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ABSTRACT: Unpredictable variations in the ocean originate from both external atmospheric forcing and chaotic pro-

cesses internal to the ocean itself, and are a crucial sink of predictability on interdecadal time scales. In a global oceanmodel,

we present (i) an optimization framework to compute the most efficient noise patterns to generate uncertainty and

(ii) a computationally inexpensive, dynamical method for attributing sources of ocean uncertainty to internal (mesoscale

eddy-driven) and external (atmospherically driven) origins, sidestepping the more typical ensemble approach. These two

methods are then applied to a range of metrics (heat content, volume transport, and heat transport) and time averages

(monthly, yearly, and decadal) in the subtropical and subpolar North Atlantic. The optimal noise patterns create variability

in integrated quantities of interest through features of the underlying circulation such as the North Atlantic Current and

deep water formation regions. Meanwhile, noise forcing diagnosed frommodel representations of the actual climate system

stimulates these theoretical patterns with various degrees of efficiency, ultimately leading to the growth of error. We

reaffirm that higher-frequency variations inmeridional transports are primarily wind driven, while surface buoyancy forcing

is the ultimately dominant source of uncertainty at lower frequencies. For year-averaged quantities in the subtropics, it is

mesoscale eddies that contribute the most to oceanic uncertainty, accounting for up to 60% after 60 years of growth for

volume transport at 258N. The impact of eddies is greatly reduced in the subpolar region, whichwe suggestmay be explained

by overall lower sensitivity to small-scale noise there.

SIGNIFICANCE STATEMENT: Climate does not change steadily; it naturally fluctuates around a general trend. The

prediction of climate several decades to a century ahead depends mostly on the ability to anticipate future human

activity, but for the coming years to a few decades ahead (when the future pathway of human activity is not yet fully

apparent) natural fluctuations also have an important role. These fluctuations, however, cannot be perfectly predicted

for long. The ability to predict them is limited, for example, by the build-up of unwelcome ‘‘noise’’ from erratic processes

such as the weather. In this study, we look at the different sources of this noise, how important they are, and how they

impact prediction accuracy of climatically important ocean quantities decades in the future. To achieve this, we use a

unique computer simulation of the ocean, which works backward and describes how to most effectively create change.

This uncovers the mechanisms by which the ocean most efficiently responds to noise, and also shows how this compares

with the response to noise resembling that generated by the real ocean–atmosphere system. We demonstrate that in the

climatically important region of the North Atlantic, unpredictable ocean circulation changes in the more tropical region

are mostly due to oceanic mesoscale eddies (the oceanic equivalent of atmospheric storms). Farther north, in

the subpolar region, however, it is the atmosphere that is primarily responsible for the development of oceanic

prediction error.

KEYWORDS: North Atlantic Ocean; Meridional overturning circulation; Ocean circulation; Turbulence; Climate

variability; Climate prediction; Interdecadal variability

1. Introduction

As the slow component of the climate system, the ocean is

key to predicting variations on time scales of seasons or longer.

However, the ocean is now known to exhibit substantial vari-

ability at all time scales. The predictability of these variations,

and their attribution to different sources, is crucial to the un-

derstanding and prediction of climate, particularly on so-called

near-term time scales for which the anthropogenically forced

signal is not yet dominant (Meehl et al. 2009).

Variations in the North Atlantic have long been hypothe-

sized to be uniquely predictable due to interactions between

its meridional overturning circulation (MOC) and anomalies

in upper ocean heat content. In the late 1990s, an increase in

computational resources allowed this hypothesis to be tested in

state-of-the-art climate models using the prognostic technique

of ensemble modeling [e.g., the review of Latif and Keenlyside

(2011)]. In this framework, each member of a coupled climate

model ensemble is initialized with a slightly perturbed atmo-

spheric state. As the atmosphere has no predictability beyond a

few weeks (Lorenz 1969), the atmospheric components of the

ensemble rapidly diverge such that their differences in many

ways resemble stochastic noise. The rate of divergence of the
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ocean components in response thus quantifies ocean predict-

ability. Early studies using this methodology revealed en-

hanced predictability, often up to decades, in the North

Atlantic sector against a background of strong MOC influence

(Griffies and Bryan 1997; Grötzner et al. 1999; Collins and

Sinha 2003; Msadek et al. 2010; Persechino et al. 2013). The

implication that large-scale ocean dynamics slow error growth

forced by the atmosphere is promising for near-term prediction

in the region, but these studies collectively fail to account for

oceanic mesoscale turbulence as an additional source of un-

certainty. The relative importance of this source is becoming

increasingly scrutinized as ocean components of cutting-edge

climate models evolve toward eddying resolution (Kirtman

et al. 2012; Small et al. 2014; Sein et al. 2018; Gutjahr et al. 2019;

Held et al. 2019; Haarsma et al. 2020).

A new generation of studies is now addressing the question

of attributing oceanic variability to internal (generated by

chaotic oceanic processes) and external (atmospherically forced)

origins using the prognostic ensemble approach in high-resolution

ocean-only models (e.g., Sérazin et al. 2017; Leroux et al. 2018;

Jamet et al. 2019). Each member has a common atmospheric

forcing, but differing oceanic initial conditions. As such, the

ensemble mean is taken to smooth out any intrinsic oceanic

variability, such that its temporal variability is assumed to de-

rive purely from fluctuations in the forcing. Contrarily, the

ensemble spread, given their common atmospheric forcing, is

assumed to come solely from intrinsic oceanic differences.

In this manner, Sérazin et al. (2017) conclude that ocean

intrinsic variability is the dominant contributor to deep-ocean

heat content fluctuations in theNorthAtlantic subtropical gyre

and Gulf Stream regions, while Leroux et al. (2018) estimate

that intrinsic MOC variability is 60% that of atmospheric at

268N. In a regional model, Jamet et al. (2019) find that over half

of the variability in the annually averagedAtlanticMOC at this

latitude is intrinsic. Although oceanic variability forced at the

domain boundaries will appear ‘‘external’’ in a regional model,

this result agrees closely with the global model results of

Grégorio et al. (2015). All of these studies show a shift in be-

havior at subpolar latitudes, where the atmospheric compo-

nent dominates. It is unclear whether this shift arises from

differing dynamics or the inability of eddy-permitting models

to generate realistic turbulence in high-latitude regions (where

deformation radii are greater), although this will likely become

clear as fully eddy-resolving climate models become standard.

Despite the revolutionary advances in computing that now

allow studies such as these to utilize ensembles containing as

many as 50 members in a global, eddy-permitting ocean [as in

Leroux et al. (2018)], such ensemble studies require national-

scale computing infrastructure, inaccessible to many in the

community. Furthermore, the ensemble approach does not

allow a causal description of the translation of internal and

external sources of unpredictable variability into expressed

oceanic error growth or prediction uncertainty. An alternative

framework, allowing dynamical attribution of the large-scale

oceanic response to small perturbations (such as those from

atmospheric fluxes or the mesoscale eddy field) is the adjoint

method (Errico 1997). While the ensemble approach begins by

applying small changes to the model state and then evaluates

their impact on oceanic metrics of interest, the adjoint method

turns the problem around: it begins with an oceanic metric of

interest and then describes its sensitivity to small changes in the

model state.

This method has been applied to attributing Atlantic MOC

fluctuations to different surface fluxes in the MITgcm by Pillar

et al. (2016), and was used in the OPA model (the oceanic

component of the model used herein) by Sévellec et al. (2018)
to determine the relative impacts of unpredictable atmospheric

forcing variability and initial condition uncertainty on the di-

vergence of a theoretical ocean ensemble.

This study builds further on the theoretical ensemble ap-

proach of Sévellec et al. (2018). Here, we explore ocean error

growth from two perspectives. In the first, we use an adjoint

model to determine the most efficient patterns for stimulating

ensemble divergence [the optimal stochastic perturbations

(OSPs); Sévellec et al. 2007]. In this framework, the model is

blind to sources of chaotic variability representative of the

‘‘real world’’ and instead describes how these sources should

look in order to have the greatest effect on oceanic uncertainty.

In this sense, the outcome describes, for different metrics, the

sensitivity of their variance to different sources and locations,

highlighting oceanic patterns of efficient error growth. The

method shares much in common with the method of stochastic

optimals (Farrell and Ioannou 1996), which has been previ-

ously applied in more idealizedmodels of the ocean circulation

such as box models (Lohmann and Schneider 1999; Tziperman

and Ioannou 2002), a latitude–depth model (Sévellec et al.

2007), idealized coupled models (Chang et al. 2004; Zanna and

Tziperman 2008), and a 3D planetary geostrophic model

(Sévellec et al. 2009), typically in the context of stochastic ex-

citation of internal modes. While the complexity of the prob-

lem has historically limited it to simple models, we are now

able to determine both atmospheric and oceanic OSPs in a

GCM under certain assumptions by separating the problem

into smaller, regional OSP problems.

In the second perspective, we provide the model with sto-

chastic representations of internal and external turbulent var-

iability sources taken from model representations of the real

climate system. This allows us to dynamically attribute ocean

uncertainty to these different sources. The ‘‘realistic’’ sources

are diagnosed from more complex models; the external, atmo-

spheric component is calculated from a coupled non-eddying

climate model, while the internal, mesoscale-eddy-driven

component is calculated from an eddy-permitting ocean model.

The attribution method is uniquely inexpensive—a single bi-

decadal simulation of a coupled climate model and of an eddy-

permitting ocean model are used to compute the stochastic

properties, while the highly efficient adjoint ocean model in a

non-eddying (laminar) configuration can recreate a theoreti-

cally infinite ensemble with a single simulation (Sévellec and

Sinha 2018).

