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Abstract Multi-modal behavior for social robots is cru-

cial for the robot’s perceived social intelligence, ability

to communicate nonverbally, and the extent to which

the robot can be trusted. However, most of the research

conducted so far has been with only one modality, thus

there is still a lack of understanding of the effect of each

modality when performed in a multi-modal interaction.

This study presents a multi-modal interaction focusing

on the following modalities: proxemics for social navi-

gation, gaze mechanisms (for turn-taking floor-holding,

turn-yielding and joint attention), kinesics (for sym-

bolic, deictic, and beat gestures), and social dialogue.

The multi-modal behaviors were evaluated through an

experiment with 105 participants in a seven minute

interaction to analyze the effects on perceived social

intelligence through both objective and subjective mea-
surements. The results show various insights of the effect

of modalities in a multi-modal interaction onto several

behavioral outcomes of the users, including taking phys-

ical suggestions, distances maintained during the inter-

action, wave gestures performed in greeting and closing,

back-channeling, and how socially the robot is treated,

while having no effect on self-disclosure and subjective

liking.
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1 Introduction

By merely observing humans, one can directly infer that

no social interaction takes place without cues, whether

verbal or nonverbal, that allow others to interpret be-

haviors and reasonably estimate intentions [62]. Further-

more, those verbal and nonverbal cues have an effect on

others by eliciting tangible change in their observable

behavior or even internal changes, e.g., awareness of

a particular social setting [76]. Moreover, proper com-

munication and exchange of information is crucial to

a human’s need to feel connected, promote well-being,

and gain acceptance by social groups [61]. However,

these powerful social signals and nonverbal behaviors

are complex and multi-modal. They are made of differ-

ent combinations of modalities and cues such as kinesics

(e.g., gestures) ([41], [23]), gaze behavior [36], and prox-

emics (e.g., management of space and environment) [31].

Similarly, these multi-modal nonverbal behaviors hold

several functions, which include the ability to under-

stand and manage others in social interactions and “act

wisely in human relations”, and as such contribute to

one’s social intelligence. [71].

In today’s world, humans not only have to inter-

act with each other, but also with machines, including

robots. With robots gaining further presence in a hu-

man’s everyday life, synthesizing and understanding

these multi-modal behaviors is crucial to designing bet-

ter and more appropriate human-robot interactions. In

an attempt to solve this issue, some studies have been

inspired by human-human interaction to design rule-
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based algorithms targeted at investigating individual

modalities ([6], [65], [47]). In contrast, other research

has focused on data-driven learning methods designed

to synthesize multi-modal behavior, however, lacking a

clear understanding of the effect of each modality form-

ing the multi-modal behavior ([43], [58]). Thus, there

is still a need to investigate how such modalities can

be combined and the effect and function of each when

performed in a multi-modal combination. This will allow

for a better understanding of how and when the robot

could use combinations of different modalities to appear
as a socially intelligent agent and express intentions and

information using verbal and nonverbal behavior more

naturally.

This paper presents a system of multi-modal behav-

iors comprised of the following modalities: gaze, kinesics,

proxemics, and social dialogue. The system was evalu-

ated objectively by studying the behavioral outcomes.

In addition, critical to evaluating peoples interactions
with social robots is also the extent to which they like

the robot, or form a general positive impression during

their interaction. Many studies in HRI capture liking

directly, by asking questions such as ‘I like [the robot]’

([72], [69], [52]), whereas others take a more indirect

approach, assessing statements such as ‘[the robot] is

kind / friendly / warm’ ([45], [60]). Thus, in this study

we also included a subjective measure of liking through

a self-report ”liking” scale 1. Instead of analyzing the
effects of each modality by contrasting them in isolation

and thus losing possible coupling effects, this paper com-

pares a version with all implemented modalities together

with versions, in which each modality is subtracted in

turn.

The remaining paper is organized as follows: Sec-
tion 2 reviews background work done on each of the

modalities to be integrated. In Section 3, the imple-

mented system of multi-modal behavior is discussed.

Section 4 presents the hypotheses as well as the design

and set-up of the evaluation study. In Sections 5 and 6,

the results are presented and analyzed and the findings

are discussed in more depth. In Section 7 the paper is

concluded.

2 Background

In the past decades, there has been considerable inter-

est among psychologists and sociologists to investigate

non-verbal behaviors observed in humans and used as

communication methods and tools. Inspired by those

1 Further subjective measurements, referring to the compar-
ison between self-reported attitudes and behaviors towards
social robots will be examined elsewhere.

findings, more recently, social roboticists have tried to

synthesize these modalities on different robots in order

to study their impact on human-robot interaction (HRI).

These modalities include gaze, kinesics, and proxemics.

This section highlights the human-human studies done

in addition to the HRI research for each modality as

well as social dialogue.

2.1 Gaze

In 1967, Kendon [36] was the first to classify and analyze

gaze aversion in human-human interaction, claiming that

humans in fact do not spend the majority of their time

in a conversation directing gaze straight at another hu-

man’s face. He concluded that gaze aversion was done for
four primary reasons: turn-taking, turn-yielding, floor-

holding, and intimacy regulation (used to regulate the

level of shared emotional arousal) ([37], [75],[74]). To-

day, gaze mechanisms, including gaze aversion, are still
a study of interest for social roboticists. Research in HRI

has involved conducting studies to better understand

social gaze ([53], [6]), using gaze to reference an object

of conversation by joint attention ([40], [5]), designing

gaze cues to modulate group conversation ([53],[54]),

and regulating turn-taking in conversations ([6], [54]).

In addition, conversational social gaze constructed of

gaze aversions to perform role-signaling, turn-taking,

and topic-signaling prompted high indices of likeability

towards the robot [53]. Moreover, for robots which lack

expressive eyes, head controlled tilts have been designed

to convey gaze aversion [6]. The former concluded that

while social gaze aversions did not increase the human’s

comfort in eliciting more self-disclosure, it did decrease

interruption time caused by the user and the robot was

perceived as more thoughtful. Additionally, the study an-

alyzed the direction of gaze aversions in human-human

interactions with respect to its three primary functions:

cognitive, intimacy-regulation, and floor management

[6].

An additional important function of gaze is joint at-

tention. It supplies people with a way of interpreting and

predicting each other’s actions and focus attention [27].

For instance, speakers tend to use deictic expressions

followed by a glance towards the object of reference [18].

Thus it is no surprise that joint attention attracted the

attention of researchers in the HRI field. For instance, it

was shown in [12] that users reached objects faster when

they could follow the gaze of the robot iCub, who was

giving instructions while glancing at referenced object.

