
HAL Id: hal-03444470
https://hal.science/hal-03444470

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The de Rham-Fargues-Fontaine cohomology
Arthur-César Le Bras, Alberto Vezzani

To cite this version:
Arthur-César Le Bras, Alberto Vezzani. The de Rham-Fargues-Fontaine cohomology. Algebra &
Number Theory, 2023. �hal-03444470�

https://hal.science/hal-03444470
https://hal.archives-ouvertes.fr


ar
X

iv
:2

10
5.

13
02

8v
1 

 [
m

at
h.

A
G

] 
 2

7 
M

ay
 2

02
1

THE DE RHAM-FARGUES-FONTAINE COHOMOLOGY

ARTHUR-CÉSAR LE BRAS AND ALBERTO VEZZANI

ABSTRACT. We show how to attach to any rigid analytic variety V over a perfectoid space P

a rigid analytic motive over the Fargues-Fontaine curve X (P ) functorially in V and P . We

combine this construction with the overconvergent relative de Rham cohomology to produce a

complex of solid quasi-coherent sheaves over X (P ), and we show that its cohomology groups

are vector bundles if V is smooth and proper over P or if V is quasi-compact and P is a

perfectoid field, thus proving and generalizing a conjecture of Scholze. The main ingredients

of the proofs are explicit B1-homotopies, the motivic proper base change and the formalism of

solid quasi-coherent sheaves.
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1. INTRODUCTION

The aim of this article is twofold. On the one hand, we define a relative version of the over-

convergent de Rham cohomology for rigid analytic varieties over an (admissible) adic space

S in characteristic zero, generalizing the work of Große-Klönne [GK00, GK02, GK04] for

rigid varieties over a field. We prove that this cohomology theory can be canonically defined

for any variety X locally of finite type over S, takes values in the infinity-category of solid

quasi-coherent OS-modules, in the sense of Clausen-Scholze [Sch20a], is functorial, has étale

descent and is B1-invariant. In particular, we deduce that it is motivic, i.e. it can be defined as

a contravariant realization functor

dRS : RigDA(S)→ QCoh(S)op

on the (unbounded, derived, stable, étale) category RigDA(S) of rigid analytic motives over S
with values in the infinity-category of solid quasi-coherent OS-modules. As a matter of fact,

in order to prove the properties above we make extensive use of the theory of motives, and

more specifically of their six-functor formalism [AGV20] and of a homotopy-based relative

version of Artin’s approximation lemma (Theorem 3.8) inspired by the absolute motivic proofs

given in [Vez18]. Moreover, if X is a proper smooth rigid variety over S, dRS(X) is a perfect

complex, whose cohomology groups are vector bundles. To prove this finiteness result, we

combine the characterization of dualizable objects in QCoh(S) due to Andreychev, [And21]

(see also[Sch20a]), the motivic proper base change and the “continuity” property for rigid

The authors are partially supported by the Agence Nationale de la Recherche (ANR), projects ANR-14-CE25-

0002 and ANR-18-CE40-0017.
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analytic motives (see [AGV20]). The latter result, which is based on the use of explicit rigid

homotopies, states that whenever one has a weak limit of adic spaces (in the sense of Huber)

X ∼ lim
←−

Xi then any compact motive over X has a model over some Xi. We apply this fact to

reduce ourselves to the case S = SpaA with A being a classical Tate algebra, and eventually

to the case of a field S = Spa(K,K◦), by considering the limit x ∼ lim
←−x∈U

U whenever x is a

closed point (a technique that was already exploited in [Sch12]).

On the other hand, in the second part of this paper, we define a motivic version of the relative

Fargues-Fontaine curve that works for smooth rigid analytic varieties over a perfectoid space P
in positive characteristic. More specifically, we define a monoidal functorD from rigid analytic

motives over P to the category of rigid analytic motives over the relative Fargues-Fontaine

curveX (P ). In particular, this lets us associate to an adic space V which is locally of finite type

over P the motive of a rigid analytic variety over X (P ) (and not a relatively perfectoid space!).

Let us sketch the simple idea of the construction in the case where P = Spa(C,C◦), with

C a complete algebraically closed non-archimedean field of characteristic p. The adic space

Y[0,∞)(C), as defined by Fargues and Fontaine, is equipped with an action of Frobenius ϕ such

that, for any quasi-compact neighborhood U of the point C one has U ⊂ ϕ(U). By motivic

continuity applied to SpaC ∼ lim
←−ϕ∗

U we can extend any motive V over C to some motive

U(V ) defined on U . We may also extend the (motivically invertible!) geometric Frobenius

map ϕ∗V ∼= V to some gluing datum U(V ) ∼= (ϕ∗U(V ))|U enabling us to stretch U(V ) to

Y[0,∞)(C) and eventually to X (C).
This motivic take on Dwork’s trick admits an explicit description when applied to varieties

with good reduction and, in general, gives a “globalization” of the motivic tilting equivalence

RigDA(C) ∼= RigDA(C♯) of [Vez19a] at the level of each classical point C♯ of X (C). The

functor D above can be considered as being the avatar of the pull-back p∗ along the map

p : Y(0,∞)(C)→ C as if it existed in adic spaces (and not just diamonds).

Putting the two main results above together, we are led to consider the composition

RigDA(P )
D
−→RigDA(X (P ))

dRX(P )
−→ QCoh(X (P ))op

giving rise to a functorial cohomology theory for adic spaces which are locally of finite type

over a perfectoid space P in positive characteristic, that takes values in the category of solid

quasi-coherent sheaves on the relative Fargues-Fontaine curve X (P ). When P is a geometric

point, this is closely related to a conjecture which was formulated by Fargues in [Far18, Con-

jecture 1.13] and Scholze in [Sch18, Conjecture 6.4]; but the construction makes good sense

for any P . More precisely (see Theorem 6.3):

Theorem. Let P be an admissible perfectoid space of characteristic p. There is a functor

RigDA(P )→ QCoh(X (P ))

M 7→ dRFF
P (M)

where QCoh(X (P )) is the category of solid quasi-coherent sheaves over the relative Fargues-

Fontaine curve X (P ) with the following properties:

(1) It satisfies étale descent, B1-invariance and a Künneth formula.

(2) For any untilt P ♯ of P , the pullback of dRFF
P (M) along P ♯ → X (P ) is isomorphic to

the overconvergent de Rham cohomology dRP ♯(M ♯) of the motive M ♯ corresponding

to M via the motivic equivalence RigDA(P ) ∼= RigDA(P ♭).
(3) The object dRFF

P (M) is a perfect complex of OX (P )-modules whose cohomology

sheaves are vector bundles, whenever M is (the motive of) a smooth proper variety

over P , or whenever M is compact and P is a perfectoid field.
2



Examples of admissible perfectoid spaces include those which are pro-étale over rigid ana-

lytic varieties, and examples of compact motives over a field include motives of quasi-compact

smooth varieties, or analytifications of algebraic varieties. The cohomology theory induced

by dRFF
P will be called the de Rham-Fargues-Fontaine cohomology. Its construction is purely

made at the level of the generic fibers, makes no use of log-geometry and requires weak hy-

potheses on the base P . It is expected to enhance the de Rham and the de Rham-Fargues-

Fontaine realizations with coefficients, in a compatible way with the motivic six-functor for-

malism.

One may pre-compose this realization functor with the motivic tilting equivalence

RigDA(P ) ∼= RigDA(P ♭)

allowing P to be a perfectoid space in characteristic 0 as well (in this case, the target category

would be obviously QCoh(X (P ♭)) or with the analytification functor. Viceversa, if P is a

characteristic p perfectoid space, one can post-compose it with specialization along a chosen

untilt P ♯ → X (P ) and get a perfect complex over it. By doing so when P = C is an alge-

braically closed perfectoid field of characteristic p, we recover a construction from [Vez19b]

and also Bhatt-Morrow-Scholze’s B+
dR(C

♯)-cohomology [BMS18, Section 13] for each untilt

C♯ of C. This proves that dRFF satisfies all the requirements of Scholze’s [Sch18, Conjec-

ture 6.4]. There is also a connection to rigid cohomology, that we sketch at the end of the article.

In Section 2 we begin by recalling the properties of rigid analytic motives and we give a

proof of their pro-étale descent. This allows us to define motives over any (admissible) dia-

mond. In Section 3 we give a definition of relative dagger varieties (or relative varieties with an

overconvergent structure) and we show that up to homotopy, any smooth relative variety can be

equipped with such a structure. In Section 4 we introduce the de Rham complex of a relative

dagger space and prove that it gives rise to a motivic realization with values in solid modules,

or even split perfect complexes, under suitable hypotheses.

In the second part, we build the motivic rigid-analytic version of the relative Fargues-

Fontaine curve and we compare it to the usual construction in Section 5. Finally, in Section 6

we put together the ingredients of the previous sections introducing the de Rham-Fargues-

Fontaine cohomology and its properties, including its relation to the cohomology theories

mentioned above.

Acknowledgments. We are grateful to Grigory Andreychev for having shared and discussed his

results that we use in Section 4, to Dustin Clausen for answering some questions on the theory

of analytic rings, to Guido Bosco for having suggested the proof of Lemma 4.29, to Fabrizio

Andreatta for having pointed out the analogy to Dwork’s trick and to Joseph Ayoub for many

discussions on Theorem 2.14. We also thank Martin Gallauer, Elmar Große-Klönne and Peter

Scholze for their helpful remarks on preliminary versions of this paper.

2. ADIC ÉTALE MOTIVES

We start by laying down the main definitions and properties of the type of adic spaces we

consider, and the homotopy theory associated to them.

2.1. Definitions and formal properties. Our conventions and notations are mostly taken from

[Ayo15] and [AGV20] even if we typically omit any visual reference to the étale topology and

the ring of coefficients in what follows.

Definition 2.1. We say that a Tate Huber pair (A,A+) over Zp is strongly stably uniform if for

any n ∈ N and any map (A〈T1, . . . , Tn〉, A
+〈T1, . . . , Tn〉) → (B,B+) obtained as a compo-

sition of rational localizations and finite étale maps (as defined in [Sch12, Definition 7.1(i)]),
3



the space Spa(B,B+) is uniform, i.e. the ring B+ is (open and) bounded. An adic space

is strongly stably uniform if it is locally the spectrum of a strongly stably uniform pair. Ex-

amples of strongly stably uniform spaces include diamantine spaces [HK20, Theorem 11.14],

sous-perfectoid spaces [SW20, Proposition 6.3.3], and reduced rigid analytic varieties over

non-archimedean fields [BGR84, Theorem 6.2.4/1]. We let Adic be the full subcategory of

quasi-separated adic spaces over Zp which consists in strongly stably uniform spaces having a

small cover of affinoid open spaces with finite (topological) Krull dimension. Its objects will

be sometimes referred to as admissible adic spaces. For any full subcategory C of Adic we let

Cqcqs be the subcategory of C of quasi-compact quasi-separated morphisms (referred to as qcqs

from now on). We let Bn and Tn be the adic spaces

Bn = Spa(Zp〈T1, . . . , Tn〉,Zp〈T1, . . . , Tn〉)

Tn = Spa(Zp〈T
±1
1 , . . . , T±1

n , 〉,Zp〈T
±1
1 , , . . . , T±1

n 〉).

We remark that Bn
S = S ×Zp B

n and Tn
S = S ×Zp T

n lie in Adic for any S ∈ Adic and any

n ∈ N.

Definition 2.2. Let f : X → S be a morphism in Adic.

• We say that f is étale if it is, locally on X and S the composition of an open immersion

and a finite étale morphism. A collection of étale maps {Xi → S} is an étale cover if

it is jointly surjective on the underlying topological spaces.

• We say f is smooth (or even, by abuse of notation, that X is a smooth rigid analytic

variety over S) if it is, locally on X , the composition of an étale map X → BN
S and

the canonical projection BN
S → S for some N . The category of smooth rigid analytic

varieties over S will be denoted by Sm /S.

We point out that if S is in Adic and f is smooth (using the above definition) then X lies in

Adic as well. Also, we remark that pullbacks of smooth [resp. étale] maps exist in Adic and

they are again smooth [resp. étale].

Remark 2.3. As a matter of fact, in all what follows one can replace the category Adic with any

subcategory of adic spaces over Zp which are locally of finite Krull dimension that is stable un-

der open immersions, finite étale extensions as well as relative discs, and that contains reduced

rigid analytic varieties and relative Fargues-Fontaine curves. Alternatively, one may consider

the (larger) category of rigid spaces as defined by [FK18] and considered in [AGV20]. In this

article, we stick to an adic perspective and we leave it to the reader to extend the statements

and definitions of the present article to any more general setting.

Definition 2.4. Let S be in Adic.

• For any X ∈ Sm /S we let QS(X) be the (free) presheaf of Q-modules represented by

X . That is Γ(Y,QS(X)) = Q[HomS(Y,X)].
• We let Psh(Sm /S,Q) be the infinity-category of presheaves on the category Sm /S

taking values on the derived infinity-category of Q-modules, and we let RigDAeff(S,Q)
be its full stable infinity-subcategory spanned by those objects F such that:

(1) For any X ∈ Sm /S the canonical map F(X ×S B1
S) → F(X) is an equivalence

(we refer to this property as B1-invariance).

(2) For any Cech étale hypercover U → X in Sm /S the canonical map F(X) →
holimF(U) is an equivalence (we refer to this property as étale descent).

We will typically omit Q in the notation. The category RigDAeff(S) is equipped with

the structure of a symmetric monoidal infinity-category and a localization functor

L : Psh(Sm /S,Q)→ RigDAeff(S)

which is symmetric monoidal and left adjoint to the canonical inclusion.
4



• For any X ∈ Sm /S we use the notation QS(X) also to refer to the object LQS(X) in

RigDAeff(S). There is a symmetric monoidal structure on RigDAeff(S) which is such

that QS(X)⊗QS(Y ) ∼= QS(X ×S Y ).
• We let TS be the object of Psh(S,Q) which is the split cokernel of the morphism

QS(S) → QS(T
1
S) induced by 1 and we set RigDA(S,Q) = RigDAeff(S,Q)[T−1

S ] in

PrL (see [Rob15, Definition 2.6]). We will typically omit Q in the notation. The (exten-

sion of the) endofunctor M 7→M ⊗T⊗n
S in RigDA(S) will be denoted by M 7→M(n)

and its quasi-inverse by M 7→ M(−n). We still denote by QS(X) the images of these

objects by the natural functor RigDAeff(S)→ RigDA(S).

• When we write RigDA(eff)(S) in a statement, we mean that the statement holds both

for RigDAeff(S) and for RigDA(S).

Remark 2.5. Contrarily to [AGV20], we use the notation RigDA(eff)(S) to refer both to the

presentable category in PrL as well as to the structure RigDA(eff)(S)⊗ of symmetric monoidal

category in CAlg(PrL) it is equipped with.

Remark 2.6. We now give a triangulated, more down-to-earth definition of RigDAeff(S). One

can consider the derived category of étale sheaves on Sm /S with values in Q-modules. Its

full subcategory given by complexes of sheaves F such that RΓ(X,F) ∼= RΓ(B1
X ,F) is (the

triangulated category underlying) RigDAeff(S). We remark that there is a left adjoint to the

canonical inclusion, and that these categories are actually DG-categories. Similarly, we can

give a more down-to-earth definition of RigDA(S): its objects are collections {Fi}i∈N of com-

plexes of sheaves in RigDAeff(S) together with quasi-isomorphismsFi → Hom(TS,Fi+1).

Remark 2.7. We now give a more blue-sky definition of RigDAeff(S). By [Lur17, Proposition

4.8.1.17] one can consider the (presentable) infinity-category Shét(Sm /S) of simplicial étale

sheaves on Sm /S as well as its tensor product Shét(Sm /S)⊗ChQ with the derived infinity cat-

egory of (chain complexes of) Q-modules and let RigDAeff(S) be its full infinity-subcategory

of B1
S-invariant objects (one may equivalently consider étale hypersheaves by [AGV20, Corol-

lary 2.4.19]). We can also define RigDA(S) as the homotopy colimit lim
−→

RigDAeff(S) follow-

ing the functor F 7→ F ⊗ TS , computed in the category of presentable infinity-categories and

left adjoint functors PrL. Equivalently, it is the homotopy limit lim
←−

RigDAeff(S) following the

functor F 7→ Hom(TS,F), computed in the category of presentable infinity-categories and

right adjoint functors PrR (or in infinity-categories) by [Rob15, Corollary 2.22].

Remark 2.8. By definition, (a suitable localization of) the projective model structure on

presheaves makes the natural functor Sm /S → RigDA(S) universal among functors

R : Sm /S → to Q-enriched model categories M in which R(X) ∼= holimR(U) for any

Cech étale hypercover U → X , the maps R(B1
X) → R(X) are invertible in the homotopy

category, and R(M) 7→ R(T 1 ⊗M) is an automorphism on the homotopy category. The same

is true by replacing M with an arbitrary infinity-category with small colimits (see [Rob15, The-

orem 2.30]). We remark that, as we take coefficients in Q, the condition on Cech hypercovers

extends automatically to arbitrary étale hypercovers (see [AGV20, Proposition 2.4.19]).

Remark 2.9. For most of the results in this article, it is possible to replace Q with Z[1/p] or even

more general ring spectra, by eventually restricting the category Adic to its full subcategory

of objects having a suitably bounded point-wise cohomological dimension (see for example

[AGV20, Proposition 2.4.22]). As we are mostly interested in a rational cohomology theory

here, we leave this task to the reader.

The following statement follows from the results of [AGV20]. For the definition of the

category of [symmetric monoidal] presentable infinity categories and [symmetric monoidal]
5



left adjoint functors PrL [resp. CAlg(PrL)], as well as the definition of compactly generated

[symmetric monoidal] presentable categories and [symmetric monoidal] compact-preserving

left adjoint functors PrLω [resp. CAlg(PrLω)] we refer to [Lur09, Definitions 5.5.3.1 and 5.5.7.5]

[resp. to [Lur17, Proposition 4.8.1.15 and Lemma 5.3.2.11(2)]].

Theorem 2.10. (1) For any S ∈ Adic the category RigDA(eff)(S) is a compactly generated

stable symmetric monoidal category, in which a set of compact generators is given by

QS(X)(n) withX ∈ Sm /S affinoid and n ∈ Z. Moreover, QS(X)(n)⊗QS(X
′)(n′) ∼=

QS(X ×S X
′)(n+ n′).