The study proceeds as follows. In section 2, we outline the

mathematical theory of stochastically forced ensembles that

underlies our two approaches. This begins with a treatment of

the classical, temporally uncorrelated (‘‘white noise’’) case,

which provides the theoretical framework for deriving the

OSPs. We then advance to time-correlated stochastic noise,
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more appropriate for creating a more realistic representation

of turbulence in the case of oceanic mesoscale eddies, although

we highlight that our use of an eddy-permitting model, simi-

larly to the global ensemble studies described above, means

that a portion of the turbulent spectrum remains uncaptured by

this representation. This choice was necessitated by computa-

tional cost, but the theory discussed here can be applied with a

representation derived from any model. In section 3, we de-

scribe how this time-correlated representation is diagnosed,

along with the three models used for the study and the con-

figuration of our experiments. Our results are presented for

both the optimal and diagnosed forcing cases in section 4 be-

fore being discussed along with our conclusions in section 5.

2. Theoretical framework: Variance of stochastically
forced linear systems

While a more thorough exploration of the theory under-

pinning in this study follows in sections 2a–2c for interested

readers, those who are interested in the key results will find

them summarized in section 2d before being applied in

section 4, and so can skip sections 2a–2c.

a. Temporally uncorrelated forcing

A simple, classical model of low-frequency variability gen-

eration in the ocean is that of Hasselmann (1976). In it, mixed

layer temperature changes are assumed to be a purely passive

response to random, serially uncorrelated surface heat fluxes.

These are absorbed and slowly ‘‘forgotten’’ by the ocean,

which tends back toward its unperturbed state. The model is

univariate and entirely determined by two parameters: the

time scale on which this restoring occurs (parameterizing the

ocean dynamics as a single memory term) and the volatility of

the random fluxes (parameterizing the atmospheric forcing). It

may be written as the stochastic differential equation

du52ludt1sdW , (1)

which has the solution (for initial condition zero)

u(t
0
, t

1
)5

ð t1
t0

e2l(t12t)s dW(t) , (2)

where u is the surface temperature, t0 and t1 are the initial and

final time, s2 is the variance of temperature change induced by

random surface atmospheric heat fluxes during a time incre-

ment dt, l21 defines the e-folding time scale of the ocean

dynamics (i.e., its memory), and dW is an increment of a

standard-normal Wiener process W (akin to the distance of a

random walk during the time increment dt). Equation (2) is

thus an Itô integral (Itô 1944). It may be noted that the re-

sponse, (2), is anOrnstein–Uhlenbeck process (Uhlenbeck and

Ornstein 1930), a stochastic model that we will return to in

section 2c.

Although a useful first-order representation of the evolution

of unpredictable surface temperature variability (Frankignoul

and Hasselmann 1977), the model is inherently limited by its

treatment of a single forcing and response term, representing a

spatial average of a single independent region of the ocean and

atmosphere (without accounting for any internal ocean pro-

cesses, beyond a crude memory term). In a more realistic

representation, atmospheric forcing may coherently influence

multiple regions of the ocean, which may interact with each

other through a range of variables and processes. If the

dynamics of these interactions remain linear, (1) can be

generalized to a nonautonomous linear system of stochastic

differential equations:

djui5A(t)juidt1L djW(t)i , (3)

where jui is the ocean state vector anomaly, describing the

response of each prognostic variable at each location, jW(t)i
is a vector of independent standard-normal Wiener processes,

A(t) describes the linear interactions between all ocean

variables and locations, and L is the lower-triangular matrix

describing the stochastic atmospheric fluxes through the

Cholesky decompositionS5LLy of their covariancematrix. In

this decomposition, the dagger (y) represents the adjoint de-

fined by the Euclidean inner product. We have employed the

‘‘bra-ket’’ notation of Dirac (1939), in which vectors are rep-

resented as ‘‘kets’’ jbi and covectors ‘‘bras’’ haj such that closed
bra-ket pairs become scalar through the Euclidean inner

product hajbi5 c, while open pairs jaihbj5C becomematrices

through the outer product. Although this is an improvement

over the univariate Hasselmann model, there remain some

simplifying assumptions about the nature of the noise forcing,

which we now briefly reflect on. Foremost, it is taken that the

noise forcing is Gaussian and additive, or state-independent. This

is a common and effective assumption for large-scale-average

quantities and climactic time scales (Sardeshmukh and Sura

2009) such as those considered here, but more complex pro-

cesses beyond our study may be better represented by state-

dependent or multiplicative noise, under which the mean state

may ‘‘drift,’’ and Itô calculus (as used here) is an insufficient

framework. An example is given by Sura and Sardeshmukh

(2008), who note that high-frequency SST variations are often

better modeled by a Hasselmann-type model in which the

decay term (l) itself is stochastic. For the interested reader, a

thorough review of these types of considerations for stochastic

climate modeling and their associated calculi is provided by

Penland (2003).

We now address how to apply this stochastic theory of linear

systems to an ocean model. Realistic ocean models are not

linear, but the above theory can still be applied under certain

simplifying assumptions. In particular, if perturbations (such as

those applied by turbulent fluctuations) are sufficiently small,

then a linearization of the model, representable in the same

way as the complementary equation of (3) can provide a first-

order description of its anomalous behavior in response to

them. Consider a nonlinear system such as that solved by a

typical ocean general circulation model (GCM):

djUi5N (jUi, t) dt ,

where N is a nonlinear operator, t is time, and jUi the full

state vector. This equation can be considered an abstraction

wherein the operator N represents all processes, equations

and boundary conditions numerically solved by the GCM.
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Expansion of the full state vector jUi5 jui1 jui (about a mean

state jui) yields

d(jui1 jui)5 [N (jui, t)1A(t)jui1O(jui2)]dt . (4)

Noting that djui5N (jui, t) dt and neglecting higher-order

terms leads to the complementary equation of (3). In this

context, A(t) is the Jacobian of the nonlinear system with re-

spect to the ocean state:

A(t)5
›

›jUiN (jui, t). (5)

The (zero initial condition) solution to (3) is given by

ju(t
0
, t

1
)i5

ðt1
t0

C(t
1
, t)L djW(t)i , (6)

where C(t1, t0) is the propagator matrix [the scalar C(t1, t0)5
e2l(t12t0) in the univariate case of (2)] which describes the linear

response of the ocean at time t1 to changes originating from

time t0.

Beginning from the last formula, we can diagnose the co-

variance between any two scalar-valued metrics of the ocean

state that are linear. These metrics can be defined by the cov-

ectors jF1,2i, where the scalar products hF1,2jui 5 hujF1,2i are
the Euclidean inner products of the covectors and the ocean

state vector anomaly. We have

Cov(hF
1
ju(t

0
, t

1
i, hF

2
ju(t

0
, t

1
i)5E

"
F
1

ð t1
t0

C(t
1
, t)L d

�����
�����W(t)

* +

3 F
2

ðt1
t0

C(t
1
, s)L d

�����
�����W(s)

* +#
,

(7)

where s represents time and E[�]is the expectation operator. A

multidimensional generalization of Itô’s isometry may be ap-

plied to this expression (e.g., section 3.6 of Duan and Wang

2014), leading to

Cov(hF
1
ju(t

0
, t

1
i, hF

2
ju(t

0
, t

1
i)5

ðt1
t0

hF
1
jC(t

1
, t)SCy(t, t

1
)jF

2
idt ,

(8)

which generalizes the result of Sévellec et al. (2018). Similarly

to their approach, we remark that while it is standard to di-

agnose the variance evolution of a metric by propagating many

realizations of (6) as an ensemble and considering its spread,

(8) does not require us to propagate any such realization.

Instead, it describes the response of such an ensemble (in the

theoretical limit of large ensemble size) using only the statis-

tical properties (S) of the noise. It further provides a dynamical

link between the response of the target metrics hF1,2j and the

stochastic source of variability represented by S. Where this

representation can be linearly partitioned into independent

sources (e.g., internal and external, S5SI1SE), the variance

can be dynamically attributed to each. The only requirements

of the method are that

1) our metrics of interest hF1,2j are linear functions of the

ocean state;

2) we have a linear model of ocean dynamics, C(t1, t0) [we

take a linearized OGCM, which following (4) is valid for

small variations about a trajectory, see section 3]; and

3) we have an adequate statistical description S of any sto-

chastic sources of variability.

Regarding the latter point, two approaches may be taken:

the properties of the stochastic processes may be diagnosed

and prescribed [as in, e.g., Sévellec et al. (2018)] or theymay be

determined from the linear model itself [in the framework of

an optimization problem, as in, e.g., Sévellec et al. (2007,

2009)]. We begin with the latter approach, which provides in-

sight into the mechanisms by which sources of variability are

translated into oceanic variance in a theoretical setting.

b. Optimal stochastic perturbations

As S can be allowed to take any form in (8), the problem of

variance estimation can be reformulated as an optimiza-

tion question: what form should S take such that variance

Var[hFju(t0, t1)i]5
Ð t1
t0
hFjC(t1, t)SC

y(t, t1)jFi dt is maximal for

a given metric hFj? The solution to the problem, under certain

conditions, can be determined dynamically from the linear model

itself, allowing insight into the mechanisms behind oceanic un-

certainty without explicitly prescribing sources of uncertainty.

To determine the optimal S, we apply two constraints to the

optimal variance source: its global average has fixed amplitude,

and any two points that are not independent have a correlation

of61. The former implies that the stochastic process has finite

power (corresponding to band-limited white noise), while the

latter assumes that if two points covary, they must do so

completely constructively (as would be optimal). We begin by

considering the general case, where the stochastic process is

partitioned intoN such regions (where each point in the region

is perfectly correlated), before considering the specific cases

corresponding to the two limits of N: (i) N 5 1 corresponding

to a fully global correlation [as in Sévellec et al. (2007, 2009)]
and (ii)N5 n (where n is the dimension of the state vector jui),
corresponding to the absence of any correlation.

1) GENERAL CASE

As outlined above, we partition the stochastic process intoN

regions such that points within the regions are perfectly co-

varying, but are independent of points in other regions.