Similarly, [68] showed that users interacting with a robot

that had a gaze with a reference function found it easier

to complete a task than with a robot that had random

gaze. Joint attention has proven to be functional for
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social robots to shift the human’s attention to the spot

at which it is looking [78]. In addition, for collabora-

tion tasks involving object selection, robot gaze shifts

assisting its speech were shown to be advantageous for

cooperation specially when the human was required

to choose the object being referred to by the robot as

fast as possible ([2], [13]). Furthermore, in [51], during

hand over tasks, users started reaching for an item much

sooner when a robot consistently gazes at the handover

area than when it gazes away from that point. In paral-

lel, when gaze is used as part of a multi-modal behavior,
it often has a supportive and enhancing role to other

social behaviors, notably speech and gestures [3].

2.2 Kinesics

Gestures for humans have been categorized and defined

primarily based on their role in communication and their
functions as follows ([49],[41],[4],[23]):

– Iconic gestures for describing physical objects and

events mentioned in a conversation; e.g., forming a

small circle with the hand to refer to a small ball.

– Metaphoric gestures for depicting abstract concepts

being referred to; e.g., fast back-forth hand move-

ment to indicate ‘ongoing’ work.

– Deictic gestures for indicating objects in the physical

space where the conversation is taking place; e.g.,

point at a road close by.

– Emblem gestures or symbolic gestures for expressing
language-like features with agreed upon culturally

specific properties; e.g., the V hand gesture with the

index and middle fingers to indicate a peace sign.
– Beat gestures for emphasizing significant points or

certain words in the speech using rhythmic move-

ments of hands and arms e.g., hand gesture to indi-
cate the introduction of a new topic

Gestures have also been studied and implemented on

robots aiming to improve human-robot interaction.

While deictic, beat, iconic, and metaphoric gestures

were all found to boost the robot’s performance as a

narrator in a narrative scenario, deictic gesture signif-

icantly ameliorated the user’s recall of information on

the story [34]. Additionally, the robot which performed

correctly timed nods in a conversation and proper gaze

and gesture sharing behaviors was ranked more highly

than a robot who did not have such behaviors [35].

Moreover, gestures play a role in portraying emotional

expressions. For instance, submissiveness can be ex-

pressed by an open hand shape; on the other hand,

dominance can be portrayed in a pointing hand shape

[39]. Similarly in social robotics, modulating the robot’s

body movement by varying its head tilts and body ex-

pansiveness influenced perceived dominance [55].

Another important aspect of social interaction is

alignment, which refers to the convergence of linguis-

tic behavior and/or similarity in mental representation

([57],[14]). Alignment is an ubiquitous feature used to

measure to which extent interactions shape behavior and

their success at communicating shared understanding

[33]. For instance, it was shown that alignment, through

mimicry of postures, mannerisms, and facial expressions

in dyadic interactions (chameleon effect [16]), increased
the rapport between the participants, the pro-social

behavior even beyond the interaction and smoothness

of interaction [9]. Moreover, a study found that users,

when retelling a story to a third participant, were more

likely to demonstrate the same iconic gestures they wit-

nessed the first time [50]. Alignment equally plays an

important role in human-computer interaction in en-

hancing communicative success [14]. In robotics, people

have been found to nod more when interacting with

a robot that nods along in response to that in com-

parison to a robot who does not mirror their nodding

[66]. In addition, a computational method for evaluating

and modeling of interpersonal synchrony in behaviors

during interactions offered a perspective for building

social interfaces for robots and embodied conversational

agents [20]. Furthermore, motor resonance, which is the

activation of the observer’s motor control system during

action perception, was used to not only produce more

natural interactions for robots with humans but also as

an evaluation method to determine quantitatively how

the robot is perceived by the human [64].

2.3 Proxemics

Proxemics, which is the study of space around a person

with respect to others, was first defined by Hall [30]. It

was found that proxemic zones are shaped by culture

and psychophysical features ([31], [28], [29]). Schegloff

[63] has shown that, in daily interactions, intentions are

derived from the poses of the lower and upper parts of

the human body, i.e. whether the involvement of the par-

ticipant would be dominant or subordinate. Moreover,

situational awareness is the ability to understand and

perceive the environment around the person in order to

plan and execute decisions and such relies on proxemics

[24]. Thus, proxemics plays an important role in defining

human-human interactions and relationships.

In the field of HRI, proxemics is vastly used for social

navigation. For instance, [42], [19] used Hall’s theory

of proxemics to optimize social navigation of the robot

while taking into account the human’s safety and vis-

ibility. Additionally, proxemics can be used to initiate
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Fig. 1 Summary of Multi-Modal Social Cues

interactions. Shi et al.[65] proposed a model based on

proxemics and navigation to initiate a conversation with

a human inspired by the study of human-human interac-

tions. The robot with the implemented proxemics model

was ranked higher in a subjective evaluation of appro-
priateness of initiation. An understanding of proxemics

grants the robot a finer tool to perceive, predict, and

manipulate the environment around the interaction and

provides greater naturalness [65]. Furthermore, prox-

emics was used to estimate group formations around

the robot allowing the robot to adapt its gaze based

on the roles users are playing the group being formed,

such as active participant, bystander, or overhearer [70].

In addition, a recent meta-analysis showed that for mo-

bile robots, robot appearance or whether one is active
or passive in the approach has no meaningful effects

[46]. A pivotal question is whether proper use of this

modality, which focuses on interpersonal space, would

lead to stronger effects related to the outcomes of an

interaction when compared to other modalities such as

gaze and gesture.

2.4 Dialogue

In addition to the modalities of nonverbal behaviors,

dialogue plays an influential role in forming impressions

and manipulating social outcomes of the interaction. In

human-human interactions, one study has shown that

starting a conversation by asking people how they were

feeling that day increases the likelihood of their com-

pliance to a request for both charity donations and/or

commercial purchases [21]. Moreover, in human-agent

interactions, it was shown that having an agent start

with a small request increased the chances of having

the participant accept a bigger request shortly after [22].

Furthermore, verbal phrases influence social interactions

with agents, e.g., separating emotional expressions tar-

geted at an attitude versus at a person such as“your

opinion” versus “you should” [77]. In HRI, dialogue

similarly has an impact on the interactions including

facilitating collaborations, managing errors, and person-

alizing conversations. For instance, it is used to exchange

information and assist in human robot collaboration to

achieve common goals [26]. Furthermore, social dialogue
was shown to help robots recover from prior errors and

gain future influence [48]. Additionally, service robots

with personalized dialogues reinforced participants’ rap-

port, cooperation, and engagement [44].

2.5 Multi-Modal Social Behaviors

Several studies have also combined two or more of these

behaviors to assess the interaction between them. Most

commonly, gaze behaviours are combined with gestures

[32], proxemics ([70],[73], [25]) or verbal behaviours [15].

Works combining other modalities ([59], [56]), or com-

paring more than two or three modalities ([10], [38])

are rare. There is also a large body of work comparing

‘social’ and ‘non-social’ robots (or affective / emotional

/ personalized robots). However, the manipulations in

these cases typically combine multiple modalities and

evaluate overall system performance, as opposed to in-

vestigating the effect of specific modalities. As such,

there is a clear need to develop a more comprehensive

perspective on how different combinations of modalities

(gaze, gesture, proxemics, and verbal content) contribute

to overall perceptions of social intelligence during the

course of an interaction.