(2) For any morphism f : S ′ → S inAdic the pullback functorX 7→ X×SS
′ induces a sym-

metric monoidal left (Quillen) adjoint functor f ∗ : RigDA(eff)(S ′) → RigDA(eff)(S)
whose right adjoint will be denoted by f∗. If f is quasi-compact and quasi-separated,

then f ∗ is compact-preserving.

(3) One can define contravariant functors RigDA(eff)∗ from Adic to the infinity-category

CAlg(PrL) of symmetric monoidal, presentable infinity categories and left adjoint sym-

metric monoidal functors, sending S to RigDA(eff)(S) and a morphism f to f ∗. Their

restrictions to Adicqcqs take values in CAlg(PrLω).
(4) For any smooth morphism f : S ′ → S in Adic the “forgetful” functor (X →

S ′) 7→ (X → S ′ → S) induces a compact-preserving left (Quillen) adjoint func-

tor f♯ : RigDA(eff)(S ′)→ RigDA(eff)(S) whose right adjoint coincides with f ∗.

(5) The functors RigDA(eff)∗ satisfy étale hyperdescent. This means that for any étale hy-

percover U → S in Adic which is levelwise representable, one has the following equiv-

alence in CAlg(PrL):

RigDA(eff)(S) ∼= limRigDA(eff)(U).

Proof. As S is locally of finite Krull dimension by hypothesis, it is (Q, ét)-admissible in the

sense of [AGV20, Definition 2.4.14]. Points (1)-(2)-(3) follow then from [AGV20, Propositions

2.1.21 and 2.4.22], Point (4) can be deduced from (1) and [AGV20, Proposition 2.2.1] while

Point (5) is proved in [AGV20, Theorem 2.3.4]. �

Remark 2.11. The formal properties above hold true already for the infinity categories of hyper-

sheaves Shét(Sm /S) and are easily inherited by RigDAeff(S) and its stabilization RigDA(S).
Homotopies play therefore no special role in their proofs.

2.2. Continuity and pro-étale descent. We now list further properties which are satisfied by

rigid motives. In all what follows the role of homotopies over B1 is crucial, and the analogous

statements for the categories of (hyper)sheaves are not expected to hold in general. We start by

a “spreading out” result.

Theorem 2.12 ([AGV20, Theorem 2.8.14 and Remark 2.3.5]). Let {Si} be a cofiltered diagram

in Adic with quasi-compact and quasi-separated transition maps, and let S ∈ Adic be such

that S ∼ lim
←−

Si in the sense of Huber (see [Hub96, Definition 2.4.2] and [AGV20, Definition

2.8.9]). The pull-back functors induce an equivalence in CAlg(PrL):

lim
−→

RigDA(eff)(Si) ∼= RigDA(eff)(S)

Remark 2.13. In case the maps S → Si are also quasi-compact and quasi-separated, then the

equivalence holds true in CAlg(PrLω), as colimits in PrLω can be computed in PrL by [Lur17,

Lemma 5.3.2.9].

The continuity property above strongly suggests that the étale sheaf RigDA is also a pro-étale

sheaf. This is indeed the case, and is the content of the next theorem. We remark nonetheless
6



that its proof is more complicated than the analogous statement for sheaves of sets or groups

(see for example [Sch17, Proposition 8.5]) as RigDA takes values in the infinity-categoryPrL in

which the co-simplicial Cech diagrams appearing in the descent criterion can not be truncated

on the right.

Theorem 2.14. The functors RigDA(eff)∗ : Adicop → CAlg(PrL) satisfy pro-étale descent.

This means that for any bounded pro-étale hypercover U → S in Adic, one has the following

equivalence in CAlg(PrL):

RigDA(eff)(S) ∼= limRigDA(eff)(U).

Proof. The proof will be split into some intermediate steps.

Step 1: Since the functor CAlg(PrL)→ PrL is limit-preserving and conservative (see [Lur17,

Corollary 3.2.2.5 and Lemma 3.2.2.6]), we might as well prove the statement for RigDA(eff) as

functors with values in PrL. We first consider the case of RigDAeff .

Step 2: As we already know that RigDAeff is an étale hypersheaf, we may prove the claim

for its restriction to the subcategory Aff of Adic made of affinoid spaces. It suffices to show

then that if p : P ∼ lim
←−i∈I

Pi → X is a pro-étale affinoid cover of X with pi : Pi → X étale

surjective, then

(⋆) RigDAeff(X) ∼= lim
(
RigDAeff(P ) //

// RigDAeff(P ×X P )
//
//
// · · ·

)
.

Step 3: From now on we consider the category ProétAff Sm /X of pro-objects in affinoid

smooth varieties over X with étale transition maps with a quasi-compact weak limit. We

will use the letter P̃ to refer to the object lim
←−

Pi in this category. We say that a map in

Proét Aff Sm /X is smooth if [resp. étale] if it is of the form lim
←−

T0 ×S0 Si → lim
←−

Si for

some smooth [resp. étale] map T0 → S0, we say it is pro-étale if it has a strictification which is

levelwise étale, and pro-smooth if it is a composition of a pro-étale map, followed by a smooth

map. We say it is a cover if the map on the underlying topological spaces lim
←−
|Ti| → lim

←−
|Si|

is surjective. In particular, we may consider the full subcategory Pro Sm /P̃ whose objects are

pro-smooth maps over P̃ , and equip it with the pro-étale topology. We remark that there are

continuous equivalences (Pro Sm /X)/P̃ ∼= Pro Sm /P̃ giving rise to the following diagram

(see [AGV20, Proposition 2.3.7] which is essentially [Lur09, Proposition 6.3.5.14]):

Dproét(Pro Sm /X) ∼= lim
(
Dproét(Pro Sm /P̃ ) //

// Dproét(Pro Sm /P̃ ×X P̃ )
//
//
// · · ·

)
.

Step 4: By definition, the étale topos on Sm /P̃ is equivalent to the one on lim
−→

Sm /Pi

(these toposes are not equivalent to the one on Sm /P !). By the proof of [AGV20, Proposi-

tion 2.5.8] a we then deduce that Dét(Sm /P̃ ) ∼= lim
−→
Dét(Sm /Pi) and that RigDAeff(P ) ∼=

RigDAeff(P̃ ) ∼= lim
−→

RigDAeff(Pi) (using Theorem 2.12 for the first equivalence) where

the colimits are taken in PrL. Also, by adapting the proof of [Sch17, Proposition 14.10]

we obtain that the functor ν∗ : Shét(Sm /P̃ ,Q) → Shproét(Pro Sm /P̃ ,Q) induced by

the map of sites ν : (Pro Sm /P̃ , proét) → (Sm /P̃ , ét) can be described explicitly as

ν∗F(lim
←−

Qi) = lim
−→
F(Qi ×Pi

P̃ ) and induces a fully faithful inclusion ν∗ : D+
ét(Sm /P̃ ,Q)→

D+
proét(Pro Sm /P̃ ,Q) that can be extended by left-completion (we are using that any object

has a finite rational étale cohomological dimension, see [AGV20, Corollary 2.4.13]) to a fully

faithful inclusion ν∗ : Dét(Sm /P̃ ,Q)→ Dproét(Pro Sm /P̃ ,Q).

Step 5: We claim that Dét(Sm /X) is the pullback of Dét(Sm /P̃ ) along the functor

Dproét(Pro Sm /X) → Dproét(Pro Sm /P̃ ) i.e. we claim that F ∼= ν∗ν∗F provided that
7



p∗F ∼= ν∗ν∗p
∗F . To see this, it suffices to check that ι∗F ∼= ι∗ν

∗ν∗F with ι being the natural

map of sites Pro Sm /X → ProEt /Y by letting Y vary among smooth affinoid varieties

in Sm /X . By construction, we have ι′∗p
∗ ∼= p′∗ι∗, ι∗ν∗ ∼= ν ′∗ι

′
∗ and ι∗ν

∗ ∼= ν ′∗ι′∗ with p′

being P̃ ×X Y → Y and ν ′ [resp. ι′] being the map of sites ν ′ : Pro Et /Y → Et /Y [resp.

ι′ : Sm /X → Et /Y ]. In particular, we can deduce the claim from the analogous claim on the

small (pro-)étale sites proved in [Sch17, Proposition 14.10]. We can reproduce this proof also

for each one of the pro-étale maps of pro-objects δ : P̃×Xn+1 → P̃×Xn. This shows that also

the following equivalence:

Dét(Sm /X) ∼= lim
(
Dét(Sm /P̃ ) //

// Dét(Sm /P̃ ×X P̃ )
//
//
// · · ·

)
.

and implies in particular that the map p∗ : Dét(Sm /X)→ Dét(Sm /P̃ ) is conservative.

Step 6: We show that the functor p∗ : Dét(Sm /X) → Dét(Sm /P̃ ) sends a class of compact

generators to a class of compact generators. As we have Dét(Sm /P̃ ) = lim
−→
Dét(Sm /Pi), it

suffices to show that the functors p∗i send compact generators to compact generators. In other

words (see [AGV20, Lemma 2.8.3]) we need to show that the functor e∗ is conservative when-

ever e : Y → X is an étale map of affinoid varieties. The statement is étale-local on X so we

may assume that e is given by a trivial finite étale cover Y = X⊔X → X and e∗ consists there-

fore in the functor Dét(Sm /Y ) ∼= Dét(Sm /X) × Dét(Sm /X) → Dét(Sm /X), (F ,F ′) 7→
F ⊕F ′ which is obviously conservative. The same proof shows also that p∗ : RigDAeff(X)→
RigDAeff(P ) sends a class of compact generators to a class of compact generators.

Step 7: We now claim that RigDAeff(X) is the pull-back of RigDAeff(P ) ∼= lim
−→

RigDAeff(Pi)

along Dét(Sm /X) → Dét(Sm /P̃ ) i.e. we claim that F ∼= π∗π
∗F provided that p∗F ∼=

π∗π
∗p∗F where π denotes the natural projection B1

X → X (as well as its pullback over P̃ ).

From the diagram above we already know that the functor p∗ : Dét(Sm /X) → Dét(Sm /P̃ )
is conservative, so it suffices to show that it commutes with π∗ (which is obvious) and with

π∗. To this aim, by Step 6, we fix a compact object M in RigDAeff(X) and we prove that

Map(p∗M, p∗π∗F) ∼= Map(p∗M,π∗p
∗F) for any F in Dét(Sm /B1

P̃
) ∼= lim

−→
Dét(Sm /B1

Pi
).

This follows from the following sequence of equivalences

(⋆⋆)

Map(p∗M, p∗π∗F) ∼= lim
−→

Map(p∗iM, p∗iπ∗F)

∼= lim
−→

Map(p∗iM,π∗p
∗
iF)

∼= lim
−→

Map(p∗iπ
∗M, p∗iF)

∼= Map(p∗π∗M, p∗F)
∼= Map(p∗M,π∗p

∗F)

where we used the obvious commutation π∗p∗ ∼= p∗π∗ and the commutation π∗p
∗
i
∼= p∗iπ∗ which

follows from the natural equivalence π∗pi♯ ∼= pi♯π
∗ (see [AGV20, Proposition 2.2.1]). The same

proof shows more generally that RigDAeff(P×Xn) is the pull-back of RigDAeff(P×Xn+1) along

δ∗ : Dét(Sm /P̃×Xn)→ Dét(Sm /P̃×Xn+1). We have then finally deduced the equation (⋆), i.e.

descent for effective motives RigDAeff .

Step 8: We now move to proving the statement for RigDA. Just like in the proof of [AGV20,

Theorem 2.3.4] this follows formally from the commutation Hom(T,−)◦p∗ ∼= p∗◦Hom(T,−)
which can be deduced from the commutation Hom(T,−)◦p∗i

∼= p∗i ◦Hom(T,−) using a similar

argument to the one used in Step 7 for the sequence (⋆⋆). �

Pro-étale descent implies the possibility to extend motives to diamonds (provided that we

impose the same conditions on their Krull dimension as in Definition 2.1).
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Definition 2.15. We say a diamond is admissible if it is pro-étale locally a perfectoid space in

Adic (i.e. locally of finite Krull dimension).

Corollary 2.16. Consider the restrictions of the functors RigDA(eff) to the category Adic/Fp .

They can be extended uniquely as pro-étale sheaves to the category of admissible diamonds.

Proof. This follows (see [Lur09, Lemma 6.4.5.6] or [AGV20, Lemma 2.1.4]) from pro-étale

descent and the equivalence between the pro-étale toposes on perfectoid spaces over Fp and on

diamonds. �

Remark 2.17. At this stage, we can’t say that the construction of RigDA is compatible with

the “diamondification” functor from adic spaces to diamonds. In other words, it is not yet clear

that RigDA(S) ∼= RigDA(S⋄) if S is an adic space in Adic/Qp . We will show this only in

Theorem 5.13.

2.3. Frobenius-invariance and perfectoid motives. We continue to inspect the formal prop-

erties of RigDA which depend on homotopies, now focusing on the behaviour of the functor

RigDA under the action of Frobenius which is studied in [AGV20, Section 2.9].

Theorem 2.18. Let S ′ → S be a universal homeomorphism in Adic. The pullback functor

induces an equivalence RigDA(eff)(S) ∼= RigDA(eff)(S ′). In particular, if S is in Adic/Fp then

the pull-back along SPerf → S induces an equivalence in CAlg(PrLω):

RigDA(eff)(S) ∼= RigDA(eff)(SPerf)

which is compatible with the functors f ∗.

Proof. After [AGV20, Corollary 2.9.10] only the last sentence needs to be proved, and that

follows from Theorem 2.12. �

Remark 2.19. The same is true for algebraic motives, provided that we consider their stable

version. On the other hand, there is no need for any hypothesis on the Krull dimension of the

base scheme [AGV20, Theorem 2.9.7].

Corollary 2.20. Let S be in Adic and let f : X ′ → X be a universal homeomorphism in

RigSm /S. The induced map of motives QS(X
′)→ QS(X) is invertible in RigDA(eff)(S).

Proof. Let p resp. p′ be the structural smooth morphism X → S resp X ′ → S. The map of

motives in the statement can be written as (p′♯ ◦ f
∗)(QX) → p♯QX . But p′♯ ◦ f

∗ is canonically

equivalent to p♯ as they are both left adjoint functors to p∗ by Theorem 2.18. �

Corollary 2.21. Let S be a perfectoid space over a perfectoid field K. The base change along

Frobenius defines an endofunctor ϕ∗ : RigDA(eff)(S)→ RigDA(eff)(S) and the relative Frobe-

nius morphisms X → X(1) := X ×S,Frob S induce a natural transformation id⇒ ϕ∗ which is

an equivalence.

Proof. We are left to prove that the transformation is pointwise invertible (in the homotopy

category). It suffices to show this for the generators of the form QS(X)(n) with p : X → S in

Sm /S and this follows from Corollary 2.20. �

Definition 2.22. Let C be a presentable infinity-category and F : C → C an endofunctor with a

right adjoint.

(1) The category of homotopically stable F -objects ChF is the following pullback.

ChF //

��

C

ΓF

��
C

∆
// C × C

9



More concretely, its objects are given by pairs (X,α) withX in C and α an equivalence

X
∼
→ FX (or, equivalently, an equivalence FX

∼
→ X).

(2) Suppose that C is compactly generated and that F preserves compact objects. The

category ChFω is the pullback of the diagram above, computed in the category PrLω.

(3) By means of [Lur17, Corollary 3.2.2.5] we may use the same notations when C is a

[compactly generated] symmetric monoidal presentable category, F is also symmetric

monoidal and the pullback is computed in CAlg(PrL) [resp. in CAlg(PrLω)].

Remark 2.23. Our notation is justified by the following remark: ChF is the category of homo-

topically fixed points ChN by letting the monoid N act on C via F .

Remark 2.24. Even if C is compactly generated and F preserves compact object, it may not be

true that ChF is compactly generated. Nonetheless, by [Lur09, Lemma 5.4.5.7(2)] its full sub-

category generated (under filtered colimits) by compact objects is ChFω . In particular, whenever

ChF is compactly generated, then the natural functor ChFω ⊂ ChF in PrL is an equivalence.

Corollary 2.25. Let S be a perfectoid space in Adic and ϕ∗ be the automorphism of

RigDA(eff)(S) induced by pullback along Frobenius. There is a natural functor

RigDA(eff)(S)→ RigDA(eff)(S)hϕ
∗

ω
∼= RigDA(eff)(S)hϕ

−1∗

ω

sending each motive M to the datum M
∼
→ ϕ∗M given by the relative Frobenius functor. This

gives rise to a natural transformation of étale hypersheaves with values in CAlg(PrL)

RigDA(eff) → RigDA(eff)hϕ∗

ω

defined on the category of perfectoid spaces over Fp.

Proof. For the first claim, it suffices to consider the following diagram:

RigDA(S) RigDA(S)

Γϕ∗

��

RigDA(S)
∆

//

∼ 19❦❦❦❦❦❦
❦❦❦❦❦❦

RigDA(S)× RigDA(S)

where the natural transformation is defined by the relative Frobenius functor (see Corol-

lary 2.21).

In order to prove functoriality with respect to S, we fix a morphism f : S ′ → S and denote

by ϕS [resp. ϕS′] the relative Frobenius functor over S [resp. S ′]. We first remark that the

canonical natural transformation ϕ∗
S′f ∗ ⇒ f ∗ϕ∗

S is an equivalence: when tested on compact

generators of the form QS(X)(n) with X/S smooth, it corresponds to a universal homeomor-

phism, hence invertible by means of Theorem 2.18. With this remark, it is possible to promote

ϕ∗
S into an automorphism of the functors RigDA(eff) and the natural transformation id ⇒ ϕ∗

S

into a map between automorphisms of these functors, concluding the claim. �

Perfectoid motives over a perfectoid field were introduced in [Vez19a]. We now easily extend

their definitions and some properties to the relative setting.

Definition 2.26. We let Perf be the full subcategory of Adic made of perfectoid spaces over

some perfectoid field, and we let S be in Perf . We let PerfSm /S be the full sub-category

of Adic /S whose objects are locally étale over B̂n
S := S ×Zp SpaZp〈T

1/p∞

1 , . . . , T
1/p∞

n 〉

(sometimes called geometrically smooth perfectoid spaces over S). We let T̂n
S be S ×Zp

SpaZp〈T
1/p∞

1 , . . . , T
±1/p∞

n 〉 and T̂S be the cokernel of the split inclusion of presheaves

QS(S) → QS(T̂
1
S) induced by the unit. We let Psh(PerfSm /S,Q) be the infinity-category
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of presheaves on the category Perf Sm /S taking values on the derived infinity-category of

Q-modules, and we let PerfDAeff(S) be its full stable infinity-subcategory spanned by those

objects F which are B̂1-invariant and with ét-descent. Finally, we set PerfDA(S,Q) =

PerfDAeff(S,Q)[T̂−1
S ] in PrL (see [Rob15, Definition 2.6]). These categories are endowed with

a symmetric monoidal structure for which QS(X)⊗QS(Y ) ∼= QS(X ×S Y ).