Equivalently, we separate S 2 Rn3n into N local matrices Si 2
Rmi3mi (where mi is the local dimension of the ith region), and

define a binary projection Bi 2 Rn3mi such that

S5�
N

i51

B
i
S

i
By

i . (9)

Following (6), the evolution of the state vector in response to

stimulation in the ith region is

ju
i
(t

0
, t

1
)i5

ðt1
t0

C(t
1
, t)B

i
L
i
djW

i
(t)i , (10)

where Si 5LiL
y
i is the Cholesky decomposition of the local

covariancematrix, equivalently to the global case. Fundamentally,
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as the region is perfectly correlated, it may be written in terms of

a single stochastic process. The vector LidjWii thus becomes

jLiidWi, such that Si is the outer product Si 5 jLiihLij. The im-

plication is that in the region, a singleWiener process is ‘‘shaped’’

by a pattern of local amplitudes jLii.
To determine the optimal shape of this pattern, we utilize

the method of Lagrange multipliers [consistently with Sévellec
et al. (2007)]. In particular, we wish to maximize the local

contribution to the variance

Var(hFju
i
i)5

ð t1
t0

hFjC(t
1
, t)B

i
S

i
By

iC(t, t
1
)jFidt (11a)

under the constraint that the amplitude «i of Si follows

Tr(S
i
S

i
)5 hL

i
jS

i
jL

i
i5 �2i , (11b)

where Si 2 Rmi3mi is a (diagonal) volumetric weighting matrix.

The corresponding Lagrange function can be expressed as

L(g
i
, jL

i
i, t

0
, t

1
)5

ðt1
t0

hFjC(t
1
, t)B

i
jL

i
i2 dt2 g

i
(hL

i
jS

i
jL

i
i2 �2i ) ,

(12)

where the scalar gi is the Lagrange multiplier. Maximizing the

Lagrangian leads to

›L
›jL

i
i
����
fgi*,jLi

*ig
5 0,

ðt1
t0

(By
iC

y(t, t
1
)jFihFjC(t

1
, t)B

i
)dtjL*i i2g*i Si

jL*i i5 0, (13)

which holds when gi
* and jLi*i are an eigenvalue–eigenvector

pair of

S21
i

ð t1
t0

(B
i
Cy(t, t

1
)jFihFjC(t

1
, t)By

i )dt , (14)

since Si (as an operator representing a norm) is invertible. Any

such eigenpair represents a particular solution to the optimi-

zation problem. All together these solutions are a set of ‘‘sto-

chastic optimals’’ as described by Farrell and Ioannou (1996).

While our framework is similar to that of Farrell and Ioannou

(1996), we are optimizing a variance measure, rather than a

norm, similarly to Tziperman and Ioannou (2002). Of this set of

solutions, we seek the solution with the greatest effect.We note

that left multiplication of (13) by hL*i jSi results inð t1
t0

hFjC(t
1
, t)B

i
jL*i i

2
dt5g*i hL*i jSi

jL*i i ,

or, equivalently, Var[hFjui(t0, t1)i]5gi
*�2i , so that the Lagrangian

multiplier gi is essentially representing the variance that we

wish to maximize. Hence the eigenvector jLopt
i i corresponding

to the universally optimal solution of (13) is that belonging to

the leading eigenvalue g
opt
i . This vector describes the pattern of

the local OSP, and it remains only to rescale it by a factor

�ihLopt
i jSijLopt

i i21/2
so that the associated optimal covariance

matrix obeys the constraint (11b). This matrix is therefore

S
opt
i 5 �2i

jLopt
i ihLopt

i j
hLopt

i jS
i
jLopt

i i . (15)

Our local magnitude �i may be chosen arbitrarily, and

so, although the N regions correspond to N independent

problems, we seek an optimal scaling �i that maximizes their

individual contribution to the overall variance, while con-

straining the total magnitude �N

i51�
2
i 5 �2. In particular,

we note that the total variance Var[hFju(t0, t1)i]5�N

i51�
2
i g

opt
i

following the above. Thismay be alternatively rewritten as an inner

product Var[hFju(t0, t1)i]5 hEjgi, where jEi and jgi are vectors
of dimension N concatenating all the amplitudes (�2i ) and optimal

variances (g
opt
i ), respectively, of the local optimal shape (jLopt

i i) for
theN regions. As the inner product is maximal for parallel vectors

(i.e., jEi parallel to jgi), it follows after some algebra that

�2i 5
�2g

opt
i

�
N

i51

g
opt
i

. (16)

Hence, for these choices of �i, we obtain the global covariance

matrix describing the overall solution to the OSP problem in

terms of local OSPs:

S
opt 5

�2

�
N

i51

g
opt
i

�
N

i51

g
opt
i B

i

jLopt
i ihLopt

i j
hLopt

i jS
i
jLopt

i iB
y
i , (17)

where, as described above, jLopt
i i and g

opt
i are the leading ei-

genpair of

S21
i

ð t1
t0

B
i
Cy(t, t

1
)jFihFjC(t

1
, t)By

i dt .

2) LIMITING CASES

The above derivation applies to the case of N perfectly

correlated independent regions, but we may consider two

specific cases of this in order to imitate conditions similar to the

atmospherically forced and eddy-driven variability felt by the

ocean. In particular, we consider the two limiting cases: N 5 1

and N 5 dim(jui). The former case, where the forcing is ev-

erywhere perfectly correlated, can be applied to the surface

layer as an idealized representation of the large-scale coherent

patterns of the atmosphere (Sévellec et al. 2007, 2009). The latter
case, where the forcing is uncorrelated between all variables and

locations, is taken as an idealized representation of small-scale

noise in the ocean (i.e., noise induced by subgrid processes). These

cases correspond to solving a single eigenvalue problem versus

solving dim(jui) (trivially scalar) eigenvalue problems. In partic-

ular, for N 5 1, the sole projection matrix is the identity matrix

B1 5 I, while for N 5 n 5 dim(jui), the projection matrices be-

come the standard basis vectorsBi5 jeii (i.e., jeii projects a scalar
to the ith location of the full state vector).

In the former (everywhere perfectly covarying) case, (17)

becomes

S
opt 5 �2

jLoptihLoptj
hLoptjSjLopti , (18)
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where jLopti is the leading eigenvector of

S21

ðt1
t0

Cy(t, t
1
)jFihFjC(t

1
, t)dt .

The latter (everywhere uncorrelated) case corresponds to the

condition that every point is independent, and Sopt is diagonal.

The associated eigen‘‘vector’’ problems are scalar, such that

the eigenspace is infinite. All terms in (17) are now scalars such

that jLopt
i i can be seen to cancel, while the matrices Si may be

written as Si. Ultimately,

S
opt 5

�2

�
N

i51

g
opt
i

�N

i51jeii
g
opt
i

S
i

he
i
j , (19)

where, solving (13) with Bi 5 jeii, the eigenvalues g
opt
i are

trivially the diagonal elements of

S21

ðt1
t0

Cy(t, t
1
)jFihFjC(t

1
, t)dt .

The sum of the eigenvalues is also the trace of this (scaled outer

product) matrix, and is thus given by the corresponding inner

product. Therefore, from (19) the optimal stochastic covari-

ance matrix in the completely uncorrelated case is

S
opt 5

�2ðt1
t0

hFjC(t
1
, t)S21Cy(t, t

1
)jFi dt

3 diag

"
S21

ð t1
t0

Cy(t, t
1
)jFihFjC(t

1
, t) dt

#
S21 (20)

(where the diag[�] operator corresponds to the diagonal matrix

with the same diagonal).We respectively use these two limiting

cases to explore theoretical variance linked to idealized at-

mospheric forcing (assuming perfect correlation everywhere

over the surface and zero noise in the interior) and ocean in-

ternal subgrid fluxes (assuming noise everywhere, with zero

correlation between locations and variables).

A useful metric of the OSP is the ratio of the output variance

to the input variance A*5Var[hFju(t0, t1)i/�2], which we term

the response ratio. Notably, for the globally perfect covariance

case, this is simply the associated eigenvalue

A*5gopt . (21a)

For the globally decorrelated case,

A*5

ðt1
t0

hFjC(t
1
, t)S21Cy(t, t

1
)jFi dt (21b)

is the sum of the eigenvalues.

c. Temporally correlated forcing

Our considerations so far have involved stochastic forcing

with varying levels of spatial coherence, but which is serially

decorrelated (therefore band-limited white noise). While this

allows an idealized, theoretical exploration of variance gen-

eration mechanisms in the optimal case, it is inadequate for

realistically representing turbulent fluxes in the climate system, as

we wish to in the diagnosed case. Indeed, while white noise is

typically considered an acceptable representation of atmospheric

variability (which decays on time scales much shorter than those

of the oceanic large scale;Hasselmann 1976), the oceanmesoscale

eddy field evolvesmuchmore slowly (e.g., Chelton et al. 2007). To

represent this using diagnosed fluxes, we therefore extend our

framework to include temporally correlated stochastic forcing.

We consider again the Ornstein–Uhlenbeck case, which is a

simple example of a temporally correlated stochastic process.

We begin by modifying (3) such that anomalous fluxes are

now modeled by a continuous, time-integrable stochastic

process (contrary to the former, white noise case, where they

were everywhere discontinuous and representable only in the

framework of distribution theory). The equation becomes

djui5 [A(t)jui1 jX(t)i] dt , (22)

where, as before, jui defines the state vector anomaly,A defines

the system’s linear dynamics [for instance via the Jacobian of a

corresponding nonlinear system, as in (5)], and, in contrast to

the previous cases, jXi is the forcing from continuous, spatio-

temporally correlated stochastic processes. The zero-initial-

condition solution is given by

ju(t
0
, t

1
)i5

ðt1
t0

C(t
1
, t)jX(t)idt , (23)

where the complementary equation and therefore the propagator

matrixC(t1, t0) are notably identical to (6). As in (7), we seek the

covariance between two metrics of the state vector, given by

Cov[hF
1
ju(t

0
, t

1
i, hF

2
uj(t

0
, t

1
i]5

ðt1
t0

ðt1
t0

hF
1
jC(t

1
, t)E[jX(t)i

3 hX(s)j]Cy(s, t
1
)jF

2
idt ds ,

(24)

where the term E[jX(t)ihX(s)j] gives the spatiotemporal co-

variance matrix of the forcing. In the white noise case, the

autocorrelation conceptually corresponds to the Dirac delta

function, leading to E[jX(t)ihX(s)j]5 d(t2 s)LLy, consistently
with (8). For a vector jXi of saturated Ornstein–Uhlenbeck

processes, the autocorrelation function is given by (see, e.g.,

section 1.2 of Lindner 2009)

E[jX(t)ihX(s)j]5 e2ltLLye2lys , (25)

where l is a diagonal matrix of reciprocal e-folding times of the

anomalous fluxes at each location, and LLy 5 S is their spatial

covariance matrix. As these quantities can be diagnosed from

an appropriate dataset, we can use this formulation to diagnose

the variance growth.

