
HAL Id: hal-03438477
https://hal.science/hal-03438477

Submitted on 21 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Error Structure Aware Parallel BP-RNN Decoders for
Short LDPC Codes

Joachim Rosseel, Valérian Mannoni, Valentin Savin, Inbar Fijalkow

To cite this version:
Joachim Rosseel, Valérian Mannoni, Valentin Savin, Inbar Fijalkow. Error Structure Aware Parallel
BP-RNN Decoders for Short LDPC Codes. International Symposium on Topics in Coding (ISTC),
Aug 2021, Montréal, Canada. �10.1109/ISTC49272.2021.9594200�. �hal-03438477�

https://hal.science/hal-03438477
https://hal.archives-ouvertes.fr


Error Structure Aware Parallel BP-RNN Decoders
for Short LDPC Codes

Joachim Rosseel∗†, Valérian Mannoni∗, Valentin Savin∗, Inbar Fijalkow†
∗CEA-Leti, Université Grenoble Alpes, F-38000 Grenoble, France
{Joachim.Rosseel, Valerian.Mannoni, Valentin.Savin}@cea.fr
†ETIS, CY Cergy Paris Univ., ENSEA, CNRS F-95000, France

{Joachim.Rosseel, Inbar.Fijalkow}@ensea.fr

Abstract—This article deals with the decoding of short block
length Low Density Parity Check (LDPC) codes. It has already
been demonstrated that Belief Propagation (BP) can be adjusted
to the short coding length, thanks to its modeling by a Recurrent
Neural Network (BP-RNN). To strengthen this adaptation, we
introduce a new training method for the BP-RNN. Its aim is
to specialize the BP-RNN on error events sharing the same
structural properties. This approach is then associated with a
new decoder composed of several parallel specialized BP-RNN
decoders, each trained on correcting a different type of error
events. Our results show that the proposed specialized BP-RNNs
working in parallel effectively enhance the decoding capacity for
short block length LDPC codes.

I. INTRODUCTION

Short-packet machine-to-machine communications, central
to the emerging Internet of Things (IoT) technology, have
revitalized interest in research and practice of efficient error
correcting codes, for messages ranging from a few tens up to
a few hundred bits. While important progress has been made
over the last years in understanding the limits of coding at
short block lengths [1], the design of efficient short codes and
decoding algorithms still raises many challenges [2].

Low Density Parity Check (LDPC) codes [3] are a class of
error correcting codes defined by sparse bipartite graphs [4].
They are well-known for their excellent error correction
performance at long block lengths, achieving near Shannon
channel capacity performance under Belief Propagation (BP)
decoding, in the asymptotic limit of the code length [5]. For
codes defined by cycle-free bipartite graphs, BP decoding
outputs the maximum a posteriori estimates of the coded
bits [6]. Although bipartite graphs associated with practical
codes contain cycles, BP decoding may still take effective
advantage of sparse, long enough graphs, devoid of short
cycles. However, for short codes, short cycles may not be
avoidable, thus significantly degrading the BP performance.
This is even more pronounced for High Density Parity Check
(HDPC) codes, defined by higher density bipartite graphs [7].

To reduce the impact of short cycles, a weighted BP
decoding has been introduced in [8], where the weights are
optimized using a Neural Network (NN). The topology of the
NN mimics the BP decoding process, with unwrapped decod-
ing iterations. The approach may use either a feedforward (FF)

This work was partially supported by the ECSEL Joint Undertaking (JU)
programme, under grant number N°826276 (CPS4EU project).

or a Recurrent NN (RNN). The corresponding decoders are
termed as BP-FF and BP-RNN. It has been shown in [8] that
the BP-RNN is able to outperform the usual BP decoder for
short Bose-Chaudhuri-Hocquenghem (BCH) codes, belonging
to the class of HDPC codes. Subsequently, several variants of
NN-based BP decoding have been proposed in the literature.
[9] proposed the design of new decoding rules for finite-
alphabet iterative decoders, based on a quantized NN model.
[10] developed a pruning method of irrelevant check nodes
in a neural BP model, aimed at jointly optimizing the code
construction and the decoding. In [11], a neural BP decoding
approach was proposed for cyclic redundancy check (CRC)-
assisted polar codes.