Remark 2.27. As pro-étale maps can only decrease the topological Krull dimension, any per-

fectoid space that is locally pro-étale above a rigid analytic variety lies in Perf.

Proposition 2.28. One can define contravariant functors PerfDA(eff)∗ on Perf with val-

ues in CAlg(PrL) such that any morphism f : S ′ → S in Perf is mapped to the functor

PerfDA(eff)(S) → PerfDA(eff)(S ′) induced by pullback along f . They satisfy étale hyperdes-

cent and their restrictions to Perfqcqs take values in CAlg(PrLω).

Proof. The proofs of [AGV20, Proposition 2.1.21, Theorem 2.3.4 and Proposition 2.4.22] can

be easily adapted to the perfectoid context. �

Remark 2.29. It is clear that PerfDA(eff)(P ) ∼= PerfDA(eff)(P ♭) for any perfectoid space P ,

functorially in P by [Sch12].

Theorem 2.30. Let S be an object of Perf/Fp . The functor induced by relative perfection

Perf : RigSm /S → PerfSm /S gives an equivalence

Perf∗ : RigDA(eff)(S)
∼
→ PerfDA(eff)(S).

More generally, the relative perfection induces an equivalence of presheaves RigDA(eff)∗ ∼=
PerfDA(eff)∗ on Perf/Fp with values in CAlg(PrL).

Proof. The natural transformation of functors can be defined just as in [Rob15]. By étale

descent, it suffices to prove that Perf∗ is an equivalence whenever S is affinoid perfectoid. We

remark that the case S = Spa(K,K◦) has been already proved in [Vez19a] and the same proof

works for any affinoid base (use Corollary 2.20 to avoid the Frob-localization of loc. cit.). �

Corollary 2.31. Let f : S ′ → S be a map of admissible diamonds that, pro-étale locally on S,

lies in PerfSm /S. Then the functor f ∗ : RigDA(eff)(S) → RigDA(eff)(S ′) has a left adjoint

given by

RigDA(eff)(S ′) ∼= PerfDA(eff)(S ′)
f♯
→ PerfDA(eff)(S) ∼= RigDA(eff)(S)

with f♯ defined as the functor induced by

PerfSm /S ′ → PerfSm /S (X → S ′) 7→ (X → S ′ → S).

Proof. If S is itself a perfectoid space, the proof is straightforward and similar to Theo-

rem 2.10(4). We remark that in this case, by construction, whenever one has a cartesian

diagram of perfectoid spaces

T ′ g′
//

f ′

��

S ′

f
��

T
g

// S

with f ∈ PerfSm /S, then g∗f♯ ∼= f ′
♯g

′∗.

Let P → S be a perfectoid pro-étale hypercover, and P ′ → S ′ be the hypercover of S
induced by base change. By the previous part of the proof, there are functors of diagrams

RigDA(eff)(P ′) → RigDA(eff)(P) which are levelwise left adjoint to the base-change functors.

They then induce a functor f♯ between the two homotopy limits (computed by pro-étale descent,
11



see Theorem 2.14) RigDA(eff)(S ′) → RigDA(eff)(S) which is a left adjoint to the base-change

functor (see [Lur17, Proposition 4.7.4.19]) as wanted. �

Definition 2.32. For any S ∈ Adicwe will writePerfDA(eff)(S) as the categoryPerfDA(eff)(S⋄)

obtained by pro-étale sheafification of the functor PerfDA(eff) on Perf . It is canonically equiv-

alent to RigDA(eff)(S⋄) by Theorem 2.30.

Remark 2.33. There is an alternative “naive” definition of PerfDA(eff)(S) in case S ∈ Adic is

not necessarily perfectoid: we may consider the category PerfSmn /S (n standing for naive) as

being the full subcategory of Adic/S which are locally étale over some space B̂N × S, equip it

with the étale topology and consider the induced category of (effective) motives PerfDA(eff)
n (S).

This construction defines functors PerfDA(eff)
n with values in CAlg(PrL) which are equipped

with natural transformations σ : PerfDA(eff)
n → PerfDA(eff) ∼= RigDA(eff). We note that σ is

invertible when restricted to the category of perfectoid spaces and it therefore exhibits PerfDA
as the pro-étale sheaf associated to PerfDA(eff)

n .

3. RELATIVE OVERCONVERGENT VARIETIES AND MOTIVES

We now introduce the category of overconvergent motives, generalizing the situation of

[Vez18]. To this aim, we first define the category of smooth dagger rigid analytic varieties

Sm† /S (or smooth varieties with an overconvergent structure) over a base S which is in

Adic/Qp .

3.1. Relative overconvergent rigid varieties. Our definition is based on the absolute notion

introduced by Große-Klönne [GK00]. We remark that we do not put any overconvergent

structure on the base S, so that Et† /S = Et /S and that for any open U of S we have

Sm† /U = (Sm† /S)/U .

Definition 3.1. Let U → S be a morphism in Adic which is locally qcqs and topologically of

finite type, and let U ⊂ V be an open inclusion. We write U ⋐S V if the morphism U ⊂ V
extends to a morphism of adic spaces U/S ⊂ V where U/S is the universal compactification

of U/S (see [Hub96, Theorem 5.1.5]). In the affinoid setting, say for a map f : (R,R+) →
(R′, R′+) over (A,A+) this means that f(R+) is included in the algebraic closure of A+ +R′◦◦

in R′.

Definition 3.2. Let S be in Adic/Qp . We let Sm† /S be the subcategory of (Sm /S) ×

Pro(Sm /S) whose objects are given by pairs (X̂, {Xh}) with X̂ ∈ Sm /S and {Xh} is a co-

filtered system of open inclusions X̂ ⋐V Xh ⊂ Xh′ in Sm /S such that X̂/V ∼ lim
←−

Xh, where

we let V be the open subvariety of S given by Im(X̂ → S). Morphisms are defined levelwise,

and required to be compatible with the inclusions X̂ ⊂ Xh. For an object X = (X̂, {Xh}) in

Sm† /S we let O†(X) be lim
−→h
O(Xh).

Fix a map (X̂, {Xh})→ (Ŷ , {Yh}) in Sm† /S. We say it is an open immersion [resp. étale]

if the map of pro-objects has a strictification which is made of morphisms Xh → Yh that are

open immersions [resp. étale]. We remark that under these hypotheses, the map X̂ → Ŷ is

automatically an open immersion [resp. étale]. A collection of morphisms {(Ûi, {Uhi
}) →

(X̂, {Xh})} is a cover if X̂/V lies in the union of the images of the Uhi
’s.

Remark 3.3. A choice of a thickening X̂ ⋐V X0 of smooth rigid analytic varieties over S with

V = Im(X̂ → S) defines an object of Sm† /S by taking the filtered diagram of open subsets

of X0 cointaining the closure of X̂ . Any morphism [resp. open immersion, étale map] of
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thickenings (X̂ → X0)→ (Ŷ → Y0) induces a map in Sm† /S [with the same properties]. Up

to replacing X0 with X0×S V one may assume that V = Im(X0 → S). We can actually define

Sm† /S to be the category of such thickenings, where maps are morphisms X̂ → Ŷ extending

to Xh → Y0 for some strict neighborhood Xh of X̂ in X0 (i.e. containing its closure).

Remark 3.4. By [Hub96, Proposition 2.4.4], any étale cover of (X̂, {Xh}) consisting of a finite

number of étale maps can be refined by one of the form {(Ûi, {Uih})}i=1,...,N such that all

indices h vary in the same category, that we can suppose to be directed, and each map of

pro-objects comes from a map of diagrams, with each {Uih → Xh} being an étale cover.

Proposition 3.5. The big étale site on the category Sm† /S is equivalent to the site whose

objects are pairs X = (X̂,O†(X)) with X̂ a smooth variety over S of the form

Spa(O(V )〈x, y〉/(p1, . . . , pm),O(V )〈x, y〉/(p1, . . . , pm)
+))

with V being an affinoid subset of S which is the image of X̂ , x and y some sets of variables

x = (x1, . . . , xn), y = (y1, . . . , ym), pi are in O(V )[x, y] such that det(∂pi/∂yj) is invertible

in O(X̂) and O†(X) is a subring of O(X̂) of the form:

O†(X) = lim
−→
O(V )〈π1/hx, π1/hy〉/(p1, . . . , pm).

Morphisms X → X ′ are defined as being the maps X̂ → X̂ ′ sending O†(X ′) to O†(X)

and étale covers are families {Xi → X} such that the maps X̂i → X̂ are étale and jointly

surjective.

Proof. We first prove that the category above is a full subcategory of Sm† /S. Let X =

(X̂,O†(X)) as in the statement. We remark that since d := det(∂pi/∂yj) ∈ O
†(X) is in-

vertible inO(X̂) in whichO†(X) is dense, and X̂ is quasi-compact, then d is inverible in some

ring Rh := O(V )〈π1/hx, π1/hy〉/(p1, . . . , pm) and X̂ ⋐V SpaRh defines then an object of

Sm† /S.

We now show that morphismsX† → Y † computed in Sm† /S amount to morphisms X̂ → Ŷ

such that the images s, t of x, y lie in O†(X) ∩ O+(X̂). It suffices to show that a (R,R+)-

morphism from X† to B
1†
Spa(R,R+) = (B1

Spa(R,R+), R〈x〉
†) amounts to a choice of an element in

O+(X̂) ∩ O†(X). Fix such an element s. We may suppose that it lies in O(X0). But then

we have X̂ ⊂ U(s/1) ⋐X0 U(πs/1) which implies that Xh ⊂ U(πs/1) for h ≫ 0 so that

πs ∈ O+†(X†) showing that the map X̂ → B1 extends to some map Xh → R〈πx〉 as wanted.

Conversely, if the map X̂ → B1
(R,R+) defined by s ∈ O+(X̂) extends to Xh → SpaR〈πx〉 then

πs ∈ O+(Xh) so that s ∈ O(X†) ∩ O+(X̂).
We now show that the subcategory of the statement is dense in Sm† /S. This is analogous

to [Vez18, Corollary 3.4]. Indeed, locally with respect to the analytic topology, any object

X = (X̂ ⋐ X0) is such that X̂ is of the form prescribed. We now show that there is an auto-

morphism of X̂ identifying the two (dense) subrings lim
−→
O(Xh) and O†(X) of the statement.

By [Vez19a, Corollary A.2] we can find some power series in O(X̂)[[σ − x]] with a positive

radius of convergence such that (σ, τ) 7→ (s̃, F (s̃)) defines an endomorphism of X̂ for every s̃

sufficiently close to σ. By density, we may take s̃ in lim
−→
O(Xh)∩O

+(X̂). We remark that under

this hypothesis, then also F (s̃) lies in lim
−→
O(Xh)∩O

+(X̂). This follows from the equivalence

Et /X̂/V ∼= lim
←−

Et /Xh by considering the étale morphism SpaO(Xh)〈τ〉/(p(s̃, τ)) → Xh

that splits above X̂/V . This shows that there is an endomorphism ψ of X̂ which is close to the
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identity (in the sense that ||ψ(f)− f || ≤ |π2| whenever ||f || ≤ 1 with respect to some Banach

norm || · || of O(X̂)) mapping O†(X̂) to lim
−→
O(Xh). Any endomorphism which is close to the

identity is invertible, hence the claim.

We are left to prove that the small étale site over X† = (X̂ ⋐V X0) is equivalent to the

small étale site on X̂ via the functor mapping (Û ⋐VU
U0) to Û . Indeed, if Û ⊂ X̂ is a rational

open, we may lift it to U = (Û ⋐VU
X0) and if Ê → X̂ is finite étale between affinoids, we

may extend it to a finite étale map Ê/V → X̂/V and hence to some finite étale map Eh → Xh

with Ê ⋐V Eh. This shows that any étale dagger space over X̂ has a cover made of objects

descending to X†. Since (
⋃
Ûi)

/V =
⋃
(Û

/Vi

i ) we also deduce that a family {Ûi ⋐Vi
Ui} of

étale maps over X† is a cover if and only if the family {Ûi} covers X̂ proving the claim. �

3.2. Relative overconvergent motives. It is straightforward to generalize the definition of

motives to the dagger setting.

Definition 3.6. Let S be an object of Adic/Qp . We let B
1†
S [resp. T

1†
S ] be the object of Sm† /S

induced by the inclusions B1
S ⋐S P1

S [resp. T1
S ⋐S P1

S]. and T †
S be the quotient of the split

inclusion QS(S) → QS(T
1†
S ) in Psh(Sm† /S,Q). We let Psh(Sm† /S,Q) be the infinity-

category of presheaves on the category Sm /S taking values on the derived infinity-category

of Q-modules, and we let RigDAeff †(S) be its full stable infinity-subcategory spanned by

those objects F which are B1†-invariant and with ét-descent. Finally, we set RigDA†(S,Q) =

RigDAeff †(S,Q)[T †−1
S ] in PrL (see [Rob15, Definition 2.6]).

The following result is essentially formal, see Theorem 2.10.

Proposition 3.7. There are contravariant functors RigDA(eff)†∗ defined on Adic/Qp with

values in CAlg(PrL) such that any map f : S ′ → S in Adic/Qp is sent to the functor

f ∗ : RigDA(eff)†(S) → RigDA(eff)†(S ′) induced by pullback along f . They satisfy étale

hyperdescent and their restrictions to Adicqcqs/Qp
take values in CAlg(PrLω). �

The following theorem allows one to equip any motive with an overconvergent structure, if

needed. It is a generalization of [Vez18] to a base S with no overconvergent structure. Once

again, we crucially use some explicit homotopies in the proof of the statement.

Theorem 3.8. Let S be in Adic/Qp . The functor l : X 7→ X̂ induces an equivalence

Ll∗ : RigDA†(eff)(S) ∼= RigDA(eff)(S)

Proof. The proof will be divided into several steps, most of which follow closely the proof of

[Vez19a, Proposition 4.5] that we reproduce here for the convenience of the reader.

Step 1: It suffices to prove the claim for effective motives. By Proposition 3.5 we may and do

use as models for RigDA† eff(S) [resp. RigDAeff(S)] the category of spectra on the (ét,B1)-
localization of complexes of étale presheaves on C† [resp. C] which is the (dense) subcategory

of RigSm† /S [resp. RigSm /S] whose objects are of the form X = (X̂,O†(X)) [resp. l∗X]

described in Proposition 3.5. Moreover Rl∗ = l∗ is exact as it commutes with étale sheafifi-

cation and preserves B1-weak equivalences. We then remark that it suffices to prove that the

functor Ll∗ between the B1-localizations Ch
B
1†
S
Psh(C†,Q) and ChB1

S
Psh(C,Q) is an equiva-

lence. Since it sends a class of compact generators to a class of compact generators, we are left

to prove it is fully faithful.

Step 2: We now show the following claim: fix varieties X = (Spa(R,R+), R†) and X ′ =

(Spa(R′, R′+), R′†) in C† and a morphism X̂ ′ = Spa(R′, R′+) → X̂ = Spa(R,R+) over S.

Then there exists a map H : B1
X̂′
∼= Spa(R′〈χ〉, R′+〈χ〉)→ X̂ such that H ◦ i0 = f and H ◦ i1

14



lies in Hom(X,X ′). Explicitly, if f is induced by the map σ 7→ s, τ 7→ t the map H can be

defined via

(σ, τ) 7→ (s+ (s̃− s)χ, F (s+ (s̃− s)χ))

where F is the unique array of formal power series (implicit functions) with positive radius

of convergence in R′[[σ − s]] associated by [Vez19a, Corollary A.2] to the polynomials p(σ, τ)
which are such that F (s) = t and p(σ, F (σ)) = 0, and s̃ are elements inR′† such that the radius

of convergence of F is larger than ||s̃ − s|| and F (s̃) lies in R+. As R′† is dense in R′+ we

can find elements s̃i ∈ R
′
0 ∩ R

′+ such that ||s̃ − s|| is smaller than the convergence radius of

F . As F is continuous and R′+ is open, we can also assume that the elements t̃j := Fj(s̃) lie

in R′+. We are left to prove that they actually lie in R′†. We consider the R′
0-algebra E defined

as E = R′
0〈τ〉/(p(s̃, τ)) which is étale over R′

h, and over which the map R′
0 → R′ factors. In

particular, the étale morphism Spa(E,E+)×X′
0̄
X ′/V → X ′/V splits. In light of the equivalence

between the étale topoi given by X ′/V ∼ lim
←−

X ′
h this shows that hSpa(E,E+) → hX′

h̄
splits in the

inverse limit topos Shét(lim−→
X ′

h,ét) and by Yoneda this shows that Spa(E,E+)→ X ′
h splits for

a sufficiently big h proving that t̃j lies in R′
h as well.

Step 3: We now show the following claim. For a given finite set of maps {f1, . . . , fN} in

HomS(X̂
′ ×S Bn

S , X̂) we can find corresponding maps {H1, . . . , HN} in HomS(X̂
′ ×S Bn

S ×S

B1
S, X̂) such that:

(1) For all 1 ≤ k ≤ N it holds i∗0Hk = fk and i∗1Hk has a model in Hom(X ′, X).
(2) If fk ◦ dr,ǫ = fk′ ◦ dr,ǫ for some 1 ≤ k, k′ ≤ N and some (r, ǫ) ∈ {1, . . . , n} × {0, 1}

then Hk ◦ dr,ǫ = Hk′ ◦ dr,ǫ.

(3) If for some 1 ≤ k ≤ N and some h ∈ N the map fk◦d1,1 ∈ Hom(X̂×SB
n−1
S , X̂ ′) has a

model in Hom(X×SB
(n−1)†
S ) then the elementHk◦d1,1 of HomS(X̂

′×SB
n−1
S ×SB

1
S , X̂)

is constant on B1
S equal to fk ◦ d1,1.

