
HAL Id: hal-03438972
https://hal.science/hal-03438972

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Deep Learning Networks for Profiled
Side-channel Analysis Using Performance Improvement

Techniques
Damien Robissout, Lilian Bossuet, Amaury Habrard, Vincent Grosso

To cite this version:
Damien Robissout, Lilian Bossuet, Amaury Habrard, Vincent Grosso. Improving Deep Learning Net-
works for Profiled Side-channel Analysis Using Performance Improvement Techniques. ACM Journal
on Emerging Technologies in Computing Systems, 2021, 17 (3), pp.1-30. �10.1145/3453162�. �hal-
03438972�

https://hal.science/hal-03438972
https://hal.archives-ouvertes.fr

Improving Deep Learning Networks for Profiled

Side-Channel Analysis Using Performance

Improvement Techniques

Damien Robissout Lilian Bossuet Amaury Habrard
Vincent Grosso

firstname.lastname@univ-st-etienne.fr

Univ Lyon, UJM-Saint-Etienne, CNRS Laboratoire Hubert Curien
UMR 5516 F-42023, Saint-Etienne, France

Abstract

The use of deep learning techniques to perform side-channel analy-
sis attracted the attention of many researchers as they obtained good
performances with them. Unfortunately, the understanding of the neu-
ral networks used to perform side-channel attacks is not very advanced
yet. In this paper, we propose to contribute to this direction by study-
ing the impact of some particular deep learning techniques for tackling
side-channel attack problems. More precisely, we propose to focus on
three existing techniques: batch normalization, dropout and weight
decay, not yet used in side-channel context. By combining adequately
these techniques for our problem, we show that it is possible to improve
the attack performance, i.e. the number of traces needed to recover
the secret, by more than 55%. Additionally, they allow us to have a
gain of more than 34% in terms of training time. We also show that
an architecture trained with such techniques is able to perform attacks
efficiently even in the context of desynchronized traces.

1 Introduction

Side-channel attacks are a class of attacks targeting electronic systems by ex-
ploiting vulnerabilities in their physical properties, e.g. power consumption
[10] or electromagnetic emanation [1], to recover secret information. This
kind of attacks uses the fact that, during the execution of cryptographic
algorithms, sensitive variables depending on the secret are manipulated.
Profiling side-channel attacks are among the most powerful attacks. To per-
form profiling attacks, an adversary uses a device similar to the targeted
one in order to create a template of, for example, the power consumption

1

for a given secret [5]. The adversary has access to all the variables manip-
ulated by the device therefore he can estimate the conditional distribution
between the power consumption of the device during the computations and
the sensitive variable for every possible value. This distribution is then used
to predict the value of the sensitive variable of the device under attack and
retrieve the secret. However, this technique has some limitation. Indeed,
it is based on the assumption that the distribution of the leakage follows a
gaussian distribution. The estimation of the probability density function of
such a distribution becomes expensive in high dimensional scenarios.

Recently, thanks to advances in technology, deep neural networks gained
in popularity due to their approximation power. Researchers began to use
machine learning and deep learning techniques to estimate the conditional
distribution of the sensitive variable and perform profiling attacks. The
similarities between the two problems led to good performances of this
new type of profiling attacks. In particular, convolutional neural networks
(CNN) showed a great robustness against classical countermeasures, which
was highlighted in some articles, such as masking in [14, 15] and desynchro-
nization in [4, 28]. Their main advantage is that they do not require a heavy
pre-processing of the data contrary to other profiling attacks, e.g. template
attacks [5]. On the other hand, they need to go through a learning pro-
cess to be able to perform specific tasks. It is composed of two phases, the
forward propagation and the backward propagation. The first one consists
in feeding the network training examples, for which the network outputs a
prediction after processing the examples using a sequence of linear and non-
linear transformations. Once this is done, the error between the prediction
and the correct output is measured with respect to a loss function, and the
backward propagation aims at propagating back this error to the start of
the network in order to update the parameters of the network accordingly.

The evaluation of the training process and its performance is done using
machine learning metrics, among which the accuracy is one of the most pop-
ular. Unfortunately, as Picek et al. have shown [18], this metric is poorly
suited in the context of side-channel analysis. By definition, the accuracy
tends to favor the class with the highest output score for each example.
However, in side-channel analysis, as the leaked information contained in
the data is very small, the classifiers are only loosely correlated to the true
prediction. Therefore, to perform a successful attack, the adversary com-
bines the predictions of multiple traces to extract the estimate of the true
class. In addition, the lack of information in the side-channel data means
that the network has a tendency to overfit, i.e. learn the training data per-
fectly even if it reduces the performance on new data and this is confirmed
by the evaluation metrics. This phenomenon is common when training deep
neural networks and there exists different techniques to reduce its effect.
The next step is then to apply regularization techniques to limit the overfit-
ting of the network. Those techniques rely on the possibility of evaluating

2

the network during its learning phase. However, the metrics, such as the
accuracy, are not efficient when applied to the problem of side channel anal-
ysis. More precisely, they are able to tell when a network is overfitting
but are not enough to distinguish which network would perform best. This
brings the question of how to compare networks and their performances.
Answering this problem would also lead to the possibility of applying early
stopping during the training phase to further improve the performance of
the networks.

Contributions The first aim of this article is to do an overview of the
current state of deep learning based side-channel analysis. This overview
underlines some of the problems linked to this kind of attacks which depends
on the performance of deep learning algorithms. The goal is to explain in
details the principles of deep learning based side channel analysis and study
the effects of the addition of some deep learning techniques, specifically
dropout and L2 regularization, also known as weight decay, as well as batch
normalization, on the performances. They help to prevent and mitigate
the overfitting of the network which brings significant improvements to the
performance by reducing the number of traces needed to perform the attacks.
This is validated experimentally using a public architecture CNNbest and
dataset ASCAD [2].

Article Organization This article is organized as follows. Section 2 will
serve as an introduction to the notations and important notions of profiled
side-channel analysis as well as deep learning and neural networks. Section 3
will describe batch normalization and regularization, techniques that can be
used to improve the performance of neural networks. In Section 4, we present
the metric used for the evaluations and introduced in [19]. The previously
mentioned techniques are then used in Section 5 together with ∆d

train,val to
improve a neural network architecture existing in the literature. Finally,
Section 6 contains the conclusion on the results obtained and a discussion
for future works that can be explored.

2 Preliminaries

2.1 Profiled Side-Channel analysis

The goal of profiled side-channel analysis is to recover a secret value or parts
of a secret value used in the computation of an encryption algorithm. The
recovery of this value leads to the possibility of deciphering a message, be
it a direct recovery, a partial recovery or a reduction of the difficulty of the
problem the encryption is based on. This kind of attacks is based on several
assumptions:

3

Figure 1: Diagram describing the steps of a profiling phase.

� the adversary has access to a physical measurement from the device
used to perform the encryption;

� information on intermediate variables is leaking in the measurements,
i.e. it is correlated to values manipulated by the algorithms. This is
usually referred as the leakage model;

� the values leaking are related to the secret or part of the secret;

� the adversary has a copy of the device over which he has total control
of the values manipulated.

For the rest of the article, the physical measurements are assumed to be
power consumption. They are stored in the form of temporal vectors called
traces, denoted t to represent one of those traces, and regrouped in a set
T ∈ RN×D where N is the number of traces in T and D is the dimension
of the traces. The intermediate value leaking in the traces is Z = f(P,K),
where f denotes a cryptographic primitive, P (∈ P) denotes a public variable
(e.g. a plaintext or ciphertext) and K (∈ K) denotes a part of the key (e.g.
a byte). The goal of the attack is to retrieve the value of k∗, the secret
key used by the cryptographic algorithm. In order to do that, a common
method used is the divide and conquer approach which consists in finding
fractions of the key (e.g. a bit or a byte) separately and combining them to
obtain the full key. The type of attacks considered in this article to recover
the parts of the key are profiling attacks. They are done in two phases: the
first one is the profiling phase and the second the matching phase.

During the profiling phase, illustrated in Figure 1, the adversary has
access to a test device, which is a copy of the device he wants to attack.
He has control of every intermediate variables used in the computations
done during the encryption and therefore can determine when the sensitive
variable Z (∈ Z) is leaking. This allows the adversary to build a model
F : RD → R|Z| to estimate the probability Pr[Z = z|T], i.e. what is the
probability, given the set of traces T, that the value of the sensitive variable
is z.

The model is then used during the matching phase to estimate the values
of the intermediate variable on the device under attack. The adversary first

4

performs encryptions of random public variables with this device and then
uses the power consumptions obtained from those encryptions to get the
estimations. The probabilities obtained for each trace are combined and the
value with the highest probability is considered as the recovered key.