In the proceeding section we diagnose (from more realistic

models that are assumed to capture a substantial portion of

atmospheric and oceanic turbulence) l and S for the cases of

external (atmospheric; lE, SE) and internal (oceanic mesoscale

eddy driven;lI,SI) turbulent fluxes, assessing the appropriateness

of the Ornstein–Uhlenbeck representation. We then proceed to

attribute the variance of different metrics in response to these
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sources, which, following (24) and assuming independence

between the internal and external components is given by

Var[hFju(t
0
, t

1
i]5

ðt1
t0

ð t1
t0

hFjC(t
1
, t)e2lI tS

I
e2l

y
I
sCy(s, t

1
)jFi dt ds

1

ð t1
t0

ðt1
t0

hFjC(t
1
, t)e2lEtS

E
e2l

y
E
sCy(s, t

1
)jFidtds .

(26)

The variance may be broken down further still, by writing

the covariance matrices as the sum of their different com-

ponents. For example, we are interested in the independent

contributions of buoyancy and momentum fluxes to the

externally forced component VarE of the variance (corre-

sponding to the lE, SE terms), and, in the latter case, the

separate contributions of the covarying zonal and meridio-

nal momentum fluxes. The final term of (26) can accordingly

be split into

Var
E
[hFju(t

0
, t

1
i]5

ð t1
t0

ðt1
t0

hFjC(t
1
, t) exp(2lb

Et)S
b
E exp(2lby

E s)Cy(s, t
1
)jFi dt ds ,

1

ð t1
t0

ð t1
t0

hFjC(t
1
, t) exp(2lu

Et)S
u
E exp(2luy

E s)Cy(s, t
1
)jFi dt ds ,

1

ð t1
t0

ð t1
t0

hFjC(t
1
, t) exp(2ly

Et)S
y
E exp(2lyy

E s)C
y(s, t

1
)jFidt ds ,

1

ð t1
t0

ð t1
t0

hFjC(t
1
, t) exp(2ly

Et)S
u,y
E exp(2lyy

E s)C
y(s, t

1
)jFi dt ds , (27)

where (l
fb,u,yg
E , S

fb,u,yg
E ) are the external noise properties for

the buoyancy fluxes and for the zonal and meridional mo-

mentum fluxes, respectively; S
u,y
E is for the zonal and meridi-

onal covariance term.

Finally, in addition to separating the variance into contri-

butions from different variables, we note that we can also

isolate contributions from different regions of space. The inner

products of (26) represent spatial integrals of local contribu-

tions to the total variance (integrated over volume in the in-

ternal case and over area in the external case). An alternative

formulation of (26) is therefore

Var[hFju(t
0
, t

1
i]5

ð
V

V
I
(x, y, z, t

0
, t

1
)dV

1

ð
V0

V
E
(x, y, t

0
, t

1
)dA, (28)

where VI and VE are continuous functions representing the

respective internal variance contribution per unit volume and

external variance contribution per unit area, V and dV represent

the ocean interior and a volume increment, respectively, V0

and dA represent the ocean surface and an area increment,

respectively, and x, y, and z are the zonal, meridional, and

vertical coordinates. The corresponding integrands are thus

spatial distributions of variance contributions. This can be

applied to both (26) and (27) without loss of generality.

d. Summary of theoretical framework

We have shown that, by representing the ocean as a linear

system forced by temporally uncorrelated white Gaussian

noise (WGN) in (6), certain properties may be derived analyti-

cally given only the properties of the noise (its spatial coherence

and intensity, represented by the covariance matrix S). In

particular, we calculated the covariance of any two scalar-valued

linear metrics of the ocean state (and, as a corollary, the variance

of a single such metric, for instance ocean heat content) using just

this linear representation and noise covariance matrix in (8). In

section 2b, we considered one option for calculating a noise

covariance matrix, seeking the noise distribution that most

efficiently stimulates variance in a metric of interest, using a

formulation of the Lagrange multiplier method for calculating

stochastic optimals. As the covariance matrix describes both

the magnitude and coherence of the noise, we were able to solve

this problem for a given noise amplitude in the case of both a

globally coherent noise (with every location perfectly correlated

or anticorrelated) in (19) and an everywhere decorrelated noise

in (20), with each case transforming the input variance of the

noise into an output variance in the target metric via a linear

rescaling (‘‘response ratio’’) given in (21a) and (21b), respec-

tively. Finally, in addition to the consideration of spatial corre-

lation in sections 2a and 2b, we introduced temporally correlated

noise in section 2c, motivated by the slower evolution of the

ocean’s mesoscale eddy field and its poor agreement withWGN.

We found that by introducing a second matrix l corresponding

to the decorrelation time of random fluxes in the system, we

could diagnose the variance of a metric of choice similarly to

section 2a, and that this could be decomposed into contributions

fromoceanic (internal) and atmospheric (external) noise in (26).

3. Model configurations, methods, and
experimental design

a. Linear ocean model configuration

As outlined in section 2, we use a linear ocean model to

provide the propagator matrixC, which is used both to derive

our OSPs [following (17)] and to evolve our prescribed, diag-

nosed stochastic processes [following (24)]. The model is v3.4

of the NEMO GCM (Madec et al. 2012) whose routines are

linearized in the tangent-linear and adjoint model (TAM)

package NEMOTAM (Vidard et al. 2015). The model is run in

the nominal 28ORCA2 configuration with 31 vertical levels in
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partial-step z coordinates, subject to repeated CORE normal

year forcing (Large and Yeager 2004). More details can be

found in Stephenson et al. (2020). We note that the same ocean

model is common to our linear propagator C, the coupled

climate model (section 3b) used to diagnose our stochastic

external flux representation (lE, SE) and the high-resolution

ocean model (section 3c) used to diagnose our stochastic in-

ternal flux representation (lI, SI). We therefore consider sea-

sonal variations of the oceanic large scale to be common to all

three cases, which are explicitly captured in the trajectory jui of
(4). In this sense, our stochastic representations are of anom-

alies [jui in (4)] from this shared climatology, which are un-

resolved in the low-resolution, ocean-onlymodel.We note that

this intermodel approach is subject to the same approximation

as other studies which diagnose forcings from higher-fidelity

models (or indeed observations): the ocean circulation and

vertical structure is assumed to be the same in all cases. Projecting

from one model to another will thus naturally lead to misrepre-

sentations around technically challenging features (such as the

Gulf Stream separation, for example), or areas where isopycnals

do not align between models. The impact of such mismatches,

similarly to that of nonstationary eddy variations such as seasonal

cycles, is taken to be small (Fig. 1 shows the climatologies of the

models from which these anomalies are taken).

b. Diagnosis of stochastic atmospheric fluxes

To represent the effects of anomalous surface fluxes by an

Ornstein–Uhlenbeck process we diagnose the parameters lE,

SE from the outputs of a coupled climate model. In particular,

we use the IPSL-CM5A-LR coupled model, which was run

for 20 years in its CMIP5 preindustrial control configuration

(cf. Dufresne et al. 2013). The ocean component of themodel is

NEMO-ORCA2 (v3.2) which has the same (ORCA2) config-

uration as our linearized ocean model. To cleanly separate

atmospherically forced variability from internally forced turbulent

ocean variability (which is diagnosed separately; section 3c),

the ocean component of the chosen climate model is laminar,

such that there is no internal turbulent variability (Grégorio
et al. 2015). The atmospheric component is the LMDZ5a

model, with a horizontal resolution of 3.758 3 1.98 and 39 levels

in the vertical (Hourdin et al. 2013).

To isolate the impact of external forcing, the 20-yr time se-

ries of daily averaged surface zonal (tx) and meridional (ty)

wind stress, heat (Q) and freshwater fluxes (FWF) produced by

the coupledmodel were considered. As described in section 3a,

the climatologies of these fluxes were taken to be present in the

trajectory of the linear model (via its repeated annual forcing)

and so were removed. The remaining anomalies were then

linearly mapped to a corresponding external-flux-induced rate

of change in ocean surface zonal and meridional velocity

[FE
u 5 tx/(r0Dz) and FE

y 5 ty/(r0Dz), respectively, where Dz is

the uppermost model layer thickness and r0 is a reference den-

sity], sea surface temperature (SST; FE
T 5Q/(r0cpDz), where

cp is specific heat capacity), and sea surface salinity (SSS;

FE
S 5S0FWF/(r0Dz), where S0 is a reference salinity). The

covariance and e-folding decorrelation time of these time se-

ries (Figs. 2a–e) were then used to construct the stochastic

representation following (25).

The variance of the heat flux term (Fig. 2a) is broadly dis-

tributed away from the tropics with regions of intense focus

such as western boundary currents, while the freshwater flux

variance term is conversely highest in the tropics (Fig. 2b).

Their covariance (Fig. 2c) reflects this difference such that in-

creasing FE
T corresponds to salinification in these regions of

highest variance in FE
T and freshening in regions of highest FE

S

variance. Both temperature and salinity changes are most

persistent at low latitudes (Figs. 2a,b, contours). For wind

stress–induced surface velocity changes, zonal and meridional

variances show broadly similar spatial patterns, focused at high

latitudes (Figs. 2d and 2e, respectively). The zonal component

is notablymore intense andmore persistent (Figs. 2d,e, contours).

