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Abstract

Estimating the amount of electricity that can be produced by rooftop photovoltaic
systems is a time-consuming process that requires on-site measurements, a dif-
ficult task to achieve on a large scale. In this paper, we present an approach to
estimate the solar potential of rooftops based on their location and architectural
characteristics, as well as the amount of solar radiation they receive annually. Our
technique uses computer vision to achieve semantic segmentation of roof sections
and roof objects on the one hand, and a machine learning model based on struc-
tured building features to predict roof pitch on the other hand. We then com-
pute the azimuth and maximum number of solar panels that can be installed on a
rooftop with geometric approaches. Finally, we compute precise shading masks
and combine them with solar irradiation data that enables us to estimate the yearly
solar potential of a rooftop.

1 Introduction

The 21st century is characterized by an ever-increasing energy consumption and greenhouse gas
emissions that are contributing to climate change in an unprecedented way. Fossil fuels are still our
main source of electricity and heat generation, accounting for 42% of the greenhouse gas emissions
in 2016 [1]. Energy efficiency and development of renewable energies are presented as the two main
approaches to lower these emissions [3] and photovoltaic solar energy is one of the fastest-growing
renewable energy sources because of low maintenance and operation costs [5]. Solar panels can also
produce energy anywhere there is enough sunlight without direct impact on the environment, giving
the opportunity to produce energy in dense environments such as cities or industrial zones.

In order to compute the solar potential of a building rooftop, we need two types of information: how
many solar modules can be fitted on a roof section and how much energy each of this module could
produce within a year, accounting for the local irradiation and shading. The present work proposes
a methodology to answer these questions, as illustrated in Figure 1.
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Figure 1: Workflow for a given building from the initial aerial image to its rooftop solar potential.

First, an image segmentation algorithm applied to aerial imagery is used to obtain each roof sec-
tion 2D geometry and any obstructing object it may contain (Section 2.1). The roof 3D geometry
(pitch/azimuth) is obtained through a combination of geometric methods and a Random Forest al-
gorithm (Section 2.2). Then, the maximum number of modules fitting on a section is computed
using a geometric packing algorithm (Appendix). A shading mask is computed from the shadows
casted by surrounding buildings and relief and the specific photovoltaic power is computed from
meteorological data, module orientation and shading effects (Section 2.3). Finally, the total amount
of energy produced by a given roof section in a year can be computed by multiplying the number of
modules Nmodules, the module’s nominal power Pmax and its specific photovoltaic power PVout:

solar potential (kWh/year) = Nmodules ∗ Pmax ∗ PVout

2 Methodology

2.1 Roof and object segmentation

The first step in our pipeline is to subdivide roof sections as well as the equipments present on it.
This will help us understand how much space is available on a roof for it to be equipped with solar
panels. We split this task into two semantic segmentation tasks, consisting in classifying each pixel
of an image into one of multiple classes. Here, we developed one model that segments the images
into background, roof sections and roof ridges as depicted in Figure 2, and one that subdivides the
images into background and a set of chosen roof objects. Roof sections are eventually enhanced by
geometrical regularization (see Appendix).

Figure 2: Two examples of aerial image and roof sections semantic segmentation pairs. Sections are
depicted in blue, ridges in yellow.

Both segmentation models consist in a U-Net [11] architecture using a ResNet-34 [12] feature ex-
tractor as backbone. The main dataset used in this work is the set of aerial images obtained from
the IGN (French National Institute of Geographic and Forest Information) dataset [13]. Building
footprints were also obtained from the same source [14]. Roof geometries labels are obtained from
the 3D city representations of five different French cities. No roof object dataset was found and
we relied instead on a set of 423 manually tagged images including object type (smoke vent, roof
window, etc.) and geometry.
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2.2 Pitch and azimuth prediction

Transforming the 2D prediction of a roof to its 3D representation requires estimating its pitch
and azimuth. The pitch represents the roof inclination ranging from 0◦ (flat roof) to 90◦ (a
theoretical vertical roof). We predict a roof’s mean pitch as a linear function of the latitude
and use a machine learning method to predict the normalized pitch, defined as pitchnorm =
(pitch−pitchmean)/pitchmean. Training data comes from the same five French cities as in Section
2.1 and a Random Forest with 100 trees and a max depth of 15 was used for the normalized pitch
using features such as roof material, roof type, building height and roof shape.