3 Implemented System for Multi-Modal

Behavior

This section introduces the implemented system to

achieve multi-modal behavior on the Pepper robot (Soft-

Bank Robotics). However, the system can also be im-

plemented on other social robots. The source code for
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Fig. 2 Sample of time-line including speech, gaze mechanisms (turn-taking, floor-holding, turn-yielding), and social gestures
(deictic gestures: ”You” vs ”Me” if mentioned in speech, beat gesture: emphasizing the two choices user needs to select from)

the entire system has been made available online2. The

overall scheme of the multi-modal social cues synthe-

sized are shown in Figure 1. The system is composed

of the following modalities: proxemics, gaze mechanism,

gestures, and a social dialogue. A sample extract of the

system implemented is shown in Figure 2.

3.1 Social Gaze Mechanisms

Since several humanoid robots lack expressive eyes that

can be controlled, the presented social gaze aversions

are achieved using head motion control. The social gaze

mechanisms presented here were designed and imple-

mented to fulfill the following functions: joint attention,

turn-taking, floor-holding, and turn-yielding. When not

performing these gaze aversions, the robot would be

gaze tracking the human it is interacting with at all

times. For this reason, information about the human

can be extracted, notably the 3-dimensional frames of

the human’s face and the robot’s gaze. This allows the

robot to carry out all implemented gaze-averted head

motions on the robot with respect to the frame of the

human’s face. Thus the design of each social gaze head

movement was a combination of dynamics, magnitude,

and duration, all of which are crucial for the social gaze

motion to achieve its function naturally. A summary of

the gaze mechanisms can be found in Figure 3.

Gaze aversion for turn-taking in human-human in-

teraction as well as human-robot interaction holds a

cognitive function; it gives the speaker more time to

better plan and address their speech while also avoiding

2 Multi-modal Social Cues System Implementation GitHub
Repository https://github.com/KarenTatarian/multimodal_

socialcues

possible external distractions [7], [6]. For this reason, the

turn-taking gaze behavior was given the relatively longer

duration of 2.5 seconds. As for the floor management

and turn-yielding functions, which take place during

and at the of the speaking turn, they were assigned a

shorter duration of 1.5 and 1.2 seconds, respectively. The

longest duration was designed for the joint attention

gaze, which has the duration of 3.8 seconds and the func-

tion of indicating and referring to an object of discussion.

The angle rotations, duration length, and directions of

the gaze aversions were selected and designed based on

the gaze aversion system, with similar functionalities,

implemented on the NAO robot (SoftBank Robotics) in

[6], which are as well based on the findings of Kendon

[37] for gaze aversions in human-human interaction. In
turn, these variables were tuned to be suitable for the

robot Pepper. Examples of how the duration of each

gaze mechanism was synthesized is shown in Figure 2.

Fig. 3 Summary of gaze mechanisms
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The goal is to generate head motions, which serve

as social gaze cues, and to realize a natural and subtle

appearance while still fulfilling their purpose. The di-

rections of the head rotations performed were chosen

based on human-human as well as HRI studies done

to better understand gaze aversions during interactions

([6] [36] [53]). For the turn-taking and floor-holding cues,

which signify that the robot is in a cognitive phase and

holding the speaking role, a vertical head movement

was implemented. The gaze frame of the robot is the

frame it produces as it is tracking the human’s face as
seen in Figure 3, thus the gaze frame is aligned with

the human’s face frame. At each instance in which the

turn-taking and floor-holding gaze mechanisms were

called, the gaze frame performs a rotation of 33.7 de-

grees in the (y-z) plane with respect to the frame on

the human’s face resulting in an upward slightly left-

sided rotation. As for the turn-yielding gaze, in order to

achieve a smoother and more subtle gaze to indicate the

shift in speaking roles and after manually fine tuning,

Equation 1 represents the translations implemented for

the (x, y, z) of the robot’s gaze frame respectively

x” = [(1 − cos θ)]x+ sin θy − δ1

y” = − sin θx+ (1 − cos θ)y

z” = δ2

(1)

where θ = 12.318°, δ1 = 1.2, and δ2 = −0.6 and x, y,&z

are the coordinates of the frame of the human’s face.This
resulted in a downward left-sided rotation as seen in

Figure 4, which illustrates an example of the execution.

Finally, the head rotation for joint attention was not

intended to be subtle but rather draw the attention

of the user towards the object it is referring to. The

head rotation was done with a head yaw of −46° and
a head pitch of −4.65° with respect to the object it

is referring to and with a Bézier curve velocity profile

for smoothness in the animation. This resulted in an

animation that starts slow, speeds up during the main

shift, and finally slows down before it ends. For instance,

for the gaze mechanisms implemented as head-motions,

the head of the robot would start rotating slowly then

rapidly towards target frame then slowly returns back to

its initial gaze frame as shown in the example of Figure

4.

3.2 Gestures

Three of the five categories of gestures classified in

[49],[41], are implemented in this multi-modal system

through five gestural designs. First, in the emblem cate-

gory, two gestures were implemented: the wave gestures

Fig. 4 Turn Yield Gaze Mechanism

for greeting users and closing interaction and nodding

as back-channeling. When the robot enters a listening

state, it nods in response to additional information the

user provides while speaking. Whenever a new sentence

is detected by the robot, it executes a back-channeling

nod animation and waits for a next sentence to be heard.

The back-channeling nod animation consists of three

consecutive nods over a span of 2.5 seconds. Second, in

the deictic category, two types were represented: object

pointing gesture, which accompanied the joint atten-
tion gaze and performed as a right arm extension, and

self/other references, which are the “you” vs “me” in-

dicators, as portrayed in Figure 2. In the latter, the

“you” gesture was designed as both of the arms open and

extended from the robot’s body and pointing upwards

towards the human with the open palms. The “you”
gesture accompanied questions,in which the robot infers

about the user. On the other hand, the self-pointing

or the “me” gesture has the robot’s arms closed and

directed towards the body and it is used by the robot to

introduce itself, its tablet modality, and state an opinion.

Furthermore, beat gestures were used in the question

series to emphasize the options. In order to generate

smooth behavioral social cues, Bézier curves were used

to implement the velocity changes of all gestures.