The matrix SE was populated using the covariances of these

time series with the corresponding time series of each depen-

dent variable at every other location (Fig. 2 shows the lead

diagonal of SE). The term lE is a diagonal matrix of local

e-folding times calculated from the lag-autocorrelation of the

time series (shown by contours in Fig. 2). Buoyancy and mo-

mentum fluxes were assumed independent of each other, but

their components (temperature and salinity for the former,

meridional and zonal momentum for the latter) are allowed to

spatially covary.

To evaluate the goodness of fit of the Ornstein–Uhlenbeck

process representation, we compare the power spectral density

(PSD) of a theoretically perfect process with matching pa-

rameters at each location with the PSD produced by the time

series. To evenly weight all frequencies, we use the root-mean-

square logarithmic error (RMSLE) metric, normalized by the

mean of the logarithm of the PSD. This effectively corresponds

to taking a normalized root-mean-square error, but in loga-

rithmic space, such that all frequencies contribute uniformly.

For comparison we also evaluate the error in the same way

when the more traditional Gaussian white noise representa-

tion (i.e., constant PSD) is used to fit the model outputs

(Figs. 3b,c,e,f). This reveals that while a white noise repre-

sentation fits the spectrum of surface fluxes very well, the

Ornstein–Uhlenbeck model is still almost everywhere an im-

provement (Figs. 3h,j,k,l). For surface temperature and zonal

momentum fluxes (Figs. 3b,c), the improvement is universal,

but more pronounced in the tropics, where decay times are

longer (Figs. 2a,d). This tropical improvement is also evident in

surface freshwater and meridional momentum flux (Figs. 3e,f),

but with a very slight increase in error in the latter in a small

region west of the Agulhas and in the former in the Southern

Ocean and subpolar North Atlantic. We note that this error

increase is localized to regions where fluxes are weak (Figs. 2b,e),

but the error metric is not weighted by the intensity of the

fluxes, and is based purely on the shape of the power spectrum.

The error increase is furthermore far smaller in magnitude

than the corresponding error decrease elsewhere.

c. Diagnosis of ocean mesoscale eddy fluxes

In addition to the variability driven by turbulent atmospheric

processes, processes creating variability exist within the ocean

interior that are also unresolved by our laminar ocean-only

model, due to the coarseness of its spatial discretization. To

represent this, we utilize spatiotemporal Reynolds averaging,
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in which large-scale temperature variations are potentially

impacted by small-scale anomalies in a purely advective

transport framework. For the temperature, the associated ad-

vection equation (at high Péclet number, such that diffusive

processes can be neglected) reads

›
t
T1 hVj=Ti5 0,

›
t
(T̂1 ~T)1 hV̂1 ~Vj=(T̂1 ~T)i5 0, (29)

where T and V are the scalar and tridirectional vector fields of

temperature and of velocity, respectively, =(�) is the tridirectional

gradient operator, h�j�i is the inner product, �̂ is a tridirectional

spatial averaging operator, and ~� is its associated spatial fluc-

tuation. This separation is such that the lower-resolutionmodel

(LRM) is able to resolve temperatures at the scale of the

spatial average (e.g., T̂), while the higher-resolution model

(HRM) resolves the sum of the spatial average and its fluctuation

(e.g.,T5 T̂1 ~T).We are interested in themean effect of the small

scale on the large scale following application of the spatial aver-

aging operator. Applying this operator, the equation reduces to

›
t
T̂1 hV̂j=T̂i52̂h~Vj= ~Ti . (30)

FIG. 1. Climatological properties of the models used to diagnose our stochastic forcing. (left) Mean (a) heat and (b) freshwater fluxes

from the two-decade coupled model run used to diagnose the external stochastic forcing. Arrows show the strength of the corresponding

mean wind stress. (middle) Mean (c) sea surface temperature and (d) salinity from the LRM, which provides the linearized model

propagator, averaged over the 60-yr trajectory run. Arrows show the strength of the surface velocity field. (right) Mean (e) sea surface

temperature and (f) salinity from the HRM from which the internal flux representation is calculated. Arrows again show the strength of

the surface velocity field.
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As before, we consider the large-scale climatological cycle to

be common to the HRM and the LRM, so we separate (30)

into a trajectory (�) and a temporal fluctuation (�0):

›
t
ðT̂1 T̂ 0Þ1hV̂ 1 V̂ 0j=ðT̂1 T̂ 0Þi52½̂h~Vj= ~Ti1̂h~Vj= ~Ti0� ,

(31)

where ›tT̂1 hV̂j=T̂i52̂h~Vj= ~Ti is the trajectory component

common to both LRM and HRM. The unresolved component

in the LRM is therefore

›
t
T̂ 0 1hV̂j=T̂ 0i1hV̂0j=T̂i52̂h~Vj= ~Ti 0 , (32)

where smaller, second-order time-fluctuating terms (hV̂0j=T̂i)
have been neglected. The flux terms on the left-hand side

represent large-scale interactions between the temporal

mean and its fluctuations, while the right-hand side describes

the temporal fluctuation of small-scale fluxes. We note that

the latter term also contains interactions between the cli-

matology and fluctuations, as can be seen by separating its

interior velocity and temperature components into their own

time-mean and fluctuating terms. Of those various flux terms,

we are interested in the stationary eddy-driven component

(i.e., the transport of small-scale buoyancy fluctuations by

small-scale current fluctuations). Thus, neglecting large-scale

and seasonal to subseasonal interactions, we are left with

the (eddy-driven) internal-flux-induced rate of change in

temperature:

FI
T 52̂h~V0j= ~T 0i0 , (33)

where similar considerations may be made for the internal

eddy-driven salt flux (FI
S).

We apply this approach to determine the turbulent eddy

heat and salt fluxes unresolved in our LRM (the linearmodel of

section 3a) using an eddy-permitting ocean model (the HRM),

which is assumed to resolve a significant portion of these fluxes,

despite its own limitations in resolution. In particular, NEMO

(v3.5) was run for 20 years in its 1/48, 75-level ORCA025

configuration, with climatological forcing. The configuration is

based on that of Grégorio et al. (2015), who produce the

forcing by creating a mean year from the Drakkar Forcing Set

(Brodeau et al. 2010). A smoothly forced ocean-only model

was chosen to minimize the impact of turbulent atmospheric

fluxes (which were determined separately; section 3b). The

spatial averaging of (29) was undertaken by averaging all grid

points in the HRM which fall within a single grid cell of

the LRM.

As in the external case, the time series of resolved internal

turbulent fluxes [FI
T and FI

S, following (33)] were used to de-

termine (via the lag-autocorrelation e-folding time) lI and (via

FIG. 2. Leading diagonal of flux covariancematrices (shading) and flux decorrelation times (contours) for (a)–(f) external (atmospheric)

and (g)–(i) internal (ocean mesoscale eddy) turbulent fluxes. Contours are separated by half a day and increase in darkness, with thicker,

solid contours at 0.5 (lightest), 1.5, and 2.5 (darkest) days. In the latter case, quantities are depth averaged, and contours are separated by

10 days with thicker contours at 10 (lightest), 30, and 50 (darkest) days.
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FIG. 3. Map of error in fitting power spectra of resolved (top) internal (depth-averaged values shown) and (middle),(bottom) external

turbulent fluxes to the theoretical power spectrum (Lindner 2009) of (a)–(f) a white Gaussian noise and(g)–(l) an Ornstein–Uhlenbeck process:

internal heat flux in (a) and (g), external heat flux in (b) and (h), external momentum flux (zonal component) in (c) and (i), internal salt flux in

(d) and (j), and external momentum flux (meridional component) in (f) and (l). The error is given as the ratio of root-mean-square logarithmic

error (RMSLE) to the log-mean value of the spectrum (equivalent to the RMSE:mean ratio in log space), such that the whole spectrum is

weighted evenly. The error is based solely on the shape of the spectrum, and not the intensity of the fluxes as shown in Fig. 2.
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the covariance with other locations) SI. Owing to the much

greater number of elements inSI due to the vertical dimension,

technical constraints prohibit a fully global treatment of spatial

covariance. Instead, we assume spatial covariance to occur

only locally: within a (33 28)2 5 (68)2 area (i.e., in a nine-point

horizontal neighborhood of each location), and throughout the

corresponding vertical. Features larger than this would be re-

solved by the LRM (e.g., Griffies and Treguier 2013). Testing

this demonstrated a substantial difference in our results

compared with the case with no local covariance, but only a

minor difference relative to a larger, 16-point neighbor-

hood. This assumption allows us to use a sparse matrix

representation of SI, reducing computational demand to the

same order as that of SE.

The temperature (FI
T ; Fig. 2g) and salinity (FI

S; Fig. 2h)

components of the subgrid fluxes can be seen to exhibit

generally similar variance distributions, with almost indis-

tinguishable decorrelation time scales (Fig. 2, contours).

Common to both components is the strong imprint of the Gulf

Stream, Agulhas, Zapiola Gyre, Kuroshio, and Antarctic

Circumpolar Current. Their covariance (Fig. 2i) emphasizes

these common regions and is effectively everywhere positive,

while salinity flux variability uniquely shows strong signatures

in the Amazon and Niger outflow regions. There is some

latitudinal dependence of decay time (as may be expected

from the changing deformation radius; e.g., Chelton et al.

1998) but decay times lI largely reflect the variance itself, SI.