In order to evaluate the performance of the model, all the key candidates
are classified in a vector of size |K|, denoted g = (g1, g2, ..., g|K|), following
their respective probability. g1 is considered to be the most likely candidate
and g|K| the least likely. The actual position of the bth byte of the secret
key in g is denoted g(k∗[b]) and is called rank. The guessing entropy [22] is
defined as the average rank of a byte b of k∗, denoted k∗[b], among all key
hypotheses. It is a common metric in side-channel analysis to evaluate the
performance of attacks. A successful attack, using Na traces, is equivalent
to a guessing entropy equal to 1.

A related metric to the rank is the success rate defined as the probability
for an attack to succeed in recovering the correct key byte k∗[b] among all
the hypotheses. A success rate of p is equivalent to having p recoveries of
k∗[b] in 100 attacks. In [22], Standaert et al. propose to extend the notion
of success rate to an arbitrary order d. Let AEk,L be an adversary trying
to attack the cryptographic computation Ek using to a leakage model L.
The adversary conducts the experiment ExpdAEk,L

multiple times in order to

exploit the relevant leaking information. The result of the attack is a vector
g of length d that is composed of the d most likely key candidates sorted
according to the experiments result. If k∗[b] ∈ g, the attack is considered a
success and ExpdAEk,L

= 1. Thus, the dth order success rate can be defined
as:

SRd
AEk,L

= Pr[ExpdAEk,L
= 1].

In other words, the dth order success rate is defined as the probability that
the target secret k∗[b] is ranked among the d first key guesses in the score
vector. In the rest of the article, the dth order success rate is denoted SRd.

2.2 Deep Neural networks

In this article, the focus is made on convolutional neural networks (CNN)
and therefore the use of multilayer perceptrons in profiled side-channel anal-
ysis is not discussed. There exists articles which present multilayer percep-
trons in more details such as [24, 2] .

2.2.1 Description of a neural network

A neural network is the representation of a sequence of linear and non-linear
transformations applied to input values that results in an output which can
vary depending on the problem at hand, e.g. classification, regression, etc...
In addition, the transformations composing the network are organized using
layers of neurons. Each neuron represents the combination of a linear and

5

non-linear transformation. The output of each layer is formed by the output
of all the neurons and is fed to the next layer as an input repeating until
the last layer, which outputs the solution to the problem. Neural networks
are composed with two kinds of parameters: the hyperparameters and the
trainable parameters. The hyperparameters are the set of parameters that
defines the architecture of the network, e.g. the number of neurons or the
number of layers, and they will be mentioned in the next sections. The train-
able parameters are the parameters updated during the learning process in
order to perform a task. The two main trainable parameters are the weights
and the biases associated to each neuron and layer. The weights are specific
to each neurons and are thus learned independently from neuron to neuron
while the bias is a layer-wide parameter that is used in the computation of
every neuron of a layer.

2.2.2 Convolutional neural network

The specificity of CNNs is the use a convolution operation as illustrated in
Figure 2a. The convolution is mathematical operation that processes the
layer input with respect to a filter. Each convolutional layer has a given
number of filters of fixed size. The number of filters and their sizes as
well as the stride are all hyperparameters of the network. The size of the
filters is equivalent to the number of weights they contain and the stride
corresponds to the number of feature shifts when processing sequentially
the filter over the input data. Each filter slides through the input, i.e. the
same weights are applied to all the input, to generate the output which will
correspond to the input of the next layer. When the size of the filters does
not correspond exactly to the size of the input, a padding is applied to the
data. In this application, a same padding is used. The padding consists in
adding an additional features around the input in order to ensure that each
application of a filter is centered around each original feature of the input.
The size of the padding indicates the number of additional features added.

During the convolution operations, the computations are made locally
with respect to the input. When transposed to the side-channel problem and
the power consumption traces, this means that only points close together
on the temporal scale are used in the computation for the first layer. This
is what constitutes the linear transformation. To obtain the approximation
power of the neural network, non-linearity is needed. This is handled by
applying a non-linear function to the result of the convolution operation
that is called the activation function. In the case of side channel analysis,
this function is the rectified linear unit (ReLU) and is used in the rest of
this article. It was shown in [2] to be more efficient than other activation
functions in the side-channel context and is defined as follows:

ReLU(x) =

{
0, if x < 0
x, if x ≥ 0

6

(a) Example of a convolution op-
eration

(b) Example of an average pool-
ing operation

Figure 2: Examples of a convolution operation using two filters of size 2,
using a padding of one with repetition of the first value and with a stride of
1, and an average pooling operation of size 2 and stride 2.

In summary, to compute the output of a given neuron n of a layer l, the
network uses the following formula:

X(l)[n] = ReLU
(
W (l)

n ∗X(l−1) +B(l)
)
,

where W
(l)
n is the weight matrix of the filters of the layer l, B(l) the bias

vector of the layer l, ∗ is the convolution operation and X(l−1) and X(l) are
the outputs of the layers l−1 and l respectively.

In the example of Figure 2a, the size and number of filters is set to 2
and the stride to 1. Therefore, the dimension of the output is twice the
one of the input. If not controlled, the dimension of the data would grow
out of control. This is why a pooling layer is often used after a convolution
layer. As illustrated in Figure 2b, the application of a pooling of size 2
results in reduction of the dimension by a factor 2. There are different kinds
of pooling, e.g. average, min, max, used in different context. An average
pooling is used in the rest of the article following the recommendations in [2].
It computes the average of the value within its window. Finally, in order to
exploit the information extracted in the convolutional layers, fully connected
layers can be used as the last layers of the network. They are layers of fully
connected neurons which means that every neuron of the previous layer is
connected to every neuron of the next.

The final objective of the network is to define a probability function for
estimating the classification probability of the input. Therefore the acti-
vation function of the last layer is a softmax function as its output is the
output of the network. It is projecting each input of the previous layer val-

7

ues between 0 and 1 while making sure they add up to 1. Given a vector
x of n elements, the result of the softmax of x is Softmax(x) = (si)1≤i≤n
where:

si =
ex[i]

n∑
j=1

ex[j]

In this case, the networks are used to perform classification of our data.
Given a sample of our data, e.g. a power consumption trace t, the network
has to make a prediction on what class (or value), z, is associated with the
trace. This is equivalent to say: the network takes as an input a trace t
and returns the value z of the intermediate variable Z as the class with the
highest value.

To summarize, the input of our network is a vector containing values of
power consumption over time. Those values then go through linear transfor-
mations done using convolutional filters and non-linear transformation done
using the ReLU function. Fully connected layers are then used and finally
the prediction is made using the output of the softmax function. In our
case, the number of classes is 256. This is due to the fact the sensitive vari-
able targeted is the output of a substitution box of a symmetric encryption
algorithm, e.g. the advanced encryption standard (AES). The information
leaking is the value of one byte of the output of the substitution box and
therefore the key is recovered byte per byte which can take 256 possible val-
ues. It is thus possible to use the network to perform a profiling side-channel
attack and retrieve the key on the condition that the prediction is correct.
Therefore the difficulty comes from training a network that is precise enough
to retrieve the key.

2.2.3 Description of the training phase

As mentioned before a neural network is as a set of linear and non-linear
transformations but the choice of the transformations is not random. The
weights are indeed learned during a process called the training phase. The
learning process can be seen as trials and errors made by the network when
predicting the training examples in order to, step by step, reduce the errors
it is making. During the training, the training data is split into two sets:
the training set and the validation set. The training set contains the sam-
ples used to train the network while the validation set contains samples of
training data that the network will never see during training and therefore
can be used to evaluate the generalization performance of the network. The
errors on the training and validation sets made by the network are computed
using a function called the cost function, also known as loss function. This
loss function is differentiable thus it is possible to compute its derivative
with respect to each parameter of the network. Therefore, by changing the
weights of the network using the backpropagation and the gradients of the

8

Lo
ss

Parameters values

(a) Position of the loss
before taking a step

Lo
ss

Parameters values

(b) Position of the loss
after taking a small step

Lo
ss

Parameters values

(c) Position of the loss af-
ter taking a large step

Figure 3: Example of the shape of a loss function to minimize.

loss function, it can be minimized. Indeed, the direction of the gradients
indicate how to maximize the loss so, by going in the opposite direction, a
minimum can be found that is either local or global as illustrated in Figure
3a. This is equivalent to reducing the errors made by the network on the
training samples. In this application, the cost function used is the categori-
cal cross-entropy (CCE) defined as:

CCE(p, q) = −
∑
x

p(x)log(q(x)),

where p is the true output, q the prediction of the network, i.e. the output
of the softmax activation function, and x an input.