In this paper, we focus on BP-RNN decoding of short block
length LDPC codes. To improve the decoding performance,
our approach aims at specializing BP-RNN decoders to diffi-
cult error events. To do so, we first propose a classification of
the error events, according to the structure of the induced sub-
graph. The classification is driven by the impact of the induced
sub-graph on the BP decoding performance. Then, a parallel
construction, comprising several BP-RNN decoders running in
parallel, is described, where each BP-RNN is specialized to
a specific error class. Finally, we discuss the training of the
parallel BP-RNN decoders, and provide a method to reduce
their number, without jeopardizing the decoding performance,
by introducing a similarity rate metric.

The paper is organized as follow. Section II introduces
the notations and recalls the BP-RNN decoding algorithm.
Section III defines the classification of the error events, the
parallel construction of BP-RNN decoders, the training of
the BP-RNN decoders, and the similarity metric used to
reduce their number. Finally, Section IV presents the numerical
results, and Section V concludes the paper.

II. NEURAL BP DECODING

We consider an LDPC code defined by a Tanner (bipartite)
graph with N variable-nodes and M check-nodes, denoted
respectively by n ∈ {1, . . . , N} and m ∈ {1, . . . ,M}. We
further denote by N (m) the set of variable-nodes connected
to a check-node m, and by M(n) the set of check-nodes
connected to a variable-node n.

BP decoding consists of an iterative exchange of messages
along the edges of the Tanner graph, where each message



provides an estimation of the incident variable-node. BP-RNN
and BP-FF decoding algorithms are weighted variants of the
BP decoding, where exchanged messages are multiplied by
weights learned through an either RNN or FF-NN approach.
The underlying NN contains three types of neural layers, each
one corresponding to a step of the BP algorithm. The check-
pass layer and the data-pass layer carry out the computation
of messages outgoing from check-nodes and variable-nodes,
respectively. Each one of them contains a number of neurons
equal to the number of edges of the Tanner graph. In addition,
the a posteriori Log Likelihood Ratio (LLR) layer consists of
N neurons, computing the a posteriori LLR values of the N
variable-nodes. The three layers of the NN are connected such
that a check pass layer, followed by a data pass layer and an
a posteriori LLR layer model one iteration of the BP decoding.
In particular, it is worth stressing out the differences between
the edges of the Tanner graph (corresponding to neurons in the
check-pass and data-pass layers), and the edges of the NN.

The formulas below detail the calculation of messages
within each layer. We denote by βm→n and αn→m the
messages computed by the check-pass and data-pass layers
(where (m,n) is an edge of the Tanner graph), and by L̃n

the messages computed by the a posteriori LLR layer. The
observed (channel) LLR values are denoted by Lch,n, and are
used to initialize αn→m messages prior to the first iteration.

βm→n = 2 tanh−1

 ∏
n′∈N (m)\n

tanh
(αn′→m

2

) (1)

αn→m = Lch,n +
∑

m′∈M(n)\m

wm′→n→mβm′→n (2)

L̃n = Lch,n +
∑

m∈M(n)

w̃m→nβm→n (3)

It can be observed that weights are applied only on the NN
edges incoming to the data-pass (2) and a posteriori LLR (3)
layers. Each weight corresponds to one specific edge of the
NN. In (2) the weights are denoted by wm′→n→m, where the
subscript indicates both the corresponding neuron n → m in
the data-pass layer, and the incoming NN edge from neuron
m′ → n in the check-pass layer. In (3) the weights are denoted
by w̃m→n, where the subscript indicates the corresponding
neuron n in the a posteriori LLR layer, and the incoming
NN edge from neuron m → n in the check-pass layer. For
the BP-RNN, the weights only depend on the corresponding
edges of the NN, while for the BP-FF they also depend on
the iteration number (note that, to simplify notation, we have
not indicated the iteration number on the above formulas). It
is worth noticing that despite the reduced number of trained
weights, the BP-RNN achieves similar performance to the BP-
FF [8]. An alternative approach suggested in [8] to further
reduce the number of weights is based on the following data-
pass layer,

αn→m = Lch,n + wn→m

∑
m′∈M(n)\m

βm′→n, (4)

where the applied weight only depends on the data-pass
neuron. This simplification reduces the training complexity
and makes it possible to reuse conventional BP decoding
architectures for efficient hardware implementation. The BP-
RNN using (4) will be referred to as BP-RNN Hardware
Friendly Implementation (BP-RNN-HFI).