We may suppose that each fk is induced by maps (σ, τ) 7→ (sk, tk) from R to R′〈θ1 . . . , θn〉
for some m-tuples sk and n-tuples tk in R′〈θ〉. Moreover, by Step 2 there exists a sequence of

power series Fk = (Fk1, . . . , Fkm) associated to each fk such that

(σ, τ) 7→ (sk + (s̃k − sk)χ, Fk(sk + (s̃k − sk)χ) ∈ R
′〈θ, χ〉

defines a map Hk satisfying the first claim, for any choice of s̃k ∈ R
′〈θ〉†such that s̃k is in the

convergence radius of Fk and Fk(s̃k) is in R′〈θ〉+. Let now ε be a positive real number, smaller

than all radii of convergence of the series Fkj and such that F (a) ∈ R′〈θ〉+ for all |a− s| < ε.
Denote by s̃ki the elements associated to ski by applying [Vez19a, Proposition A.5] with respect

to the chosen ε. In particular, they induce a well defined map Hk and the elements s̃ki lie in

R′〈θ〉h̄ for some index h̄. We show that the maps Hk induced by this choice also satisfy the

second and third claims of the proposition. Suppose that fk ◦ dr,ǫ = fk′ ◦ dr,ǫ for some r ∈
{1, . . . , n} and ǫ ∈ {0, 1}. This means that s̄ := sk|θr=ǫ = sk′|θr=ǫ and t̄ := tk|θr=ǫ = tk′|θr=ǫ.

This implies that both Fk|θr=ǫ and Fk′|θr=ǫ are two m-tuples of formal power series F̄ with

coefficients inO(X̂ ′×Bn−1) converging around s̄ and such that p(σ, F̄ (σ)) = 0, F̄ (s̄) = t̄. By

the uniqueness of such power series stated in [Vez19a, Corollary A.2], we conclude that they

coincide. Moreover, by our choice of the elements s̃k it follows that ¯̃s := s̃k|θr=ǫ = s̃k′|θr=ǫ. In

particular one has

Fk((s̃k − sk)χ)|θr=ǫ = F̄ ((¯̃s− s̄)χ) = Fk′((s̃k′ − sk′)χ)|θr=ǫ

and therefore Hk ◦ dr,ǫ = Hk′ ◦ dr,ǫ proving the second claim. The third claim follows immedi-

ately since the elements s̃ki satisfy the condition (iv) of [Vez19a, Proposition A.5].

Step 4: We remark that (see [Vez19a, Proposition 4.5]) the claim proved in Step 3 admits the
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following interpretation: the natural map

φ : (SingB
1†
S Q(X))(X ′)→ (SingB

1
S QS(X̂))(X̂ ′)

is a quasi-isomorphism, where for any complex of presheaves F we let SingB
1†
S F be the singu-

lar complex associated to the cocubical complex Hom(QS(B
•†
S ),F) which is B1†-equivalent to

F . This implies that, considering the Quillen adjunction

Ll∗ : Ch
B
1†
S
Psh(C†,Q) ⇄ ChB1

S
Psh(C,Q) : Rl∗ = l∗

we have

Rl∗Ll
∗QS(X) = l∗ Sing

B1
S QS(X̂) ∼= QS(X).

This proves that Ll∗ is fully faithful, hence the claim by Step 1. �

4. THE RELATIVE OVERCONVERGENT DE RHAM COHOMOLOGY

The aim of this section is to define the analog of the overconvergent de Rham cohomoloy in

the relative setting. One of the main problems of its “naive” definition is that a nice category of

quasi-coherent sheaves over an adic space wasn’t available until very recently.

4.1. The relative de Rham complex. We initially give the definition of the module of differ-

entials of a smooth map in Adic, and prove its basic properties. As far as we know, the current

literature treats mainly the case of a noetherian base (see [Hub96] for example) and we make

here some straighforward extensions of this case.

Definition 4.1. Let f : X → S be a smooth morphism in Adic. Let IX/S ⊂ OX×SX be the

ideal sheaf of the diagonal ∆f : X → X ×S X . The sheaf of differentials of X over S is

Ω1
X/S := IX/S/I

2
X/S ,

seen as an OX-module through the identification OX ≃ OX×SX/IX/S .

Note that by construction, Ω1
X/S comes with an OS-linear derivation d : OX → Ω1

X/S ,

sending a section s to 1⊗s− s⊗1.

Definition 4.2. Let d ≥ 0. Let f : X → S be a smooth morphism in Adic. We say that f
is of dimension d if locally on X and S the morphism factors as the composition of an étale

morphism X → Bd
S with the projection Bd

S → S.

Since the the dimension of a smooth morphism f : X → S is locally constant on X , it is no

loss of generality in practice to assume that f is of fixed dimension.

The following statement is proved in [FS21]. We recall how the argument goes, in order to

fix some notation.

Proposition 4.3. Let f : X → S be a smooth morphism in Adic. The OX -module Ω1
X/S is a

vector bundle. If f is of dimension d, it is of constant rank d.

Proof. Since this is a local assertion, we can assume that f is the composite of an étale mor-

phism g : X → Bd
S with the projection h : Bd

S → S. We can moreover assume that

S = Spa(A,A+) and X = Spa(B,B+) are both affinoid. In this case, we will prove that

Ω1
X/S is in fact a free OX -module of rank d. For brevity, write Y := BN

S . The diagonal map

∆f : X → X ×S X can be decomposed as the composition of

X
∆g
−→ X ×Y X = Y ×Y×SY (X ×S X)→ X ×S X

where the second map is obtained by base changing ∆h : Y → Y ×S Y along X ×S X →
Y ×S Y . Since g is étale, the map ∆g is an open immersion. Therefore, the OX×SX -module

IX/S is the pullback of the OY×SY -module IY/S along the map X ×S X → Y ×S Y .
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The map Y → Y ×S Y is of the form

Spa(A〈T 〉, A+〈T 〉)→ Spa(A〈T , T ′〉, A+〈T , T ′〉)

for some sets of variables T = (T1, . . . , Td) and T ′ = (T ′
1, . . . , T

′
d), and IY/S is the ideal sheaf

given by the ideal (T1 − T ′
1, . . . , Td − T ′

d). To conclude the proof, it suffices to check that

T1−T
′
1, . . . , TN−T

′
N define a regular sequence in B⊗̂AB and that the ideal (T1−T

′
1, . . . , Td−

T ′
d) · B⊗̂AB is closed in B⊗̂AB. This is the content of [FS21, Proposition IV.4.12]. �

Definition 4.4. Let f : A → B be morphism of complete Huber rings. A universal A-

derivation of B is a continous A-derivation dB/A : B → ΩB/A such that for any continuous

A-derivation d : B → M from B to a complete topological B-module M , there is a unique

continuous B-linear map B-linear map g : ΩB/A →M such that d = g ◦ dB/A.

Proposition 4.5. Let f : X → S be a smooth morphism in Adic. Locally on X , X =
Spa(B,B+), S = Spa(S, S+) and Ω1

X/S is the OX -module attached to the finite projective B-

module ΩB/A := I/I2, where I is the kernel of the multiplication map B⊗̂AB → B. Moreover,

the map dB/A : B → ΩB/A, induced by the map b 7→ 1⊗b − b⊗1, is a universal A-derivation

of B.

Proof. The first part follows from the proof of 4.3. Moreover, this proof shows that the ideal I
is closed and finitely generated, therefore a complete B-module of finite type. Choose a finite

subset N of B such that the subring A[N ] is dense in B. The proof of [Hub96, Proposition

1.6.2(ii)] shows that the ideal J generated by the elements 1⊗n − n⊗1, n ∈ N , is dense in I .

Thus, by [Ked19, Lemma 1.1.13], we must have J = I (note that the topology on I induced

by the topology on B is necessarily the natural topology, by [Ked19, Corollary 1.1.12]. From

there, the same proof as the usual algebraic proof shows that ΩB/A is a universal A-derivation

of B. �

This allows us to check that Ω1
X/S has the expected properties listed in the following propo-

sition.

Proposition 4.6. Let f : X → S be a smooth morphism in Adic.

(1) Let g : S ′ → S be a map in Adic, and let f ′ : X ′ := X ×S S
′ → S ′ be the base change

of f , which is again smooth. Then Ω1
X′/S′ is the pullback of Ω1

X/S along g′ : X ′ → X .

(2) Let g : Y → X be a smooth morphism. Then one has a short exact sequence

0→ g∗Ω1
X/S → Ω1

Y/S → Ω1
Y/X .

(3) Let g : Y → S be a smooth morphism. There is a natural isomorphism

Ω1
(X×SY )/S

∼= g′∗Ω1
X/S ⊕ f

′∗Ω1
Y/S,

where g′ : X ×S Y → X , f ′ : X ×S Y → Y denote the two projections.

Proof. The proofs of (1) and (2) are the same as in the algebraic case, using the universal

property, given 4.5. The assertion (3) follows from (1) and (2). �

Definition 4.7. Let f : X → S be a smooth morphism in Adic, of dimension d. For each

i ≥ 1, write Ωi
X/S = ∧iΩ1

X/S . The derivation d : OX → Ω1
X/S extends naturally to a complex

of sheaves of OS-modules on X :

OX
d
→ Ω1

X/S
d
→ . . .

d
→ Ωd

X/S ,

(with OX sitting in degree 0) called the de Rham complex of X over S and denoted by Ω•
X/S .
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4.2. Recollection on solid quasi-coherent sheaves. Clausen and Scholze have developed a

formalism allowing to attach to any analytic adic space X an infinity-category QCoh(X) of

solid quasi-coherent sheaves onX , serving the same purposes as the category of quasi-coherent

sheaves in algebraic category (and even more, since it allows to build a full 6-functor formalism,

see [Sch20b]). If f : X → S is a smooth (dagger) morphism in Adic, the (overconvergent) de

Rham complex naturally defines an object of QCoh(S) and it will be important for us to adopt

this point of view in the following. This is what we explain in this subsection. We start by

recalling several properties of analytic rings attached to complete Huber pairs that we gather

essentially from [Sch20a] and [And21] and that we summarize here for the convenience of the

reader.

Definition 4.8. For the basic notation on condensed abelian groups we refer to [Sch20b]. We

will typically consider them as abelian sheaves on the site of extremally disconnected sets with

covers given by finite collections of jointly surjective maps (cfr. [Sch20b, Proposition 2.7]).

(1) IfA is a topological abelian group we denote by A the condensed abelian group defined

byA(S) = Hom(S,A) (the group of continuous maps) for any extremally disconnected

set S. If A has a topological ring structure, then A is a condensed ring.

(2) If R is a condensed ring (for example, R = A for some topological ring A) and S is an

extremally disconnected set, we denote by R[S] the condensed R-module representing

the functor M 7→M(S) on condensed R-modules.

(3) An analytic ring is given by a condensed ringR, a functorMR taking an extremally dis-

connected set S to some R-module MR[S] in condensed abelian groups, and a natural

transformation R[S] → MR[S] satisfying some extra properties (see [Sch20a, Defini-

tion 6.12]). The category of (R,MR)-modulesMR -Mod is the full abelian subcategory

with products and sums inside condensed R-modules generated by the objects MR[S].
The natural transformation which is part of the definition gives rise to a localization

functorR -Mod→MR -Mod that is denoted byM 7→M⊗R(R,MR) and is the unique

colimit-preserving extension of the functor R[S] → MR[S]. More generally, any map

of analytic rings (defined as in [Sch20b, Lecture VII]) f : (A,MA) → (B,MB) in-

duces a base-change functor f ∗ : MA -Mod → MB -Mod, M 7→ M ⊗(A,MA) (B,MB)
which is a left adjoint to the “forgetful” functor f∗. If R is commutative, the category

MR -Mod is endowed with a symmetric monoidal tensor product ⊗(R,MR) making the

functor M 7→ M ⊗R (R,MR) is symmetric monoidal. One says (R,MR) is complete

or normalized (cf. [Sch20a, Definition 12.9]) if MR[∗] ∼= R.

(4) We recall that an animated analytic ring is given by a condensed animated ring R, a

functor MR taking an extremally disconnected set S to some R-module MR[S] in

condensed animated abelian groups, and a natural transformationR[S] →MR[S] sat-

isfying some extra properties (see [Sch20a, Definition 12.1]). The categoryD(R,MR)
is the stable infinity-category generated under sifted colimits by the shifts ofMR[S] in

(unbounded) derived condensedR-modules (see [Sch20a, Definition 12.3 and Remark

12.5]). The natural transformation which is part of the definition gives rise to a localiza-

tion functor D(R) → D(MR) that is denoted by M 7→ M ⊗R (R,MR). More gen-

erally, any map of analytic rings (defined as in [Sch20a, Lecture XII]) f : (A,MA) →
(B,MB) induces a base-change functor f ∗ : D(MA) → D(MB), M 7→ M ⊗(A,MA)

(B,MB) which is a left adjoint to the “forgetful” functor f∗. If R is a condensed an-

imated commutative ring, there is a unique symmetric monoidal structure ⊗(R,MR),

making the functor − ⊗R (R,MR) symmetric monoidal. Any analytic ring structure

(R,MR) can be seen as an animated ring structureMR on R[0].
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Remark 4.9. In [And21] the adjective animated is often dropped. What we call here analytic

rings are there called 0-truncated (animated) analytic rings.

Remark 4.10. Beware that the functor −⊗R[0] (R[0],MR) may not be the left derived functor

of the functor − ⊗R (R,MR) (see [Sch20b, Warning 7.6]) but it is so in all the examples we

are interested in (see Proposition 4.12 below).

Example 4.11. • If R is a condensed animated ring, the functor S 7→ R[S] defines a

(“trivial”) analytic ring structure onR, which we denote byRtriv.

• The pair (Z,Z�) with Z�[lim←−
Si] := lim

←−
Z[Si] defines an analytic ring structure on the

condensed discrete ring Z (see [Sch20b, Theorem 5.8]). Similarly, if R is a finitely

generated discrete ring, the datum (R,R�) with R�[S] := lim
←−

R[Si] defines an analytic

ring structure on R (see [Sch20b, Theorem 8.1]). More generally, if R is a (discrete,

0-truncated) ring, the functor S 7→ R�[S] := lim
−→R′

R′
�
[S] as R′ runs among finitely

generated subrings of R, is an analytic ring structure on R. From now on, the analytic

ring structure (R,R�) will simply be denoted by R�.

All the analytic rings that we will consider lie above Z�. The following fact is therefore

particularly convenient for us.

Proposition 4.12 ([And21, Proposition 2.11 and Corollary 2.11.2]). If (R,MR) is an analytic

ring over Z� then MR[S] ⊗
L
(R,MR) MR[T ] is concentrated in degree zero for any pair of ex-

tremally disconneted sets (S, T ). In particular, the tensor product in D(MR) coincides with

the derived tensor product of MR -Mod.

There is a convenient way to produce animated analytic ring structures given in [Sch20a].

Proposition 4.13 ([Sch20a, Proposition 12.8]). Let (R,MR) be an animated analytic ring and

R → R′ a map of condensed animated rings. The functor

S 7→ R′[S]⊗R (R,MR)

defines an animated analytic ring structure on R′, which is the pushout (R,MR) ⊗Rtriv
R′

triv

in animated analytic rings.

Under suitable hypotheses, the recipe above is internal to normalized analytic rings. The

proof of the following fact is immediate.

Proposition 4.14 ([And21, Proposition 2.16]). Let (R,MR) be a normalized analytic ring. Let

R → R′ be a map of condensed rings such that R′ is a MR-module and such that R′[S] ⊗L
R

(R,MR) lies in degree zero for any extremally disconnected set S. The functor

S 7→ R′[S]⊗R (R,MR)

defines a structure of a normalized analytic ring on R′ above (R,MR) whose associated ani-

mated analytic ring structure is R′[0]triv ⊗R[0]triv (R[0],MR).

We shall refer to the (animated) analytic structure introduced in the previous propositions as

the one induced byMR and the mapR → R′.

Example 4.15. The analytic ring structure induced by Z� and the map (of discrete rings) Z →
Z[T ] will be denoted by (Z[T ],Z)�.

Another example of this situation, which is crucial to our setting, has been studied by

[And21]: let (A,A+) be a complete Huber pair. Recall that the discrete ring A+
disc (the ring

A+ endowed with the discrete topology) is equipped with a (normalized) analytic ring struc-

ture denoted by (A+
disc)� (see Example 4.11).
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Definition 4.16. Let (A,A+) be a complete Huber pair. We define (A,A+)� as the animated

ring structure given by A[0]triv ⊗A+
disc[0]triv

(A+
disc)�.

Proposition 4.17 ([And21, Lemma 3.24 and Lemma 3.25]). The map A+
disc → A satisfies

the hypotheses of Proposition 4.14. In particular, there is an analytic ring structure on A
associated to (A,A+)�.

We will use the same notation (A,A+)� to refer both to the analytic ring structure on A and

the animated one. The (A,A+)�-modules are also called solid (A,A+)-modules. We note that

in particular one has, for any complete Huber pair (A,A+), an infinity-category

QCoh(Spa(A,A+)) := D((A,A+)�),

which is the infinity-category of (unbounded derived) solid (A,A+)-modules. Whenever we

write ⊗(A,A+)� or f ∗, for a morphism f : (A,A+) → (B,B+) of complete Huber pairs, we

will always mean it in the animated sense.

One of the main results of Andreychev is the following theorem.

Theorem 4.18 ([And21, Theorem 4.1]). Let X be an analytic adic space. The functor U 7→
QCoh(U) from rational open subsets of X to infinity-categories has rational descent.

Definition 4.19. For anyX ∈ Adic we will denote by QCoh(X) the infinity-category obtained

by rational descent from the functor QCoh defined on affinoid subspaces U ⊂ X . It is endowed

with a symmetric monoidal structure ⊗QCoh(X).

Remark 4.20. There is a natural t-structure on QCoh(X) when X = Spa(A,A+), whose

heart is the abelian category of solid (A,A+)-modules, but there is no canonical t-structure on

QCoh(X) in general.

Some pushouts in normalized animated analytic rings were introduced in Proposition 4.13

but actually, general pushouts in the category of normalized (animated) analytic rings exist,

even though they are defined rather unexplicitly (see [Sch20a, Proposition 12.12]). However,

there is a condition that turns them into something more tractable: we recall that a map of nor-

malized analytic rings f : (A,MA) → (B,MB) is steady (see [Sch20a, Definition 12.13])

if for any other map g : (A,MA) → (C,MC) of normalized analytic rings, the pushout

(B,MB)⊗(A,MA) (C,MC) is given by the functor

ME [S] =MC[S]⊗(A,MA) (B,MB)

defining an analytic ring structure on the normalization E of B ⊗A C.