To learn the parameters of the network, the optimization of an objective
function, defined as the average categorical cross entropy over the training
sample, is required. This function is often completed with a regularization
function as seen later on in the article. The optimisation of the objective
function is done by a (stochastic) gradient descent approach. Thanks to the
backward procedure, this optimization allows to change the parameters of
the network accordingly. This change is controlled by an hyperparameter
called the learning rate that has to be set when creating the network. The
learning rate, if set correctly, prevents the changes applied to the weights
from being too large and thus missing potential minimas of the loss function
as can be seen in Figure 3c. The larger the learning rate, the larger the step
in the opposite direction of the gradient is taken. Learning rates too high
means higher chances of missing a minima but learning rates too low means
slow optimization and risks of being stuck in bad local minimas as shown in
Figure 3b.

9

During the training phase, the network makes a prediction on every sam-
ple of the training set and the weights of the network are updated depending
on the errors made in the predictions. This process is called an epoch. Once
the network is updated, the process is iteratively repeated using the samples
from the training set. When the training set is too large though, the actual
computations of going through the whole dataset and updating the network
for every examples can be computationally too expensive. Therefore, the
dataset is decomposed in smaller batches for which the loss of each examples
is averaged in order to update the network. This is called batch or mini-
batch training. The size of the batch of examples fed to the network is part
of the hyperparameters chosen before the training.

Once the training phase starts, the stopping criterion used to stop the
training phase has to be chosen with care. One way is to wait until the loss
function reaches zero, i.e. the network makes no errors on the training set.
However, this method has the drawback that, for most problems, it is not
possible to know if such a value is reachable or how long it would take. It
also leads to another common problem when training neural networks, the
overfitting of the network. Overfitting comes from the fact that the network
is able to predict the training data perfectly but is unable to generalize its
knowledge to the validation data. It can originate from different sources. For
example, if the network architecture is too complex to solve the problem, it
will have the tendency to learn the training data perfectly to reach a loss of 0
but it does not guarantee good performance on the validation set. Therefore,
it is possible that what the network is going to learn might help to reduce the
error it is making on the training data but it will also perturb its prediction
on the test data. It generally happens when the network trains for too
many epochs. The training error can be reduced drastically but the training
set is almost learned by heart, i.e. the network learns features from the
input that are not relevant for generalization but help to predict this specific
sample. Overfitting is often associated to the opposite problem, underfitting.
Underfitting can happen for several reasons: the architecture of the network
is not complex enough to approximate the underlying target function, the
network has not seen the data enough to reduce its errors, or the training
set is too small or not representative enough of the real data. Both of these
problems can seriously impair the performances of the neural networks if
not taken into account during the training therefore it is important to be
able to detect them. To detect those phenomena, a comparison can be done
between the performance of the network on samples from the training set
and from the validation set. It takes place during the training phase at the
end of an epoch and, if the average loss of the validation set starts increasing,
the training can be stopped.

The metrics often used for the comparison are the empirical risk and the
accuracy of the network. The empirical risk represents the average of the
loss function over the training examples and the accuracy the proportion

10

of examples correctly classified by the network. In terms of side-channel
analysis, the accuracy corresponds to a simple power analysis where only
one trace is used to find the intermediate value, and by extension the key.
This is the evaluation metric commonly used in the articles studying the
application of deep learning to perform side-channel analysis. It has been
shown to misrepresent the actual side-channel analysis performance of the
networks [18].

2.2.4 Application to Side-Channel Analysis

In order to perform an attack, the attacker first needs to measure a physical
quantity coming from the training device in order to create the training set.
As he has control over the value manipulated by the device, the attacker
knows the label associated with each trace and can train the network. The
training process is described in Figure 4 and the resulting network is later
used during the attack. Once the training is done, he measures the power
consumption of the target device during the encryption of random plaintexts
for which he knows the value with a fixed, unknown key and this constitutes
the attack set or test set. The key recovery process is illustrated in Figure
5. The network can then generate prediction for every trace obtained and
the byte with the highest value is selected to be the right candidate. Once
the byte is predicted, using the public value of the plaintext, the adversary
is able to recover the key byte used in the encryption. This is the ideal case
where the network predicts the correct value every time but in practice it
rarely happens. It mainly depends on the validation accuracy the network
reaches at the end of its training. To be able to recover the key in one trace
consistently, the attacker would need a network with a validation accuracy
of 100% and hope that the distribution of the examples inside the validation
set is identical to the one in the attack set. This scenario is very unlikely but
the key byte can still be recover even though the accuracy of the network
is close to that of a random prediction, i.e. around 0.4%, the equivalent of
1/256.

During the measurement of the traces, the adversary is able to control the
value of the plaintext and thus he chooses it following a uniform distribution
among all possible byte values. Therefore, the intermediate value follows a
uniform distribution, whether the key is fixed (case of the target device) or
the key follows a uniform distribution (case of the training device). This
means that the classes are balanced, i.e. the number of examples per class
is roughly the same for every class. Thus, training a specialized network to
predict a specific class is not possible otherwise it will never be better than
an average prediction. This paradigm is relatively different from the one
usually found in other classification problems solved using neural networks.
For example, in image classification or error detection, the network user is
interested in being accurate for as many examples as possible since there is

11

Figure 4: Training process.

Figure 5: Key recovery.

no connection between the different images. On the contrary, in the case of
side-channel analysis, all the traces in the attack set share the same key and
therefore share a common value. This fact allows the attacker to accumulate
information with several predictions and combine it to make a “meta predic-
tion” on the value of the shared secret, i.e. the key. Therefore the network
does not need to predict the correct intermediate value every time as long
as the correct label is among the values with the highest predictions. The
accuracy of a network is then a good indication that the network is working
if and only if it has a high value. When the accuracy is low it is not possible
to know if the network will perform well or not. According to Picek et al.
[18], it is more relevant to use the success rate when a side-channel attacker
wants to evaluate the performance related to his network. Indeed, contrary
to the accuracy, the success rate is based on the accumulation of informa-
tion over several traces. To facilitate the comparison of the performance of
the network on the training set and on the validation set, it is possible to
reorder the random keys in order to simulate attacks. This is described in
the next section.

2.3 Performing attacks against random keys

Side-channel attacks are usually done against a fixed key as the goal of the
attacks is to recover this specific value. The fact that the key varies for each
traces in the training set creates a problem as typical attack scenarios are not
possible anymore. However, this problem can be solved by reordering the
key values. To illustrate this method, let us consider an AES computation.
For an AES, the plaintext byte, pi[b], is xored with the key byte, k∗i [b],

12

pi[b]

ki*[b]

Sbox Y(ki*[b])

p'i[b]
Sbox

k'[b]=0ki*[b]

pi[b] Y(ki*[b])

Figure 6: Illustration of the reordering the key. On the left is the normal
method of considering the attack and on the right the alternate method
using a reordered key.

as part of the AddRoundKey operation and the result is processed by the
SubBytes operation, using the Sbox, which outputs the intermediate value
targeted by the network, Y (k∗i [b]). This is illustrated on the left part of
Figure 6. During the training phase, the value of the key is known for each
traces i, therefore it is possible to consider the result of the xor between the
key and the plaintext as the new plaintext, p′i[b]. This new plaintext is now
xored with a new key value, k′[b] = 0, and fed to the Sbox, as shown on the
right part of Figure 6. The output of the Sbox stays the same as a xor with
the value 0 does not change the xored value. By doing so, a regular attack
can now be performed against this new key and the rank of k′[b] becomes
the rank of the good key.

The results of the attacks on the validation and attack sets should be
similar as they target the leak of the output of the Sbox which is not im-
pacted by the reordering. To avoid this problem in the future, it can be
interesting to keep a validation set using a fixed key when acquiring the
training set. It would allow for an easier comparison between the results on
the validation and attack sets.

2.4 Related work

Recent research articles focusing on the application of deep neural networks
to side-channel analysis have most notably studied the problem of hyper-
parameter tuning. In [28], Zaid et al. propose a way to determine a good
network architecture by carefully setting up the number of layers, filters
and the size of the filter. They focus on the overall architecture of the net-
work and manage to reduce the size of a public network while improving
its performances. This study is analyzed and further developed by Wouters
et al. in [26] and Zaid et al. in [29] in which they mention that the use
of batch normalization could allow to skip the normalization of the input
traces. However, they do not go further in explaining the effect of batch nor-
malization. In [30], Zhang et al. follow a similar approach and use a metric
they introduce, the cross-entropy ratio, to validate their experiments. Con-
trary to these articles, we focus on applying machine learning techniques in
order to improve the performances of a given architecture. In other words,

13

Table 1: Summary of the different methods used and explored for the im-
provement of the performances of neural networks in side-channel analysis.

Reference

Improvement
method

Architecture
tuning

Data
augmentation

Noise
addition

Batch
Norm.

Dropout
L2
reg.