To train the BP-RNN, we use the following Bit Error Rate
(BER) loss function, assuming without loss of generality that
the zero codeword is transmitted:

Loss(L̃) =
−1
N

N−1∑
n=0

log(σ(L̃n)) (5)

where σ(x) = (1 + exp(−x))−1 is the sigmoid function,
converting the LLRs into probability values. The loss function
is minimized during the NN training, thus improving the BER
of the trained decoder.

III. SPECIALIZING BP-RNN DECODERS ACCORDING TO
AN ERROR EVENTS CLASSIFICATION

A. Absorbing-type classification of error events

Let V be a set of variable-nodes, and C be the set of
check-nodes connected to at least one variable-node in V . We
denote by O(V ) ⊂ C the set of check-nodes connected an
odd number of times to V (that is, they have odd degree in
the sub-graph induced by V ). Thus, E(V ) := C\O(V ) is
the set of check-nodes connected an even number of times to
V . The set V is said to be an absorbing set [12], if each
variable-node in V has fewer neighbors in O(V ) than in
E(V ). Fig. 1(a) shows an example of absorbing set, where
each variable-node of V is connected to one check-node in
O(V ) and two check-nodes in E(V ). While absorbing sets
are combinatorial substructures of the Tanner graph, defined
independently of the particular decoding algorithm, they are
known to be particularly harmful to BP or other forms of
message-passing decoding. Indeed, assuming that the set of
errors V is an absorbing set, then each variable-node in V
has less neighbor check-nodes indicating an error (unsatisfied),
than indicating no error (satisfied). Consequently, V represents
a difficult error event, yielding a decoding failure with high
probability.

We are interested in classifying error events with a given
number of errors ν. Let V a set of variable-nodes, with
card(V ) = ν. We define the absorbing type of V as the
pair (ω, ε), where ω := card(O(V )) and ε := card(E(V )).
We shall sometimes denote the absorbing type as ν-(ω, ε), to
also account for the cardinality of V . Note that the absorbing
type indicates the total number of (unsatisfied, satisfied) check-
nodes, in case the variable-nodes in V are in error. However,
variable-node sets of same absorbing type may induce different
(precisely, non-isomorphic) sub-graphs. Such an example is
illustrated in Fig. 1, for two variable-node sets of absorbing
type 3-(3, 3), the first of which is an absorbing set (a), but
not the second (b). For the set V in (b), it can be seen
that variable-node n is connected to two unsatisfied check-
nodes and one satisfied (most favorable case among the three
variable-nodes), n′ to only satisfied check-nodes (worst case),



(a) Absorbing set case (b) Non-absorbing set case

Fig. 1. Example of two sets V , with card(O(V )) = card(E(V )) = 3. If
variable-nodes in V are in error, check-nodes marked by an U are unsatisfied,
while those marked by an S are satisfied.

and n′′ to one unsatisfied and two satisfied check-nodes. If
variable-node n gets corrected, V reduces to an absorbing set
of type 2-(2, 2), determined by n′ and n′′. However, in general
there is no guarantee that variable-node n can be decoded by
the BP decoder (this will depend on the noise model, and
the actual noise realization), thus we consider the case (b) as
an intermediate case, lying between the 3-(3, 3) absorbing set
case (a) and the 2-(2, 2) absorbing set case.

Accordingly, we define the error class ν-(ω, ε) as compris-
ing all the error events, whose underlying variable-node error
set V has absorbing type ν-(ω, ε). We further partition the
above error class into error sub-classes, with each sub-class
corresponding to variable-node error sets V of absorbing type
ν-(ω, ε), and inducing isomorphic sub-graphs. Sub-classes are
denoted by ν-(ω, ε, s), where s denotes the sub-class index.
Accordingly, the variable-node sets illustrated in Fig. 1 are
associated with the sub-classes 3-(3, 3, 1) and 3-(3, 3, 2). In
the sequel, we shall simply refer to ν-(ω, ε, s) as error classes
(rather than sub-classes), since no confusion is possible.