For example, the shortest times (on the order of days), at the

equator, may also be found at much higher latitudes in tur-

bulent regions such as the Gulf Stream. Meanwhile, the gyre

interiors show greater persistence, up to many months in the

Pacific, and these are the regions where the fluxes are also

weakest. These quiescent, persistent regions are under-

standably where a constant-spectrum approximation (with

instantaneous decay) fits most poorly. Consistently this is

where the greatest improvements are seen when moving

from a Gaussian white noise representation of internal

fluxes to an Ornstein–Uhlenbeck process representation

(section 2b; Fig. 3), as fitting the error is based on the shape

of the spectrum of fluxes, and is not weighted by their

intensity.

d. Experiment design

As described in section 2, we can use our linear model

configuration and stochastic approach to analyze the variance

evolution of any linear, scalar-valued function of the ocean

state, in both a theoretical (optimized stochastic representa-

tion) and realistic (diagnosed stochastic representation) con-

text. We choose to focus on a range of climatically relevant

metrics: the meridional volume transport (MVT, integrated

from the surface to the depth of maximum overturning),

full-depth meridional heat transport (MHT), and ocean heat

content (OHC; over the present depth range of the majority

of the Argo fleet, 0–2000 m). These metrics are calculated

for the subtropical [at 258N for MVT (0–870m) and MHT

(full depth), from 158 to 408N for OHC (0–2000m)] and sub-

polar [at 558N for MVT (0–1200m) and MHT (full depth),

from 408 to 658N for OHC (0–2000m)] North Atlantic. In all

cases, monthly, annually, and decadally averaged quantities

are considered.

4. Results

a. Subtropical North Atlantic

1) OPTIMAL STOCHASTIC PERTURBATIONS

We now consider (using the limiting cases of section 2b) the

spatially correlated external and decorrelated internal OSPs of

the metrics of section 3d in our linearized ocean model

(section 3a). The sensitivity of the metric to different potential

sources of variability is indicated by the response ratio (Table 1),

following (21). For instance, the correlated surface zonal mo-

mentum flux OSP of yearly MHT has a response ratio of

0.283 1023 PW2 per (cm s21)2 s21 (or 0.283 1023 PW2 cm2 s23).

This implies that a stochastic surface zonal momentum flux

following the correlated OSP which has a magnitude of

1 (cm s21)2 s21 will induce a response in annually averaged

MHT with a variance of 0.28 3 1023 PW2 across a large en-

semble. This noise amplitude is purely illustrative, as the re-

sponse ratio is a linear rescaling that is independent of the

strength of the noise. The response ratios for MVT and MHT

suggest a change in regimewhen averaging times are increased.

For these metrics, sensitivity to large-scale spatially correlated

buoyancy fluxes at the surface remains relatively constant at

all time scales, producing a response of similar amplitude.

Conversely, sensitivity to internal, spatially decorrelated buoy-

ancy fluxes falls sharply with increasing average time, particularly

for MVT. Surface momentum flux sensitivity also sees a sharp

decline from monthly to annual time scales for both MVT and

MHT.OHCvariability exhibits no apparent regime shift of this

nature, with a steady sensitivity to changes in all variables

across all time scales.

So as to understand the mechanisms of variability genera-

tion in the model, we now consider the spatial distribution of

the perturbations (for year-averaged quantities) in more detail

(Figs. 4, 5, and 6). Although the OSP framework does not

permit the isolation of individual mechanisms (as it combines

every possible mechanism which may impact a desired metric,

across all time scales), we may in some cases qualitatively

compare clear patterns with prior studies which have high-

lighted them, particularly studies of adjoint sensitivity fields

similar to those which underlie the complex structure of the

OSP. The optimal perturbations for MVT and MHT (Figs. 4

and 5; shading) are broadly similar. In the uncorrelated, in-

ternal case (panels a and b) the perturbation can have no large-

scale structure and simply reflects the sensitivity of the metric

in question to each individual point acting alone. These are

greatest in theGulf Stream, and along the evaluation line of the

metrics. The large-scale patterns of the correlated external

buoyancy forcing, however, reflect strongly the model mean

state. In particular, subtropical meridional transport variability

displays a strong sensitivity to subpolar surface buoyancy

fluxes, reflected as a large-scale gradient across the northern

boundary of the subtropical gyre. Wind sensitivity displays

very consistent patterns indicating stimulation of Ekman

transport (in the case of zonal wind) and western boundary
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transport change combined with eastern boundary up- or

downwelling (in the case of meridional wind). Upwelling di-

rectly impacts the volume transport locally through geostrophy

(Hirschi et al. 2007; Kanzow et al. 2010; Polo et al. 2014), but

this pattern has also been observed in other sensitivity studies

to trigger pressure anomalies which reach great distances along

the eastern boundary (Pillar et al. 2016; Jones et al. 2018).

The optimal OHC perturbation in the uncorrelated case

(Figs. 6a,b) shows sensitivity to buoyancy fluxes throughout the

region, but particularly at the subpolar–subtropical gyre in-

terface, which has been highlighted as a key region for vari-

ability generation in the Atlantic (Buckley andMarshall 2016).

Also clear, but less pronounced, are local peaks around the

Agulhas retroflection and the Zapiola Gyre. The correlated

surface OSPs are notably different in the cases of temperature

and salinity due to the ability of surface temperature fluxes

to impact heat content variability both through passive and

active mechanisms. These mechanisms, respectively inducing

heat content anomalies through anomalous heat fluxes (passive)

and through dynamical density changes that redistribute

the existing heat reservoir (active), can sometimes conflict

(Stephenson and Sévellec 2021). The active mechanisms are

made clear by the correlated salinity OSP, which cannot

stimulate OHC passively and which instead stimulates clear

positive/negative density gradients across the northern boundary

of the North Atlantic and South Atlantic subtropical gyres, as

well as a local peak in the deep water formation region of the

model (Stephenson et al. 2020). The temperature perturbation

echoes this, but with a distribution which is almost everywhere

equally signed, so as to passively stimulate heat content. The

momentum flux perturbations (Figs. 6e,f) are generally more

complex but can still be seen to broadly coincide with pre-

dominantly zonal streamlines and coastal regions in the zonal

and meridional cases, respectively. There is a notable focus

along the subpolar–subtropical gyre interface for the zonal

momentum flux.

2) DYNAMICAL ATTRIBUTION OF

SUBTROPICAL VARIANCE

Having explored the theoretical patterns and mechanisms

by which oceanic variability can be optimally stimulated in our

model, we turn our attention to the ways in which it is stimu-

lated in a model representation of the real climate system, as

derived in section 2c. Following (26) and (27), application of

each component of the stochastic forcing separately allows the

resultant variance evolution to be partitioned accordingly

(Fig. 7). There is a substantial difference between the nature

of month- and decade-averaged transport metrics, both in the

variance amplitude and in the impacts of different sources, as

in the OSP case (shown by the response ratios of Table 1).

External momentum fluxes are responsible for 52% of month-

averaged MVT and for 63% of month-averaged MHT by the

end of the 60-yr simulation, but just 9% and 10%, respectively,

for decade-averaged MHT. Similarly, the external buoyancy

component contributes just 4% to month-averaged MVT

variance at 60 years, but over 50% in the decade-averaged

case. For year-averaged MVT and MHT, the ocean internal

component is the dominant contributor to the final variance, at
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60% for MVT and 58% for MHT. In addition to differences

between monthly and decadal metrics in the final (60 yr)

variability, a difference in the evolution of this variance is also

apparent. Contributions from all sources are fairly steady in

time for MVT and MHT for the quickly-saturating month-

averaged case. For 10-yr average MVT and MHT, there is a

more notable shift. Following initialization, external momen-

tum and internal buoyancy fluxes are the main causes of error

growth. However, the contribution of wind peaks abruptly,

while the eddy component grows for around 6 years, peaking at

nearly 80% of the total uncertainty. On longer time scales, the

mesoscale-eddy-driven component falls to slightly less than

half of the total contribution over the remainder of the simu-

lation. During this stage, it is the more slowly acting external

buoyancy component that develops and contributes the re-

maining variance.

Notably, as in the OSP perspective, the components of the

OHC variance after 60 years are consistent across different

time averages, with an almost equal contribution (around

45% each) from external and internal buoyancy fluxes. This

follows the slow growth of the internal component, which, at

its lowest, contributes only around 25% of the total uncer-

tainty. This is in contrast with the MVT and MHT, where it

is the external buoyancy contribution that is the slowest to

develop.

Following (28), we consider the spatial distributions of

these contributions to the 60-yr variance for the annually

averaged case, within the transition between the two dis-

cussed (month- and decade-average) cases (Fig. 8; where

the zonal and meridional momentum flux covariance con-

tribution is not shown). There is generally a high level of

agreement between the patterns shown in the optimal case

FIG. 4. Optimal stochastic perturbation for year-averaged subtropical meridional volume transport in (a),(b) the fully spatially un-

correlated cases (depth averages shown) and (c)–(f) the perfectly spatially correlated surface-only cases. Streamlines show time-averaged

volume transport over the upper 2 km in the trajectory. Dashed lines show 258N, the latitude at which the meridional volume transport is

evaluated.
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(i.e., what the ocean ‘‘wants’’; Figs. 4, 5, and 6) and the realistic

case (Fig. 8). This is linked to the overall relative constant

shape of the diagnosed, prescribed forcing (i.e., what the ocean

‘‘gets’’; Fig. 2). Although we remind of the contrast between

the two frameworks (i.e., white versus temporally correlated

noise) when making any such comparisons.

In particular, volume and heat transport variability are

primarily driven by ocean internal buoyancy fluxes local to the

western boundary, and by remote external buoyancy fluxes in

the subpolar region. Zonal surface momentum fluxes, consis-

tently with the OSP, almost exclusively stimulate a zonal band

along the evaluation line (Figs. 8g,h), while in the meridional

case a combination of western boundary current and eastern

along-shelf stimulation pervade. The agreement between the

prescribed (temporally correlated) and optimal (white noise)

forcing is less apparent in the case of OHC. Internal buoyancy

fluxes affecting heat content variability can be predominantly

traced in the prescribed case to highly focused sources in the

noisiest regions of the Atlantic (Fig. 8c vs Figs. 2g,h), while the

optimal white noise perturbation is more evenly distributed

throughout the Atlantic with a local peak in the subtropical–

subpolar ‘‘transition zone’’ (Buckley and Marshall 2016). The

distribution in the prescribed case also exhibits a selection

of locations which make a negative contribution, particu-

larly north of the North Atlantic Current. These arise from

the covariance of neighboring points with an otherwise

strong contribution gradient, and act as a compensatory

‘‘source’’ of predictability relative to that which would

stem from a spatially decorrelated representation. External

buoyancy fluxes contribute over a broader area than the

internal case, with the most concentrated contributions in

the remote subpolar region. The contribution from zonal

wind is almost exclusively along the evaluation region’s

boundaries, whereas in the meridional case (as also seen in

the OSP) the western coasts of Europe and South America

have the clearest impact.