3.3 Proxemics for Approaching Human

According to the findings in ([67],[42]), the most optimal

and socially acceptable path to navigate towards a static

standing human is in a straight line in the human’s sight

zone while maintaining a minimum distance of about 0.5

meters (or 1.5 meters for sitting humans). This is due

to safety and visibility constraints to minimize human

discomfort. In addition, approaching the human for

initiating an interaction was ranked as most appropriate

when the robot navigated in the human’s front zone (120°
cone-shaped area in front of a person’s head) or his/her

gaze zone (30°) [65]. For this system, once the human

has been detected at the beginning of the interaction,
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Fig. 5 Schematics of the experimental room set-up with the robot during the travel agent scenario

the robot would first greet the human by speech and

a wave gesture before beginning navigation towards

the human. The default speed of the robot Pepper is
0.35 m/s. However to avoid a recoil movement by the

human seen in some user experience testing, the speed

for greeting navigation was slowed down to 0.25 m/s.

The robot would then navigate to establish a distance
of 0.85 meters between itself and the user. The robot

would navigate while maintaining gaze directed towards

the participant. The distance of 0.85 meters was chosen

for four main reasons. First, this distance allows the

robot to continuously track the human’s face regardless

of their height. Second, the human at this distance
is able to clearly see the different gaze and gesture

behaviors generated by the robot. Third, this distance

eases the access and view of the tablet on the robot.

Fourth, 0.85 meters is still within Hall’s defined personal

distance, in which friendly interactions take place [29].

Once the desired distance has been reached, whether by

navigation of the robot or chosen distance by human,

the start button pops up on the tablet to continue the

rest of the interaction.

4 Design Method and Evaluation

In order to directly compare the effects the different

modalities of the robot’s behavior have on the user’s

behavior and attitude, the chosen scenario for the in-

teraction was planning for a hypothetical holiday (Fig.

5). The robot acted as a travel agent helping the user

plan their next vacation and it exhibited one of five

behavioral conditions:

– Multi-modal Interaction, which is all modalities in-

cluding social dialogue, (Social Gaze + Gestures +

Proxemics + Social Dialogue)

– Minus Proxemics, which is all the modalities exclud-

ing proxemics, (Social Gaze + Gestures + Social

Dialogue)

– Minus Social Dialogue, which is all the modalities

excluding social dialogue(Social Gaze + Gestures +

Proxemics )

– Minus Gestures, which is all the modalities excluding
social gestures, (Social Gaze + Proxemics + Social

Dialogue)

– Minus social gaze, which is all the modalities ex-

cluding social gaze, (Gestures + Proxemics + Social

Dialogue)

The flow of interaction went as seen in Figure 6:

first in the introductory phase, the robot greeted the

user (highlighting the gesture modality), approached the

human until the desired distance is established, engaged

the user in a short social dialogue and then offered the

participant some drinking water, using joint attention

gaze and pointing gesture. Second was the travel plan-

ning phase, where the robot started asking a series of

questions about the travel and vacation preferences, fol-

lowed by a self-disclosure segment, where an open ended

question was asked to know more about the user and the

robot entered a listening state and demonstrated back-

channeling. The third and final part was the closing

phase, where the robot suggested two options based on

answers previously provided by participants and recom-

mended its personal preference between the two. Once

the user made a final decision on a travel destination,

the robot concluded the interaction and waved goodbye.

4.1 Social Dialogue

The dialogue throughout all conditions was adaptive: the

robot’s answers depended on what the user’s previous

choices were. In addition, since it was a travel planning
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Fig. 6 Summary of flow of interaction

scenario, all replies from the robot were consistent with

the decisions the user made. For instance, if the person
selected that they prefer to travel by train then the robot

would suggest a destination that can be reached from

Paris by train (e.g., Amsterdam) and similarly for the

other descriptions, e.g., city or beach, solo trip or with

friends and loved ones, culture or activities etc. However,

the social dialogue modality differs in the social and

friendly openings and replies as summarized in Table 1.

Conditions
Multi-modal Interaction,
Minus Proxemics, Minus
Gestures, and Minus So-
cial Gaze

Minus Social Dialogue

Openings/Closing
Social small talk Formal talk
ex: ”How are you today?”
... ”great”

ex: ”Is it the first time
you come here?”

ex: ”I am so happy to
meet you!”

ex: ”You are the fourth
person today whom I will
help plan their vacation”

Replies
Personal preference
replies

Non-personal general
replies

ex: ”Excellent choice, I
also like this location!”

ex: ”Many people like this
location”

ex: ”I also find it awe-
some to travel by train be-
cause it’s much more com-
fortable!”

ex: ”Traveling by train is
more comfortable”

Table 1 Social dialogue designs per condition

4.2 Design & Materials

An independent groups design was used, with the in-

dependent variable being multi-modal behavior with 5

levels: first: multi-modal interaction referring to all im-

plemented modalities (proxemics, social gaze, gestures,

and social dialogue), second: minus proxemics - refer-

ring to all implemented modalities except for proxemics,

third: minus social dialogue - referring to all imple-

mented modalities except for social dialogue, fourth:

minus gestures - referring to all implemented modali-

ties except for gestures, and fifth: minus social gaze -

referring to all implemented modalities except for social

gaze mechanisms.

The dependent variables were extracted using recorded

Questions Used, French Questions English

Pepper est gentil Pepper is friendly
Pepper est chaleureux Pepper is warm

Pepper est aimable Pepper is likeable
Pepper est accessible Pepper is approachable

Je demanderais volontiers des conseils à Pepper I would ask Pepper for advice
J’aimerais avoir Pepper comme collègue I would like Pepper as a colleague

J’aimerais avoir Pepper comme colocataire I would like Pepper as a housemate
J’aimerais que Pepper et moi soyons amis I would like to be friends with Pepper

Pepper et moi sommes similaires Pepper is similar to me

Table 2 Likeability Scale ranked from 1 to 7

logs from the robot application, data extracted from the

recorded videos, and self-report questionnaires. First,

the logs provided from the robot application include
information on the position of the human relative to the

robot extracted every 5 seconds as well as the angular

facial frame information, which were extracted before

the execution of every social gaze aversion. In addition,

the time it took the user to press the buttons on the

tablet and to take decisions as well as the decisions made

were recorded.

Second, the videos recorded were used to annotate and

obtain the verbal and nonverbal responses and behav-

iors of the user throughout the interaction, including

if the user accepted the water offer, back-channels per-

formed, verbal responses, total speaking time, amount of

information shared, number of audio/voice recognition

errors that may have occurred, and gestures performed.

It is critical to note that the back-channels of the users

in this set-up refer to both non-lexical back-channels,

such as “uhh”, “yeah”, “mmm”, .. etc., phrasal back-

channels, such as “wow”, “great”,.. etc., and gestural

back-channels, e.g., nodding. However, facial expressions

were not considered.

Third, a self-report questionnaire was used to evaluate

perceived agency, social trust, competency trust, liking,
rapport, acceptance, social presence, and social informa-

tion processing. This paper will only discuss the results

of the Likeability scale of the questionnaire. The subjec-

tive measurement for robot’s Likeability or liking was

comprised of 9 items. The participants were asked to
rank how well they agree with the statements in Table

2 on a scale of 1 to 7, with 1 agree with the least and 7

agree with the most. These items were then averaged to

form a scale with good reliability α = 0.88. The scale

was normally distributed, W = 0.99, p = 0.35.