B. Proposed parallel BP-RNN decoders

To improve the decoding performance of LDPC codes at
short coding length, we propose to specialize (i.e., train) a
BP-RNN decoder for each error class ν-(ω, ε, s), according to
the classification from the previous subsection. The number of
different error classes, and thus of BP-RNN decoders, depend
on the particular Tanner graph defining the LDPC code, and
the value of ν. For a given short LDPC codes, we determine
all the possible error classes, by considering all the variable-
node subsets V of cardinality ν. In this work, we consider
ν = 2, 3, thus the proposed approach is particularly relevant
to high coding rate LDPC codes, correcting a small number
of errors.

Once a BN-RNN decoder has been trained for each error
class (the training procedure will be detailed in next subsec-
tion), we consider a parallel decoding architecture, where all
the trained decoders are run in parallel (note that different
architectural choices are possible and not discussed in this
paper). We include the conventional BP decoder in the parallel
structure. If none of the parallel decoders outputs a codeword
(which is verified by computing the syndrome), decoding

fails. Otherwise, among the decoded codewords, we select the
one that has been outputted the most often (in case different
decoders output different codewords). Decoding is successful
if the selected codeword is equal to the transmitted one.

C. Training of the parallel BP-RNN decoders

We propose in this section a construction of the training
set, used to train the BP-RNN decoder for a particular error
class. We assume that coded bits are mapped to ±1 modulated
symbols, which undergo real additive white Gaussian noise
(AWGN). Since both the noise model and the BP-RNN de-
coder are symmetric [8], we may assume the all-zero codeword
is transmitted, corresponding to an all +1 modulated signal.
Hence, under the AWGN model, received symbols are given
by yn = 1+zn, n = 1, . . . , N , where zn denotes a real-valued
normal distributed random variable, with mean 0, and variance
σ2.

To generate a random error event in a given error class
ν-(ω, ε, s), we first consider an underlying variable-node error
set V , randomly chosen from those corresponding to the given
error class, and then generate received symbols yn, by

yn = 1 + zn, ∀n = 1, . . . , N (6)

where zn ∼
{
N (0, σ2,−∞,−1), if n ∈ V
N (0, σ2,−1,∞), otherwise (7)

where N (0, σ2, a, b) denotes the truncated normal distribution
with mean 0 and variance σ2, taking values in the interval
(a, b). The training set is obtained by repeating the above
procedure multiple times, for each variable-node set V in the
given error class. In this way, the training set is representative
of the error class, and thus the trained BP-RNN decoder
becomes specialized to error events in the class.

D. Complementary selection of trained BP-RNNs

In practical applications, it is desirable to reduce the number
of decoders running in parallel. To this end, in this subsection
we propose a complementarity metric between the trained
decoders. Intuitively, two decoders are complementary if the
probability to fail on the same error event is low. This
maximizes the gain when the two decoders are run in parallel.

We define the similarity rate between two decoders Dp and
Dq , p 6= q, as the probability that both decoders fail, when
either one of them fails. Precisely, we define

S(Dp,Dq) := Pr (Dp and Dq fail | either Dp or Dq fails) (8)

In practice, this metric can be numerically estimated by
Monte-Carlo simulation, using

S(Dp,Dq) ≈
Np,q

Np +Nq −Np,q
, (9)

where Np (resp. Nq) is the number of times the decoder Dp

(resp. Dq) failed, and Np,q is the number times they both
failed. Consequently, S(Dp,Dq) measures the effectiveness
of specialized training in producing decoders able to correct
different error events. Put differently, it characterizes the level
of complementary between the two decoders.



TABLE I
PARAMETERS OF THE CONSTRUCTED CODES

N K Rc dv dc n4-cycles
Code-1 64 46 0.71 3 10-11 47
Code-2 128 105 0.81 3 16-17 1130

An overall similarity coefficient is then calculated for each
decoder Dp, by averaging the similarity rate between Dp and
the other decoders.

