www.amazon.com/primeair

[11] Dayarian, I., Savelsbergh, M., Clarke, J.P., 2020. Same-day delivery with drone resupply. Transportation
Science 54, 229�249.

[12] Dell'Amico, M., Montemanni, R., Novellani, S., 2020. Matheuristic algorithms for the parallel drone
scheduling traveling salesman problem. Annals of Operations Research , 1�16.

[13] DHL, 2014. DHL International GmbH. (2014, Sep.) DHL parcelcopter launches initial opera-
tions for research purposes. http://www.dhl.com/en/press/releases/releases_2014/group/dhl_

parcelcopter_launches_initial_operations_for_research_purposes.html. Accessed: 2021-04-
01.

[14] Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S., 2017. Vehicle routing problems for drone
delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47, 70�85.

[15] Dpdgroup, 2014. DPDGroup Drone Delivery. https://www.dpd.com/home/insights/drone_delivery.
Accessed: 2021-04-01.

[16] Ford Jr, L.R., Fulkerson, D.R., 2015. Flows in networks. volume 54. Princeton University Press.

[17] Francis, H., 2016. Australia Post tests drones for parcel delivery. http://www.smh.com.au/technology/
innovation/australia-post-tests-drones-for-parcel-delivery-20160415-go77a4.html. Ac-
cessed: 2021-04-01.

[18] de Freitas, J.C., Penna, P.H.V., 2020. A variable neighborhood search for �ying sidekick traveling
salesman problem. International Transactions in Operational Research 27, 267�290.

[19] Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H., 2018. On the min-cost traveling salesman problem with
drone. Transportation Research Part C: Emerging Technologies 86, 597�621.

[20] Ham, A.M., 2018. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window,
drop-pickup, and m-visit using constraint programming. Transportation Research Part C: Emerging
Technologies 91, 1�14.

[21] Helsgaun, K., 2000. An e�ective implementation of the Lin�Kernighan traveling salesman heuristic.
European Journal of Operational Research 126, 106�130.

[22] Kelion, L., 2015. Alibaba begins drone delivery trials in China. http://www.bbc.com/news/

technology-31129804. Accessed: 2021-04-01.

[23] Kim, S., Moon, I., 2018. Traveling salesman problem with a drone station. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 49, 42�52.

[24] Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J.M., Brunese, P.A., 2019.
Multiple traveling salesman problem with drones: Mathematical model and heuristic approach. Com-
puters & Industrial Engineering 129, 14�30.

[25] Lourenço, H.R., Martin, O.C., Stützle, T., 2003. Iterated local search, in: Handbook of metaheuristics.
Springer, pp. 320�353.

[26] Luo, Z., Liu, Z., Shi, J., 2017. A two-echelon cooperated routing problem for a ground vehicle and its
carried unmanned aerial vehicle. Sensors 17, 1144.

[27] Marinelli, M., Caggiani, L., Ottomanelli, M., Dell'Orco, M., 2017. En route truck�drone parcel delivery
for optimal vehicle routing strategies. IET Intelligent Transport Systems 12, 253�261.

[28] Mathew, N., Smith, S.L., Waslander, S.L., 2015. Planning paths for package delivery in heterogeneous
multirobot teams. IEEE Transactions on Automation Science and Engineering 12, 1298�1308.

[29] Mbiadou Saleu, R.G., Deroussi, L., Feillet, D., Grangeon, N., Quilliot, A., 2018. An iterative two-step
heuristic for the parallel drone scheduling traveling salesman problem. Networks 72, 459�474.

29

http://www.dhl.com/en/press/releases/releases_2014/group/dhl_parcelcopter_launches_initial_operations_for_research_purposes.html
http://www.dhl.com/en/press/releases/releases_2014/group/dhl_parcelcopter_launches_initial_operations_for_research_purposes.html
https://www.dpd.com/home/insights/drone_delivery
http://www.smh.com.au/technology/innovation/australia-post-tests-drones-for-parcel-delivery-20160415-go77a4.html
http://www.smh.com.au/technology/innovation/australia-post-tests-drones-for-parcel-delivery-20160415-go77a4.html
http://www.bbc.com/news/technology-31129804
http://www.bbc.com/news/technology-31129804

[30] Mourelo Ferrandez, S., Harbison, T., Webwer, T., Sturges, R., Rich, R., 2016. Optimization of a truck-
drone in tandem delivery network using k-means and genetic algorithm. Journal of Industrial Engineering
and Management 9, 374�388.

