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a b s t r a c t 

Seeing a face in the real world provokes a host of automatic categorisations related to sex, emotion, identity, and 

more. Such individual facets of human face recognition have been extensively examined using overt categorisa- 

tion judgements, yet their relative informational dependencies during the same face encounter are comparatively 

unknown. Here we used EEG to assess how increasing access to sensory input governs two ecologically relevant 

brain functions elicited by seeing a face: Distinguishing faces and nonfaces, and recognising people we know. 

Observers viewed a large set of natural images that progressively increased in either image duration (experiment 

1) or spatial frequency content (experiment 2). We show that in the absence of an explicit categorisation task, the 

human brain requires less sensory input to categorise a stimulus as a face than it does to recognise whether that 

face is familiar. Moreover, where sensory thresholds for distinguishing faces/nonfaces were remarkably consistent 

across observers, there was high inter-individual variability in the lower informational bound for familiar face 

recognition, underscoring the neurofunctional distinction between these categorisation functions. By i) indexing 

a form of face recognition that goes beyond simple low-level differences between categories, and ii) tapping mul- 

tiple recognition functions elicited by the same face encounters, the information minima we report bear high 

relevance to real-world face encounters, where the same stimulus is categorised along multiple dimensions at 

once. Thus, our finding of lower informational requirements for generic vs . familiar face recognition constitutes 

some of the strongest evidence to date for the intuitive notion that sensory input demands should be lower for 

recognising face category than face identity. 
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. Introduction 

Faces hold exceptional status in the human brain, conveying a great

eal of meaningful social information that is recognised nearly effort-

essly by neurotypical adults. Yet the relative ease of face recognition

elies the complex and multifaceted nature of this key human faculty,

hich in fact comprises a heterogeneous set of processes that culminate

n distinct categorisations of a face’s category (i.e., recognising a face as

 face ), its sex, emotion, familiarity, identity, and beyond ( Young and

ruce, 2011 ). Remarkably, these various high-level recognition func-

ions appear to be evoked automatically at every face encounter, such

hat to see a face is to almost instantaneously ‘recognise’ it in a multitude

f ways. 
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In contrast to the multifaceted nature of face recogni-

ion/categorisation 1 in the real world, there is a long tradition in

ace research of studying these various aspects in isolation, by tasking

bservers with categorising face images along a single dimension (e.g.,

amiliarity) at a time ( Gobbini and Haxby, 2007 ; Hill et al., 1995 ;

kman, 1993 ; Rhodes et al., 1989 ). Within this modular framework,

mpirically relating the different face recognition functions to one

nother necessitates comparisons across distinct observer tasks and

ace encounters (e.g., contrasting response times, or RTs, for recog-

ising faces amongst objects with RTs for recognising familiar faces

midst unfamiliar ones) ( Crouzet et al., 2010 ; Besson et al., 2017 ;

arragan-Jason et al., 2013 ; Barragan-Jason et al., 2012 ; Thorpe et al.,
1 The term “recognition ” here refers to the production of a selective (i.e., dis- 

riminant) response to a given sensory input, a response that can be reproduced 

i.e., generalized) across variable viewing conditions. In this sense, recognition 

s essentially a categorisation function (see Rossion & Retter, 2020); the two 

erms are used interchangeably here. 
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996 ; Grill-Spector and Kanwisher, 2005 ; Schyns et al., 2002 ). Since

ach categorisation task is necessarily associated with its own specific

oals, stimulus images, target-distractor overlap, observer strategies,

nd even participant groups, general experimental factors hamper the

dentification of distinctive characteristics and informational require-

ents associated with the different forms of face categorisation. Thus,

he cross-task comparative approach can offer limited insight into how

he brain achieves the manifold automatic face categorisations that

rise naturally when we see a face in the real world. 

Recently, a new wave of research has emerged aimed at understand-

ng how the brain extracts information along different face dimensions

t the same face encounter ( Nemrodov et al., 2016 ; Ambrus et al., 2019 ;

obs et al., 2019 ; Ghuman et al., 2014 ). In contrast to second-order

omparisons of face recognition functions (which are drawn across dif-

erent tasks/face encounters), this approach investigates the different

lasses of categorisation reflected in the exact same neural response

licited by seeing a face, typically by applying multivariate pattern anal-

sis (MVPA) techniques to high temporal resolution electro/magneto-

ncephalographic data (EEG, MEG) ( Carlson et al., 2013 ). For example,

 recent MEG study used this approach to examine the temporal unfold-

ng of familiarity, sex, and age categorisations of the same faces. Con-

rasting the time course of decoding associated with each dimension as

eflected in the same neural response showed that the age and sex of a

ace were categorised earlier than its identity ( Dobs et al., 2019 ). Where

his multivariate approach focuses near-exclusively on contrasting the

elative onset and duration of categorical representations that follow a

ace presentation, cognitive processes can differ not only in their tempo-

al unfolding, but also in the amount of sensory evidence they require to

roceed ( VanRullen, 2011 ). To date, this latter possibility has received

ittle explicit exploration in the context of multifaceted face categorisa-

ion. Thus, where there have been many modular investigations of how

vidence accumulates to support performance on explicit categorisation

asks (e.g., manipulations of image duration ( Grill-Spector et al., 2000 ;

anskanen et al., 2007 ; Or and Wilson, 2010 ; Näsänen et al., 2006 ),

patial resolution ( Quek et al., 2018 ; Ramon et al., 2015 ), visibility

 Ales et al., 2012 ), and so on), the relative informational dependencies

f different forms of categorisation that arise during the same face en-

ounter remain comparatively unknown. 