Early
Stopping

Zaid et al. [28] [29] Explored - - - - - -

Wouters et al. [26] Explored - - - - - -

Cagli et al. [4] - Explored - - - - -

Picek et al. [18] - - Explored - - - -

van der Valk et al. [23] - - - Used Used - -

Masure et al. [15] - - - Used - - -

Perin et al. [17] - - - - Used - Explored

Li et al. [13] - - - - Used - -

Weissbart et al. [24] - - - - - Used -

Zhang et al. [30] Explored - - - - - -

[this article] - - - Explored Explored Explored Explored

our objective is not to design new models or to define the best composition
of neurons. We rather consider deep learning techniques that keep the same
model size. Indeed, adding a batch normalization layer represents generally
a small increase of the original architecture (e.g. for the CNNbn model,
the increase corresponds to almost 0.00005% of the original architecture).
Dropout and L2 regularization act directly on the value of the weights and
not on the architecture, therefore our approach is complementary to the
methodologies proposed in these articles.

Other works have used the aforementioned techniques in the context of
side-channel analysis such as [23, 13, 15] for batch normalization, [18, 17]
for dropout and [24] for L2 regularization. In another context, Cagli et
al. [4] focus on the impact of data augmentation, a technique consisting in
artificially increasing the amount of traces in the training set by creating new
training traces by applying transformations to the original training traces.
This method makes the network more robust to modifications in the input
by focusing on the addition of a novel and diverse training examples.

We provide in Table 1 a summary of the different techniques used in
the recent state of the art papers mentioned previously for improving deep
learning-based side-channel analysis. The articles are separated depending
on weather they offer detailed explanations on the techniques used (men-
tioned as Explored) or if they are only present to improve performances
(mentioned as Used). Our article is the only one that provides a thor-
ough study considering together batch normalization, L2 regularization and
dropout. We provide in the following section a presentation of these tech-
niques and their impacts on neural network training.

14

3 Batch Normalization and Regularization of Deep
Learning Networks

We begin this section by a description of the principle of batch normalization
in Section 3.1. Then, we introduce the L2-regularization considered in this
paper in Section 3.2. Finally, Section 3.3 is devoted to the presentation of
the dropout technique.

3.1 Batch Normalization

Normalization, or batch normalization, for deep neural networks was intro-
duced by Ioffe et al. [8] in 2015. Their goal was to improve the learning
phase of a network by reducing the internal covariant shift (ICS). The ICS
represents the shift in the data distribution that happens after the update
of the weights of a layer. Their hypothesis was that the layers were learning
based on the distribution of the previous layer and were using that to treat
the information. The goal of the batch normalization was to normalize the
distributions of the output of the layers to prevent this phenomenon.

Normalization consists in taking a set of samples and modifying it to
force the mean of the samples to 0 and its standard deviation to 1. It is
a way to homogenize the distribution of the samples. This homogenization
results in numerical values of the samples closer together but the propor-
tional variations stay the same. The idea behind normalizing the data is
to make the network focus more on the variations between samples rather
than the numerical values of those examples. Without normalization, it is
more difficult for the network to notice and use the variations since it fo-
cuses on the high numerical values first. Normalization also implies a more
stable distribution of the data for each layer even after weights update. The
data distribution of a layer is less affected by the weight update, therefore
the next layer does not have to adapt to the new distribution and instead
focuses on solving the problem. Indeed, when the gradient is computed to
determine how to update the weights, it is under the assumption that the
rest of the layers will stay the same.

The addition of the normalization process showed a gain in the perfor-
mances of the network. This is why the batch normalization technique is
included in most of the recent deep neural network architectures [3].

3.1.1 Normalization layer

Ioffe and Szegedy [8] introduced the normalization layer that performs the
normalization of the data between the layers of the network. This layer is
usually placed between the activation and the pooling layers in a convolu-
tional block. It is applied on each batch of training examples and is also
called batch normalization. Indeed, the scaling parameters will be unique

15

for each batch as the goal is to make the distribution the same for every
batch. The normalization process for an input yi of a batch is:

y∗i = γ
yi − µ
σ + ε

+ β, (1)

where µ is the mean of the batch, σ is the standard deviation and ε > 0 is a
small constant added for numerical stability. γ and β are trainable parame-
ters used to scale and shift the distribution if needed. This reparametrization
of the distribution of the input brought a side-effect, as studied in [20], the
smoothing of the optimization landscape.

3.1.2 Smoothing of the loss landscape

Santurkar et al. [20] uncovered in their article another reason, and possibly
the main reason, for the success of batch normalization. They show, by
placing noise after the batch normalization layers, that the normalization
has little effect over the ICS. They continue by studying the landscape of the
loss function and conclude that, by making it smoother, the normalization
allows for a better learning and the use of higher learning rate. Indeed, since
there are less sharp changes in the loss, the optimization algorithm can take
bigger steps without the fear of missing a minimum.

Batch normalization allows the network to learn faster and helps to reg-
ularize it a little but it can also lead to faster overfitting. To control this
effect, regularization techniques can be applied to fully benefit from the
normalization without the drawback of increased overfitting.

3.2 L2-Regularization

This section focuses on a technique used specifically for regularization called
L2 norm regularization or weight decay [11]. This technique consists in
adding a regularization term to the value of the loss function. In the case of
the L2 norm, this term is the sum of the square of the weights of the layer
controlled by a coefficient α. The objective function becomes:

O(θ) = CCE + α
∑
||W ||2,

where θ is the parameters of the network and W the weight matrix.
This term will grow larger as the value of the weights grow larger and

smaller as the values get smaller. In practice, this means that the weights
with small value have a low influence in the weight update contrary to the
high weights. The penalty will thus focus on the large weights and control
their values. To summarize, this regularization term encourages the weight
to be close to zero without pushing them to become zero. The goal of this
change is to prevent the network from relying only on the high weights to
make its prediction as doing that would most likely lead to overfitting. This

16

is a way to reduce the overfitting of the network at the cost of a slower
learning/convergence and is one reason why it is interesting to use it in
combination with batch normalization. It is necessary to apply it when the
performance of the network on the training set is good but the network has
poor performance on the validation set at the end of the training.

Other forms of regularization exist and they use different values for the
regularization term. The L1 regularization, for example, replaces the sum of
square by a sum of the absolute values of the weights. The effect is different
as this will push the low weights towards zero while keeping only a few
values relatively high. To compare the two forms of regularization, the L2

will encourage a larger distribution of smaller weights while L1 will push for
a distribution of a few important weights with others at zero. Therefore L1

regularization implies scarcity in the weights of the network.

3.3 Dropout

The previously mentioned techniques acted on the data flowing through the
network and the values of the weights used in the computations. Dropout
[21] has yet another kind of effect on the network. There are different types of
dropout but the standard one is used to disable a given percentage of neurons
randomly for each batch of samples. As shown in Figure 7, when applying
a dropout with coefficient 0.5, half of the neurons of the layer are dropped.
The activation of those neurons is set to zero and they are thus not used
in the computation of the output. These neurons are chosen randomly for
every batch. This results in a smaller network that performs the prediction
and changes for every batch of samples. Moreover, as the computation of
the gradient is an average over the training samples of a given batch, the
backpropagation is not applied to the dropped neurons of this batch. One
of the possible interpretation of dropout is that it is similar to averaging
over the ensemble of smaller neural networks [12]. It was also shown that
layers without dropout tend to have more dead neurons. A dead neuron is
a neuron which, as the result of the training, has a fix activation. It means
that it is stuck in this state and will not change no matter the training.
On the other hand, layers using dropout have almost no dead neurons [16].
Another benefit of using dropout is the reduction of co-adaptation in the
network. Co-adaptation happens when neurons depend too much on each
other and as a result loose generalization power. For example, neurons
could learn to correct mistakes from other neurons which slows down the
learning process. Dropout prevents that as it makes the presence of neurons
unreliable therefore it forces neurons to act more independently and reduce
the overfitting coming from co-adaptation [7].

The effect of dropout in the convolutional layers more specifically has
been studied in [16] by Park and Kwak. They exhibit that it helps filters
to learn more informative features as well as improving the generalization

17

Figure 7: Effect of dropout on a fully-connected network.

performance of the network by adding noise to the output of the layers.
Finally, they showed that applying more dropout the deeper the layer is
leads to better performance. This is taken into account during our experi-
mentation phase to tune the amount of dropout used in each layer. Those
techniques are applied in the experimental section to observe the effect they
have on a neural network used in the side-channel analysis context. For
that, the starting architecture is the one used in the ASCAD database [2]
and other articles of the literature, to allow for a fair comparison between
the results.

Before presenting our experimental study on the impact of the three
techniques described above, we present in the next section a metric tailored
to side-channel analysis, introduced in [19], that we will use to evaluate the
performance of neural networks.