S(Dp) =
1

D − 1

∑
q 6=p

S(Dp,Dq) (10)

where D denotes the total number of parallel BP-RNN de-
coders. Subsequently, given a similarity threshold value Sth,
we keep only the decoders with overall similarity coefficient
S(Dp) less than Sth. Hence, only the most complementary
decoders are maintained in the final parallel structure. We note
that the choice of the Sth value may yield different trade-offs
between complexity and decoding performance.

IV. NUMERICAL RESULTS

A. Simulation Settings

Two LDPC codes with regular variable-node degree have
been considered in our simulations. Code parameters are
provided in Table I, where N denotes the code length, K
the number of information bits, Rc := K/N the coding rate,
dv the variable nodes degree, dc the check nodes degree, and
n4-cycles the number of length-4 cycles. The Tanner graphs of
the two codes have been constructed by using the Progres-
sive Edge Growth (PEG) algorithm [13], a greedy algorithm
making the best-effort to reduce the number of short cycles in
the constructed graph. Yet, for small code length, short cycles,
including cycles of length-4, cannot be completely avoided.

The number of decoding iterations was set to ten, for all
the decoders. Since we consider codes with high coding rate,
the error events classification was conducted for error sets V
of size ν = 2, 3 1. Applying the error classification proce-
dure described in Section III-A, we found three 2-(ω, ε, s)
classes, for both Code-1 and Code-2, and ten (resp. eleven)
3-(ω, ε, s) error classes for Code-1 (resp. Code-2). Thus,
a total of thirteen (resp. fourteen) BP-RNNs were used in
parallel, alongside the BP decoder. Each BP-RNN was trained
independently with the training set construction technique
described in Section III-C.

The same procedure was repeated for the BP-RNN-FHI
decoder, for both Code-1 and Code-2, in order to assess the
weight reduction in (4). In addition, we also trained a single
BP-RNN decoder according to the procedure described in [8],
to provide a benchmark for our parallel BP-RNNs approach.

To train the BP-RNN decoders, we used the Keras library,
with the hyper parameters shown in Table II. All BP-RNNs
were trained for each signal-to-noise ratio (SNR) value ranging
from 1 dB to 8 dB, with a step of 1 dB, thus providing eight
optimized weight sets for each decoder. While this increases

1For comparison, a BCH code with either (N,K) = (63, 45) or (N,K) =
(127, 106) has minimum distance d = 7, thus may correct 3 errors

TABLE II
KERAS PARAMETERS

Parameters Parameters values
Optimizer RMSprop [14]

(Gradient descent) (initialized at a learning rate of 10−3)
Epoch number 10

Training batch size 8192
Testing batch size 16384

the training complexity, it also improves the decoding perfor-
mance, as compared to the case where only one training is
performed, mixing together with all SNR values. During the
simulations (i.e., test stage, after the training was performed),
each weight set was used for the corresponding SNR value,
except near 9 and 8.5 dB where the weights of 8 dB were
used.

Finally, we used the similarity metric introduced in Sec-
tion III-D, in order to reduce the number of parallel decoders.
The similarity coefficient has been numerically estimated by
using (9) and (10), based on the first simulation results. We
fixed a similarity threshold value Sth = 0.6 (resp. Sth = 0.56)
for Code-1 (resp. Code-2), at a FER of 10−4, which led
to the selection of only eight (resp. nine) trained BP-RNN
decoder alongside the conventional BP. Then, new independent
simulations were run for both resulting parallel structures, to
assess their FER performance.

B. FER performance

We compare the different decoding strategies discussed in
the previous section, in terms of FER. Reported SNR gains
are evaluated at a FER of 10−4.

Simulation results for Code-1 are shown in Fig. 2. The
BP-RNN trained as in [8] yields an SNR gain of 0.18 dB,
with respect to conventional BP. Using the proposed structure,
with specialized BP-RNNs, the SNR gain is increased to
0.42 dB. The parallel BP-RNN-FHIs exhibit only negligible
performance degradation compared to the parallel BP-RNNs,
due to the weight reduction constraint in (4). Finally, it can be
observed that the parallel BP-RNNs construction with comple-
mentary selection shows virtually the same FER performance
as the original complete construction of parallel BP-RNNs.
Therefore, choosing Sth = 0.6 leads to a selection of eight
decoders which effectively complement each others.