In the current study, we aimed to characterise how increasing access

o sensory face input influences two ecologically relevant recognition

unctions evoked at every face encounter: generic face categorisation

i.e., recognising that a visual stimulus is a face, as opposed to another

ype of object) and familiar face categorisation (i.e., recognising that

 face is one you have encountered before). We took care to avoid task-

ng participants with an explicit categorisation judgement (which would

voke task-specific strategies), instead using high-density EEG to track

mplicit neural measures of the two brain functions of interest as ob-

ervers viewed a large number of widely variable, unsegmented images

rom various natural categories. We constrained sensory evidence by

arametrically varying either image viewing time (i.e., stimulus presen-

ation duration, Expt. 1), or spatial frequency content (i.e., image reso-

ution, Expt. 2) ( Quek et al., 2018 ). By measuring the effect of increasing

emporal/spatial exposure on implicit neural indices of generic and fa-

iliar categorisation evoked by the same face encounters, we identified

he minimal amount of sensory input 2 capable of driving each function

s it occurs in the real world, where unexpectedly encountering a face

utomatically provokes multiple categorisations at once. 
2 Our focus on informational dependencies should not imply that face cate- 

orisation is governed solely by physical characteristics of visual input. Indeed, 

o any naïve system (human or artificial), there is no stimulus-level information 

hat distinguishes a ‘familiar’ face from an ‘unfamiliar’ one. Here we assume the 

ntegration of sensory information with other semantic/memory processes to be 

nherent to both generic and familiar face recognition. 
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2 
We compared these spatiotemporal thresholds at the individual par-

icipant level, with the goal of explicitly relating the informational re-

uirements of generic and familiar face categorisation within the same

bserver. Since a tacit assumption underlying many influential theo-

ies of human face recognition is that recognising that a stimulus is a

ace necessarily precedes recognising that face as familiar ( Burton et al.,

999 ; Bruce and Young, 1986 ), the strong prediction here is that sen-

ory input demands should be lower for generic face recognition. On

his possibility, individual observer thresholds would be similarly dis-

ributed regardless of face familiarity, yet reliably offset from familiar

ace recognition thresholds. On the other hand, however, while this

asic-before-subordinate directionality is certainly intuitive, it remains

ntested at the level of individual face encounters. By providing this

ranularity, the present study stands to reveal whether the sensory in-

ut diagnostic for an observer to recognise a given visual stimulus as

 face also enables them to recognise whether that face is familiar. If

eneric and familiar face recognition are indeed tightly coupled within

ach observer, generic face categorisation thresholds will vary as a func-

ion of face familiarity, producing familiar and unfamiliar distributions

hat are at least partially non-overlapping. 

. Materials and methods 

.1. Participants 

We tested independent samples of 25 participants each in Expts. 1

nd 2. All gave written informed consent in accordance with UCLouvain

ioEthics committee guidelines and were monetarily compensated. All

ere right-handed, with normal or corrected-to-normal vision, and did

ot report any psychiatric or neurological history. All were of French-

peaking Belgian background or verified to be familiar with its culture.

or each experiment separately, we excluded participants with poor be-

avioural performance (e.g., task performance < 2.5 SD from group av-

rage, see below) or those who blinked excessively during EEG recording

i.e., mean blinks / second > 2.5 SD from group average). The group-

evel accuracy and blink statistics were calculated on the full sample

nd both exclusion criteria were applied in parallel. The final sample

onsisted of 22 participants in Expt. 1 (13 females, mean age = 22.27

rs ± 1.98) and 21 participants in Expt. 2 (12 females, mean age = 21.81

rs ± 1.65). 

.2. Protocol and design 

To quantify the amount of sensory input required for successful

eneric and familiar face recognition, we adapted an EEG frequency-

agging paradigm in which observers view long lasting sequences of

apidly presented images belonging to many different natural cate-

ories (e.g., plants, animals, buildings, vehicles, etc.) with faces em-

edded at strict periodic intervals ( Fig. 1 A). Stimulating the visual sys-

em in this way is known to yield separable electrophysiological indices

f i) general visual processing (i.e., processing common to faces and

bjects, measurable at the frequency of image presentation), and ii)

ace-selective visual processing (i.e., the differential response to faces

s . objects, measurable at the frequency of face presentation) that are

dentifiable at the level of individual observers ( Quek et al., 2018 ;

ossion et al., 2015 ; G.L. Quek et al., 2018 ; Retter and Rossion, 2016 ).

or our purposes here, the face-selective visual response provides an

ndex of generic face recognition (i.e., recognising a face as a face ),

s it can only arise if the neural response evoked by faces in the se-

uence is both consistently similar across different face exemplars, yet

onsistently different to the responses evoked by nonface images. We

btained a corresponding index of familiar face recognition by com-

uting the difference between face-selective responses elicited by se-

uences containing either highly Familiar (F) or Unfamiliar (U) faces

 Fig. 1 A; Figure S1A). Importantly, face exemplars varied widely in
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Fig. 1. Design overview. A. The basic frequency-tagging paradigm consists of a rapid stream of various object categories interspersed with Familiar (F) or Unfamiliar 

(U) faces at strictly periodic intervals ( Rossion et al., 2015 ). B . Sequences in Expt. 1 contained full spectrum images whose duration increased every 7 seconds. The 

inter-face interval was always 1000 ms for a total of 84 face presentations/sequence. C. In Expt. 2, image duration was fixed at 83.33 ms, with image resolution 

increasing every 6 seconds. The inter-face interval was always 752 ms, for a total of 127 faces/sequence (cpf = cycles per median face width; cpi = cycles per image). 