The following fact is essentially proved in [Sch20a].

Lemma 4.21. Let (A,A+) → (B,B+) be an adic map of Huber pairs. The induced map of

analytic rings (A,A+)� → (B,B+)� is steady.

Proof. We may decompose the map into two maps

(A,A+)� → (B,B+
A)� → (B,B+)�

with B+
A being the smallest ring of integers for B containing the image of A+. We remark that

(B,B+
A)� = (B,A+)� i.e. the analytic ring structure is the one induced by (A,A+)� and the

map A → B. Since A → B is adic, we deduce that the map (A,A+)� → (B,B+
A)� is steady

by [Sch20a, Proposition 13.14 and Page 102].

The map (B,B+
A)� → (B,B+)� is an ind-steady open immersion defined by putting |f | ≤ 1

for all f ∈ B+ and as such (see [Sch20a, Proposition 12.15 and Example 13.15(3)]) it is steady.

We can then conclude as compositions of steady maps are steady by [Sch20a, Proposition

12.15]. �
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The following proposition will be used freely in what follows, and shows some compatibility

between base change maps of adic spaces, and base change maps of their relative analytic

spaces. It relies on results of Andreychev [And21]. We say that a rational open immersion

U ⊂ Spa(A,A+) is Laurent if it is of the form U = U(1/f) or U = U(f/1) for some f ∈ A.

We recall that any rational open immersion U = U(f1,...,fn
g

) ⊂ Spa(A,A+) of Tate algebras is

a composition of Laurent open immersions (see for example [Sch12, Remark 2.8]).

Proposition 4.22. Let f : X = Spa(B,B+) → S = Spa(A,A+) and g : Y = Spa(C,C+) →
S = Spa(A,A+) be maps in Adic such that f is smooth and can be written as a composition

of rational open immersions, finite étale maps and projections of the form Bd
T → T . The push-

out of (animated) analytic rings (B,B+)� ⊗(A,A+)� (C,C+)� coincides with the analytic ring

structure (B⊗̂AC,B
+⊗̂A+C+)� on the completed tensor product of Huber pairs.

Proof. We may and do consider separately the cases in which f is a Laurent rational open

immersion, f is the projection of the unit disc and f finite étale. In the first case, the result

follows from the compatibility of (steady) localizations with base change ([Sch20a, Proposition

12.18]). More explicitly, if B = A〈a/1〉 for some a ∈ A then by [And21, Proposition 4.11]

and Lemma 4.21 we can write

(A〈a/1〉, A〈a/1〉+)� ∼= (A,A+)� ⊗(Z[T ],Z)� Z[T ]�

where the map (Z[T ],Z)� → (A,A+) is the one induced by T 7→ a. We then deduce

(C〈a/1〉, C〈a/1〉+) ∼= (C,C+)� ⊗(Z[T ],Z)� Z[T ]�
∼= (C,C+)⊗(A,A+)� ((A,A+)� ⊗(Z[T ],Z)� Z[T ]�)

∼= (C,C+)⊗(A,A+)� (A〈a/1〉, A〈a/1〉+).

The case B = A〈1/a〉 is dealt with similarly, by writing:

(A〈1/a〉, A〈1/a〉+)� ∼= (A,A+)� ⊗(Z[T ],Z)� (Z[T±1],Z[T−1])�.

We now suppose f is the projection B1
S → S. By [And21, Lemma 4.7] we have that

(A〈T 〉, A+〈T 〉)� coincides with the (steady) rational localization at |T | ≤ 1 (see Proposi-

tion 4.14) of the analytic structure (A[T ]⊗A (A,A+)�) induced by the map of rings A→ A[T ]
which is (A,A+)� ⊗Z�

(Z[T ],Z)�. By what shown in the first part, we then deduce that

(C〈T 〉, C+〈T 〉) ∼= (C,C+)� ⊗Z Z[T ]�
∼= (C,C+)⊗(A,A+)� ((A,A+)� ⊗Z Z[T ]�)

∼= (C,C+)⊗(A,A+)� (A〈T 〉, A+〈T 〉)

as wanted. The case in which f is finite étale is immediate, as in this case (B,B+)� is again

induced by some (finite) map A→ B. �

An important consequence for us of the previous fact is the following base change result.

Corollary 4.23. Under the hypotheses of Proposition 4.22, we let f ′ : X ×S Y → Y , g′ :
X ×S Y → X be the base change of the maps f and g in Adic. For any object M of QCoh(X)
the base change map

g∗f∗M → f ′
∗g

′∗M

is an isomorphism in QCoh(Y ).

Proof. The morphism g is adic, hence steady by Lemma 4.21. Therefore, by [Sch20a, Proposi-

tion 12.14], we know that

(M|A)⊗(A,A+)� (C,C+)� ∼= (M ⊗(B,B+)� ((B,B+)� ⊗(A,A+)� (C,C+)�))|C
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where on the right hand side, (B,B+)� ⊗(A,A+)� (C,C+)� denotes the analytic ring structure

obtained by pushout. But for f satisfying the geometric hypotheses of the proposition, we know

by Proposition 4.22 that this pushout is the same as (B⊗̂AC,E
+)� with E+ being the smallest

ring of integers containing B+⊗̂A+C+ whence the claim. �

Let us spell out a corollary of this, which will be useful later.

Corollary 4.24. Under the hypotheses on Proposition 4.22, the modules B and C are solid

(A,A+)-modules, and B ⊗(A,A+)� C is isomorphic to (B⊗̂AC)[0] in QCoh(S). �

Proof. We may harmlessly replace (C,C+) with the Huber pair (C,C+
A ) where C+

A denotes the

smallest ring of integral elements containing A+. In this case, the analytic structure (C,C+
A )�

coincides with (A,A+)�⊗AC i.e. to the one induced by (A,A+)� and the continuous ring map

A→ C. In particular, the base change functor g∗ is given by the functor M 7→M ⊗(A,A+)� C.

We may then rewrite the module B ⊗(A,A+)� C as g∗f∗B which by Corollary 4.23 is canoni-

cally isomorphic to f ′
∗g

′∗B = B⊗̂AC as claimed. �

Remark 4.25. From Corollary 4.24 we obtain in particular that the complex B ⊗(A,A+)� C
is concentrated in degree zero and as such, it coincides with the underived tensor product

B ⊗un
(A,A+)�

C in solid (A,A+)-modules (see Proposition 4.12).

4.3. The relative de Rham complex in the solid world. We would like to upgrade the de

Rham cohomology complex to a complex of solid quasi-coherent sheaves. In fact, we will

strictly speaking do so only when everything in sight is affinoid and then glue using analytic

descent. For most of this section we will then restrict to the following special smooth maps.

Definition 4.26. Let S = Spa(A,A+) be an affinoid space in Adic. We say that a smooth map

X → S is smooth with good coordinates if X → S can be factored into X
f
→ Bd

S

p
→ S with

d ∈ N, f being a composition of rational open immersions and finite étale maps, and with p
being the natural projection. We remark that in this case Ω1

X/S is free. We denote by Smgc /S

the full subcategory of Sm /S whose objects are smooth with good coordinates.

Locally on X , any smooth map has good coordinates so that the analytic/étale topos on

Smgc /S is equivalent to the one on Sm /S.

Definition 4.27. Let S = Spa(A,A+) be affinoid and X → S be smooth with good coor-

dinates. We let Ω•(X/S) be the complex of solid (A,A+)-modules obtained by level-wise

underlining the complex of Banach A-modules given by global sections of the complex Ω•
X/S

of Definition 4.7. We denote byRΓdR(X/S)� the object ofD((A,A+)�) = QCoh(S) attached

to Ω•(X/S).

Proposition 4.28. Let S = Spa(A,A+) be in Adic. The functor

RΓdR(−/S)� : U 7→ RΓdR(U/S)�

from (Smgc /S) to QCoh(S) has étale descent. That is, if U → X is an étale Cech-hypercover

in Smgc /S then

RΓdR(X/S)� ∼= limRΓdR(U/S)�
in QCoh(S).

Proof. We shall prove that the statement follows from Tate’s acyclicity. The proof will be

divided into some intermediate steps.

Step 1: For any Cech hypercover U → X in Smgc /S, the map hocolimZ(U) → Z(X)
is an ét-local equivalence in D(Psh(Smgc /S),Z) (see for example [SGAIV2, Théorème

V.7.3.2]) hence also the analogous map between the two induced free presheaves of solid
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(A,A+)-modules is. It therefore suffices to show that RΓdR(−/S)� is ét-local in the category

D(Psh(Smgc /S,QCoh(S))) i.e. that the homology groups H iΓ(X,RΓdR(−/S)�) coincide

with the hypercohomology groups Hi
ét(X,RΓdR(−/S)�). To this aim, we may show that

RΓdR(−/S)� is a bounded complex of Cech-acyclic sheaves (of solid (A,A+)-modules) that

is, that each Ωi
−/S is a Cech-acyclic sheaf.

Step 2: Since Ω1
X/S is free for any X ∈ Smgc /S and O(U) is a solid (A,A+)-module, it

suffices to show that O is a Cech-acyclic étale sheaf of condensed O(S)-modules in Smgc /S.

We fix an étale cover U = {Ui → X}i=1,...,n in this site. We are left to show that the following

(bounded) complex

0→ O(X)→
⊕
O(Ui)→

⊕
O(Uij)→ · · ·

is exact. By the classical Tate acyclicity theorem and the Banach open mapping theorem, we

know that the sequence

0→ O(X)→
⊕
O(Ui)→

⊕
O(Uij)→ · · · .

is a strict exact complex of Banach A-modules, so the claim follows from Lemma 4.29. �

We learnt the following fact, which was used in the previous proof, from Guido Bosco.

Lemma 4.29. Let S = Spa(A,A+) be in Adic. The functorM 7→ M from the (exact) category

of Banach A-modules and continuous maps to the category of condensed A-modules, is exact.

Proof. The “underlining” functor being left exact, it is enough to prove that if f : M ′ → M is

a surjective map between two Banach A-modules, the map f : M ′ →M remains surjective; in

other words, that whenever S is an extremally disconnected set and g : S → M is a continuous

map, there is a continuous map g′ : S → M ′ lifting g. But the image g(S) is compact, and

thus by [Trè67, Lemma 45.1] (which we can apply, thanks to [Ked19, Theorem 1.1.9]) it is

the image f(K) of a compact subset K of M ′. This concludes the claim, since extremally

disconnected sets are projective objects in the category of compact Hausdorff spaces [Gle58,

Theorem 2.5]. �

Proposition 4.30. Let f : X → S = Spa(A,A+) be a smooth map with good coordinates and

let g : Y = Spa(C,C+)→ S be a map in Adic.

(1) There is a canonical equivalence g∗RΓdR(X/S)� ∼= RΓdR(X ×S Y/Y )�.

(2) Suppose that g is also smooth with good coordinates. Then there is a canonical equiva-

lence RΓdR(X/S)� ⊗(A,A+)�
RΓdR(Y/S)� ∼= RΓdR(X ×S Y/S)�.

Proof. We consider the first statement. We let f ′ [resp. g′] be the map X ×S Y → Y [resp.

X ×S Y → X] obtained by pull-back. It suffices to prove that level-wise one has g∗f∗Ω
d
X/S
∼=

f ′
∗Ω

d
X×SY/Y

. This follows from Corollary 4.23 together with Proposition 4.6 (1).

Now we move to the second statement. By Proposition 4.6 (3), we deduce the following

equivalence of complexes of topological A-modules

Γ(X ×S Y,Ω
•
X×SY/S

) ∼= Tot((Γ(X,Ω•
X/S)⊗B (B⊗̂AC))⊗B⊗̂AC ((B⊗̂AC)⊗C Γ(Y,Ω•

Y/S)))

The right hand side can be simplified and we get

Γ(X ×S Y,Ω
•
X×SY/S

) ∼= Tot(Γ(X,Ω•
X/S)⊗̂AΓ(Y,Ω

•
Y/S)).

Underlining both sides, we deduce (using the notations of Definition 4.27)

Ω•(X ×S Y/S) ∼= Tot(Γ(X,Ω•
X/S)⊗̂AΓ(Y,Ω

•
Y/S)).
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Since the terms of the complexes Ω•(X/S) = Γ(X,Ω•
X/S) and Ω•(Y/S) = Γ(Y,Ω•

Y/S) are fi-

nite locally freeB-modules, resp. finite locally freeC-modules, we deduce from Corollary 4.24

(see also Remark 4.25) that

Tot(Γ(X,Ω•
X/S)⊗̂AΓ(Y,Ω

•
Y/S))

∼= Tot(Ω•(X/S)⊗un
(A,A+)�

Ω•(Y/S))

where the tensor product on the right is the underived tensor product of solid (A,A+)-modules,

and that moreover (cfr. [EGAIII2, Proposition 6.3.2]):

Tot(Ω•(X/S)⊗un
(A,A+)�

Ω•(Y/S)) ∼= RΓdR(X/S)� ⊗(A,A+)� RΓdR(Y/S)�

proving the claim. �

The results above allow us to extend the definition of RΓdR(X/S)� to arbitrary smooth maps

X → S.

Definition 4.31. Let X → S be a smooth map in Adic.

(1) Let S be affinoid. We define RΓdR(X/S)� to be the object in QCoh(S) defined by

rational descent (see Proposition 4.28) from the functor RΓdR(−/S)� : (Sm
gc /S)/X →

QCoh(S)op.

(2) In the general case, we can define RΓdR(X/S)� by rational descent of the cate-

gory QCoh(S) i.e. we may chose a affinoid rational hypercover S• → S, and let

RΓdR(X/S)� be the object of QCoh(S) ∼= limQCoh(S•) induced by the objects

RΓdR(Xn/Sn)�. The compatibility is ensured by Proposition 4.30.

Remark 4.32. Infinity-categorically, one may rephrase the definition above as follows: if S
is affinoid, by rational descent of RΓdR(−/S)� we can extend it to a functor of infinity-

categories Dan(Sm /S) ∼= Dan(Sm
gc /S) → QCoh(S)op. By letting S vary, the compatibil-

ity with pullbacks along open immersions translates into a natural transformation between

analytic sheaves of infinity-categories (see [AGV20, Proposition 2.3.7] and Theorem 4.18)

Dan(Sm /−)→ QCoh(−) on affinoid spaces open in S that can then be extended to S.

We deduce formally from Proposition 4.30 the following extension.

Corollary 4.33. Let f : X → S, g : S ′ → S be maps in Adic with f smooth.

(1) Let U → X be an étale Cech hypercover. Then RΓdR(X/S)� ∼= limRΓdR(U/S)�.

(2) If g is an open immersion, there is a canonical equivalence g∗RΓdR(X/S)� ∼=
RΓdR(X

′/S ′)� where X ′ = X ×S S
′.

(3) If f is qcqs, there is a canonical equivalence g∗RΓdR(X/S)� ∼= RΓdR(X
′/S ′)� where

X ′ = X ×S S
′.

(4) Suppose that f, g are both smooth and qcqs. Then

RΓdR(X/S)�⊗QCoh(S)RΓdR(S
′/S)� ∼= RΓdR(X ×S S

′/S)�.

Proof. The first point comes directly from the definition. All points are local on S so we can

assume that S is affinoid. By (1), if f is qcqs we can write RΓdR(X/S)� as a finite limit of

objects RΓdR(U/S)� with U affinoid. We then deduce (3) and (4) from the affinoid case treated

in Proposition 4.30, and the commutation of g∗ and ⊗ with finite limits. In case g is an open

immersion, we claim that g∗ commutes with arbitrary limits, which will give us the compatibil-

ity with pullbacks along open immersions in full generality. To justify this, we note that using

[And21, Propositions 4.11 and 4.12(ii)] (and the fact that forgetful functors are conservative

and commute with limits) the claim can be deduced from the commutation with limits of the

functor j∗, where j is a localization of analytic rings which is either j : (Z[T ],Z)� → Z[T ]� or

j : (Z[T ],Z)� → (Z[T±1],Z[T−1])�.
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Assume first that j is (Z[T ],Z)� → Z[T ]�. In [Sch20b, Theorem 8.1] a left adjoint j! to j∗

is constructed. In particular, j∗ commutes with limits. Next, assume that j is (Z[T ],Z)� →
(Z[T±1],Z[T−1])�. We decompose j into

(Z[T ],Z)
α
→ (Z[T, U ],Z[U ])

ι
→ (Z[T, U ]/(TU − 1),Z[U ]).

To keep notations simple, we will write A = Z[U ], B = Z[T, U ], C = Z[T, U ]/(TU − 1) in

what follows. Then j∗ = ι∗ ◦ α∗ = ι∗[−1] ◦ α∗[1], and the statement will be proved if we can

prove that both α∗[1] and ι∗[−1] commute with limits. For ι, note that the forgetful functor ι∗
has a right adjoint given by RHomB(C,−). We claim that the natural map

RHomB(C,B)⊗(C,A)� ι
∗(−)→ RHomB(C,−)

is an equivalence. We may and do check this in the category QCoh((B,A)�). Using that

C ∼= (B
TU−1
−→ B) we then deduce

RHomB(C,B)⊗(C,A)� ι
∗(−) ∼= C[−1]⊗(C,A)� (C,A)� ⊗(B,A)� (−)

∼= C[−1]⊗(B,A)� (−)
∼= RHomB(C,−)

whence our claim. Therefore, we see that ι∗[−1] agrees with the right-adjoint of ι∗, and thus

commutes with limits.

Finally, let us turn to α. The map α is the base change along Z� → (Z[T ],Z)� of the map

α′ : Z� → Z[U ]�. Using again [And21, Proposition 4.12(ii)], we reduce to showing that

(α′)∗[1] commutes with limits. But [Sch20b, Pages 57-58] shows that (α′)∗[1] has a left adjoint

α! defined there, and thus commutes with limits, as desired. �

4.4. Overconvergent version and extension to rigid-analytic motives. It is straightforward

now to give an overconvergent version of RΓdR(X/S)� for dagger varieties over S in Adic/Qp .

Definition 4.34. Let S be affinoid in Adic/Qp . We let Smgc † /S be the full subcategory of

Sm† /S of those objects (X̂,Xh) with X̂,Xh in Smgc /S. For any X = (X̂,Xh) in Aff Sm† /S.

We let RΓ†
dR(X/S)� be the object of QCoh(S) defined as colimRΓdR(Xh/S)�.

Remark 4.35. Filtered colimits of solid modules are solid, and filtered colimits are exact in

condensed O(S)-modules. Therefore RΓ†
dR(X/S)� is a bounded complex whose terms are

lim
−→

fh∗Ω
d
Xh/S

(fh being the smooth map Xh → S).