4.3 Participants & Procedure

115 participants were recruited for the experiment, of

which 10 had to be excluded due to technical difficulties

with the robot. Thus the data of 105 participants were

used for analysis (mean age = 22.8, SD = 3.17) with

(N = 21) participants per condition. All participants

were recruited by the INSEAD-Sorbonne University
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Behavioural Lab under ethics approval by INSEAD In-

stitutional Review Board. All participants were native

French speakers and signed a consent form to partici-

pate. Separate consent was obtained for the use of video

data. The entire experiment took about 20 minutes to

complete, including filling the questionnaires at the end.

As a compensation for their time each participant re-

ceived 6 euros.

Participants were randomly assigned to one of the five

conditions (21 per condition). In addition, the partici-

pants were assigned randomly across the hours of the
day to make sure half of the users in each condition

interacted in the morning before lunch time while the

other half in the afternoon after lunch.

Upon arrival, the participants filled out the consent

forms. Then, one of the experimenters introduced the

experiment by explaining that they will interact with

a robot that will help them plan their vacation as if

it were their real holiday. They were informed the in-

teraction would last 5-7 minutes and then they would

have to fill a questionnaire, which included the liking

scale as well as scales not relevant to the current study.

They were also advised to speak loudly and articulate

clearly in order to avoid any audio or voice recognition

problems. Participants were then led to a room with

the robot, as seen in Figure 5, and were asked to place

their belongings on the side and stand wherever they

wished. Shortly after the experimenter leaves the room,

the interaction began. Besides the front and side cam-

eras set-up in the room, there was a webcam streaming

the interaction live. The robot as shown previously is

completely autonomous, the videos and webcam are for

recording and monitoring. Once the interaction was over,
the participants were asked to fill the questionnaire in

a different room and then they were debriefed on the

study and were given their participation compensation.

4.4 Hypotheses

To evaluate the modalities in a multi-modal interaction

and their effects on perceived social intelligence, the fol-

lowing hypotheses were formulated. First, the proxemics

implemented respected the personal distance established

by [29] and visibility and safety [42] while still initiating

the interaction by approaching the user within his/her

gaze zone [65]. Following this, H1 was suggested:

– H1: Social distances established by the robot would

be maintained throughout the interaction in all con-

ditions except Minus Proxemics.

Second, social gaze aversion was shown to play a major

role in intimacy regulation during human-human inter-

actions to elevate the comfort of speakers ([36], [8]). In

addition, gaze aversion for turn-taking functioned as a

social cue to hand the conversational floor to the user

and thus making him/her the speaker. Furthermore,

gaze aversion is practiced by humans specially when

listening in order to minimize the negative perception

attributed to staring and to promote the comfort of the

speaker ([1], [17] ). While Andrist et al. [6] did not find

that a social robot with proper timings for gaze aversions

increased self-disclosure and comfort in humans more

than a social robot with badly timed gaze aversions, we

hypothesise that gaze mechanisms supported by multi-
modal behaviors would elicit more self-disclosure from

the participants, such that:

– H2: Time participants spend speaking in the self-

disclosure segment would be the shortest in the Mi-

nus Gaze condition relative to the other conditions.

Third, gesture and joint attention through gaze have

shown to be modalities used to communicate and point

at an object of reference in an interaction as well as

asking to grab the object referred to ([12], [5] [68]). With

H3 formulated as:

– H3: Water suggestions are more likely to be taken

when participants interact with a robot performing

social gaze mechanisms and gestures.

Fourth, gestural alignment was proposed to measure the
extent to which an interaction shapes the behavior of the

user and the smoothness of the interaction ([14], [16]). As

such, the following hypotheses were formulated looking

into gestural alignment at the greeting and termination

phases of the interaction in order to understand the

possible change in gestural alignment behavior of the
users. The use of back-channels, which include nodding

and verbal content, throughout the interaction were also

analysed as part of gestural alignment:

– H4a: Gestural alignment in the greeting and termi-

nation phases would be least present in the Minus

Gesture condition.

– H4b: the complete multi-modal behaviour condition

would have the most participants who at the begin-

ning did not greet the robot but at the end did close

the interaction with the robot whether verbally or

non-verbally.

– H4c: Back-channeling throughout the interaction

would be least performed by participants in the Mi-

nus Gesture condition.

Fifth, all the modalities combined make up multi-modal

social cues designed to facilitate a more natural and

friendly interaction. It was hypothesized that that would

additionally have an effect on the subjective attitude of

the users.
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– H5: The condition with all modalities and social

dialogue would score higher on the likeability scale

questionnaire.

5 Results

5.1 Distances from Pepper

First, looking into the distances established throughout

the interaction, one would expect no difference in the

initial distance, as no interaction has yet occurred, but

rather a difference after the navigation of the robot. We

therefore conducted Kruskal-Wallis H-tests for the aver-

age distance maintained from the robot at the beginning

of the interaction (prior to the social navigation phase),

shown in Figure 7, as well as the average distance main-

tained after the social navigation phase until the end of

the interaction, shown in Figure 8. The former model

yielded no significant difference for condition, however,
the latter revealed a significant effect of condition after

the social navigation phase, see Table 3.

Table 3 Kruskal-Wallis Tests for the Effect of Condition on
Initial and Maintained Distances

Outcome χ2 df p ε2

Initial Distance 2.40 4 .663 0.02
Distance Maintained 23.92 4 <.001 0.23

Follow up pairwise comparisons with Dwass-Steel-

Critchlow-Flinger correction revealed participants in the

minus proxemics condition stood significantly further

away from the robot throughout the interaction than
in all other conditions (all W ′s ≥ 4.68, all p′s < 0.008).

No other differences between conditions were significant.

This denotes that participants maintained the close

social distance due to the proxemics established by the

robot, thus validating H1.

5.2 Self-Disclosure

Second, we examined the effect of modalities on self-

disclosure by looking into how comfortable a human was

in sharing information about themselves when asked by

the robot. We again conducted a Kruskal-Wallis H-test

to evaluate the total speaking time (in seconds) the user

spent answering the robot’s open-ended question to talk

about themselves, shown in Figure 9. The average total

speaking time was M = 11.55, (SD = 6.05) seconds.