D. Summary of the differing design properties in Expts. 1 & 2. 
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ose, lighting, expression, background, etc. (Figure S1B), such that spe-

ific low-level visual features could not systematically occur at the

ace presentation frequency. This ensures that neither recognition in-

ex (i.e., the face-selective response itself and the familiarity effect ob-

ained via subtraction) can be driven by image-level differences be-

ween categories ( Rossion et al., 2015 ; Gao et al., 2018 ). In two sep-
3 
rate groups of observers, we tracked both indices as a function of para-

etric increase in either image presentation duration (Expt. 1, Fig. 1 B)

r spatial frequency content (Expt. 2; Fig. 1 C), in both cases iden-

ifying the minimal informational input (i.e., threshold) required for

) successful generic face recognition, and ii) successful familiar face

ecognition. 
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.2.1. Expt 1: Increasing image duration 

Sequences contained full spectrum face and object images whose pre-

entation duration began at 8.33 ms (i.e., 120 Hz), increasing every 7 s

cross 12 steps to reach 333.33 ms (i.e., 3 Hz). A face appeared every

000 ms (i.e., 1 Hz face presentation rate), such that the number of

ntervening objects between faces decreased with each duration step.

he first/last sequence steps each lasted an extra second wherein the

lobal image contrast gradually ramped up/down. These fade in/out

eriods were excluded from response quantification. Participants had

o explicit task during the sequence itself, and were simply told to pay

lose attention to the face and object images as they appeared one by

ne. At the start of the experiment, we ran a single Familiar practice se-

uence to explain the experiment to participants, and to introduce the

asic identity recognition task that followed each sequence (see below).

he experiment proper consisted of 24 sequences (12 Familiar , 12 Unfa-

iliar ), presented in pseudo-random order across two counterbalanced

locks. 3 

.2.2 . Expt 2: Increasing image content 

Each 96 second sequence contained face/nonface images with a fixed

mage duration of 83.33 ms (i.e., 12 Hz, a rate known to elicit face cat-

gorisation responses at the individual observer level ( Retter and Ros-

ion, 2016 )). Spatial frequency (SF) content of the images parametri-

ally increased every 6 s such that initially blurry images progressively

harpened over the course of the full sequence ( Fig. 1 C; see our previ-

us work for a movie of a similar sequence of parametrically increasing

F content ( Quek et al., 2018 )). A 6 second fade-in period preceded the

nitial step (excluded from analysis). Unlike Expt. 1, here there were

lways exactly 8 objects, or 752 ms, between faces (i.e., face presen-

ation rate = 1.33 Hz). As in Expt. 1, participants had no explicit task

uring the sequence itself. There were 24 sequences (12 Familiar and 12

nfamiliar ) that appeared in a pseudo-random order across two counter-

alanced blocks; participants saw one Familar practice sequence prior to

he experiment proper. 

.3. Post-sequence identity recognition task 

To encourage participants to attend to the faces in the image se-

uences, both experiments included a simple 2AFC identity recogni-

ion decision after each sequence (totalling 24 2AFC responses across

he full experiment). Here participants saw one 3 second display con-

aining a probe face and a foil face, whose position was counterbal-

nced across sequences (see Figure S1C). Within the display duration,

articipants had to indicate using the arrow keys whether the left or

ight person had appeared during the preceding sequence. Both the

robe and the foil held the same familiarity status as the preceding

equence, such that participants could not respond based on a greater

verall sense of familiarity. Additionally, we emphasised that the task

ertained to the identities shown, not the specific images (which were

lways novel). Note that this task was not designed to be a sensi-

ive measure of overt face recognition; we included it simply to en-

ourage observers to pay attention to the faces in the sequence. Nev-

rtheless, performance on this simple 2AFC task validated our famil-

arity manipulation, showing that probe identification rates were sig-

ificantly higher for familiar vs. unfamiliar identities in both Expt. 1

Fam = 0.98 ± 0.01; Unfam = 0.79 ± 0.03; t (21) = 6.87, p < .0001) and

xpt. 2 (Fam = 0.98 ± 0.60; Unfam = 0.60 ± 0.03, t (20) = 11.39, p <

0001). A corresponding effect was found for response times in Expt.

 (Fam = 1.49 ± 0.10 secs; Unfam = 2.01 ± 0.10 secs; t (21) = − 7.05, p <
3 Prior to the practice trial, both experiments contained an additional four 

equences in which there was no parametric variation (i.e., observers saw full 

pectrum images presented at 12 Hz with a fixed face frequency of 1.5 Hz). 

hese additional sequences (containing a different set of face images) pertained 

o a separate investigation and are not reported further here. 

u  

t  

i  

c  

r  

t  

t  

4 
0001) and Expt. 2 (Fam = 1.52 ± 0.11 secs; Unfam = 2.21 ± 0.12 secs,

 (20) = − 5.09, p < .0001). 