4 ∆d
train,val: an evaluation metric for side-channel

analysis

Following the remark in [18] about the lack of metrics to evaluate the train-
ing of networks for side-channel analysis, several articles were published
trying solve this problem. In [23], van der Valk et al. use the bias-variance
decomposition of the loss function to compare the performance of differ-
ent architecture and perform some hyperparameters tuning. Unfortunately,
they do not explore the early stopping aspect of the metric nor do they use
a public architecture. Later, in [30], Zhang et al. use a more theoretical
approach by computing what they call the cross entropy ratio. They apply
it to compare the performances of different custom network and to try to
find the best architecture. However, their metric does not seem to allow for
a good comparison of networks trained on different datasets contrary to the
one presented in [19], ∆d

train,val, that we selected for our experimental study.
This metric aims indeed at combining aspects from side-channel analysis

and machine learning to create a relevant metric in order to evaluate both
the training and the performance during the attack phase of a network. It is
based on the success rate achieved using the network on the training and val-

18

idation set. The comparison of the results gives information on the internal
state of the network, namely if the network is underfitting or overfitting.

4.1 ∆d
train,val: internal state detection

Let a model be the result function F of the training of an architecture for a
given amount of epochs. Nd

train(model) and Nd
val(model) are defined as the

minimal number of traces that a model needs in order to reach a dth-order
success rate:

Nd
train(model) = min{ntrain | ∀n ≥ ntrain, SRd

train(model(n)) = 90%}

and,

Nd
val(model) = min{nval | ∀n ≥ nval, SRd

val(model(n)) = 90%}.

Information can be extracted from those values on how well the network
generalizes beyond the training data, using the Euclidean distance. ∆d

train,val

is indeed obtained as follows:

∆d
train,val = |Nd

val −Nd
train|.

The success rate is a well-known side-channel analysis metric, therefore
∆d

train,val combines the machine learning and the side-channel approaches.
It allows to evaluate any network used to perform side channel analysis.
The computation of the metric can be done during the training, similarly to
the accuracy and the loss, as it only needs the training and validation set.
It also means that it is possible to visualize and detect the underfitting or
overfitting of the network.

4.2 Detection of overfitting/underfitting

The evolution of ∆d
train,val with respect to the internal state of a model are

illustrated with three areas in Figure 8, showing an example of the evolution
of ∆1

train,val during the training of a network.
On this figure, the underfitting state of the network appears in the area

on the left. It is characterized by a high value of ∆d
train,val due to the fact

that the network has not learned enough from the training data to generalize
well on the validation traces, i.e. Nd

val is still large compared to Nd
train.

Next, in the middle area, the network is in a good trade-off state. It is
able to perform well on both the validation and training sets which leads to
a low value of ∆d

train,val. The network where ∆d
train,val reaches its minimal

value is kept as it is a sign of good generalization although without guar-
anteeing that it is optimal. This network is more robust to changes in the
traces as it has not yet learned non-informative features.

19

Figure 8: Evolution of ∆1
train,val for different number of epochs. The plot of

∆1
train,val is done using a moving average of size 10.

Past the state of good trade-off, the network enters a state of overfitting,
represented in the right part of the figure. This state occurs when the
network sees the training data too many times1 and starts to learn features
for the training traces by heart in order the reduce its errors. The resulting
network is more sensitive to changes in the traces, e.g. a small difference in
a noisy part of the traces can impact the prediction of the network. This
leads to decreasing performance on validation and, on the other hand, better
performance on the training traces. Thus, the value of ∆d

train,val increases
for the rest of the training.

4.3 ∆d
train,val : a suitable metric for early stopping

Early stopping consists in using a metric, e.g. the accuracy or the loss, to
monitor the learning of the network in order to stop it when the metric is
optimal meaning before the network starts to overfit. As mentioned in [6],
early stopping has other effects on the network. It applies regularization
without having to penalize weights and can be used along with other meth-
ods of regularization. In that way, the number of training epochs can be
considered as an hyperparameter that is determined using the appropriate
metric, which is, in this context, ∆d

train,val. All in all, it is recommended to
perform early stopping when such a metric is available. The learning metrics
are computed both on the training set and on a validation set to be able
to properly tell whether or not the network performs well. The comparison
between performance at training and on validation yields important infor-
mation about the network. In this case, ∆d

train,val gives us the information

1which can be of course reduced by the use of regularization of strong biases on the
architecture.

20

needed to identify when to stop the training (see Figure 8). If the metric
does not grow for a given number of epochs then it can be assumed that the
optimal state is reached and the training can be stopped.

The next section contains the experimental results of the application of
batch normalization and regularization to a public architecture CNNbest.
∆1

train,val is used to evaluate the training of the resulting networks.

5 Experimental Results

5.1 Experimental Setup

For all the experiments presented in this section, the metrics are computed
on neural networks during their training phase to evaluate their best ca-
pacity. The networks are trained using the ASCAD2 variable key database,
introduced in [2] to be a common database for researchers. The database
contains a set of traces acquired using variable keys used for the training of
the networks and a set using a fixed key to perform the attacks once the
training is done. The device used to acquire the power consumption mea-
surements is an 8-bit AVR ATMega8515 running an AES implementation
secured against first order side-channel attacks. It means that the values
manipulated during the encryption are masked, i.e. the bytes are xored
with a mask randomly drawn. This is a common countermeasure used to
prevent leakages directly related to the value of the sensitive variable. The
dataset is composed of a training set of 200000 traces using a variable key
and an attack set of 100000 traces using a fixed key both coming from the
same device. The raw traces are composed of 100000 samples and from those
points, 1400 are selected as they contain leakages of the mask and masked
value of the third key byte in the first round. The leakage model associated
with the traces is:

Y (k∗) = Sbox(p[3]⊕ k∗[3]),

where p is the plaintext and k∗ the correct key. The success rates are
computed over 100 attacks to create ∆1

train,val. Each attack is limited to 5000
traces and attacks succeeding past 5000 traces are not considered successful.
This is done to prevent a high redundancy in the traces used for the attacks
on validation while keeping a large training set. The attacks performed on
the variable key dataset are done using the method described in Section
2.3 while the ones against the fixed key dataset are done classically. The
values of ∆1

train,val as displayed in the figures are computed using an moving
average with a window of size three. This is done to smooth out the curve
so it is easier to see and interpret underfitting and overfitting and explains
why the minimum of the curve is not always exactly at the minimal value
of ∆1

train,val. The main advantage of using this database is to compare the

2https://github.com/ANSSI-FR/ASCAD

21

https://github.com/ANSSI-FR/ASCAD

results obtained to the ones presented in the ASCAD reference article [2]
and other articles using this database.

5.1.1 Presentation of the starting network

The starting neural network comes from the ASCAD database article. In
this article, after doing some hyper-parameter optimization, they found a
good configuration. They named this architecture CNNbest. It is composed
of 5 convolutional layers and 2 fully connected layers using ReLU activation
function as presented in 2.2.2, filters of size 11 and the quantity of filters
doubling for each layer from 64 up to 512. There are also average pooling
layers after each convolutional layer. A summary of this network can be
found in Table 4.

5.1.2 Presentation of the datasets

The datasets used in the experiments are subsets of the ASCAD variable key
dataset for training and validation and of the ASCAD fixed key dataset for
the attack set. They are decomposed into three subsets: Desync0, Desync50
and Desync100. Desync0 contains samples that are synchronized, i.e. every
point in the samples corresponds to the same instant in the execution of
the algorithm. Desync50 and Desync100 are composed of desynchronized
samples. This means that when the 1400 points are selected from the raw
traces, a random shift between 0 and 50 or 0 and 100 is applied to the
trace. Figure 9 illustrates the effect of desynchronization. On the figure,
one trace is synchronized, i.e. the shift equals 0, and the other is shifted
by 100 points. As a consequence, power spikes that occurs at the same
time in the algorithm end up far appart. The shift is randomly drawn for
every traces and applied to every points. Desynchronization is a common
countermeasure to side-channel analysis and it was shown in [2] that the
neural networks were still able to learn and perform attacks when using
desynchronized traces. Therefore it is interesting to study how the batch
normalization and regularization will react to this more difficult problem.