However, there was no significant effect of modality,

χ2(4) = 4.09, p = .394, ε2 = 0.04. As such, H2 was

not supported. The number of pieces of information

Fig. 7 Initial Distance (meters) by participants per condition
at the beginning of the interaction with the robot before
proxemics

Fig. 8 Maintained Distance (meters) by participants per con-
dition throughout the interaction with the robot after prox-
emics.

given, which is the number of new facts or opinions

revealed and provided by the user about him/herself,

was annotated and measured for each condition. The

following is an example of how the data was annotated:

if a participant after the open-ended self-disclosure ques-

tion answered “I like hanging out with my friends...I like

watching movies”, then this was annotated as two pieces

of information since two facts and/or opinions were re-

vealed about the participant. The average number of

pieces of information given was M = 3.429, (SD = 1.6),

but there was again no significant effect of condition,

χ2(4) = 1.76, p = .780, ε2 = 0.02.
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Fig. 9 Total speaking time (seconds) of participants per con-
dition during self-disclosure open-ended question

Fig. 10 Number of times the water offer was accepted by
participants per condition. Present refers to appearance of the
participant’s behavior of accepting the water offered by the
robot by grabbing the cup and/or drinking the water, while
Absent refers to lack of this behavior and as such not accepting
the water offered by the robot.

5.3 Accepting Water Offered

The number of participants who accepted the water

offered in each condition is shown in Figure 10. It is im-

portant to note that absent in this figure and those that

follow refer to the number of times the observed behavior

was absent in each condition. For instance, in Figure 10,

the grey or absent plots indicate the number times the

water suggestion was not taken (and as as such absent).

We ran a binomial logistic regression with condition as

the predictor variable, and accepting the water offered

as an outcome variable. The overall test of condition was

marginally significant, χ2(4) = 8.18, p = .09, McFad-

den’s Pseudo R2 = 0.06. Follow up pairwise comparisons

with Tukey’s correction revealed a marginally significant

difference between the complete multimodal condition

and the minus proxemics condition, β = 1.89, p = .095.

The odds of accepting the water offered in the minus

proxemics condition were 0.15 [0.03, 0.62] times less

than in the complete multi-modal condition.

5.4 Social Behavior

We again constructed binomial logistic regression mod-

els assessing the effect of condition on opening and

closing waves. For both opening and closing waves,

the logistic regression model was significant for con-

dition, χ2(4) = 19.20, p < .001, McFadden’s Pseudo
R2 = 0.13 and χ2(4) = 35.54, p < .001, McFadden’s

Pseudo R2 = 0.25, respectively. We conducted follow

up pairwise comparisons with Tukey’s correction. As

the closing wave model exhibited complete separation

(i.e., no participants in the minus gesture condition

waved goodbye), we further applied Firth’s bias reduc-

tion method for this model. For both opening and closing

waves, participants were significantly less likely to wave

in the minus gesture condition than in the complete

multi-modal condition and the minus Social Dialogue

condition (see Table 4). No other comparisons were

significant. See Figures 11 and 12.

Fig. 11 Number of greeting waves performed by participants
at the beginning of the interaction (with 95% CI errors).
Present refers to appearance of the participant’s behavior of
waving to the robot at the beginning of the interaction, while
Absent refers to lack of this behavior, e.g., the participants not
waving to the robot.[*] significant at the p < .05 level. [***]
significant at the p < .001 level

Beyond waving gestures in greeting and closing the

interaction, Table 5 shows the presence and absence

of all greeting and/or closing turns made by users,

whether verbally or non-verbally. We classified par-

ticipants behaviour as either consistent-social (both

greeting and closing turn). consistent-nonsocial (nei-

ther greeting nor closing), inconsistent-social (no greet-

ing turn, but a closing turn) or inconsistent-nonsocial
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Fig. 12 Number of closing waves performed by participants
at the end of the interaction(with 95% CI errors). Present

refers to appearance of the participant’s behavior of waving
to the robot at the end of the interaction, while Absent refers
to lack of this behavior, e.g., the participants not waving to
the robot.[*] significant at the p < .05 level

Table 4 Comparison of the likelihood of producing opening
and closing waves in each condition

Contrast
Log Odds

(SE)
z p-value

Opening Wave

Minus Gesture vs Multi-Modal Interaction -3.10 (0.89) -3.49 .005**
Minus Gesture vs Minus Gaze -2.25 (0.87) -2.60 .071
Minus Gesture vs Minus Social Dialogue -2.54 (0.86) -2.94 .027*
Minus Gesture vs Minus Proxemics -2.16 (0.86) -2.50 .090
Multi-Modal Interaction vs Minus Gaze 0.85 (0.66) 1.28 .704
Multi-Modal Interaction vs Minus Social Dialogue 0.56 (0.66) 0.85 .915
Multi-Modal Interaction vs Minus Proxemics 0.94 (0.66) 1.44 .602
Minus Gaze vs Minus Social Dialogue -0.29 (0.63) -0.46 .991
Minus Gaze vs Minus Proxemics 0.10 (0.63) 0.15 .999
Minus Social Dialogue vs Minus Proxemics 0.38 (0.62) 0.62 .972

Closing Wave †

Minus Gesture vs Multi-Modal Interaction -4.35 (1.54) -2.83 .038*
Minus Gesture vs Minus Gaze -3.95 (1.53) -2.58 .074
Minus Gesture vs Minus Social Dialogue -4.63 (1.54) -3.01 .022*
Minus Gesture vs Minus Proxemics -3.30 (1.53) -2.15 .197
Multi-Modal Interaction vs Minus Gaze 0.40 (0.65) 0.61 .973
Multi-Modal Interaction vs Minus Social Dialogue -0.28 (0.67) -0.42 .994
Multi-Modal Interaction vs Minus Proxemics 1.05 (0.65) 1.62 .482
Minus Gaze vs Minus Social Dialogue -0.68 (0.66) -1.03 .840
Minus Gaze vs Minus Proxemics 0.65 (0.64) 1.03 .842
Minus Social Dialogue vs Minus Proxemics 1.33 (0.66) 2.03 .251

† With Firth’s bias reduction method
* significant at the p < .05 level

** significant at the p < .01 level

(greeting turn, but no closing turn). However, a chi-

square test comparing participants consistency in social

behaviour did not reveal any differences between con-

ditions, χ2(16) = 13.11, p = .664, Kramer’s V = 0.194
[0.00, 0.33].

In addition, to assess the effect of modalities on be-

havioral alignment, we analysed the back-channeling

performed by the participants in each condition. A bi-

nomial logistic regression was conducted to analyze the

effect of the modalities on the number of participants

who performed back-channeling, as shown in Figure 13.

The regression model was statistically significant with

χ2(4) = 12.90, p = .012, McFadden’s Pseudo R2 = 0.09.

Evaluation of the log odds with Tukey’s correction re-

vealed participants in the minus gaze condition were less

likely to produce back-channels than in the complete

multi-modal condition, see Table 6.

Fig. 13 Number of back-channels performed while interacting
with the robot in each condition (with 95% CI errors). Present
refers to appearance of the back-channels performed by the
participants, while Absent refers to lack of back-channels de-
tected during the interaction.[*] significant at the p < .05 level.
[**] significant at the p < .01 level

5.5 Liking

A Kruskal-Wallis H-test for participants subjective eval-

uations of their liking of the robot revealed no differ-

ences between any of the conditions, shown in Figure 14,

χ2(4) = 3.84, p = .428, ε2 = 0.04; failing to support H5.