.4. Stimuli and display 

Stimuli were 200 greyscale images of various nonface visual

ategories (e.g., animals, plants, structures, vehicles, objects, etc.,

ossion et al., 2015 ; Retter and Rossion, 2016 ) and 240 greyscale images

f faces. All image subjects were unsegmented, i.e., embedded in their

atural backgrounds (see Fig. 1 A). Specific face images were selected

ased on a separate stimulus pre-screening experiment run prior to Ex-

ts 1 & 2 as follows: We paired each of 13 celebrities considered highly

ecognisable to a French-speaking Belgian population with a compar-

tively unknown foreign celebrity of similar age and appearance. For

ach of the resulting 26 identities, we sourced 30 individual exemplar

mages online (i.e., 780 images, each 256 × 256 pixels), ensuring the

ets varied widely in terms of background, lighting, facial expression,

ge, pose, etc. (Figure S1B). We used a browser-based experimental plat-

orm ( https://www.testable.org ) to present 50 French-speaking Belgian

articipants aged between 18 and 42 years (18 males, mean age = 23

ears ± 3.62) with a 390 trial 2AFC naming task containing these images

i.e., each participant saw half the exemplar images for each identity).

ach trial contained a brief fixation cross, followed by a central tar-

et face image (e.g., image of George Clooney) with a target name and

ure name below (e.g., “GEORGE CLOONEY ” — “BRAD PITT ”, target

ame position randomised across trials). The face image disappeared

fter 500 ms, while the names remained onscreen. Participants had a

aximum of 3 s from display onset to click on the name that matched

he face image on that trial. Both names were always drawn from the

ame Familiarity category (e.g., a famous face always appeared with

wo famous names), to prevent participants from responding based on

 sense of familiarity alone. The five identities with the highest recogni-

ion rates were Danny Boon, Nicolas Sarkozy, George Clooney, Leonardo

iCaprio, and Emmanuel Macron ( M = 96.55%, SD = 0.91). Recognition

ates for their corresponding matched identities (respectively, Alfonso

uarón, Thomas Kretschmann, Kirill Safonov, Najib Amhali, Humberto

urita) were significantly lower, t (4) = 27.68, p < .0001, trending close

o chance ( M = 60.51%, SD = 3.47) (see Figure S2 in supplemental mate-

ial). Observers were also significantly slower to identify the Unfamiliar

dentities ( M = 1488 ms, SD = 62 ms) compared to the Familiar ones

 M = 1216 ms, SD = 30 ms), t (4) = − 15.88, p < .0001. Since the famil-

ar identities in this group were both i) highly recognisable, and ii) very

istinct from their unfamiliar counterparts, we selected these 10 face

dentities to use in the main experiments (see Figure S1A), and kept the

emaining identities aside to use as foil faces during the post-sequence

AFC identity recognition task. We narrowed the image set for each of

hese selected 10 identities to a representative 24 exemplars, taking care

o exclude exemplars whose individual recognition rate fell below the

niformly high group rate. We divided the resulting 120 Familiar and

20 Unfamiliar faces into three subsets of 40, each containing 8 exem-

lars per identity. During the two experiments, each of the three face

ubsets served as the face stimuli for four sequences (two in each testing

lock). 

All object and face stimuli were sized 256 × 256 pixels and equalised

n terms of mean luminance and contrast; this finalised image set com-

rised the stimuli used in Expt. 1. For Expt. 2, we took the additional

tep of generating spatially filtered versions of all images at 16 increas-

ng low-pass filter cut-off values ranging from 1.05 to 30.6 cycles per

mage (cpi), corresponding to 0.5 to 14.5 cycles per face (cpf; estimated

sing the median width of faces within each image) (see Fig. 1 C). No-

ably, this range encompasses SF bands previously implicated in process-

ng both face category ( Quek et al., 2018 ) and face identity (i.e., ∼8–12

pf) ( Näsänen, 1999 ). The filter cut-off values were spaced to maximise

esolution in cpf with the goal of identifying more precise thresholds at

he individual subject level. We used custom Java software to display

he finalised stimuli on a 120 Hz BenQ LED monitor with 1920 × 1080

https://www.testable.org
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esolution in a dimly lit room. The viewing distance was 50 cm, such

hat images spanned a visual angle of ∼10° All stimuli and instructions

ppeared on a grey uniform background; during the sequence presenta-

ion a small central fixation cross remained overlaid on the images. 

.5. Post-sequence 2AFC task 

Stimuli for the 2AFC post-sequence identity recognition task were

4 unique probe + foil combinations (12 Familiar and 12 Unfamiliar , see

igure S1C in supplemental material). Each of the experimental 10 iden-

ities appeared as the probe at least twice, and was always paired with

 novel, never-before-seen identity as the foil. Note that the actual im-

ges used for the experimental and 2AFC task were completely distinct,

.e., the probe was always a completely novel image of a previously-seen

dentity. 