Simulation results for Code-2 are shown in Fig. 3. Despite
the increase in the length of the code, it should be noted
that Code-2 exhibits an increased number of length-4 cycles,
due to its higher coding rate. However the parallel BP-RNN
decoder yields a similar SNR gain, of 0.42 dB, with respect
to the conventional BP. The parallel BP-RNN-FHIs tend to be
a little less efficient. Furthermore, Fig. 3 also corroborates the
relevance of the complementary selection, the corresponding
parallel BP-RNNs construction yielding again almost the same
performance as the original complete construction of parallel
BP-RNNs.

Finally, Fig. 4 provides a comparison in terms of the number
of decoding failures, for various values of ν (size of the error
event), for an SNR of 8 dB. It demonstrates that for both



Fig. 2. FER results for Code-1. Fig. 3. FER results for Code-2.

(a) Code 1 (at 8dB). (b) Code 2 (at 8dB).

Fig. 4. Number of failed decoding according to the size of an error event.

Code-1 and Code-2, the parallel BP-RNNs are clearly able to
correct numerous error events which are not decoded by the
BP, especially for the two and three error events (ν = 2, 3).
Therefore, we conclude that the specialization of the training
for the 2-(ω, ε, s) and the 3-(ω, ε, s) error classes effectively
induces an understanding of the BP-RNNs of how to decode
several type of size two and three error events. Furthermore,
some error events of size four and five are also successfully
decoded thanks to the previous specialization.

V. CONCLUSION AND PERSPECTIVES

In this paper, we addressed the problem of enhancing the
BP-RNN performance at short coding length. To this end, we
studied and classified error events according to the impact
of the induced sub-graphs on the BP decoding performance.
Then, we proposed a new decoding strategy consisting of par-
allel specialized BP-RNN decoders where each BP-RNN was
trained for a specific error class. In addition, we introduced
a complementary selection method of the trained BP-RNN
decoders, proven to be efficient in keeping the most relevant
trained decoders in the final parallel structure.

This work is a first step towards a framework of specialized
neural BP decoders, and we believe that further work may

reveal alternative specialization strategies. The final aim would
be to approach maximum likelihood decoding performance at
short to moderate code-length, for which we will probably
need to rely on a bunch of practical decoders, rather than a
unique one.

REFERENCES

[1] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[2] M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein,
and F. Steiner, “Efficient error-correcting codes in the short blocklength
regime,” Physical Communication, vol. 34, pp. 66–79, 2019.

[3] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, research Monograph series.

[4] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

[5] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. on
Information Theory, vol. 47, no. 2, pp. 619–637, 2001.

[6] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Department of Electrical Engineering, Linköping University, Sweden,
1996.

[7] I. Dimnik and Y. Be’ery, “Improved random redundant iterative HDPC
decoding,” IEEE Transactions on Communications, vol. 57, no. 7, pp.
1982–1985, 2009.

[8] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 119–131, 2018.

[9] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet
iterative decoders of ldpc codes via recurrent quantized neural networks,”
IEEE Trans. on Communications, vol. 68, no. 7, pp. 3963–3974, 2020.

[10] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat,
“Pruning neural belief propagation decoders,” in IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 338–342.

[11] N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J. Gross,
“Neural belief propagation decoding of crc-polar concatenated codes,”
in IEEE Int. Conference on Communications (ICC), 2019, pp. 1–6.

[12] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, and M. Wain-
wright, “Predicting error floors of structured ldpc codes: Deterministic
bounds and estimates,” IEEE Journal on Selected Areas in Communi-
cations, vol. 27, no. 6, pp. 908–917, 2009.

[13] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular pro-
gressive edge-growth Tanner graphs,” IEEE Transactions on Information
Theory, vol. 52, no. 51, pp. 386–398, 2005.

[14] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.