The azimuth corresponds to the roof’s orientation and is computed using a purely geometric algo-
rithm. First, we compute θbb, the orientation of the roof’s bounding box modulo 90◦. We then make
the hypothesis that the roof azimuth has the form θbb+∆θ, where ∆θ can have one of the following
4 values : 0◦, 90◦, 180◦ or 270◦. This gives us a 4 classes classification problem where we want to
predict ∆θ. Finally, we use nearby roof sections as an indicator of the correct orientation, under the
hypothesis that roof sections tend to be oriented away from nearby roofs. This can be observed for
the hipped roof in Figure 1 where each section has a different orientation, facing away from each
other.

2.3 Specific photovoltaic power and shading mask

Lastly, the specific photovoltaic power output PVout is calculated as the average of the yearly pro-
duction normalized to 1 kWp of installed capacity. Multi-year hourly irradiance estimations and
meteorological variables are used as input on a latitude/longitude spatial grid. Analytical equations
from the pvlib python library [33] are then used to transpose the direct and diffuse irradiance compo-
nents onto the plane of the rooftop and to estimate the PV panel temperature. These two variables are
then used to compute the PVDC power using the PVWatts model [34]. The AC power is computed
by using considered inverter specifications and system losses are applied.

Since the performance of photovoltaic installations is deeply impacted by complete or partial shad-
ing of the photovoltaic cells [20] [21] [22], it is important to take shading into account when comput-
ing the roof’s solar potential. Several approaches to factor shading and assess the solar potential of
buildings have already been described [23] [24]. We herein compute a shading mask for the whole
roof based on the Sky-View factor methodology [25] and consider two different scales in order to
account for shading from neighboring buildings and the surrounding topography. More details on
this method are given in Appendix.

Finally, PVout is computed as the annual integral of the obtained AC power hourly values. Before
this integration, the hourly power contribution from direct and diffuse solar irradiance are given
separately so that shading can be applied to these two components.

3 Results

In this section we describe the pipeline’s results for each individual part. As we could not find an
open dataset for our scope (French territory) that would allow us to validate the entire workflow, we
adopted the strategy of validating separately the algorithms used in each step, as described below.

The roof segmentation reached a pixel-wise accuracy of 77% on roof section segmentation (exclud-
ing the background), and 30% on roof objects. The large gap in performance is explained by the
difference in training data. As opposed to the small set of manually labeled roof objects, many accu-
rate roof sections were extracted from the cities’ 3D models. This led to large amounts of accurate
roof sections labels as well as estimations for pitch and azimuth. Despite being identified by the
model, roof objects are poorly segmented and the confusion between classes is high. The detection
and segmentation of roof objects is a task we are working on actively, labeling more data with a
broader range of objects types.
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Task Model Score
Roof sections segmentation ResNet-34-based UNet Pixel accuracy = 77%
Roof objects segmentation ResNet-34-based UNet Pixel accuracy = 30%

Azimuth Geometric Accuracy = 79%

Mean pitch as a function of latitude Linear Regression R2 = 0.93, MAE = 3.9◦

Normalized pitch Random Forest R2 = 0.37, MAE = 5.5◦

Table 1: Our methodology scores for algorithms where a validation set is available. Two different
tasks are used to predict the pitch.

The score for the roof section pitch linear regression task was obtained by fitting the mean values
of four cities and predicting the fifth one. The final score is obtained by averaging all the five
combinations and presents a rather high R2 value of 0.93. This indicates a good correlation but the
small amount of latitude values implies that we should be careful when extrapolating these results.
The normalized pitch model has an MAE of 0.2 corresponding to an absolute pitch MAE of 5.5◦

(averaging across the five cities). The azimuth model reached good results with an accuracy of 79%.
We can put into perspective the impacts of pitch and azimuth values on the final solar potential of a
rooftop. Using a rooftop located in Montpellier (43◦36′, 03◦52′), South-facing and with an optimal
pitch (37◦) as a reference, we can compute the impacts of pitch/azimuth variation using [35]. We
see that a 10◦ pitch variation reduces the solar potential by 1% whereas using an East-facing rooftop
reduces it by 25%. Figure 3a illustrates this variation.

(a) (b)

Figure 3: (a) Neighborhood view of the resulting solar potential. (b) Aggregated view (sum) of the
solar potential over French Hérault department.

No open-access validation dataset was found for the shading impact on the solar potential. We
adopted instead a qualitative validation comparing urban areas with different building densities and
regions with different topographic surroundings (data not shown). The same qualitative approach
was adopted for the resulting solar potential as we also lack large-scale validation data.

Eventually, we estimated the solar potential of 3.5 millions roof sections accounting for more than
1.1 million buildings. Figure 3b. illustrates the solar potential over French Hérault department.