.6. EEG acquisition and analysis 

We used a BioSemi ActiveTwo system with standard 10–20 sys-

em electrode locations and additional intermediate positions to acquire

28-channel scalp EEG (512 Hz sample rate). We monitored eye move-

ents using electrodes at the outer canthi of both eyes, and above/below

he right eye. Individual electrode offsets were held below ± 50 μV. Dur-

ng testing, digital triggers were sent via a parallel port to mark the start

f each stimulation sequence and all behavioural responses. The experi-

enter manually initiated each sequence’s recording after the EEG trace

howed no muscular/ocular artefact for at least 5 s. To maintain ob-

erver comfort, we encouraged participants to rest their eyes between

rials, initiating the next sequence once after they indicated they were

eady to proceed. We imposed a longer rest-break after every six se-

uences. 

.7. EEG preprocessing 

We analysed EEG data offline using Letswave5 ( https://www.

etswave.org/ ) running on MATLAB R2012b (MathWorks, MA, United

tates). We realigned the continuous EEG data to remove abrupt signal

ffsets that resulted from pausing the recording, then de-trended and

emoved the DC component from the data. Next we applied a band-

ass filter with cut-offs at 0.05 Hz and 125 Hz (4th order zero-phase

utterworth filter), followed by a multi-notch filter remove electrical

oise carried at 50, 100, and 150 Hz (FFT filter, width = 0.5). Data was

ownsampled to 256 Hz for easier handling and storage, and segmented

ccording to stimulation sequences, with two extra seconds before and

fter the sequence (Expt. 1 = 86 s; Expt. 2 = 102 s). For each participant,

e used independent component analysis (ICA) with a square mixing

atrix to remove a single component corresponding eyeblinks (identi-

ed through visual inspection of component waveforms and topograph-

cal distributions). We interpolated artefact-ridden channels with the

verage of the 3 neighbouring channels (less than 5% of channels were

orrected for each observer) and re-referenced the cleaned data to the

verage of all 128 scalp channels. We cropped the preprocessed data to

xclude the fade-in and fade-out periods for each sequence (final epoch

engths were 84 s in Expt. 1; 96 s in Expt. 2). We then averaged each par-

icipant’s Familiar and Unfamiliar segments separately, before chunking

hese conditional averages into separate epochs for each duration/SF

tep (Expt. 1 = 12 × 7 s epochs, Expt. 2 = 16 × 6 s epochs). Finally, we

pplied a Fast Fourier Transformation (FFT) to each epoch to extract

–128 Hz frequency amplitude spectra for each combination of partic-

pant, condition, and step (frequency resolution in Expt. 1 = 0.14 Hz,

n Expt. 2 = 0.16 Hz). We considered conditional group means within a

redefined bilateral occipitotemporal (OT) region-of-interest (ROI), av-

raging across electrode sites previously shown to be involved in both

eneric and familiar face categorisation (P8, PO8, P10, PO10, PO12, P7,

O7, P9, PO9, PO11, see insets on Figs. 2 & 6 ). All group-level and in-

ividual response profiles are noise-corrected amplitudes, obtained by
5 
ubtracting the mean noise value from the signal, separately for each

ondition and each step. 

.8. Threshold analysis 

We identified recognition thresholds at both the group and individ-

al level by comparing the magnitude of the relevant signal against

n empirical noise distribution generated using a bootstrap procedure.

or generic face recognition , the signal estimate for each step/condition

ombination comprised the summed amplitude values on all face fre-

uency harmonics up to 30 Hz (Expt. 1: 30 harmonics = 1–30 Hz; Expt.

: 22 harmonics = 1.33–29.26 Hz), excluding harmonics of the image

resentation frequency. To compute a noise estimate, we summed the

mplitude values on an identical number of randomly selected noncrit-

cal frequencies (i.e., excluding the face presentation and image presen-

ation frequencies). To take account of the 1/f profile of the EEG spec-

rum, the frequency range for the noise calculation included 3 extra fre-

uency bins either side of the face categorisation response range (Expt.

 = 0.58–30.42 Hz; Expt. 2 = 0.85–29.74 Hz). For each combination of

ondition/step, we generated a noise distribution by repeating the ran-

om sampling procedure 10,000 times, and considered the correspond-

ng generic face categorisation response significant if it exceeded the top

% of this distribution (i.e., p < 0.01). The first step meeting this signif-

cance criterion was taken as the threshold for generic face recognition

i.e., Gen -Thresh). To determine a corresponding threshold for famil-

ar face recognition (i.e., Fam- Thresh), we applied the above procedure

o the difference amplitude spectrum (i.e., Familiar – Unfamiliar ), tak-

ng the same 99th percentile cut-off. The direction of this subtraction

inpoints the step at which the face-selective response elicited by fa-

iliar faces was significantly larger than that elicited by unfamiliar

aces. 

We compared the resulting distributions of individual observer

hresholds using two nonparametric tests: the Wilcoxon matched-pairs

igned rank test, where the H 0 is equivalent central tendencies, and the

wo-sample Kolmogorov-Smirnov (K-S) test, which contrasts the distri-

utions’ empirical cumulative distribution functions (i.e., takes into ac-

ount their global shape). To circumvent ties in the data (differences of

ero that preclude the calculation of exact p -values), we added a very

mall amount of jitter to the test vectors ( + /- < 0.01 ms or cpf), and re-

eated this process 10,000 times. In both tests, differences were deemed

ignificant if the mean p- value obtained across these 10,000 iterations

as < 0.05; we report these mean p -values. 