Proposition 4.36. Let S be affinoid in Adic/Qp and X be in Smgc † /S.

(1) Let U → X be an étale Cech hypercover in Aff Sm† /S. Then RΓ†
dR(X/S)�

∼=

limRΓ†
dR(U/S)�.

(2) Let g : S ′ → S be a map of affinoid spaces in Adic. There is a canonical equivalence

g∗RΓ†
dR(X/S)�

∼= RΓ†
dR(X

′/S ′)� where X ′ = X ×S S
′.

(3) Let g : Y → S be another object of Smgc † /S. Then

RΓ†
dR(X/S)�⊗QCoh(S)RΓ

†
dR(Y/S)�

∼= RΓ†
dR(X ×S Y/S)�.

Proof. Just like in the proof of Proposition 4.28, it suffices to show that the sheaf of solid

modules Ωi† is Cech-acyclic. We let U be a Cech étale hypercover of X that we may assume

to be arising from an étale cover of X0. We let Uh be the corresponding Cech hypercover on

each Xh. But then Γ(U ,Ω†i) ∼= lim
−→

Γ(Uh,Ω
i). As filtered colimits commute with finite limits

in QCoh(S), the claim follows from the acyclicity of Ωi. Properties (2) and (3) follow from

Proposition 4.30 and the commutation of filtered colimits with tensor products and base change

functors. �
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Corollary 4.37. The functor X 7→ RΓ†
dR(X/S)� can be uniquely extended into a functor

RΓ†
dR(−/S)� from RigSm† /S to QCoh(S) for any S ∈ Adic/Qp in a way that:

(1) for any U → X étale Cech hypercover in Aff Sm† /S one has RΓ†
dR(X/S)�

∼=
limRΓdR(U/S)�;

(2) for any open immersion j : U → S in Adic there is a canonical equivalence

j∗RΓ†
dR(X/S)�

∼= RΓdR(X ×S U/U)
†
�

.

Moreover, it satisfies the following properties.

(3) If X is qcqs in RigSm† /S and if g : S ′ → S is map in Adic, then g∗RΓ†
dR(X/S)�

∼=

RΓdR(X
′/S ′)†� where X ′ = X ×S S

′.

(4) If f : X → S and g : Y → S are qcqs in Sm† /S then

RΓ†
dR(X/S)�⊗QCoh(S)RΓ

†
dR(Y/S)�

∼= RΓ†
dR(X ×S Y/S)�.

(5) The natural projection induces an equivalence RΓ†
dR(B

1†
X/S)�

∼= RΓ†
dR(X/S)�.

(6) One has RΓ†
dR(T

1†
S /S)�

∼= 1 ⊕ 1[−1] where 1 is the unit of the monoidal structure on

QCoh(S).

Proof. As any smooth dagger space over S is locally in Smgc † /S, the first four claims follow

formally from Proposition 4.36 as in the proof of Corollary 4.33. We now move to the last two.

Using (2)-(3), it is enough to compute RΓ†
dR(X/S)� when S = Spa(Qp) and X = B

1†
Qp

[resp.

X = T
1†
Qp

]. We note that the classical computations show that the underlying Qp-vector spaces

are the expected ones, and we now have to promote these computations to solid Qp-vector

spaces.

By cofinality, we may re-write the complex RΓ†
dR(X/S)� as follows:

lim
−→
O(X◦

ε )→ lim
−→
O(X◦

ε )dT

whereO(X◦
ε ) is the Fréchet algebra of functions on the open disc [resp. annulus] of radius 1+ε

[and 1 − ε] with
√
|Qp| ∋ ε→ 0 inside SpaQp〈pT 〉. We need to show that its cohomology in

degree 1 is trivial [resp. isomorphic to Q
p
]. We may and do show that the H1 of each complex

O(X◦
ε )→ O(X

◦
ε )dT is trivial [resp. Qp].

Noting that Lemma 4.29 also holds for Fréchet spaces (since the open mapping theorem

holds for them as well) and that the differential map is strict (it is so for any smooth Stein space

over a finite extension of Qp, cf. [GK00, Lemma 4.7]) we conclude that the solid vector space

H1 coincides with O(X◦
ε )dT/dO(X

◦
ε ) which is zero [resp. Qp] by the standard computations

of the (overconvergent) de Rham cohomology of such Stein spaces [MW68, GK04]. �

Definition 4.38. We let RigDA(S)ct (ct standing for constructible) be the full pseudo-abelian

subcategory of RigDA(S) stable under shifts and finite colimits generated by the objects

QS(X)(n) with X → S smooth and qcqs, and n ∈ Z. It coincides with the category of com-

pact objects RigDA(S)ω if S is itself quasi-compact and quasi-separated (see Theorem 2.10(1))

and it is stable under tensor products and pullbacks.

The infinity-categorical translation of the corollary above is the following (compare with

Remark 4.32).

Corollary 4.39. Let S be in Adic/Qp .

(1) There is a unique functor

dRS : RigDA(S) ∼= RigDA†(S)→ QCoh(S)op

associating to each motive QS(X) with X ∈ RigSm† /S the complex RΓ†
dR(X/S)�.
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(2) The functor above is compatible with j∗ for any open immersion j : U → S.

(3) The restriction to constructible objects

RigDA(S)ct → QCoh(S)op

is symmetric monoidal and compatible with f ∗ for any morphism f : S ′ → S, giving

rise to a natural transformation

dR: RigDA(−)ct → QCoh(−)op

between contravariant functors from Adic/Qp with values in symmetric monoidal

infinity-categories.

Proof. For the first point, in light of Theorem 3.8, by the universal property of RigDA†(S) (see

Remark 2.8) it suffices to prove that the functor QS(X) 7→ RΓ†
dR(X/S)� is B

1†
S -invariant, has

étale descent and sends the motive T †
S to an invertible one. All these properties were proved

in Corollary 4.37. Corollary 4.37 also implies that dRS is symmetric monoidal and compat-

ible with pull-backs on the full pseudo-abelian stable subcategory of RigDA(S) generated

under finite colimits by the objects Q(X)(d) with X affinoid and d ∈ Z, which is precisely

RigDA(S)ct. �

Definition 4.40. Under the hypotheses of Corollary 4.39 we call the functor

dRS : RigDA(S)→ QCoh(S)op

the (relative) overconvergent de Rham realization. When M is the motive M = QS(X) of a

smooth variety X over S, or more generally if M = p!p
!QS for some map p : X → S which is

locally of finite type (see [AGV20, Corollary 4.3.18]), we will often write dRS(X) instead of

dRS(M).

Remark 4.41. We point out that the equivalence RigDA(S) ∼= RigDA†(S) and the fact that

dRS is motivic imply in particular that the overconvergent de Rham complex RΓ†
dR(X/S)�

doesn’t depend on the choice of a dagger structure on X .

Remark 4.42. In case S is affinoid, then we may take the cohomology groups H i
dR(M/S)† :=

H i(dRS(M)) with respect to the t-structure of Remark 4.20 and call them the i-th overconver-

gent de Rham cohomology group of M over S. In case M = p!p
!QS for a map p : X → S

which is locally of finite type, we may abbreviate them as H i
dR(X/S)

†.

Just like in the absolute case, there is no need of an overconvergent structure for smooth

proper varieties.

Proposition 4.43. Let X → S be a smooth proper map in Adic/Qp . The complex RΓ†
dR(X/S)�

is equivalent to the complex RΓdR(X/S)�.

Proof. We may and do assumeS is affinoid. Let {U0, . . . , UN} be a finite open cover ofX made

of objects in Smgc /S. The inclusionsUi ⋐S X induce overconvergent structures Vi = (Ui, Uih)
which are such that {U1h, . . . , UNh} is again an open cover of X . But then we get

RΓ†
dR(X/S)�

∼= limRΓ†
dR(V•/S)�

∼= lim lim
−→
h

RΓdR(U•h/S)�

∼= lim
−→
h

limRΓdR(U•h/S)�

∼= RΓdR(X/S)�

where we used the commutation of filtered colimits with finite limits and descent of

RΓdR(−/S)� (see Corollary 4.33). �
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Remark 4.44. Even if the overconvergent setting is “superfluous” when dealing with smooth

proper maps X/S, we stress that it is crucial in order to have a realization dRS on motives

RigDA(S) (and not just “pure” ones). This allows one to use the motivic six-functor formalism

and its consequences, which give non-trivial results even when applied to “pure” motives (see

for example Corollary 4.47).

4.5. Finiteness. We would like to conclude the same finiteness results for the relative rigid de

Rham cohomology as the relative algebraic de Rham cohomology (see for example [Har75])

that is: the fact that it defines vector bundles on the base in case X/S is proper and smooth, or

whenever S is a field.

Definition 4.45. Let C be a symmetric monoidal infinity-category. We denote by Cfd the full

subcategory of C whose objects are (fully) dualizable in the sense of [Lur17, Definition 4.6.1.7].

We now prove the main theorem of this section.

Theorem 4.46. Let S be an adic space in Adic/Qp . The relative overconvergent de Rham

realization

dRS : RigDA(S)→ QCoh(S)op

sends dualizable motives to split perfect complexes. In particular, if M is a dualizable motive,

then the cohomology groups of dRS(M) (for the t-structure on the derived category of perfect

complexes induces by the natural t-structure on the derived category ofOS-modules) are vector

bundles on S and equal to 0 if |i| ≫ 0.

Proof. We may and do assume that S is affinoid. We divide the proof into various steps.

Step 1: As the unit object in RigDA(S) is compact, any dualizable object is compact. As the

functor dRS is symmetric monoidal when restricted to compact objects by Corollary 4.39(3),

it sends dualizable objects to dualizable objects. Since dualizable objects in QCoh(S) are per-

fect complexes by [And21, Theorem 5.9 and Corollary 5.51.1], we deduce that dR restricts to

a functor RigDA(S)fd → P(S)op where we let P(S) be the full subcategory of perfect com-

plexes in QCoh(S).
Step 2: Let f : S → T be a morphism of affinoid spaces in Adic/Qp and suppose that a duali-

zable motive M ∈ RigDA(S) has a dualizable model N ∈ RigDA(T ). We then deduce from

Corollary 4.39 the following commutative diagram

RigDA(T )fd //

��

P(O(T ))op

��

RigDA(S)fd // P(O(S))op

and hence that dRS(M) ∼= f ∗ dRT (N). As split perfect complexes are stable under base

change, if we know the statement holds for N , we can deduce it for M as well.

Step 3: Since S is a uniform Tate-Huber ring, S+ is a ring of definition and has the p-adic

topology. Write S+ as the union of its finitely generated Zp-subalgebras R. Since S+ is

p-adically complete, we therefore get a presentation of (S, S+) as the filtered colimit of the

complete affinoid rings (R̂[1/p], R̂), for R as before. Applying [SW13, Proposition 2.4.2]

(with ideals of definition generated by p), we deduce that S ∼ lim
←−

Spa(A,A+), with A =

R̂[1/p] being a Tate algebra of topologically finite type over Qp. By Theorem 2.12 we de-

duce that RigDA(S) ∼= lim
−→

RigDA(Spa(A,A+)) so that any dualizable motiveM has a model

NA ∈ RigDA(Spa(A,A+))fd for some A. By Step 2, it suffices to prove the statement in case

S = Spa(A,A+) with A an affinoid Tate algebra of tft over a finite extension K of Qp.

Step 4: Any perfect complex of A-modules with projective cohomology groups is split. As
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dRS(M) is a perfect complex, and each cohomology group H i dRS(M) is a finite type module

over A, we are left to prove that they are free after base change to each stalk OSpec(A),s with

s being a closed point of Spec(A), corresponding to a maximal ideal m of A. Fix such an

s. Since OSpec(A),s is noetherian, it suffices in fact to do so after base change to the m-adic

completion ÔSpec(A),s of OSpec(A),s, as the map OSpec(A),s → ÔSpec(A),s is faithfully flat. The

completion ÔSpec(A),s agrees with the completion of the local ring OS,s of the adic space S at

s (now seen as a point of S). In particular, it suffices to show that for each integer i, there

exists some rational domain U over s such that H i dRS(M) ⊗A O(U) is projective. Since A
is an affinoid algebra of finite type, the natural map A → O(U) is flat for any such U , and

therefore H i dRS(M)⊗AO(U) is nothing but H i dR(MU ). Up to taking a finite étale cover of

SpaA and enlarging K we may assume that k(s) = K. By means of Theorem 2.12 we have

lim
−→s∈U

RigDA(U) ∼= RigDA(K) where U runs among affinoid neighborhood of x. We remark

that in this case, the functor from right to left is induced by pullback Π∗ over the structure

morphisms Π: U → SpaK. We deduce that for some open neighborhood U of s the motive

MU is isomorphic to Π∗Ms with Ms in RigDA(K) which implies by Step 2 that the complex

dRS(M) ⊗A O(U) ∼= dRU(MU ) is quasi-isomorphic to dRs(Ms) ⊗K O(U) which is split,

proving the claim. �

It is well known that the relative de Rham cohomology groupsH i
dR(X/S) of a map f : X →

S of algebraic varieties in characteristic 0 are vector bundles on the base, whenever f is smooth

and proper. We can prove the analogous statement for the overconvergent de Rham cohomology

of adic spaces.

Corollary 4.47. Let f : X → S be a smooth and proper map in Adic/Qp . Then dRS(X) is a

perfect complex and its cohomology groups (cf. Theorem 4.46) are vector bundles on S, and

equal to zero if i≫ 0.

Proof. By the six-functor formalism, the motive f!f
!Q = QS(X) is dualizable in RigDA(S)

with dual f∗f
∗Q as shown in [AGV20, Corollary 4.1.8]. �

Remark 4.48. We also remark that Theorem 4.46 generalizes [Vez18] as any compact motive

in RigDA(K) with K a complete non-archimedean field is dualizable: this can be seen by

[Ayo20, Proposition 2.31] and [Rio05].

Remark 4.49. We point out that Theorem 4.46 and Corollary 4.47 hold for any motivic real-

ization which is compatible with tensor products and pullbacks, taking values in solid quasi-

coherent sheaves.

5. A RIGID ANALYTIC FARGUES-FONTAINE CONSTRUCTION

In this section we construct a functorial motivic realization from rigid analytic motives

over a base in characteristic p with values in motives over the corresponding adic Fargues-

Fontaine curve (in characteristic 0). This is akin to the usual perfectoid constructions of

Fargues-Fontaine and Scholze, that we de-perfectoidify using homotopies, i.e. via the motivic

results shown in Section 2.

5.1. Motives on Fargues-Fontaine curves. We first apply the formalism of motives for a

special kind of adic spaces, namely Fargues-Fontaine curves associated to perfectoid spaces.

We briefly recall how they are constructed.

Definition 5.1. Let S be a perfectoid space in characteristic p with some pseudo-uniformizer

π ∈ O×(S). We let Y[0,∞)(S) [resp. Y(0,∞)(S)] be the adic space S
•
× SpaZp [resp.

S
•
× SpaQp] using the notation of [SW20, Section 11.2]. In case S is affinoid S =
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Spa(R,R+), it coincides with the open locus {|π| 6= 0} [resp. {|pπ| 6= 0}] in the spec-

trum Spa(W (R+),W (R+)) and is obtained by gluing along affinoids in the general case. For

any r = (a/b) ∈ Q>0 we also let B[0,r](S) [resp. B(0,r](S)] be the open locus of Y[0,∞)(S)
[resp. of Y(0,∞)(S)] defined by |p|b ≤ |π|a [resp. 0 < |p|b ≤ |π|a].

The (invertible) Frobenius endomorphismO+
S → O

+
S induces an automorphism

ϕ : Y[0,∞)(S)
∼
→ Y[0,∞)(S)

which restricts to the Frobenius automorphism on the ϕ-stable closed subspace S ∼= {p = 0} ⊂
Y[0,∞)(S). One has ϕ(B[0,r](S)) = B[0,pr](S) (see for example [SW20, Page 136]) so that the

action on Y(0,∞)(S) is properly discontinuous, hence it makes sense to define the quotient adic

space X (S) := Y(0,∞)(S)/ϕ
Z which is the relative Fargues-Fontaine curve over S.

Remark 5.2. We point out that if S lies in Adic (i.e. it is admissible) then also the spaces

Y[0,∞)(S),Y(0,∞)(S),X (S) do. As they are sous-perfectoid (see the proof of [SW20, Proposi-

tion 11.2.1]) we are left to prove the condition on the Krull dimension. To this aim, we may

suppose that S has global Krull dimension d and show that the Krull dimension of Y[0,∞)(S) is

bounded. As this condition translates into a condition on the maximal height of the valuations

at the residue fields, we may consider separately the closed space S (of dimension d) and its

open complementary Y(0,∞)(S). For the latter, we can replace it by a pro-étale cover, since

this does not alter the Krull dimension, and consider Y(0,∞)(S) ×Spa(Qp) Spa(Q
cyc
p ). This is a

perfectoid space, and its tilt is isomorphic to the perfectoid punctured open unit disk over S.

Since tilting and perfection do not change the (topological!) Krull dimension, this space has

the same dimension as the open disk over S, which is finite by assumption on S.

We let U be an open neighborhood of S in Y[0,∞)(S) of the form U = B[0,r](S) with r ∈

Z[1/p]>0. The natural inclusion j : U ⊂ ϕ(U) and the map ϕ : U
∼
→ ϕ(U) induce a triple of

endofunctors (see Theorem 2.10) j♯, j
∗, j∗ on RigDAét(U,Q) defined as follows

j♯ : RigDA(eff)(U)
j♯
→ RigDA(eff)(ϕ(U))

ϕ∗

→
∼

RigDA(eff)(U)

j∗ : RigDA(eff)(U)
j∗

→ RigDA(eff)(ϕ−1(U))
ϕ−1∗

→
∼

RigDA(eff)(U)

j∗ : RigDA(eff)(U)
j∗
→ RigDA(eff)(ϕ(U))

ϕ∗

→
∼

RigDA(eff)(U)

and from the canonical equivalence ϕ∗j∗ ∼= j∗ϕ∗ we deduce that they form a triple of adjoint

functors (j♯, j
∗, j∗) such that j∗j♯ ∼= id and j∗j∗ ∼= id.

In the following proposition, we specialize some of the general motivic results of Section 2

to the setting of the subspaces of the relative Fargues-Fontaine curves introduced above.