FIG. 5. As in Fig. 4, but for subtropical meridional heat transport (evaluated at 258N, denoted by the dashed line).
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b. Subpolar North Atlantic

1) OPTIMAL STOCHASTIC PERTURBATIONS

Applying the considerations of section 4a(1) to the sub-

polar region, differences emerge in the amplitude of the

response to the optimal stochastic forcing (Table 2). For

subpolar MVT, the correlated surface OSP is much more

effective at generating variability than in the subtropics,

particularly on annual time scales (for which the response

ratio is around 4 times as large in the subpolar region). For

MHT, the values are similar in both regions. The opposite is

apparent in the spatially uncorrelated case, where for ex-

ample the response of monthly MHT to its uncorrelated

optimal noise perturbation is over 6 times as large in the

subtropics as in the subpolar region. OHC again shows

consistent behavior across all time averages, but is much

FIG. 6. As in Fig. 4, but for subtropical ocean heat content (evaluated between 158 and 408N, denoted by the two dashed lines).
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more sensitive to external momentum and internal buoyancy

changes than in the subtropics.

The OSP for meridional volume transport (Fig. 9) shows a

much more concentrated spatial distribution than its subtrop-

ical equivalent. In the uncorrelated ocean interior case, almost

all of the weight is focused at the core of the subpolar gyre

(Figs. 9a,b). For the perfectly correlated surface case, this hotspot,

coincident with the surface outcrop of the model North Atlantic

Deep Water (Stephenson et al. 2020), is complemented by a di-

pole pattern crossing the NorthAtlantic Current (Figs. 9c,d). This

dipole resembles the surface sensitivity of the least damped in-

terdecadal mode of variability (corresponding to a large-scale

thermal Rossby wave) present in an earlier version of the model

(Sévellec and Fedorov 2013). As with the subtropical metric, the

optimal momentum flux patterns are an east–west band in the

zonal case and a predominantly eastern-boundary-following

pattern in the meridional case.

While having many common features with that of MVT, the

optimal pattern for MHT (Fig. 10) is much less focused, ne-

glecting the hotspot of the northwest Atlantic for a more

spread out distribution. The optimal internal perturbation

consists of buoyancy fluxes throughout the subpolar gyre, as

well as in the subtropical–subpolar intergyre region. In the

correlated case, the dipole feature between gyres (also visible

for the subtropical case; Fig. 5) is more heavily emphasized. In

addition to the familiar features of the velocity OSPs, fainter

bands encircle the subpolar gyre.

The OSPs of subpolar OHC variance (Fig. 11) exhibit many

similar behaviors to those described for other metrics. The

uncorrelated interior noise favors the subtropical–subpolar

gyre boundary, while the correlated surface heat flux pattern

targets oppositely the deep water outcrop regions and the wider

North Atlantic, with a particular focus on the North Atlantic

Current. Similarly to the correlated OSP of subtropical heat

content, the correlated subpolar zonal velocity OSP displays a

complex arrangement of alternating bands which broadly co-

incide with strongly zonal currents in the trajectory, while the

meridional pattern predominantly targets coastal upwelling

and downwelling (i.e., alongshore velocity/momentum fluxes)

in these same regions.

2) DYNAMICAL ATTRIBUTION OF SUBPOLAR VARIANCE

Under prescribed sources of variability, the subpolar region

is dominated by external forcing (Fig. 12), which accounts for

FIG. 7. Attribution of uncertainty following initialization for the subtropical ocean metrics [(a)–(c) MVT, (d)–(f) MHT, and (g)–(i)

OHC] over different averaging times [(top) month, (middle), year, and (bottom) decade], following (26) and (27). Green and red shading

indicate variance due to external (atmospheric) momentum and buoyancy fluxes, respectively. Blue shading indicates variance due to

internal buoyancy fluxes (due to oceanic mesoscale eddy forcing). Dashed white contours show percentages (inset text) of the total

variance. Shaded boxes show the averaging window over which the metric is evaluated. Variance due to surface momentum fluxes is

partitioned into zonal (dark green) and meridional (light green) components, where shading between them indicates covariance.
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up to 94% of the total variance after 60 years in the case of

month-averaged heat transport. As in the subtropics, the

meridional transport metrics exhibit a regime shift when

moving frommonth-averaged quantities (up to 86%momentum-

driven) to decade-averaged quantities (where over 60% of the

final variance canbe attributed to surface buoyancyfluxes). For all

time averages, momentum fluxes contribute most of the early-

stage error growth of MVT and MHT following initialization,

but the buoyancy component becomes more established over

the first decade. MVT andMHT are much less variable overall

than in the subtropics, while heat content variance is slightly

higher, again showing consistent behavior across all considered

time averages. Also notable is that, despite full convergence

not being reached after the 60 years, heat content seemingly

shows a higher degree of saturation in the subpolar region than

in the subtropical region.

The spatial patterns of subpolar variance origins in response

to prescribed fluxes (Fig. 13; where the zonal and meridional

FIG. 8. Spatial distribution of sources of accumulated variance for subtropical ocean metrics [(top) MVT, (middle) MHT, and (bottom)

OHC] after 60 years of simulation following (26), (27), and (28). Variance per unit volume due to internal buoyancy fluxes is depth

integrated to give the (a)–(c) water column total contribution per unit area while (d)–(l) the variance due to external momentum [zonal

component in (g)–(i), meridional component in (j)–(l)], and buoyancy fluxes in (d)–(f) are surface distributions of contribution per unit

area. Dashed lines show the latitude (MVT and MHT metrics) or region (OHCmetric) where the metric is evaluated. Note the differing

(sometimes by orders of magnitude) color scales, reflecting the differing contributions shown in Fig. 7.
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momentum flux covariance contribution is not shown) are

generally less similar to the corresponding optimal pertur-

bations [section 4b(1)] than in the subtropics (section 4a),

although we again treat comparisons between the two frame-

works with caution.We further note that the prescribed forcing

may project more strongly onto nonleading eigenvectors, but

that we restrict our comparisons to the leading eigenvector, as

it corresponds to the optimal forcing. The differences are

particularly clear for internal buoyancy fluxes, which for all

metrics share a commonmaximum at around 408N, far south of

the corresponding peaks in the uncorrelated OSPs. For MVT

there is a large contribution on the evaluation line west of

Scotland, apparently coincident with a local peak in the un-

correlated OSP, but the most sensitive region in the central

subpolar gyre is only weakly stimulated. As in the subtropical

region, negative contributions flank the Gulf Stream and its

extension, acting as a compensatory ‘‘source’’ of predictability

offsetting its covarying sinks. Variance due to (temporally

correlated) prescribed external buoyancy fluxes more closely

agrees with the (white noise) spatially correlated OSP. In

particular, the northern portion of the optimal dipole shape is

discernible forMHT, while the deep water outcrop hotspot can

be faintly recognized, along with the west-European shelf in

the case of MVT. Heat content variability due to external

buoyancy fluxes largely coincides with the most concentrated

region of the correlated OSP, in the North Atlantic Current,

but shows little agreement elsewhere. The external momentum

flux components are qualitatively similar for all three metrics,

again stimulating transport across constant latitude lines in the

zonal case [where the noise input (Fig. 2) constructively stim-

ulates the most sensitive regions (Figs. 9–11)], while high-

lighting the coasts for the meridional case. Both zonal (in the

case of MVT and OHC) and meridional (in the case of MHT)

momentum flux contributions are offset by a weakly negative

compensation bordering the regions of strongest positive var-

iance stimulation.

5. Discussion and conclusions

The climate system contains a number of sinks of predict-

ability or, equivalently, sources of uncertainty, from which

unpredictable noise can grow and eventually overwhelm pre-

dictable signal (such as that provided to an initialized forecast).

In this study, we have considered the sources (and compensa-

tory sinks) of uncertainty in metrics of the North Atlantic from

two perspectives. In the first perspective, two distinct optimal

stochastic perturbations were calculated, encapsulating the

patterns which generate maximum variance in the metric.

These are a representation of the sensitivity of the metric to

random forcing. The perturbations differ by their spatial

coherence: one being fully spatially uncorrelated, with the

other fully correlated over the surface layer. These are the

extrema of possible spatial correlation, and respectively

mimic, in an idealized sense, the behavior of stochastic

fluxes due to (mesoscale) oceanic turbulence and (synoptic

scale) atmospheric turbulence. In the second perspective,

the optimal stochastic forcing was instead replaced with a

prescribed, model-diagnosed stochastic representation of
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these sources, including spatiotemporal covariance. The

properties of the representations were diagnosed frommore

complex (fully coupled and eddy-permitting) models. This

has allowed us to compare the commonalities between the

optimal and representative cases (albeit in a limited way,

given their differences in spatiotemporal correlation). We

have further been able, in the diagnosed case, to dynami-

cally attribute variability to its origins. The latter ability

notably forgoes the more typical ensemble attribution ap-

proach, which generally necessitates many simulations in a

FIG. 10. As in Fig. 4, but for subpolar meridional heat transport (evaluated at 558N denoted by the dashed line).