.9. Lateralisation analysis 

Hemispheric differences at threshold points were examined only for

bservers for whom both Gen- Thresh and Fam- Thresh could be defined

Expt. 1: n = 20; Expt. 2: n = 18). For each observer, we isolated the

uration/SF content step corresponding to their individually-defined

hreshold for generic or familiar face recognition. We then averaged

cross the data in these individually-defined steps in two ways: To in-

pect the scalp topographies at Gen -Thresh, we averaged each partici-

ant’s Familiar and Unfamiliar data and calculated a group mean from

he resulting averages. To inspect the scalp topographies at Fam -Thresh,

e performed the Familiar – Unfamiliar subtraction for each participant

nd averaged across the resulting differences. Next we quantified the

egree of lateralisation at each threshold point by calculating the dif-

erence between corresponding right and left electrode sites within our

 priori OT ROI (see above), comparing these lateralisation indices at

en -Thresh and Fam -Thresh using a two-tailed paired t -test. Lastly, to

xamine how potential lateralisation differences arose, we further de-

omposed the responses at each threshold by averaging neural activity

eparately for Familiar and Unfamiliar conditions. 

https://www.letswave.org/
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Fig. 2. Group-level data for Expt. 1. F = Familiar, U = Unfamiliar. A. Baseline-corrected amplitude scalp topographies show the face-selective response for the 

Familiar condition emerging as a function of increasing duration. B. Normalised scalp topographies as a function of image duration for all conditions. C. The Familiar 

and Unfamiliar generic face categorisation response profiles within the OT ROI. D. The familiar face recognition response profile within the same ROI (right inset). 

Error bars are SEM, asterisks correspond to image durations eliciting a significant response ( p < . 01, one-tailed). E. Face recognition response profiles for three 

example participants, shown with local polynomial regression fits (see Figure S3 for all individual profiles). 
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. Results 

.1. Expt. 1: Increasing image duration 

In Expt. 1, we examined how neural measures of generic and familiar

ace categorisation evolved as a function of increasing image duration

ver 12 incremental steps. At the group-level, inspection of the scalp
6 
opographies ( Fig. 2 A) and response profiles within our predefined bi-

ateral occipitotemporal (OT) ROI revealed that the generic face cat-

gorisation responses for Familiar and Unfamiliar faces emerged grad-

ally, reaching significance at the same image duration of 33.33 ms

 Fig. 2 C). Inspection of the normalised topographical maps indicated

table activation of (right) OT channels throughout all supra-threshold

teps ( Fig. 2 B), validating our a priori selection of those ROI electrodes
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 Retter and Rossion, 2016 ; Quek and Rossion, 2017 ). In contrast, the fa-

iliar face recognition response profile hovered around the noise base-

ine at the shortest image durations before reaching significance at a

lightly longer presentation duration (50 ms) than was observed for

eneric face recognition ( Fig. 2 D). Corresponding scalp topographies

bottom row, Fig. 2 B) implicated similar bilateral OT regions as for

eneric face recognition. At the group-level, this familiar face recog-

ition response increased to a local peak at 83 ms image duration, then

lateaued until the last duration step, suggesting a sustained differenti-

tion between Familiar and Unfamiliar faces. However, many individual

articipant response profiles in fact exhibited a transient discrimination

etween Familiar and Unfamiliar faces (see examples in Fig. 2 E), with

ittle difference between conditions at the longer image durations (e.g.,

 167 ms, for all participant profiles, see Figure S3 in supplemental ma-

erials). 

To more precisely characterise the relative informational dependen-

ies of generic and familiar face categorisation, we focused on the distri-

utions of individual-level thresholds for each of these processes ( Fig. 3 ).

ndividual observer thresholds for generic face recognition were dis-

ributed very similarly in the Familiar and Unfamiliar conditions; both

istributions were narrow and peaked over 33–50 ms image duration.

oth Wilcoxon and Kolmogorov-Smirnov (K-S) tests revealed no signifi-

ant difference between Gen -Thresh distributions for Familiar and Unfa-

iliar faces (Wilcoxon p = 0.704; K-S p = . 833). In contrast, thresholds

or familiar face recognition were distributed much more broadly, peak-

ng over longer durations of 83–100 ms. Nonparametric tests indicated

hat both central tendency and shape differed significantly between the

am- Thresh and Gen- Thresh (averaged across Familiar and Unfamiliar )

istributions (Wilcoxon p = .010; K-S p = . 005), suggesting that familiar

ace recognition not only necessitated longer temporal exposure than

eneric face recognition, but that the former is much more dependant

n the individual processing efficiency of each observer. 

An interesting possibility to consider is whether observers vary reli-

bly in terms of their minimal required image duration supporting both

eneric and familiar face recognition. However, we observed no system-

tic relationship between individual Gen- Thresh and Fam- Thresh values

 r pearson = 0.09, p = .70). As can be seen in Fig. 4 A, observers with more

fficient generic face recognition did not also tend to exhibit more ef-

cient familiar face recognition. Instead, the two thresholds appeared

o vary independently, such that individuals with very similar generic

ace recognition thresholds displayed markedly different familiar face

ecognition thresholds. 