5.2 Study of the accuracy of CNNbest

A good way to start the study of the network is to look at its accuracy. It was
previously mentioned that in this application, accuracy can be an indicator
of the network performances on the attack set but only when the accuracy is
high on both the training and validation sets. Figure 10 shows the training
and validation accuracy for networks trained with training sets containing
50000, 100000 and 190000 traces on Desync0. It appears on Figure 10a
that, the more traces in the training set, the faster the training accuracy
will start increasing and the higher it will end up. Meanwhile, Figure 10b
represents the validation accuracy of the same networks. Throughout the

22

Figure 9: Power consumption traces from Desync0 and Desync100.

training, the validation accuracies barely increase above the accuracy of a
random guess and reach their maximum values at epoch 118, 69 (tied with
150) and 70 for the training sets of size 50000, 100000 and 190000 samples
respectively. It still appears that the more traces in the training set, the
higher the validation accuracy will be but it is still close to the values of
the other network. The gap between the accuracy on the training set and
the accuracy on the validation set is quite substantial. It is safe to assume
that the performance of the attacks done on the training set will be good
but it is hard to say anything about the performances on the validation set
and after that on the attack set. Indeed with a validation accuracy about
twice the value of a random prediction, not much can be deduced on the
performance of the attacks. Next, Figures 11 and 12 show the training and
validation accuracies for the datasets Desync50 and Desync100 respectively.
The training accuracy for those dataset start to increase faster than for
Desync0 and end up close to 100% no matter the number of traces in the
training set. It seems that the added difficulty of the datasets pushes the
networks to learn the training examples perfectly. As expected, this also
influences the validation accuracy which is much closer to the accuracy of a
random prediction. With those results, it is safe to assume that the networks
will have good attack performance on the training set but no conclusion can
be reached on the performance they will have on the attack set. The next
section uses the ∆1

train,val metric to solve this uncertainty.

5.3 Study of ∆1
train,val applied to the different datasets

5.3.1 CNNbest

Figure 13 shows the evolution of ∆1
train,val for CNNbest on Desync0 and dif-

ferent sizes of training set. This figure shows that the more traces contained
in the training set, the faster the network will converge towards a good so-

23

(a) Training accuracy (b) Validation accuracy

Figure 10: Evolution of training accuracy and validation accuracy of
CNNbest during training for different sizes of training set on Desync0.

(a) Training accuracy (b) Validation accuracy

Figure 11: Evolution of training accuracy and validation accuracy of
CNNbest during training for different sizes of training set on Desync50.

(a) Training accuracy (b) Validation accuracy

Figure 12: Evolution of training accuracy and validation accuracy of
CNNbest during training for different sizes of training set on Desync100.

24

Figure 13: Evolution of ∆1
train,val of CNNbest for different sizes of training

set on Desync0.

lution and the better the performance will be. Indeed, the minimal value of
∆1

train,val when using 50000 training traces is 2329, reached after 67 epochs,
while the minimals for 100000 and 190000 training traces are 910 and 398,
reached after 49 and 44 epochs. It shows that letting the network train for
75 epochs, as done in [2], is too much as the network starts to overfit. There
is an improvement of both the performance on training and validation. In
that sense, the addition of traces in the training set acts as a regularization
for the network as seen on Figure 13 where ∆1

train,val shows less overfitting
for 100000 and 190000 training traces. Even though the network is able
to reach good performance using 190000 training traces by needing around
500 traces to recover the key byte, as soon as the problem becomes more
complex, the performance heavily drops. Figure 14 displays the evolution of
the rank after using 5000 traces throughout the training on both Desync50
and Desync100. For those networks, ∆1

train,val cannot be computed with less
than 5000 traces as the networks are not able to reach a success rate of 90%
on the validation traces as opposed to their performance on the training
traces where they reach such a success rate after only a few epochs. This
added difficulty leads to more overfitting as the performance on the training
set is stable or even better in the case of 100000 and 190000 traces. This
is most likely due to the fact that the complexity of the network allows it
to learn the training set by heart and thus it is not affected by the desyn-
chronization. Indeed, by focusing on features only characteristic to each
trace, it is able to predict them as if there were no desynchronisation. De-
spite this, the networks are still able to reach good ranks on the validation
data, as seen on Figure 14, especially when using 190000 training traces for
which the networks almost obtain an average rank of 1 at 35 and 37 epochs
for Desync50 and Desync100 respectively. Those results show us that the
addition of traces to the training set can counteract the effect of overfit-
ting but in a marginal way. The next section focuses on the effect of batch
normalization on the performance of the network in similar scenarios.

25

(a) Desync50 (b) Desync100

Figure 14: Evolution of the rank after 5000 validation traces during the
training of the network CNNbest for different sizes of training set.

5.3.2 CNNbn

Figure 15 represents the evolution of ∆1
train,val for the network CNNbn on

Desync0, Desync50 and Desync100 for different number of traces in the
training set. The architecture of this network can be found in Table 5. It has
batch normalization layers between the activation function and the pooling
layer. Compared to CNNbest, there is a significant improvement of the
performance of the network on the validation set. On Figure 15a, ∆1

train,val

converges faster towards a lower value and is more stable throughout the
rest of the training. Indeed, with only 14 epochs, the network manages
to reach similar training and validation performance, as illustrated by the
fact that the value of ∆1

train,val reaches 116. Figure 15b shows the same
metric but on the dataset Desync50. In this more difficult context, the
effect of batch normalization allows the network to obtain a success rate
greater than 90% for the training sets of size 100000 and 190000. The value
of ∆1

train,val of the latter network is minimal at 899 after 19 epochs. On the

other hand, the shape of ∆1
train,val indicates that overfitting occurs faster

than for Desync0 and has a greater effect on the performance on validation.
Finally, the results for the dataset Desync100 are displayed on Figure 15c.
This time, the use of the entire training set is needed to be able to compute
∆1

train,val. The performance are lower than before, reaching 1793 after 19
epochs. The effect of overfitting is more pronounce as it becomes impossible
to compute ∆1

train,val after epoch 125. Despite the more difficult context
of Desync50 and Desync100, Figure 16, which shows the evolution of the
rank using 5000 traces for Desync50 and Desync100, indicates that the rank
is close to one throughout the training for all sizes of training set which
is a sign that the network is still able to generalize well even though it is
not enough to perform successful attacks. In the end, the addition of batch
normalization greatly improves the learning time of the network and reduces
the number of epochs needed to reach its best performances. However,
the overfitting happens faster and has more effect on the performance on

26

(a) Desync0 (b) Desync50

(c) Desync100

Figure 15: Evolution of ∆1
train,val of CNNbn for different sizes of training set

and desynchronization.

validation as can be seen on the evolutions of ∆1
train,val. The addition of more

traces to the training set has a regularization effect, similar to CNNbest,
on the network as it slows down the convergence of Ntrain, and therefore
accelerate the convergence of ∆1

train,val, as well as reducing the number of
epochs needed to obtain good performance on validation. Furthermore, the
batch normalization improves the overall performance of the network for
all amounts of desynchronization even if there is still a large gap between
the training and validation performances for Desync50 and Desync100. The
goal of the regularization is now to reduce this gap and the next section will
show its effect.

5.3.3 CNNbnreg

Figure 17 shows the evolution of ∆1
train,val for the network CNNbnreg when

trained and applied on different training sets with increasing amount of
traces and desynchronisation. This network contains batch normalization
layers as CNNbn and both dropout and L2 regularization. Its architecture
is summarized in Table 6. The parameters of the regularization were deter-
mined experimentally and the best setup was kept. The values considered
for the dropout and L2 on the first two convolutional layers were between
0 and 0.3. As none of the values showed improvement, they were set to
0. The same thing happened with the fully-connected layers therefore no

27

(a) Desync50 (b) Desync100

Figure 16: Evolution of the rank after 5000 validation traces during the
training of the network CNNbn for different sizes of training set.

regularization is applied on them. For the three convolutional layers left,
the values of dropout tested were between 0 and 0.8 and 0 and 0.3 for the
L2 regularization. The best performances were found when applying 0.5, 0.6
and 0.7 of dropout to the third, forth and fifth layers respectively. It means
dropping 50%, 60% and 70% of the neurons in those layers. In addition,
0.2, 0.3 and 0.3 of L2 was applied to the same layers. In Figure 17a, it
appears that the performance of CNNbnreg are about the same as CNNbn

for all sizes of training set on Desync0. The only difference is that CNNbnreg

needs to train for more epochs to reach its best performance after 29 epochs
with a value of ∆1

train,val of 40 when using 190000 training traces. The im-
provement brought by the regularization on top of the batch normalization
starts to appear in Figure 17b in which the network is trained and performs
the attacks on Desync50. In a desynchronized context, the network is still
able to perform attacks in less than 5000 traces for all sizes of training set
which was not the case for CNNbn. Even though the performance of the
network is reduced, it still obtains a value of ∆1

train,val of 52 at epoch 26
when using the full training set. Finally, in Figure 17c, the addition of
more desynchronization in Desync100 only amplifies this effect. On this
dataset, the best network reaches a value of ∆1

train,val of 111 at epoch 25
using 190000 training traces. Once again, the addition of more desynchro-
nization increases the overfitting of the network but, as for Desync50, it is
less pronounced than for CNNbn and mainly present for the largest training
set. However, it remains that as the network continues to train past its op-
timal performance, and with the additional effect of the desynchronization,
∆1

train,val rapidly increases. It is therefore important to know when to stop
otherwise the performance on validation might rapidly decrease. Another
effect of the regularization, in desynchronized context, is to maintain similar
performance on the validation even when the desynchronization increases.
This means that the regularization allows the network to extract more in-
formation from the training samples and therefore to better generalize. It is