FIG. 9. As in Fig. 4, but for subpolar meridional volume transport (evaluated at 558N denoted by the dashed line).
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high-complexity model, and cannot ensure causality. The

sources determined by these two perspectives can qualita-

tively be seen as what the ocean ‘‘wants’’ (in order to max-

imize variability) and what the ocean ‘‘gets’’ (in the real

world). Regions where the ocean ‘‘gets what it wants’’ offer

particularly poor prospects for prediction, as both the sources

of uncertainty and their mechanisms of transformation into

large-scale uncertainty play a role. In such locations, any signal

provided to an initialized model is more likely to degrade due

to the coaction of noise and the ocean’s dynamical response to

it. This corresponds in our results to faster growth rates and

greater uncertainties.

Variations on the OSP technique have been utilized in the

context of optimal excitation of MOC variability in a number

of studies [a thorough review is provided by Monahan et al.

(2008)]. However, due to the complexity of the problem these

studies are typically undertaken in an idealized context, uti-

lizing either box models (e.g., Tziperman and Ioannou 2002;

FIG. 11. As in Fig. 4, but for subpolar heat content (evaluated between 408N and 658N denoted by the two dashed lines).
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Zanna and Tziperman 2008) or idealized ocean models (e.g.,

Sévellec et al. 2007, 2009). We have adapted the framework

to a global OGCM by reducing the covariance matrix to

block diagonal form and considering its limiting cases. We

note (e.g., Farrell and Ioannou 1996) the close relationship

between optimal stochastic forcings and optimal initial

perturbations: the former is in a sense a linear combination

of the latter such that the coefficients are determined by the

OSP approach. As the linear optimal perturbation of a lin-

ear ocean metric is simply a rescaling of the adjoint sensi-

tivity field (Sévellec et al. 2007), we may consider the

sources highlighted by the OSP in the context of past adjoint

sensitivity studies, where they appear robust across differing

models, metrics, and time scales. Recurring mechanisms

evident in our study include, for instance, the along-shelf

stimulation by meridional wind and subsequent triggering of

coastal pressure anomalies, particularly along the west coast

of Africa. This pattern has been stressed by Jones et al.

(2018) in an adjoint sensitivity study of Labrador Sea heat

content, Loose et al. (2020) regarding heat transport across

the Greenland–Scotland Ridge, and Pillar et al. (2016) in the

context of meridional overturning in the subtropics. The

latter study additionally analyzes fainter alternating bands

of wind stress sensitivity as also seen here, concluding that

these communicate pressure anomalies via topographically

steered Rossby waves.

Common to the surface thermohaline OSPs of all metrics

considered here is a large-scale buoyancy gradient pivoting on

the North Atlantic Current, which has in dynamical studies

been seen to stimulate subtropical (Pillar et al. 2016; Kostov

et al. 2019) and subpolar (Sévellec et al. 2017) volume trans-

port, as well as basinwide (Sévellec and Fedorov 2017) and

Labrador Sea (Jones et al. 2018) heat content. This is joined

by a ‘‘hotspot’’ common to the heat content and subpolar

volume transport OSPs in both the correlated and uncor-

related cases which is associated with the passive transport

of buoyancy anomalies via deep water pathways (Sévellec
and Fedorov 2015; Stephenson et al. 2020).

To estimate the extent to which these intrinsic ocean sensi-

tivities are exploited by actual sources of stochastic variability,

and to quantify the respective contribution of these sources to

oceanic uncertainty, we then considered the metrics from the

second, prescriptive, perspective. A number of studies have

dynamically attributed oceanic changes to prescribed external

surface forcings using adjoint methods (Pillar et al. 2016;

Sévellec et al. 2018; Smith andHeimbach 2019) but the relative

quantification of internal oceanic mesoscale eddy contribu-

tions has thus far been restricted to a resource-intensive en-

semble framework (e.g., Bessières et al. 2017). The associated
sensitivity to initial conditions suggests that these contribu-

tions may present a key sink of predictive skill in initialized

high-resolution climate models however, and so are of increasing

FIG. 12. As in Fig. 7, but for subpolar ocean metrics
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importance. By incorporating temporal correlation, we have

presented a realistic stochastic representation (an Ornstein–

Uhlenbeck process) of the slowly evolving ocean mesoscale

that can also be projected onto the adjoint sensitivity fields.

This stochastic representation fits the power spectrum of

modeled eddy buoyancy fluxes much more closely than

Gaussian white noise, which is the more commonly employed

framework when considering atmospherically driven low-

frequency variability [e.g., the review of Farneti (2017), and

references therein]. This has allowed us to bypass the ensemble

approach in exchange for the more numerically efficient dy-

namical method for both oceanic (internal) and atmospheric

(external) sources of error growth.

The diagnosed stochastic forcing approach reveals a regime

change in meridional transport variability for longer time av-

erages. In particular, we have shown that surface momentum

fluxes dominate for month-averaged transport metrics while

surface buoyancy fluxes take over for decade averages. This

regime shift is well documented (Dong and Sutton 2001;

Hirschi et al. 2007; Polo et al. 2014) but we find that in the early

stages of the error growth, and for annual averages, it is ocean

internal buoyancy fluxes, due to mesoscale eddies, that form

the greatest contribution in the subtropics. As early-stage

growth is when the signal-to-noise ratio diminishes most rap-

idly, it may be internal sources that present the greatest barrier

to subtropical predictability. Our results indicate that these

sources ultimately account for up to 60% of annually averaged

volume transport variability at 258N. This quantification broadly

agrees with the varying estimates of ensemble studies (albeit at

the higher end; e.g., Grégorio et al. 2015; Jamet et al. 2019),

which typically place a local peak in internal oceanic contri-

butions to MVT variability near 258N (our subtropical metric

latitude) with a corresponding trough near 558N (our subpolar

metric latitude) consistently with the decrease we show here.

This coincides with an overall lower maximum amplitude of

meridional transport variability at 558N, which is reachedmuch

more slowly, suggesting that observations near this latitude

(e.g., from the OSNAP observational array; Lozier et al. 2017)

will remain predictable for longer than those near 258N (e.g.,

from the RAPID observational array; Cunningham et al.

2007), particularly for lower frequencies. We did not find any

such regime shift in the case of ocean heat content, whose

variability for all time averages is dominated by external

forcing, particularly in the more quiescent subpolar region

[consistent with the ensemble study of Sérazin et al. (2017)].

Conversely to MVT and MHT, the slower growth in OHC

uncertainty in the subtropics suggests it is more predictable

there than in the subpolar region, where greater depths are

frequently exposed to atmospheric forcing.

When comparing the theoretically deduced (white noise)

OSPs with the sources of variability in response to diagnosed

(temporally correlated) stochastic forcing, a general overlap

FIG. 13. As in Fig. 8, but for subpolar ocean metrics. We note again that the differing contributions (as shown in Fig. 12) lead to large

differences in the color scales between panels.
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was observed in the subtropical region. This suggests efficient

stimulation of the preferred mechanisms of the ocean, despite

the differing temporal correlation of the two frameworks. This

was less true of the subpolar region, which may go some way to

explaining the smaller diagnosed variance there relative to the

subtropics, despite its higher sensitivity to surface forcing

(quantified via response ratios) in the optimal framework.

Regarding the subsurface component, it is commonly discussed

that the smaller deformation radius at higher latitudes neces-

sitates an ocean model with a fully eddy-resolving resolution in

order to faithfully represent the internal contribution. As such,

this contribution is likely underrepresented in eddy-permitting

ensemble studies, which typically portray it as very minor (e.g.,

Grégorio et al. 2015; Leroux et al. 2018). This also impacts our

own approach of diagnosing mesoscale eddy fluxes in an eddy-

permitting model. However, we reinforce that even without

prescribed forcing, the theoretical OSP framework has allowed

us to quantify the subtropical sensitivity of meridional trans-

ports to spatially uncorrelated noise as being many times as

large as those in the subpolar region. It is thus apparent that

these large-scale oceanic metrics are simply less affected by

small-scale noise in this region, potentially offering increased

benefit from targetedmonitoring systems, which can be used to

initialize forecasts in such a way that the initialized signal is

better protected from degradation by chaotic internal noise.

Notably, the opposite was found to be true for subpolar heat

content, which also displayed faster growing uncertainty in the

diagnosed case.

Previous studies investigating interactions between the

oceanic mesoscale and the low-frequency large scale (such as

the interactions considered here) present conflicting behavior.

While some studies show constructive stimulation of low-

frequency variability (e.g., Berloff et al. 2007; Arbic et al.

2014), others show its destruction by small-scale noise (e.g.,

LaCasce and Pedlosky 2004; Hochet et al. 2020; Sévellec et al.
2021). Other approaches still suggest that ocean eddies may

increase predictability by facilitating surface–depth commu-

nication, increasing persistence (e.g., Kravtsov 2020; Zhang

et al. 2021). The framework of our study describes variability

from a linear, ensemble perspective in which any divergence

in phase space constitutes an irreversible accumulation of

error (a source of uncertainty). This framework is not well

suited to isolating such destructive feedbacks, but we have

seen that some contributors to the net positive error growth

are weakly negative. This slows this growth and restores

some predictability. This is particularly apparent along the

boundaries of noisy regions such as the North Atlantic

Current.

We finally comment on some other limitations of the ap-

proach. While computationally efficient, we have used a line-

arized model under the assumption of small deviations from

a trajectory, alongside a stationary, band-limited stochastic

representation of dynamical processes which, in reality, are

highly intricate. For example, our internal turbulent buoyancy

flux representation cannot encompass coherent interbasin ex-

changes, which have been speculated to be an important

mechanism of Atlantic MOC variability (e.g., Biastoch et al.

2008). While a coupled climate model was used to determine

the surface fluxes, the modeled ocean response is unable to

interact with these, precluding the existence of any coupled

feedbacks and associated modes, which may have a pro-

nounced impact on interdecadal variability (e.g., Liu 2012).

Despite these drawbacks, the analytical foundation of the

framework leads to an efficient and thorough method for in-

vestigating the sources of oceanic variance and associated

impacts on predictability. The result is a causal attribution of

oceanic uncertainty (otherwise requiring a theoretically in-

finite ensemble) that can be cleanly partitioned into its sources

and locations.
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