Proposition 5.3. Let S be a perfectoid space in Adic/Fp and let U be an open neighborhood of

S in Y[0,∞)(S) of the form U = B[0,r](S) for some r ∈ Z[1/p]>0.

(1) The pullback to S induces an equivalence in CAlg(PrLω):

lim
−→
j∗

RigDA(eff)(U) ∼= RigDA(eff)(S)

Under the equivalence above, the endofunctor j∗ on the left hand side corresponds to

the endofunctor ϕ−1∗ on the right hand side.

(2) The pullbacks induce an equivalence in CAlg(PrL):

lim
←−
j∗

RigDA(eff)(U) ∼= RigDA(eff)(Y[0,∞)(S))
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Under the equivalence above, the endofunctor j∗ on the left hand side corresponds to

the endofunctor ϕ−1∗ on the right hand side.

(3) The canonical functors induce the following equivalences in CAlg(PrL):

RigDA(eff)(S)hϕ
∗

ω
∼= (lim
−→
j∗

RigDA(eff)(U))hj
∗

ω
∼= RigDA(eff)(U)hj

∗

ω

RigDA(eff)(Y[0,∞)(S))
hϕ∗ ∼= (lim

←−
j∗

RigDA(eff)(U))hj
∗ ∼= RigDA(eff)(U)hj

∗

.

(4) If we let ι be the closed inclusion S ⊂ Y[0,∞)(S), the functor ι∗ induces an equivalence

in CAlg(PrLω):

RigDA(eff)(Y[0,∞)(S))
hϕ∗

ω
∼= RigDA(eff)(S)hϕ

∗

ω

(5) The pull-back functor defines the following equivalences in CAlg(PrL):

RigDA(eff)(X (S)) ∼= RigDA(eff)(Y(0,∞)(S))
hϕ∗ ∼= RigDA(eff)(Y(0,∞)(S))

hϕ∗

ω

Proof. The forgetful functors CAlg(PrL) → PrL, CAlg(PrLω) → PrLω (see [Lur17, Lemma

3.2.26]) are conservative and detect filtered colimits and limits (see [Lur17, Corollaries 3.2.2.5

and 3.2.3.2]). Hence, as all the functors involved are monoidal, we may prove all statements by

ignoring the monoidal structure. We first prove (1). The diagram

RigDA(eff)(U)
j∗

→ RigDA(eff)(U)
j∗

→ RigDA(eff)(U)
j∗

→ . . .

is equivalent to the diagram

RigDA(eff)(U)
j∗

→ RigDA(eff)(ϕ−1(U))
j∗

→ RigDA(eff)(ϕ−2(U))
j∗

→ . . .

Since |S| =
⋂
|U[0,r/pn]| the first claim follows from Theorem 2.12 and Remark 2.13. The

second claim follows from the definition and the fact that ϕ on Y(S) restricts to ϕ on S.

We also remark that, dually, the diagram

RigDA(eff)(U)
j♯
→ RigDA(eff)(U)

j♯
→ RigDA(eff)(U)

j♯
→ . . .

is equivalent to the diagram of inclusions of full subcategories of RigDA(eff)(Y[0,∞)(Y )):

RigDA(eff)(U)
j♯
→ RigDA(eff)(ϕ(U))

j♯
→ RigDA(eff)(ϕ2(U))

j♯
→ . . .

We point out that its union contains a set of compact generators of RigDA(eff)(Y[0,∞)(Y )) since

Y[0,∞) =
⋃
ϕn(U). We then deduce lim

−→j♯
RigDA(eff)(U) ∼= RigDA(eff)(Y[0,∞)(Y )) in PrL.

On the other hand, since j♯ is the left adjoint to j∗ and limits in PrL as well as in PrR are

computed in infinity-categories (see [Lur09, Proposition 5.5.3.13 and Theorem 5.5.3.18]) we

may rewrite lim
←−j∗

RigDA(eff)(U) ∼= lim
−→j♯

RigDA(eff)(U) ∼= RigDA(eff)(Y[0,∞)(S)) in PrL and

we can deduce the equivalence in (2). By definition, the functor j♯ corresponds to ϕ∗ hence the

final claim.

We now move to (3) and we start by the first row. We remark that the functors involved

are monoidal, so it suffices to prove the statement in PrL, and that colimits computed in PrL

coincide with those computed in PrLω by [Lur17, Lemma 5.3.2.9]. The first equivalence follows

immediately from (1). As PrLω is compactly generated [AGV20, Proposition 2.8.2] finite homo-

topy limits commute with filtered homotopy colimits (since it is the case for spaces). We then

deduce

(lim
−→
j∗

RigDA(eff)(U))hj
∗

ω
∼= lim
−→
j∗

(RigDA(eff)(U)hj
∗

ω ) ∼= RigDA(eff)(U)hj
∗

ω
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where the last equivalence follows from the fact that the extension of j∗ to RigDAeff(U)hj
∗

is

an equivalence.

Similarly, for the second row, we point out that the first equivalence follows from (2) and for

the second we may use the commutation of limits in PrL and conclude

(lim
←−
j∗

RigDA(eff)(U))hj
∗ ∼= lim
←−
j∗

(RigDA(eff)(U)hj
∗

) ∼= RigDA(eff)(U)hj
∗

.

By means of Remark 2.24, the category RigDA(eff)(U)hj
∗

ω is the presentable subcate-

gory of RigDA(eff)(U)hj
∗

generated by compact objects. Using (3) we then deduce that

RigDA(eff)(S)hϕ
∗

ω is equivalent to the presentable subcategory of RigDA(eff)(Y[0,∞)(S))
hϕ∗

generated by compact objects, which in turn coincides with RigDA(eff)(Y[0,∞)(S))
hϕ∗

ω (using

Remark 2.24 once again) and this proves (4).

We are left to prove (5). By étale descent for RigDA applied to the cover Y(0,∞)(S) →
X (S) = Y(0,∞)(S)/ϕ

Z we deduce (we denote here Y(0,∞)(S) by Y , for brevity):

RigDA(X (S)) ∼= lim
(
RigDA(Y) // // RigDA(Y)× Z ////// RigDA(Y)× Z2 //////// · · ·

)

which computes RigDA(Y(0,∞)(S))
hZ. This category, using Remarks 2.23 and 2.24, coincides

with RigDA(Y(0,∞)(S))
hϕ∗

ω . �

Remark 5.4. The homotopy limit appearing in (2) coincides with the homotopy limit of the

Cech hypercover generated by the cover {ϕN(U)} of Y[0,∞)(S). In particular, (2) is also a

special instance of analytic descent.

5.2. A motivic Dwork’s trick. We now give another interpretation of Proposition 5.3 giving

rise to a method to associate a motive over S to a motive over the (relative) Fargues-Fontaine

curve X (S). This is reminiscent of the so-called Dwork’s trick and produces a “universal”

way to transform a rigid space in equi-characteristic p to a mixed characteristic space (up to

homotopy). We now give the formal, precise definition of the functor D already mentioned in

the introduction.

Corollary 5.5. Let S be in Adic/Fp . There is a functor

D(S) : RigDA(eff)(S)→ RigDA(eff)(X (SPerf))

defined as follows:

RigDA(eff)(S)
∼

RigDA(eff)(SPerf)

��

RigDA(eff)(SPerf)hϕ
∗

ω
∼

RigDA(eff)(Y[0,∞)(S
Perf))hϕ

∗

ω� _

��

RigDA(eff)(Y[0,∞)(S
Perf))hϕ

∗

j∗

��

RigDA(eff)(Y(0,∞)(S
Perf))hϕ

∗ ∼
RigDA(eff)(X (SPerf)).

It is compatible with tensor products and pull-backs, inducing a functor

D : RigDA(eff) → RigDA(eff)(X (−))

between étale hypersheaves on Perf/Fp with values in CAlg(PrL).
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Proof. We can define a functor RigDA(eff)(S) → RigDA(eff)(X (SPerf)) as in the statement,

where the first equivalence follows from Theorem 2.18, the first vertical map is defined in

Corollary 2.25, the second equivalence follows from Proposition 5.3(2), the second vertical

map is the natural inclusion (see Remark 2.24), and the third is simply given by j∗ with

j : Y(0,∞)(S
Perf) ⊂ Y[0,∞)(S

Perf) being the ϕ-equivariant open inclusion, while the last equiva-

lence follows from Proposition 5.3(4). All these maps are monoidal.

Compatibility with pullbacks follows from Corollary 2.25 and the commutativity of j∗ with

pullbacks. �

Remark 5.6. The recipe sketched above uses the specific formal properties of the categories of

(adic) motives in various instances. It is impossible to follow a similar strategy directly on the

category of smooth spaces over S in general (even the first step would not hold, see [LB18]).

As a consequence, even when the motive M̄ is the motive of a smooth rigid variety over S, we

can not claim the motiveMX to be attached to a smooth rigid variety over X (S) in general (but,

see Proposition 5.11).

Remark 5.7. Consider now a Tate curve E = Gan
m /ϕ over a non-archimedean field K with ϕ

being the automorphism x 7→ q · x of A1
K with 0 6= q ∈ K◦◦. Following the proof of the

previous corollary, one can also construct a functor

RigDA(eff)(K)→ RigDA(eff)(K)h id ∼= RigDA(eff)(A1 an
K )hϕ

∗

→ RigDA(eff)(E)

In this situation, this composition coincides with the pullback p∗ along the projection p : E →
SpaK since ι∗p∗ = id. We may then interpret the functor D(S) as playing the same role as

the functor p∗ with p being the (non-existent) map p : X (S) 99K S. We will make this more

precise in Proposition 5.15.

Remark 5.8. There is a perfectoid version of the previous constructions. We remark that in this

case, the functor obtained by Dwork’s trick

PerfDA(P )
D(P )
−→ PerfDA(X (P )) ∼= RigDA(X (P )⋄)

(the category on the right is defined by pro-étale descent, see Corollary 2.16) coincides canoni-

cally with the functor induced by the relative Fargues-Fontaine curve constructionX 7→ X (X).
This can be seen from the fact that QS(X (X)) is naturally an object on PerfDAn(X (S)) (see

Remark 2.33) using [KL15, Lemma 8.7.15] and that X 7→ Y[0,∞)(X) defines an inverse to ι∗.

This is compatible with the idea thatD(S) must be seen as a rigid-analytic model of the relative

Fargues-Fontaine construction, as we will prove in Proposition 5.15.

Remark 5.9. There is a more direct way to define a map from RigDA(S) to RigDA(Y[0,∞))
hϕ∗

namely, by using the functor ι∗ (the right adjoint to the pull-back functor). On the other hand,

we remark that the composition

RigDA(S)hϕ
∗ ι∗→ RigDA(Y[0,∞)(S))

hϕ∗ j∗

→ RigDA(Y(0,∞)(S))
hϕ∗ ∼= RigDA(X (S))

is trivial, since the objects ι∗M are concentrated on S and hence are in the kernel of j∗. The

functor D(S) defined above is far from being trivial. Indeed, as it is a monoidal functor, it

sends 1 = QS(S) to 1 = QX (S)(X (S)).

We can even be more precise by computing the image under D of motives of “good reduc-

tion”. We recall some basic facts on formal motives.

Definition 5.10. As in [AGV20, Remark 3.1.5(2)], whenever S is a formal scheme, we denote

by FDA(S,Q) = FDA(S) the infinity-category of (unbounded, derived, Q-linear, étale) for-

mal motives over S i.e. the infinity-category arising as in Definition 2.4 from the étale site on
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smooth formal schemes over S with coefficients in the ring Q (typically omitted) by imposing

homotopy invariance, and invertibility of the Tate twist. Suppose now that Sη is an adic space.

The special fiber functorX 7→ Xσ resp. the generic fiber functorX 7→ Xη (see [AGV20, Nota-

tions 1.1.6 and 1.1.8]) induces a natural map σ∗ : FDA(S)→ DA(Sσ) resp. η∗ : FDA(S)→
RigDA(Sη) and the former is even an equivalence (see [AGV20, Theorem 3.1.10]).

In particular, whenever S = Spa(R,R+) is a perfectoid affinoid in Perf /Fp with pseudo-

uniformizer π, then we have FDA(SpfW (R+)) ∼= FDA(Spf R+) ∼= DA(SpecR+/π).
By Remark 2.19, the Frobenius endomorphism ϕ defines an invertible automorphism of

FDA(SpfW (R+)) and, arguing as in Corollary 2.25, we obtain a functor FDA(SpfW (R+))→
FDA(SpfW (R+))hϕ

∗

that we can compose with η∗ and the pull-back along the inclusion

Y(0,∞)(S) ⊂ Y[0,∞](S) = SpfW (R+)η getting the following composition (one may tem-

porarily lift any condition on Krull dimensions, as we do not use compact generators in this

construction)

FDA(R+)

∼

RigDA(X (S))

FDA(W (R+)) // FDA(W (R+))hϕ
∗ η∗

// RigDA(W (R+)η)
hϕ∗ j∗

// RigDA(Y(0,∞)(S))
hϕ∗

∼

thus producing a functor D̃(R+) : FDA(R+)→ RigDA(X (S)).

Proposition 5.11. Let S = Spa(R,R+) be a perfectoid affinoid in Perf/Fp and let M be

a motive of FDA(R+). Then M can be defined over W (R+) and the image of Mη in

RigDA(Y(0,∞)(S)) via D(S) is canonically isomorphic to M ×W (R+) Y(0,∞).

More precisely, the following diagram commutes up to a natural invertible transformation.

FDA(R+)

η∗

��

D̃(R+)

((PP
P
P
PP

PP
P
PP

P

RigDA(S)
D(S)

// RigDA(X (S))

Proof. It suffices to prove the commutation of the following ϕ∗-equivariant, compact-

preserving diagram, whose sides are all defined by pullback:

FDA(W (R+))

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

��

RigDA(B[0,r](S)) // RigDA(S)

and this is obvious. �

Remark 5.12. We recall that RigDA(S) is generated by motives which are of good reduction

over some étale extension S ′ → S by [AGV20, Corollary 3.7.19]. Proposition 5.11 allows then

to have an explicit description of D(S)(M) for any compact motive M ∈ RigDA(S) up to

some étale extension of the base.

5.3. (De-)perfectoidification and rigid-analytic tilting. We now quickly show that the con-

struction of the functor D(S) given above allows one to “globalize” the motivic rigid-analytic

tilting equivalence given in [Vez19a] that is, to prove that RigDA(S) ∼= RigDA(S⋄) for any

space S ∈ Adic/Qp . This allows one to give, a posteriori, another construction of D in terms of

the relative Fargues-Fontaine curve, paired up with motivic (de-)perfectoidification.

Theorem 5.13. There are equivalences of presheaves on Adic/Qp with values in CAlg(PrL):

RigDA(−) ∼= RigDA((−)⋄) ∼= PerfDA((−)⋄) ∼= PerfDA(−).
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Proof. The proof is divided into various steps.

Step 1: By Theorem 2.30 it suffices to produce the first equivalence. By pro-étale descent we

may restrict to Perfqcqs/Cp
and show RigDA(P ) ∼= RigDA(P ♭) in CAlg(PrLω) functorially on P .

We can produce a natural transformation between the two functors by means of the composition

F : RigDA(P ♭)
D(P ♭)
−→ RigDA(X (P ♭))

∞∗

→ RigDA(P ).

We now restrict the two functors on the hypercomplete affinoid analytic site of P where they

are analytic (hyper)sheaves with values in PrLω. To show they are equivalent, it suffices then

to show that F is invertible on analytic stalks (see [AGV20, Lemma 2.8.4]) that is on a fixed

perfectoid space of the form P = Spa(K,K+) with K a complete field (by Theorem 2.12, see

also [AGV20, Theorem 2.8.5]). By pro-étale descent, we may then actually suppose that K is

algebraically closed. We remark that we are almost in the same setting as in [Vez19a], with the

difference that K+ may not be equal to K◦. In particular, we can’t use duality as it is done in

[Vez19a, Theorem 7.11]. We will replace this ingredient with [AGV20, Theorem 3.7.21].

Step 2: We consider the following adjoint pairs

ξ : FDA(K+) ⇄ RigDA(Spa(K,K+)) : η ξ♭ : FDA(K+) ⇄ RigDA(Spa(K♭, K♭+)) : η♭

We remark that, by means of Proposition 5.11 we have Fξ ∼= ξ♭. Using [AGV20, Theorem

3.7.21] we may replace the categories RigDA(Spa(K,K+)) and RigDA(Spa(K♭, K♭+)) with

FDA(SpfK+, χ1) and FDA(SpfK+, χ♭1) respectively, which denote the categories of mod-

ules in formal motives over the commutative algebra object χ1 resp. χ♭1 (see [AGV20, Section

3.4]). Accordingly, we may replace the functorF with the base change along the map χ♭1→ χ1
which is induced by Fξ ∼= ξ♭. The fact that this morphism is invertible can be deduced by the

explicit description of the objects χ♭1, χ1 which is given in [AGV20, Section 3.8] and we now

briefly explain how.

Step 3: Fix an inclusion K0 := Qp(µp∞) ⊂ K and its tilted inclusion K♭
0 = Fp((t

1/p∞))∧ ⊂ K♭.

We claim that there is a filtered system of perfectoid subfields K0 ⊂ (Kα, K
+
α ) ⊂ (K,K+)

whose valuation group is a finitely generated free Z[1/p]-algebra, such that
⋃
K+

α is dense in

K+ and
⋃
K♭+

α is dense in K♭+. To define them it suffices to pick, for any finite subset α
in K+♭, the completed perfection of the field K♭

α := K0(a
1/p∞)a∈α and its un-tilt Kα above

K0. By continuity of FDA(−, χ1) (see [AGV20, Theorem 3.5.3]) it suffices then to prove that

the maps χ♭
α1 → χα1 are isomorphisms, and this follows from their explicit description given

in [AGV20, Theorem 3.8.1 and Corollary 3.8.31] (see also [Ayo15, Théorème 2.5.57] and

[Vez19b, Theorem 5.26]) which agrees with (1⊕ 1(−1)[−1])⊗n where n = rkZ[1/p]|α|. �

The proof of Theorem 5.13 also shows the following.

Corollary 5.14. Let K be a perfectoid field of characteristic p and P be in Perf/K . For any

closed point x♯ of X (K) associated to an un-tilt K♯ of K the composition

RigDA(P )
D(P )
−→ RigDA(X (P ))

x♯∗

→ RigDA(P ♯)

is an equivalence, and recovers the equivalence of [Vez19a] in case P = Spa(K). �

We end this section by linking the functor D to the base change along X (S)⋄ → S⋄.