28

(a) Desync0 (b) Desync50

(c) Desync100

Figure 17: Evolution of ∆1
train,val for CNNbnreg during training for different

desynchronization levels.

harder to see this phenomenon on Figure 18, which shows the evolution of
the rank after 5000 traces for CNNbnreg on Desync50 and Desync100, hence
the need to focus on ∆1

train,val.
A summary of the results of the networks trained using 190000 traces can

be found in Table 2. It also includes the performance, in number of traces
needed to reach a success rate of 90%, of the networks on the attack set de-
noted N∗a . As mentioned in 2.3, the value of N∗a is close to the value of N1

val

for most networks. Therefore, N1
val is a good indicator of the performance of

the networks on the attack set. Using the metric ∆1
train,val to perform early

stopping, the performance of CNNbest were improved by 42.0% on Desync0
and the number of epochs was reduced by 41.3%. However, the early stop-
ping did not help on Desync50 and Desync100 as the network was never able
to reach a success rate of 90% in less than 5000 traces. On the other hand,
the application of batch normalization greatly improved the performance of
the network by reducing the number of traces needed to obtain 90% of suc-
cessful attacks on Desync0 by another 46.5%. In addition, the learning was
even faster as the best trade-off was obtained after only 14 epochs, which is
a gain of 68.2% in number of epochs. This improvement also led to the pos-
sibility of successfully attacking the sets Desync50 and Desync100. Finally,
the use of regularization led to a reduction of the number of traces needed
to attack Desync50 and Desync100 by respectively 70.6% and 81.7% at the

29

(a) Desync50 (b) Desync100

Figure 18: Evolution of the rank after 5000 validation traces during the
training of the network CNNbnreg for different sizes of training set.

cost of increasing the number of training epochs.
To conclude, the empirical results presented here confirm the importance

of applying the batch normalization technique as well as to properly regular-
ize the network via, for example, dropout and weight decay. The application
of batch normalization allows the network to learn faster as well as to im-
prove its performance on the validation set. This is not enough, though,
to obtain good performance in the more complex context of desynchronized
traces. In this context, the faster learning also leads to more overfitting.
This is where the effect of regularization appears. Indeed, CNNbnreg shows
more resilience against desynchronization even if the performance decreases
a little. A summary of the best results for the different networks can be
found in Table 2. Finally, the desynchronized context illustrates the need to
know when to stop the training as the networks trained on desynchronized
traces overfit faster than synchronized ones. If not controlled properly, this
can lead to a significant decrease in performances during the attack phase.

5.4 Comparison with other methods used in state-of-the-art

Table 3 compares the attack success, in terms of minimum number of traces
required to perform the attack, between state-of-the-art networks and the
proposed work. Recall that, in our experimental analysis, we have decided
to focus on the ASCAD variable key dataset which is known to be more
difficult to attack than the fixed key one according to Wu et al. [27]. Before
us, only two articles [27, 17] published results on this variable key dataset
and our network is the best performing using only batch normalization and
carefully tuned regularization techniques. We can also note that these results
are also significantly better than the ones from CNNbest when applied to
the variable key dataset, as we have seen in Section 5.3.1. This shows the
importance and the benefit of the techniques studied in this paper. For the
sake of completeness, we also discuss the scope of the results obtained on
the fixed key version of the dataset. While the results of the two datasets

30

Table 2: Summary of the results for CNNbest, CNNbn and CNNbnreg in terms
of ∆1

train,val, N
1
val, N

∗
a and number of epochs for a training set size of 190000

traces.

Networks Reference
Number

of
epochs

Desync ∆1
train,val N1

val N∗
a

Improvement
in number
of traces

and epochs
compared

to CNNbest

Improvement
in number
of traces

and epochs
compared

to [2]

Improvement
in number
of traces

and epochs
compared
to CNNbn

CNNbest

[2] 75
0 972 935 1275 - - -
50 - - - - - -
100 - - - - - -

[this article] 44
0 398 542 589 -

N1
val: -42%
N∗

a : -53%
Epoch: -41%

-

50 - - - - - -
100 - - - - - -

CNNbn [this article]

14 0 116 290 228
N1

val: -46%
N∗

a : -61%
Epoch: -68%

N1
val: -69%
N∗

a : -82%
Epoch: -81%

-

19 50 899 927 964 -
N1

val: -
Epoch: -74%

-

19 100 1793 1805 3333 -
N1

val: -
Epoch: -74%

-

CNNbnreg [this article]

29 0 40 244 150
N1

val: -55%
N∗

a : -74%
Epoch: -34%

N1
val: -74%
N∗

a : -88%
Epoch: -61%

N1
val: -16%
N∗

a : -34%
Epoch: +107%

26 50 52 273 301 -
N1

val: -
Epoch: -65%

N1
val: -70%
N∗

a : -68%
Epoch: +36%

25 100 111 330 347 -
N1

val: -
Epoch: -66%

N1
val: -81%
N∗

a : -89%
Epoch: +31%

can obviously not be compared directly, we can nevertheless extract some
common lines. First of all, lots of the state-of-the-art methods have been
evaluated on this fixed key dataset and, among the best results obtained for
the different settings, we can cite the ones by Wu et al. [27], Zaid et al.
[28], Won et al. [25] and Wouters et al. [26]. As a comparison, these results
are significantly better than the ones obtained with the original architecture
proposed by Benadjila et al. in [2]. This improvement behavior is in the
same order of magnitude as the one we obtained with our techniques for
the variable key dataset. Since some of these previous methods have been
specifically tuned for the fixed key dataset, our behavior on the variable key
one indicated that our approach tends to achieve comparable results with
other state of the art approaches.

Other works [4, 9] conducted experiments using data augmentation. It
consists in artificially increasing the training set by adding more difficult
examples obtained through applying transformations to the original ones.
In [4], Cagli et al. obtain a network that is more efficient and more robust
to some shifting deformation and add-remove deformation. The first one
corresponds to a desynchronization effect similar to the one applied in the
Desync50 and Desync100 datasets and the second one to a clock jitter effect
that modifies the signal by adding and removing random time samples. Our
experiments show a reduction of the impact of desynchronization with the

31

Table 3: Summary of the results of state-of-the-art networks on ASCAD
datasets expressed in number of attack traces needed to perform a successful
attack.

Reference
Dataset ASCAD variable key ASCAD fixed key

D0 D50 D100 D0 D50 D100

Wu et al. [27] 1000 - - 80 - -

Perin et al. [17] ∼ 180 - - - - -

Won et al. [25] - - - - - 190

Wouters et al. [26] - - - - ∼ 200 ∼ 300

Zaid et al. [28] - - - 191 244 270

Robissout et al. [19] - - - 802 - -

Kim et al. [9] - - - >500 - -

Benadjila et al. [2] 1275 >5000 >5000 1151 >5000 >5000

[this article] 150 301 347 - - -

application of regularization. In addition, the two methods apply regular-
ization at different levels. The data augmentation regularizes the network
by modifying the training set while the dropout and weight decay impacts
the network directly. Therefore these techniques are actually complemen-
tary and their combination could lead to even better results. Another kind
of data augmentation is explored in [9] in which Kim et al. add white noise
directly to the traces in the training set. The goal is as previously to improve
the training of the network to reduce the number of traces needed in the
attacks. The results showed in [9] on the ASCAD fixed key dataset indicate
better performance compared to the base CNNbest network. However, they
are outperformed by the networks of Zaid et al. and Wu et al. but similarly
to the data augmentation in [4], it can be combined to other regularization
techniques that act at the network level.

In conclusion, the method to use to improve the performances of neural
network for side-channel analysis depends on different constrains presented
to the attacker, such as time and computational power for example. Having
a common database allows for a good comparison between the different
architectures and improvement techniques. It also allows us to emphasize
the importance of proper regularization of neural network through the use
of early stopping and techniques like dropout and weight decay. Indeed,
using them, we are able to reach state-of-the-art level of performances. It
also opens the question of the combination of those different techniques as
we see that they can be complementary.