Further exploratory investigation was done to look into

behavioral outcomes that might represent liking. First,

Figure 15 shows the number of addressee terms used

to address the robot in each condition. In the french

language, the pronoun“tu” (referring to“you”) is used in

informal and/or friendly contexts, whereas, the pronoun

“vous” is used for formal and/or acquaintance contexts.

See Table 7 for the frequency of each mode of address

used by participants. A chi square test comparing partic-

ipants mode of address towards Pepper in each condition

was significant χ2(12) = 23.01, p = .028, Kramer’s V

= 0.27, [0.00, 0.32]. Follow up tests with FDR correc-

tion, however, did not reveal specific differences between

conditions (Table 8). As this analysis was exploratory,

we then relaxed the need for correction with multiple
comparisons. Without correction, there was a significant

difference between the minus Social Dialogue and minus

proxemics conditions.

Second, Figure 16 shows in each condition the num-

ber of participants who made utterances while using the

tablet (despite it being clear that speech was not needed
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Status Multi-modal Minus Minus Social Minus Minus Total

of Greeting/Closing: Interaction
(n1)

Proxemics
(n2)

Dialogue (n3) Gestures (n4) Gaze (n5) (N)

Greeted robot &
10 15 16 13 14 68

Closed Interaction
Greeted robot but

4 2 1 1 2 10
Did not Close Interaction
Did not Greet robot but

5 3 1 5 2 16
Closed Interaction
Did not Greet robot &

1 1 3 2 1 8
Did not Close Interaction

Table 5 Number of greeting and/or closing turns, which may be verbal or non-verbal, present and absent in each modality in
beginning and end of the interaction. The rows represent the statuses in each condition as follows: 1) participants who greeted
the robot and also closed the interaction 2) those who greeted the robot but did not close the interaction 3) those who did not
greet the robot but closed the interaction 4) those who did not greet the robot nor did they close the interaction

Table 6 Comparison of the likelihood of producing back-
channels in each condition

Contrast
Log Odds

(SE)
z p-value

Minus Gesture vs Multi-Modal Interaction -0.41 (0.69) -0.59 .977
Minus Gesture vs Minus Gaze 1.79 (0.69) 2.58 .073
Minus Gesture vs Minus Social Dialogue 0.00 (0.66) 0.00 1.00
Minus Gesture vs Minus Proxemics 0.21 (0.65) 0.32 .998
Multi-Modal Interaction vs Minus Gaze 2.20 (0.73) 3.01 .022*
Multi-Modal Interaction vs Minus Social Dialogue 0.41 (0.69) 0.59 0.98
Multi-Modal Interaction vs Minus Proxemics 0.61 (0.69) 0.80 .899
Minus Gaze vs Minus Social Dialogue -1.79 (0.69) -2.58 .073
Minus Gaze vs Minus Proxemics -1.58 (0.69) -2.31 .140
Minus Social Dialogue vs Minus Proxemics 0.21 (0.65) 0.32 .998

* significant at the p < .05 level

Table 7 Frequency of modes of address used by participants
towards Pepper in each condition

Condition
Mode of Address

Tu Vous Pepper Nothing

Multi-Modal Interaction 1 1 0 19

Minus Gaze 1 3 0 17

Minus Gesture 2 3 0 16

Minus Social Dialogue 0 1 3 17

Minus Proxemics 5 1 0 15

Totals 9 9 3 83

to carry out choice selection on the tablet of the robot).

For instance, listening mode and speech recognition in

the robot was activated when the robot asked open

ended questions; whereas for making choices regarding

the planning of the destination in this scenario, the in-

terface to select the preference was by using the tablet

(as was instructed by the robot in the beginning). There

was no significant difference in how likely participants

were to talk to Pepper in addition to using the tablet,

χ2 = 5.18, p = .270, McFadden’s Pseudo R2 = 0.04.

Table 8 Comparison between modes of address used by par-
ticipants towards Pepper in each condition

Contrast
Raw

p-value

FDR-

corrected

p-value

Multi-Modal Interaction vs Minus Gaze .798 .886
Multi-Modal Interaction vs Minus Gesture .593 .740
Multi-Modal Interaction vs Minus Social Dialogue .232 .386
Multi-Modal Interaction vs Minus Proxemics .229 .386
Minus Gaze vs Minus Gesture 1.00 1.00
Minus Gaze vs Minus Social Dialogue .223 .386
Minus Gaze vs Minus Proxemics .207 .386
Minus Gesture vs Minus Social Dialogue .122 .386
Minus Gesture vs Minus Proxemics .347 .496
Minus Social Dialogue vs Minus Proxemics .022* .222

* significant at the p < .05 level

Fig. 14 Mean Liking ranked by participants for the robot in
each condition

5.6 Voice Recognition Errors

Although we attempted to limit the amount of au-

tonomous voice recognition, the introductory phase in-

cluded some reciprocal interaction between Pepper and

the participant (e.g., asking “how are you”). Thus, there

was still some potential for voice recognition errors to
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Fig. 15 Number of addressee terms used to address the robot
in each condition. The addressee terms are placed in four cate-
gories: absent, no term was used to directly address the robot,
informal/friendly pronoun, formal/acquaintance pronoun, and
name of the robot

Fig. 16 Number of Utterances while using the tablet of the
robot in each condition.Present refers to detection of utter-
ances/speech while tablet was used by the participants, while
Absent refers to lack of detection.

occur. Although not initially part of the experimental

design, based on observations of instances where voice

recognition errors occurred we decided to to explore

if these (naturally occurring) errors had any effect on

participants behaviour.

A one-way Kruskal Wallis H-test performed on the

number of voice recognition errors occurring per con-

dition was non-significant, χ2(4) = 2.04, p = .727,

η2 = 0.02, indicating there was no difference in the

number of voice recognition errors occurring between
conditions.

Significant negative correlations were identified be-

tween the number of voice recognition errors, the to-

tal time the participant spent talking during the self-

disclosure phase ρ = −0.20, p < .05 and the number of

pieces of information they disclosed ρ = −0.28, p < .01.

6 Discussion

First, H1 was supported, showing the influence of prox-

emics on the distances maintained by the users through-

out the interaction. Prior to the navigation of the robot,

participants chose to stand far from the robot at a

(M = 1.28, SD = 0.26) meters distance, with no signifi-

cant difference between conditions. The initial distance
chosen was within the social distance defined by Hall

[29] and did not give accessibility to the robot’s tablet.

In the conditions where the robot navigated to establish

the personal distance of 0.85 meters, distances main-

tained during the rest of the interaction until the end

were much closer. Conversely, in the minus proxemics

condition, participants kept a further distance from the

robot. Proxemics once again played an influential role

on the behavioral outcomes of the interaction and was

the main reason users kept a close distance to the robot.