4 Conclusion

In this paper, we described a complete functional pipeline used to predict the yearly solar potential
of rooftops using aerial imagery, building features and open data labels. The main source of ground
truth comes from the open-access building 3D geometries of five French cities. The methodology
entirely relies on structured data and aerial imagery that is available at scale, which will ultimately
enable us to predict France’s solar potential on every roof.

The main limitation of the methodology described in this paper is the lack of validation datasets for
the entire pipeline and, in particular, for the shading algorithm. We adopted the strategy of validating
separately the algorithms used in each step, as described in Section 3. The methodology developed
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here is intended for a commercial application and, until now, our main validation came from our
clients in the energy sector that compare our results to their internal data.

The two main steps of our methodology, roof section segmentation and azimuth prediction, show
very good results and are well-adapted to our present application. Roof object segmentation and
pitch prediction however, present rather poor results. The first one is caused by a lack of high-quality
labeled data. On the other hand, the poor results of the pitch prediction step are mainly caused by
the fact that the pitch cannot be easily estimated from aerial imagery and has little relationship with
building features. As discussed in Section 3, this limitation is compensated by the low impact the
pitch has on the final solar potential compared to other features such as the azimuth and the roof
section surface.

We hope that our methodology will contribute to a better understanding of the energy potential
achievable with the massive installation of solar panels on residential and commercial buildings in
order to accelerate the sustainable energy transition.

Appendix

Existing commercial solutions

Some commercial solutions that estimate rooftop solar potential data for a given building already
exist. The North American technology company Google, through its project Sunroof, proposes a
cadastre in a large part of the United States territory [6] but also in main French cities in collaboration
with the French energy group ENGIE [7]. The French start-up In Sun We Trust, in collaboration with
the Swedish energy company Otovo, covers the entire French territory [8]. Others French companies
also have a cadastre for a smaller scope, such as Rhino Solar [9] in the Lyon region and Cythelia
Energy [10] for on-demand scopes. Each one of these solutions has different levels of complexity
on its methodology and results. However, their data and methods cannot be directly accessed and
we cannot compare them to the methodology we showcase here.

Roof section regularization

Roof and objects segmentation models output pixel-wise predictions, which are then vectorized and
stored into our database. Roof sections polygons undergo further post-processing and are regularized
in order to fit the buildings’ footprints. We compute the oriented bounding box of each roof section
according to its supporting building’s facade, and cut overlapping boxes along their intersection axis.
This process is shown in Figure 4.

Figure 4: Illustration of the roof vectorization and regularization process. From left to right: raw
aerial image, U-Net segmentation, oriented bounding boxes and fitted predictions using geometric
approaches.

Arrangement of solar panels

Given the roof shape, the presence of objects and the dimensions of the chosen solar module, we
are able to compute the maximum number of modules per roof section. We developed a greedy
geometric algorithm that tries to fit the maximum number of panels per row before dropping those
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that intersect the roof’s ridges, boundaries or eventual obstructing object. The minimum distance
between each panel and the roof borders is also taken into account, as shown in Figure 5.

Figure 5: Illustration of the greedy packing algorithm. (1) depicts a roof section containing an object.
(2) is the panel packing within the eroded shape after rotating the roof section. (3) shows the best
configuration taking into account the margins. (4) depicts the result of the algorithm.

Shading

The first part of the shading mask computation is performed based on the buildings’ geometry and
height by dividing the azimuth range in regular sections, ray tracing and marking the intersections
with the buildings’ footprint, as developed in [26] and illustrated in Figure 6b. To speed up computa-
tions, we can choose a smaller angular resolution and apply a distance and height-based pre-filtering
of the buildings we consider. The second part uses a Digital Elevation Model from the IGN [27] and
projected shadows computations in QGIS [28], [29] to produce a similar shading mask for each cell
of the input raster. This method is similar to the ones developed from image processing in [30], [31]
and [32] for casting shadows.

By combining shading masks as described above, we are ultimately able to model the presence
of shading on the rooftop and consequently adapt the irradiation values used to compute the solar
potential, as shown in Figure 6c.

(a) (b) (c)

Figure 6: (a) Sky-View-Factor as the area above the obstacles Ω over the total area of the semi-
sphere; (b) Rays intersecting the surrounding buildings footprints in each of the sampled azimuth
directions, pre-filtered buildings are outlined in orange; (c) Shading masks combined and yearly
direct normal irradiance map.

Specific photovoltaic power

The steps used to compute the specific photovoltaic power, as described in Section 2.3, is shown in
Figure 7
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Figure 7: Step-by-step methodology to compute PVout.
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