Interestingly, while the evolving generic and familiar face cate-

orisation responses were both consistently located over OT channels

 Fig. 2 B), the former appeared to be more strongly right-lateralised,

uggesting there may be different underlying neural regions associated

ith processing critical sensory input required for each recognition func-

ion. This pattern was particularly evident in the scalp topographies

orresponding to the (individually-defined) threshold points ( Fig. 5 A),

here the lateralisation index (i.e., right ROI – left ROI) was signifi-

antly stronger at Gen- Thresh than at Fam -Thresh, t (1,19) = 2.51, p <

02 ( Fig. 5 B). Further decomposing this pattern revealed that, at the

hortest durations supporting the distinction between faces and non-

aces, responses were similarly right-lateralised for both Familiar and

nfamiliar faces ( Fig. 5 C). By contrast, at the shortest durations sup-

orting Familiar/Unfamiliar face differentiation, Familiar faces evoked a

ore bilateral face-selective response than Unfamiliar faces. 

.2. Expt. 2: Increasing image content 

In Expt. 2, we examined neural measures of generic and familiar face

ecognition as a function of increasing spatial frequency (SF) content. At

he group-level, the face categorisation response emerged at the same

oarse image resolution for both Familiar and Unfamiliar faces (i.e., Gen -

hresh = 3.5 cpf or 7.4 cpi) and increased steadily before stabilising

round 10.5 cpf ( Fig. 6 B). As was the case in Expt. 1, inspection of the
7 
ormalised scalp topographies ( Fig. 6 A) indicated consistent activation

f lateral occipitotemporal channels across increasing image content,

uggesting that similar OT neural populations were engaged regard-

ess of the spatial frequency content of the face images. Although the

roup-level face recognition response ( Fig. 6 C) also rose significantly

bove noise at 3.5 cpf, this difference between Familiar and Unfamil-

ar responses did not stabilise until a slightly higher image resolution

i.e., 5.5 cpf, or 11.6 cpi). Just as in Expt. 1, the Familiar and Unfamiliar

ace responses for individual observers were somewhat dissociated from

he group-level average response profiles (see Figure S4 in supplemen-

al materials), once again bolstering our approach to focus on threshold

ifferences at the individual-level. 

Fig. 3 (right column) shows the individual threshold distributions for

eneric and familiar face recognition in Expt. 2. Results mirrored the

attern observed in Expt. 1: Gen -Thresh was very similarly distributed

or the Familiar and Unfamiliar conditions, peaking in both cases over a

arrow range of 2.5–4.5 cpf (5.3–9.5 cpi) (Wilcoxon p -value = 0.572;

-S p -value = 0.803). Interestingly, while the Fam -Thresh distribu-

ion was centred over the same cpf range as Gen -Thresh (Wilcoxon p -

alue = 0.109), its shape was noticeably different (K-S p -value = 0.036),

eing much wider and characterised by a long rightward tail. These re-

ults point to greater inter-observer variability in the image resolution

eeded to perceive the familiarity status of a face than to perceive its

ategory: While coarse information does indeed appear to be sufficient

or some observers to reliably recognise familiar faces, still others re-

uire much finer image detail to make this distinction successfully. 

As for Expt. 1, we found no evidence of general inter-individual dif-

erences affecting the efficiency of both generic and familiar face cate-

orisation processes, in that Gen -Thresh and Fam -Thresh values did not

ary systematically with individual observers ( r pearson = 0.15, p = .52).

nstead, participants for whom generic face categorisation was possible

ased on extremely coarse visual input required widely varying levels of

ncreased resolution to recognise face familiarity. Finally, inspection of

he topographical distribution at the individual observer thresholds re-

ealed a similar profile as obtained in Expt. 1 ( Fig. 5 D): Where scalp to-

ographies at Gen -Thresh were evidently right-lateralised, we observed

 more bilateral topography at Fam -Thresh, although the difference be-

ween these lateralisation indices did not reach statistical significance,

 (1,17) = 1.56, p = .14 ( Fig. 5 E). Once again, this pattern again appeared

o be driven by more distributed hemispheric engagement when viewing

amiliar faces compared to Unfamiliar ones ( Fig. 5 F). 

. Discussion 

Encountering a face in the real world provokes a barrage of func-

ional categorisations at once. In what feels like the same instant, the

bserver knows that the stimulus before them is indeed a face and not

nother type of object, that it is female and not male, that it is well-

nown to them, that its expression is happy, and so on. In a bid to

ncrease our understanding of how the brain achieves these manifold

ategorisations at the same face encounter, here we provide a system-

tic investigation of the relative informational dependencies underlying

wo ecologically relevant brain functions that arise each time we see a

ace – generic face recognition and familiar face recognition. 

Using visual periodicity to isolate the selective neural response to

nsegmented faces presented amidst a wide variety of nonface stimuli,

e identified individual observer thresholds for generic and familiar

ace recognition within two parametric manipulations of sensory input.

n Expt. 1, manipulating image duration showed that exposures of just

3–50 ms enabled nearly all observers to consistently distinguish faces

rom a host of other categories (e.g., animals, plants, buildings, vehicles,

tc.). In contrast, the temporal exposure required to recognise whether

he faces were familiar was both higher on average and much more

ariable ( M = 83 ms, range = 25–250 ms). Manipulating image reso-

ution in Expt. 2 yielded similar findings: Nearly all participants recog-

ised faces amongst nonface stimuli based on extremely coarse visual
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Fig. 3. Distributions of individual Gen -Thresh and Fam -Thresh values in Expt. 1 (left column) and Expt. 2 (right column), represented as A. box-and-whisker plots, 

B. Frequency counts, and C. Empirical cumulative distribution functions. D. Examples of Familiar, Unfamiliar and Object stimuli at the median Gen -Thresh for Expt. 