Second, H2 was not supported, social gaze mecha-

nisms did not elicit an increase in self-disclosure speaking

time nor the amount of information the user revealed

about themselves. Further investigation was held to

interpret what might have affected the self-disclosure

speaking turn of the users. It was found that voice recog-
nition errors significantly predicted total speaking time

of participants and the amount of information shared.

While gaze aversions and their respective functions play

a guiding role in intimacy regulation and comfort in

self-disclosure in human-human interactions, findings in

this study seem to show that for human-robot interac-

tions technological voice recognition errors precede gaze

aversions in governing behavioral outcomes for such con-

texts. This shows that getting the robot technologically

ready may have a great impact on how naturally a user

answers an open ended question about themselves rather

than how close a robot’s subtle behavior is to a human.

Third, while H3 was not fully supported, the results

gave an insight into the effect of proxemics modality.

The condition in which there was least water sugges-

tions taken was in the minus proxemics condition. Even

though, the state of the art has been focused on using

deictic gesture and joint attention gaze for pointing at

objects to grab for task-oriented scenarios ([5], [68]),

there was no significant difference for these modalities

in this study. In addition, the suggestion of object grab-

bing in this paper was more focused on its social context

and implications. It was shown that the participants not

only took the object suggested by robot, in this case the

water cup, but also drank the water. It may perhaps be

linked to the perception of the user to the robot’s situ-

ational awareness, which is the ability to perceive and

infer knowledge from the surrounding environment [11].

There is a need for future work to better understand
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the potential of proxemics on object manipulation in

the shared environment between the user and robot.

Fourth, while H4a was validated, H4b was not val-

idated and H4c was partially supported. The lack of

social gestures significantly affected the behavioral align-

ment for the greeting and closing of the interaction in

the minus gestures condition. In the greeting part of
the interaction, the minus gestures condition had signif-

icantly less wave gestures performed to greet the robot

than in the complete multi-modal and minus social dia-

logue conditions. For closing waves this difference was

even more extreme, with, no wave gestures performed

in closing the interaction with the robot in the minus

gestures condition. Even further, In Table 5, while the

number of participants that did not greet the robot but

eventually performed a closing turn at the end of the

interaction were highest in the multi-modal interaction

and minus gestures conditions, there was no significant

difference. This may also imply that even though there

was no behavioral gesture done in the closing of the

interaction in the minus gestures condition, there was a

verbal closing turn.

On the other hand, H4c was partially supported. While

it was not the minus gestures condition that had the

least amount of back-channeling alignment performed

by users as hypothesized, it was instead the minus social

gaze condition. This may indicate that gesture mirroring

was not the main cause of back-channeling alignment,

but rather how naturally the interaction flowed. Condi-

tions with social gaze mechanisms included turn-taking

and floor-holding which hold cognitive functions and

were accompanied by very short pauses in speech. The

users may have performed more back-channeling during

these conditions as it was a natural human behavior and

as a way to provide the robot feedback that they were
in fact still listening to its speech and aligned in the

interaction. Thus, the social gaze plays a role in shaping

the human-robot interaction seem more instinctive to

the human and in forming alignment.

Fifth, a self-reported questionnaire was used to mea-

sure liking or ‘likability’ of the robot and it was hy-

pothesized that the multi-modal interaction condition

would score higher; however H5 was not supported. Fur-

ther behavioral outcomes were annotated and analyzed

that might be related to liking of the robot. First, the

way the participants addressed the robot was studied.

The experiment took place in French with native french

speakers and in the french dialect the “you” pronoun is

represented by “vous” for formal set-ups and/or with

acquaintances and by “tu” for rather informal set-ups

and/or with friends. The minus social dialogue condition

was significantly different to the minus proxemics condi-

tion. The minus social dialogue condition was the only

one to have users address the robot by its name, e.g.,

here being “Pepper”. In addition, the minus proxemics

condition had the highest number of participants using

informal/friendly pronouns. Further research needs to

done to better comprehend what that would signify but

it can be concluded at this point that modalities affect

the terms participants exercise in the interaction with

the robot. Second, during the interaction, the robot is

in listening mode at only two phases: at the beginning

during the social small talk shown in Table 1 and at the

open ended question to measure self-disclosure. At all
other times during the interaction, the robot was not

in a listening mode and its tablet was required to be

used by the participant to answer the questions asked by

the robot. However, it was noted that some participants

chose to talk while using the tablet and to sometimes jus-

tify their choices to the robot and discuss their thought

process out loud. While no significant difference was

found in the results, the multi-modal interaction condi-

tion had the highest number of participants who chose

to also talk while using the tablet and the minus gestures

condition had the least. This may give an insight into

the effect of social gestures on how social participants

were with the robot. These findings hint into the type

of relationships users formed with the robot based on

the multi-modal behaviors they interacted with. There

seems to be more to discover and investigate in future

works.

7 Conclusion

Non-verbal behavior plays a key role in human commu-

nication not only by reinforcing and enhancing speech

in diverse formats of the interaction, but also by carry-

ing fundamental functions in communication that can

stand-alone from speech. However, this non-verbal be-

havior is not made of only one modality but rather of

multi-modalities all composed together to serve their

purpose. For this reason, while studying each modality

separately may lead to improving human-robot interac-

tion, a deeper understanding of the different modalities

when performed together and their combinations as well

as their interaction outcomes is imperative for effective

use of the multi-modalities of robots in maximizing tar-

geted outcomes. This paper presented work attempting

to build such an understanding. The process involved im-

plementing a system of multi-modalities including social

gaze mechanisms, different types of gestures, proxemics

for navigation in initiating conversations, and social dia-

logue followed by an evaluation study where participants

interacted with the robot in a travel agent scenario. The

system and methodology presented in this paper can

be as well utilized on other robots. The results showed
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various insights into the contributions of modalities in

a multi-modal interaction onto several notable behav-

ioral outcomes of the users, including taking physical

suggestions, distances maintained during the interac-

tion, wave gestures performed in greeting and closing,

back-channeling, how the robot is addressed, and how

socially it is treated. It can be concluded that certain

modalities in multi-modal behaviors particularly influ-

ence the outcomes of the interaction, and at times not

in the same way as seen in the state-of-the-art of the

modality on its own. Notably, this paper showed how
multiple modalities can be combined in an interaction

and how subtracting each modality at a time revealed

insights about the effect of that modality. For instance,

it is now clear how proxemics influence the distances

maintained during an interaction and the probability

of the user accepting the robot’s offer. In addition, so-

cial gestures can predict how humans greet the robot

and close interactions with it and the utterances the

user makes while using other modalities of the robot

such as the tablet. Moreover, social gaze shaped how

naturally humans back-channel when interacting with

the robot but did not have an effect on how much they

disclose to the robot. All these findings may lead to

further understanding on human-robot interaction and

how multi-modal behavior can be used to increase the

perceived social intelligence of the robot.
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