32

6 Conclusion

The study of deep neural networks applied to side-channel analysis has seen
great interest in the past years. A lot of work is done trying to understand
the learning process of those networks in order to improve their perfor-
mances. There are still some problems that need to be addressed such as
finding a suitable metric to evaluate the networks and prevent the overfit-
ting phenomenon. This article tries to answer the first question by using
a side-channel dedicated metric to optimize the training and perform early
stopping on CNNbest, an open architecture used by the community. It leads
to a gain in performance of 42% and a reduction of the number of epochs
of 41% but also exposes the overfitting of the network. The application of
batch normalization as well as dropout and weight decay, commonly found
in the machine learning community, aims at reducing this effect. It allows
for a significant reduction of the overfitting and thus an improvement of
the performances. In a context with no desynchronization, the number of
traces needed to attack the key is reduced by 55% and the epochs by 34%.
However, the effect of those techniques is more significant in desynchronized
contexts. Indeed, where before the attacks were not successful, the proposed
network CNNbnreg is able to attack desynchronized traces using less traces
than CNNbest on synchronized ones. This study shows the need to perform
early stopping and to properly regularize the neural networks when per-
forming side-channel analysis to prevent overfitting and, as a consequence,
perform attacks using less traces.

References

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM
side—channel(s). In B. S. Kaliski, ç. K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, pages
29–45, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[2] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas. Deep
learning for side-channel analysis and introduction to ascad database.
Journal of Cryptographic Engineering, 10:163–188, 11 2019.

[3] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for
large-scale machine learning. SIAM Review, 60:223–311, 2018.

[4] E. Cagli, C. Dumas, and E. Prouff. Convolutional neural networks with
data augmentation against jitter-based countermeasures. In W. Fis-
cher and N. Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 45–68, Cham, 2017. Springer International
Publishing.

33

[5] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In
Revised Papers from the 4th International Workshop on Cryptographic
Hardware and Embedded Systems, CHES ’02, page 13–28, Berlin, Hei-
delberg, 2002. Springer-Verlag.

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[7] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. 2012.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In F. Bach and
D. Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[9] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic. Make some
noise. unleashing the power of convolutional neural networks for profiled
side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(3):148–179, May 2019.

[10] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
M. Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[11] A. Krogh and J. A. Hertz. A simple weight decay can improve gener-
alization. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors,
Advances in Neural Information Processing Systems 4, pages 950–957.
Morgan-Kaufmann, 1992.

[12] A. Labach, H. Salehinejad, and S. Valaee. Survey of dropout methods
for deep neural networks. ArXiv, abs/1904.13310, 2019.

[13] H. Li, M. Krček, and G. Perin. A comparison of weight initializers in
deep learning-based side-channel analysis. Cryptology ePrint Archive,
Report 2020/904, 2020. https://eprint.iacr.org/2020/904.

[14] H. Maghrebi, T. Portigliatti, and E. Prouff. Breaking cryptographic
implementations using deep learning techniques. In C. Carlet, M. A.
Hasan, and V. Saraswat, editors, Security, Privacy, and Applied
Cryptography Engineering, pages 3–26, Cham, 2016. Springer Inter-
national Publishing.

[15] L. Masure, C. Dumas, and E. Prouff. A comprehensive study of deep
learning for side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(1):348–375, Nov. 2019.

34

http://www.deeplearningbook.org
https://eprint.iacr.org/2020/904

[16] S. Park and N. Kwak. Analysis on the dropout effect in convolutional
neural networks. In S.-H. Lai, V. Lepetit, K. Nishino, and Y. Sato,
editors, Computer Vision – ACCV 2016, pages 189–204, Cham, 2017.
Springer International Publishing.

[17] G. Perin, I. Buhan, and S. Picek. Learning when to stop: a mutual in-
formation approach to fight overfitting in profiled side-channel analysis.
IACR Cryptol. ePrint Arch., 2020:58, 2020.

[18] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni. The curse of
class imbalance and conflicting metrics with machine learning for side-
channel evaluations. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(1):209–237, Nov. 2018.

[19] D. Robissout, G. Zaid, B. Colombier, L. Bossuet, and A. Habrard. On-
line performance evaluation of deep learning networks for side-channel
analysis. In Constructive Side-Channel Analysis and Secure Design
- 11th International Workshop, COSADE 2020, October 5-7, 2020,
Proceedings, 2020.

[20] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch nor-
malization help optimization? In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 2483–2493. Curran
Associates, Inc., 2018.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfit-
ting. The journal of machine learning research, 15(1):1929–1958, 2014.

[22] F.-X. Standaert, T. G. Malkin, and M. Yung. A unified framework for
the analysis of side-channel key recovery attacks. In A. Joux, editor,
Advances in Cryptology - EUROCRYPT 2009, pages 443–461, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[23] D. van der Valk and S. Picek. Bias-variance decomposition in machine
learning-based side-channel analysis. Cryptology ePrint Archive, Re-
port 2019/570, 2019. https://eprint.iacr.org/2019/570.

[24] L. Weissbart, S. Picek, and L. Batina. On the performance of multilayer
perceptron in profiling side-channel analysis. 2019. https://eprint.

iacr.org/2019/1476.

[25] Y.-S. Won, D. Jap, and S. Bhasin. Push for more: On comparison of
data augmentation and smote with optimised deep learning architecture
for side-channel. Cryptology ePrint Archive, Report 2020/655, 2020.
https://eprint.iacr.org/2020/655.

35

https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/1476
https://eprint.iacr.org/2019/1476
https://eprint.iacr.org/2020/655

[26] L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel. Revisiting a
methodology for efficient cnn architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):147–168, Jun. 2020.

[27] L. Wu, G. Perin, and S. Picek. I choose you: Automated hyperparam-
eter tuning for deep learning-based side-channel analysis. Cryptology
ePrint Archive, Report 2020/1293, 2020. https://eprint.iacr.org/

2020/1293.

[28] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli. Methodology for
efficient cnn architectures in profiling attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov.
2019.

[29] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli. Understanding
methodology for efficient cnn architectures in profiling attacks. Cryp-
tology ePrint Archive, Report 2020/757, 2020. https://eprint.iacr.
org/2020/757.

[30] J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu. A novel evaluation
metric for deep learning-based side channel analysis and its extended
application to imbalanced data. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(3):73–96, Jun. 2020.

36

https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/757
https://eprint.iacr.org/2020/757

A Networks

Table 4: Network hyperparameters for CNNbest [2].

Layer type Hyperparameters

Trace input 1400

Convolution 1D

Filter = 64,
Filter length = 11,
Padding = Same,

Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D

Filter = 128,
Filter length = 11,
Padding = Same,

Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D

Filter = 256,
Filter length = 11,
Padding = Same,

Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU

Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU

Average Pooling Pool length = 2

Flatten -

Fully-connected Neurons = 4096

Fully-connected Neurons = 4096

Output Softmax: 256 classes

37

Table 5: Network hyperparameters for CNNbn.

Layer type Hyperparameters

Trace input 1400

Convolution 1D

Filter = 64,
Filter length = 11,
Padding = Same,

Activation = ReLU

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 128,
Filter length = 11,
Padding = Same,

Activation = ReLU

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 256,
Filter length = 11,
Padding = Same,

Activation = ReLU

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU

Batch Normalization -

Average Pooling Pool length = 2

Flatten -

Fully-connected Neurons = 4096

Fully-connected Neurons = 4096

Output Softmax: 256 classes

38

Table 6: Network hyperparameters for CNNbnreg.

Layer type Hyperparameters

Trace input 1400

Convolution 1D

Filter = 64,
Filter length = 11,
Padding = Same,

Activation = ReLU

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 128,
Filter length = 11,
Padding = Same,

Activation = ReLU

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 256,
Filter length = 11,
Padding = Same,

Activation = ReLU,
L2 = 0.2,

Dropout = 0.5

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU,
L2 = 0.3,

Dropout = 0.6

Batch Normalization -

Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU,
L2 = 0.3,

Dropout = 0.7

Batch Normalization -

Average Pooling Pool length = 2

Flatten -

Fully-connected Neurons = 4096

Fully-connected Neurons = 4096

Output Softmax: 256 classes

39

	Introduction
	Preliminaries
	Profiled Side-Channel analysis
	Deep Neural networks
	Description of a neural network
	Convolutional neural network
	Description of the training phase
	Application to Side-Channel Analysis

	Performing attacks against random keys
	Related work

	Batch Normalization and Regularization of Deep Learning Networks
	Batch Normalization
	Normalization layer
	Smoothing of the loss landscape

	L2-Regularization
	Dropout

	dtrain,val: an evaluation metric for side-channel analysis
	dtrain,val: internal state detection
	Detection of overfitting/underfitting
	dtrain,val : a suitable metric for early stopping

	Experimental Results
	Experimental Setup
	Presentation of the starting network
	Presentation of the datasets

	Study of the accuracy of CNNbest
	Study of 1train,val applied to the different datasets
	CNNbest
	CNNbn
	CNNbnreg

	Comparison with other methods used in state-of-the-art

	Conclusion
	Networks