Proposition 5.15. Let P be a perfectoid space in Perf/Fp .

(1) The relative Fargues-Fontaine curve functor X ∈ PerfSm /P 7→ X (X) induces a

functor

X : PerfDA(P )→ PerfDA(X (P ))
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and the following diagram, with vertical maps given by Theorem 5.13, is commutative

(up to a canonical invertible transformation):

RigDA(P )
D

//

∼

��

RigDA(X (P ))

∼

��

PerfDA(P )
X

// PerfDA(X (P ))

In particular, one can define D as the functor induced by the relative Fargues-Fontaine

curve construction and motivic (de-)perfectoidification.

(2) The pull-back along Π: Y(0,∞)(P )
⋄ → P ⋄ induces a functor

Π∗ : RigDA(P ⋄)→ RigDA(Y(0,∞)(P )
⋄)

and the following diagram, with vertical maps given by Theorem 5.13, is commutative

(up to a canonical invertible transformation):

RigDA(P )
D

//

∼

��

RigDA(X (P )) // RigDA(Y(0,∞)(P ))

∼

��

RigDA(P ⋄)
Π∗

// RigDA(Y(0,∞)(P )
⋄)

In particular, one can define the functor D(P ) by means of the pullback along the

diamond map Y(0,∞)(P )
⋄ → P ⋄ and motivic (de-)diamondification.

Proof. Since the functor Π∗ : PerfDA(P ) → PerfDA(Y(0,∞)(P )) obtained by pullback

coincides with the one induced by X 7→ Y(0,∞)(X), we easily see that the two claims

are actually equivalent. We recall that, if we put Q := Y(0,∞)(P )Cp , the map e : Q →
Y(0,∞)(P ) is a pro-étale perfectoid cover and hence, by pro-étale descent, it suffices to

construct a Galois-equivariant invertible natural transformation between the functors e∗ ◦

D̃ : RigDA(P )→RigDA(Q) and Π̃ : RigDA(P )→RigDA(Q♭) where we put D̃ to be the

composition of D with (Y(0,∞)(P ) → X )
∗ and Π̃ to be Q⋄ → P .

This follows from the functoriality ofD and the construction of the equivalenceRigDA(Q) ∼=
RigDA(Q♭) showed in Theorem 5.13, which give the following commutative diagram

RigDA(P )
Π̃∗

//

D̃
��

RigDA(Q♭)

D̃
��

∼

��

RigDA(Y(0,∞)(P ))
Y(Π̃)∗

// //

e∗

44
RigDA(Y(0,∞)(Q

♭))
∞∗

Cp
// RigDA(Q)

thus proving the statement (the commutativity of the lower part of the diagram is simply ex-

pressing the adjunction between Witt vectors and tilting). For the final claim, we remark that

one could then define D using the following composition:

RigDA(P )→ RigDA(P )hϕ
∗ Π∗

→ RigDA(Y(0,∞)(P )
⋄)hϕ

∗∼=RigDA(X (P )⋄)∼=RigDA(X (P ))

where the first map is induced by Corollary 2.25. �
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6. THE DE RHAM-FARGUES-FONTAINE COHOMOLOGY

In this final section, we combine the results above, by merging the Fargues-Fontaine realiza-

tionD with the overconvergent de Rham realization, giving rise to a de Rham-like cohomology

theory for analytic spaces in positive characteristic with values in modules over the associated

Fargues-Fontaine curves.

6.1. Definition and properties. We can juxtapose Corollary 4.39 and Corollary 5.5 as follows.

Definition 6.1. Let S be an adic space in Adic/Fp . The composition of the functors

dRFF
S : RigDA(S)

D(SPerf)
// RigDA(X (SPerf))

dR
X(SPerf )

// QCoh(X (SPerf))op

will be called the de Rham-Fargues-Fontaine realization.

In case M = QS(X) for some smooth map X → S, or more generally if M = p!p
!QS for

some map p : X → S which is locally of finite type (see [AGV20, Corollary 4.3.18]), then we

alternatively write dRFF
S (X) instead of dRFF

S (M).

Remark 6.2. In case S is affinoid, then we may take the cohomology groupsH i
FF(M/X (S)) :=

H i(dRFF
S (M)) with respect to the t-structure of Remark 4.20 and call them the i-th de Rham-

Fargues-Fontaine cohomology group of M over X (S). In case M = p!p
!QS for a map p : X →

S which is locally of finite type, we may even use the symbol H i
FF(X/X (S)).

We recall that we denote by RigDA(S)fd the full subcategory of dualizable motives (see

Definition 4.45), and by P(S) the full subcategory of perfect complexes in QCoh(S).

Theorem 6.3. Let S be in Adic/Fp . The de Rham-Fargues-Fontaine realization dRFF
S restricts

to a symmetric monoidal functor compatible with pullbacks:

dRFF
S : RigDA(S)fd → P(X (SPerf))op.

Moreover, for anyM in RigDA(S)fd, dRFF
S (M) is a split perfect complex ofOX (SPerf )-modules

over the relative Fargues-Fontaine curve X (SPerf). In particular, its cohomology groups are

vector bundles on S and equal to 0 if |i| ≫ 0.

Proof. The functor D(S) being monoidal, it preserves dualizable objects. The claim then fol-

lows from Theorem 4.46. �

One of the key features of the relative de Rham cohomology for algebraic varieties is that it

defines a vector bundle on the base whenever the map f : X → S is proper and smooth. The

analogous statement holds for the de Rham-Fargues-Fontaine cohomology:

Corollary 6.4. If X → S be a smooth proper morphism in Adic/Fp , dRFF
S (X) is a split perfect

complex ofOX (SPerf )-modules over the relative Fargues-Fontaine curve X (SPerf). In particular,

its cohomology groups are vector bundles on S and equal to 0 if |i| ≫ 0.

Proof. It suffices to point out that the motive QS(X) is dualizable, and this follows from

[AGV20, Corollary 4.1.8]. �

It is also well known that the absolute de Rham cohomology for algebraic varieties over a

field (of characteristic 0) is finite, for any sort of variety X . Once again, the same result holds

for the de Rham-Fargues-Fontaine cohomology, as the next corollary shows.

Corollary 6.5. Let K be a perfectoid field of characteristic p. If M is a compact motive

(e.g., the motive attached to a smooth quasi-compact rigid variety over K) in RigDA(K), then

dRFF
K (X) is a split perfect complex ofOX (K)-modules over the relative Fargues-Fontaine curve

X (K).
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Proof. Whenever the base is a field, the category of dualizable motives coincides with the

category of compact motives: this follows from [Ayo20, Proposition 2.31] and [Rio05]. �

Remark 6.6. We stress that there is no “smoothness” nor “properness” condition on the motive

M above: for example, any (eventually singular, or non-proper) algebraic variety p : X → K
has an attached (homological) motive p!p

!Q(K) which is dualizable in DA(K) (by [Ayo14,

Théorème 8.10]) hence in RigDA(K), after analytification. It coincides with the homological

motive of the analytified variety by [Ayo15, Théorème 1.4.40].

Remark 6.7. By pre-composing D with other symmetric monoidal functors, we can deduce

further cohomology theories. For example, if S = Spa(A,A+) is affinoid, we may consider

the analytification functor (see [AGV20, Proposition 2.2.13]):

Ran∗ : DA(SpecA)→ RigDA(S),

getting a de Rham-Fargues-Fontaine realization for algebraic varieties over A.

6.2. Comparison with the B+
dR-cohomology of [BMS18]. To conclude this text, we would

like to briefly discuss the relation between the de Rham-Fargues-Fontaine realization and some

other cohomology theories.

Let K be a perfectoid field of characteristic p. From Corollary 5.14 one deduces that, under

the hypotheses of Corollary 6.5, the specialization of dRFF
K (M) at some un-tilt K♯ of K is

isomorphic to the K♯-overconvergent de Rham cohomologyRΓdR(M,K♯) defined in [Vez19b,

Definition 4.2]. Therefore, dRFF
K (M) is a perfect complex on the Fargues-Fontaine curve in-

terpolating between the overconvergent de Rham cohomologies of M at various untilts of K,

which are parametrized by rigid points of the curve.

Suppose now that C is a perfectoid field of characteristic 0 (or, more generally, an admissible

perfectoid space over it). We notice that the oveconvergent de Rham cohomology over C
extends to a cohomology with values over QCoh(X (C)) via the composition:

RigDA(C) ∼= RigDA(C♭)
dRFF−→ QCoh(X (C♭))op.

We now consider the particular case where C is algebraically closed. Let k be its residue field,

and B+
dR be Fontaine’s pro-infinitesimal thickening

B+
dR :=W (O♭

C)[1/p]
∧ξ

θ
→ C

with ξ denoting a generator of the kernel of the map θ : W (O♭
C)→ OC . We also pick a section

of OC/p → k giving rise to a splitting k → OC♭ . The overconvergent de Rham cohomology

over C can be extended over B+
dR as follows:

RigDA(C)fd ∼= RigDA(C♭)fd
dRFF−→ P(X (C♭))op → P(B+

dR)
op

where the last arrow is induced by the identification ÔX (C♭),∞
∼= B+

dR. We note that by Corol-

lary 5.14, this is equivalent to considering a spreading out from C to its open neighborhoods

on the curve as follows:

(+) RigDA(C)fd ∼= lim
−→
∞∈U

RigDA(O(U))fd
dR
−→ lim

−→
∞∈U

P(O(U))op → P(B+
dR)

op.

In [BMS18, Section 13] Bhatt, Morrow and Scholze also constructed, for proper smooth rigid

varieties over C, a deformation of de Rham cohomology along B+
dR using a different spreading

out argument that we now recall in order to set some notation. By de Jong’s theorem (see the

proof of [BMS18, Lemma 13.7]) we have Spa(C) ∼ lim
←−S,η

S where S runs among affinoid

Tate algebras A that are smooth over the discrete valued field K := W (k)[1/p] equipped with a

C-rational point η : SpaC → S. By eventually taking an open neighborhood of η, we may also
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assume that S → SpaK factors as S
e
→ BN

K → SpaK for some N ∈ N and some étale map e.
We remark that η : A → C has a (non-unique) lift ℓ : A → B+

dR over C, by the smoothness of

A/K. More precisely, we have the following.

Proposition 6.8. With the notation above, there is an affinoid open neigborhood U of∞ and a

map f : U → S such that η factors as SpaC
∞
→ U

f
→ S.

Proof. Choose a lift α : U → BN
K of the map e◦η and consider the étale map eU : S×BN

K
U → U .

We note that η defines a section of the map eC : S×BN
K
SpaC → SpaC. Since∞ ∼ lim

←−∞∈U
U

we deduce that, up to shrinking U , there is also a section ηU to the map eU and hence a map

f : U → S with the required property. �

LetX/C be a smooth and proper variety. By [BMS18, Corollary 13.16] there exists (S, η) as

above and a smooth and proper variety X̃/S such that X̃ ×S,η C ∼= X . The B+
dR-cohomology

is then given by:

RΓcrys(X/B
+
dR) := RΓdR(X̃/S)⊗A,ℓ B

+
dR

and it can be made independent on the various choices made, as shown in [BMS18, Section 13.1

and Theorem 13.19]. We also note that, by Proposition 4.43, the functor X̃ 7→ RΓcrys(X/B
+
dR)

is easily seen to be extended by the following composition

(++) RigDA(S)fd
dR
−→ P(A)op

ℓ∗
→ P(B+

dR)
op.

Remark 6.9. In [BMS18], the B+
dR-cohomology is defined for arbitrary smooth varieties over

C, but it is not B1-invariant. We may interpret (++) as being an overconvergent version of their

construction.

Theorem 6.10. Let X be a smooth and proper variety over C. Then RΓcrys(X/B
+
dR) is canoni-

cally equivalent to dRFF
C♭ (MC(X)♭)⊗O

X(C♭)
B+

dR. In particular the de Rham-Fargues-Fontaine

cohomology over a complete algebraically closed fieldC is compatible with (an overconvergent

version of) the B+
dR-cohomology of [BMS18].

Proof. By RigDA(C) ∼= lim
−→

RigDAS,η(S) we might fix a (S, η) as above and show that for a

given ℓ : A→ B+
dR, the functor (++) coincides with

RigDAfd(S)→ RigDAfd(C)
(+)
→ P(B+

dR)
op.

To this aim, it suffices to choose a lift ℓ̃ : U → S as in Proposition 6.8 and put ℓ : A → B+
dR

to be the one induced by A
ℓ̃
→ O(U) → B+

dR. The claim then follows from the commutative

diagram below (which also re-proves that (++) is independent on the choice of ℓ).

RigDA(S)

η∗
**

ℓ̃∗
//

dR

��

RigDA(U)

dR

��

// lim
−→

RigDA(U) ∼

dR

��

RigDA(C)

(+)

��

P(A)op
ℓ̃∗

//

ℓ∗
44

P(O(U))op // lim
−→
P(O(U))op // P(B+

dR)
op

�

This completes our proof that dRFF
C satisfies all the requirements of [Sch18, Conjecture 6.4].
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Remark 6.11. de Jong’s theorem allows one to write SpaC ∼ lim
←−(S,η)

S with S being smooth

over Qp. By motivic continuity we deduce RigDA(C)fd ∼= lim
−→

RigDA(S)fd so that one can

spread out a compact motive over C to some dualizable motive defined over Spa(A) with A
smooth over Qp. This is the motivic version of the spreading out arguments of Conrad-Gabber

mentioned in [BMS18, Remark 13.17].

6.3. Comparison with rigid cohomology. We first describe the de Rham-Fargues-Fontaine

realization on objects with good reduction. Let us do it in the affinoid case, for simplicity. Let

S = Spa(R,R+) ∈ Perf/Fp . As an immediate consequence of Proposition 5.11, we see, using

the notations introduced there, that the composition

FDA(Spf(R+))
η∗

→ RigDA(S)
dRFF

S−→ QCoh(X (S))op

is simply given by composing D̃(R+) with dRX (S). Informally speaking: formal motives over

R+ uniquely lift to the Witt vectors of R+, and the de Rham-Fargues-Fontaine realization of

their generic fiber can be deduced from the overconvergent de Rham cohomology of this lift

after inverting p.

Here is a variant without topology, i.e. on discrete rings. Let A be a perfect Fp-algebra and

S = Spa(R,R+) ∈ Aff Perf/A that is, an affinoid perfectoid space with a map f : S → Spa(A)
(A is endowed with the discrete topology). The composition

DA(Spec(A)) ∼= FDA(Spf(A))
f∗

−→ FDA(Spf(R+))
η∗

→ RigDA(S)
dRFF

S−→ QCoh(X (S))op

defines a functor

RigFFA,S : DA(Spec(A))→ QCoh(X (S))op

which is compatible with pullbacks along maps g : S ′ → S in Aff Perf/A. By Theorem 6.3,

the restriction of the functor above to fully dualizable objects takes values in the full infinity-

subcatecategory Psp(X (S)) ⊂ P(X (S)) made of of split perfect complexes on X (S) (which

is equivalent to the DG-category of graded vector bundles on X (S)). In particular, we obtain

for each S ∈ Aff Perf/A a functor:

RigFFA,S : DA(Spec(A))fd → Psp(X (S))op ⊂ P(X (S))op

which is compatible with base change in S. The category Psp(X (S)) satisfies v-descent with

respect to S (see [SW20, Propositions 17.1.8 and 19.5.3]). We may then introduce the follow-

ing.

Definition 6.12. We denote by Psp(X (Spa(A))) the category limS∈AffPerf/A P
sp(X (S)) that is,

the category of global sections of the v-stack Psp(X (−)) restricted to AffPerf/A.

Remark 6.13. In fact, the stronger statement that the functor P(X (−)) satisfies v-descent is

true. It can be deduced from the results of [And21] and the forthcoming work of Mann.

One may think of Psp(X (Spa(A))) as the category of split perfect complexes over the non-

existing X (Spa(A)). This category is a priori inexplicit, but receives a functor from a more

familiar category, as we now explain.

Definition 6.14. Set YA := Spa(W (A)[1/p],W (A)). It is a sheafy adic space ([SW20, Remark

13.1.2]), endowed with a Frobenius endomorphism ϕ. We let IsocA be the category of ϕ-

equivariant split perfect complexes on YA.

When A = k is a perfect field of characteristic p, objects of IsocA are bounded complexes

of isocrystals over k, whence the notation. We have for each S = Spa(R,R+) ∈ Aff Perf/A a

functor

EA,S : IsocA → P
sp(X (S))
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induced by the pullback functor on solid quasi-coherent sheaves along the (ϕ-equivariant) map

W (A) → W (R+). It is functorial in S ∈ Aff Perf/A. Taking the limit over S, we deduce a

functor

EA : IsocA → P
sp(X (Spa(A))).

Remark 6.15. In the case A = Fp, the functor EFp
is an equivalence, as proved by Anschütz

[Ans16, Theorem 3.5].

Definition 6.16. We let RigFFA be the functor

RigFFA : DA(Spec(A))fd → Psp(X (Spa(A)))op

obtained by taking the limit of the functors RigFFA,S for S ∈ Aff Perf/A.

The functor RigFFA is nothing suprising: it is simply rigid cohomology in disguise. To make

this precise, let us recall the definition of the latter.

Definition 6.17. Let A be a perfect Fp-algebra. The functor

DA(Spec(A))fd → IsocopA

obtained as the restriction to fully dualizable objects of the composition of the Monsky-

Washnitzer-type functor

DA(Spec(A))
σ∗

∼= FDA(Spf(W (A)))→ FDA(Spf(W (A)))hϕ
∗ η∗

→ RigDA(YA)
hϕ∗

with

dRhϕ∗

XA
: RigDA(YA)

hϕ∗

→ IsocopA

is called rigid cohomology and denoted by RΓrig
R .

Rigid cohomology of the motive of a proper smooth variety over R is simply crystalline co-

homology of its special fiber, by Berthelot’s comparison result between crystalline cohomology

and de Rham cohomology of a lift (cf. [BdJ11, Corollary 3.8] for a short proof).

Again as an immediate consequence of the definitions and of Proposition 5.11, we get:

Proposition 6.18. Let A be a perfect Fp-algebra. We have a natural isomorphism

EA ◦ RΓ
rig
A
∼= RigFFA

of functors from DA(Spec(A))fd to Psp(X (Spa(A)))op. �

In particular, when A = Fp, by the equivalence of Remark 6.15, the functor RigFFA is literally

just rigid cohomology.
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