[31] Murray, C.C., Chu, A.G., 2015. The �ying sidekick traveling salesman problem: Optimization of drone-
assisted parcel delivery. Transportation Research Part C: Emerging Technologies 54, 86�109.

[32] Murray, C.C., Raj, R., 2020. The multiple �ying sidekicks traveling salesman problem: Parcel delivery
with multiple drones. Transportation Research Part C: Emerging Technologies 110, 368�398.

[33] Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E., 2018. Optimization approaches for civil
applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 72, 411�458.

[34] Pinedo, M., Hadavi, K., 1992. Scheduling: Theory, algorithms and systems development, in: Operations
Research Proceedings 1991. Springer, pp. 35�42.

[35] Poikonen, S., Golden, B., 2020. Multi-visit drone routing problem. Computers & Operations Research
113, 104802.

[36] Poikonen, S., Wang, X., Golden, B., 2017. The vehicle routing problem with drones: Extended models
and connections. Networks 70, 34�43.

[37] Ponza, A., 2016. Optimization of drone-assisted parcel delivery. Master's thesis. University of Padova.
Italy.

[38] Pugliese, L.D.P., Guerriero, F., 2017. Last-mile deliveries by using drones and classical vehicles, in:
International Conference on Optimization and Decision Science, Springer. pp. 557�565.

[39] San, K.T., Lee, E.Y., Chang, Y.S., 2016. The delivery assignment solution for swarms of UAVs dealing
with multi-dimensional chromosome representation of genetic algorithm, in: Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), IEEE Annual, IEEE. pp. 1�7.

[40] Schermer, D., Moeini, M., Wendt, O., 2018. Algorithms for solving the vehicle routing problem with
drones, in: Asian Conference on Intelligent Information and Database Systems, Springer. pp. 352�361.

[41] Song, B.D., Park, K., Kim, J., 2018. Persistent UAV delivery logistics: MILP formulation and e�cient
heuristic. Computers & Industrial Engineering 120, 418�428.

[42] Sundar, K., Rathinam, S., 2014. Algorithms for routing an unmanned aerial vehicle in the presence of
refueling depots. IEEE Trans. Automation Science and Engineering 11, 287�294.

[43] Troudi, A., Addouche, S.A., Dellagi, S., Mhamedi, A., 2018. Sizing of the drone delivery �eet considering
energy autonomy. Sustainability 10, 3344.

[44] Tu, P.A., Dat, N.T., Dung, P.Q., 2018. Traveling salesman problem with multiple drones, in: Proceedings
of the Ninth International Symposium on Information and Communication Technology, ACM. pp. 46�53.

[45] Ulmer, M.W., Thomas, B.W., 2018. Same-day delivery with heterogeneous �eets of drones and vehicles.
Networks 72, 475�505.

[46] Wang, X., Poikonen, S., Golden, B., 2017. The vehicle routing problem with drones: several worst-case
results. Optimization Letters 11, 679�697.

[47] XCompany, 2014. Wing : Transforming the way goods are transported. https://x.company/projects/
wing/. Accessed: 2021-04-01.

[48] Yurek, E.E., Ozmutlu, H.C., 2018. A decomposition-based iterative optimization algorithm for traveling
salesman problem with drone. Transportation Research Part C: Emerging Technologies 91, 249�262.

[49] Zipline, 2016. The future of healthcare is out for delivery. http://flyzipline.com/. Accessed: 2021-
04-01.

30

https://x.company/projects/wing/
https://x.company/projects/wing/
http://flyzipline.com/

	Introduction
	Related work
	The Parallel Drone Scheduling Multiple Traveling Salesman Problem
	Problem statement
	MILP formulation
	Branch-and-cut procedure

	Hybrid Metaheuristic
	General scheme of the hybrid metaheuristic
	Local search
	Decoding procedure split()

	Experiments and results
	Problem instances
	Limitation of the number of labels in procedure split()
	Solution with the branch-and-cut algorithm
	Hybrid metaheuristic and variants
	Additional experiments

	Conclusion