2 (3.5 cpf). 

8 
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Fig. 4. Individual threshold values for Expt. 1 (A) and Expt. 2 (B), ordered by decreasing Gen -Thresh value (averaged across F and U). Colours show the degree and 

direction of offset between Gen -Thresh and Fam -Thresh (grey points = subjects with no identifiable Fam -Thresh). 

i  

i  

i  

t  

g  

t  

o  

n  

b  

f  

g  

f  

i  

o  

o  

u  

o  

a  

f

 

‘  

i  

o  

e  

f  

i  

r  

o  

s  

t  

t  

H  

s  

a  

t  

t  

w  

a  

a  

2  

c  

s  

g  

t  

c  

t  

j  

i  

s  

t  

g

 

o  

r  

F  

i  

o  

a  

w  

u  

i  

t  
nput (i.e., just 2.5–4.5 cpf), but they exhibited considerable variabil-

ty in how much finer resolution they required to recognise face famil-

arity (range = 1.5–13.5 cpf). In both experiments, the scalp distribu-

ion of neural responses was right-lateralised to a greater extent at the

eneric categorisation threshold than at the familiar face categorisation

hreshold. Conditional decomposition at individual familiarity thresh-

lds showed that while unfamiliar face presentations engaged predomi-

antly right OT regions, familiar face presentations evoked a much more

ilateral pattern of activation. Notably, neither manipulation of face in-

ormation revealed a systematic offset in generic and familiar face cate-

orisation across individual participants (i.e., observers who categorised

aces vs. objects at short durations were not also able to recognise famil-

ar faces at comparatively short durations). Taken together, the two lines

f evidence presented here indicate that during a given face encounter,

bservers need less sensory evidence to successfully recognise that stim-

lus as a face than they do to recognise whether the face is familiar. In

ther words, generic face recognition is both more efficient, less vari-

ble, and processed in a more spatially constrained neural network than

amiliar face recognition. 

To some extent, the observation that face ‘detection’ should precede

identification’ from an informational standpoint appears rather intu-

tive. To date, however, evidence for this claim has comprised second-

rder comparisons of information thresholds obtained using explicit cat-

gorisation tasks, where observers judge highly simplified and/or uni-

orm faces along a single dimension at a time. Since informational min-

ma identified under this ‘modular’ framework must certainly in part

eflect stimuli- and task-specific observer strategies, comparing thresh-

lds across different explicit recognition tasks is less than ideal. Our

tudy makes an important advance in this regard, tracking the informa-

ional requirements of two different recognition functions as elicited by

he same face encounters , in the absence of any explicit recognition task.
9 
ere, face images appeared amidst a wide variety of nonface categories,

uch that observers were obliged to categorise each face in the sequence

t both the generic and familiar level (i.e., Is that a face? AND Do I know

hat face identity? ). We emulated the high variability that the visual sys-

em readily contends with in everyday face recognition by employing a

ide set of naturalistic face images (see Fig. 1 & Figure S1) which guar-

nteed that specific low-level features would not systematically occur

t the 1 Hz frequency where we quantified the response ( Rossion et al.,

015 ; Gao et al., 2018 ) (as might conceivably occur with full frontal,

losely cropped face images). In this way, we can be confident that our

ensory input thresholds pertain to a form of face categorisation that

oes beyond simple low-level differences between categories, and that

hese informational minima bear greater relevance to real-world face en-

ounters (where the same stimulus is evidently categorised along mul-

iple dimensions at once) than those identified by studies focused on

ust one aspect of recognition at a time. As such, our finding of lower

nformational requirements for generic vs. familiar face recognition con-

titutes some of the strongest evidence to date for the intuitive notion

hat sensory input demands should be lower for recognising face cate-

ory than face identity. 

At the same time, however, it remains the case that for a subset of our

bservers, the same informational content gave rise to successful face

ecognition at both the generic and familiar levels ( Tanaka, 2001 ) (see

ig. 4 ). While this finding obviously requires replication before draw-

ng any strong conclusions, it does somewhat temper the claim that in

rder to know whether a face is familiar or not, you must presumably

lready know that the stimulus is a face (but see Grill-Spector and Kan-

isher, 2005 ). This basic-before-subordinate notion ( Rosch et al., 1976 )

nderlies many classic theoretical accounts in which face recognition

s claimed to unfold in a serial fashion from visual analysis (e.g., struc-

ural encoding of features) all the way up to the retrieval of high-level
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Fig. 5. Response lateralisation at Gen- and Fam- Thresh in Expt.1 (top row) and Expt. 2 (bottom row). A. & D. Mean normalised topographies at the individual 

observer values of Fam -Thresh and Gen -Thresh (averaged across Familiar / Unfamiliar ). B. & E. Differences in baseline-corrected amplitudes between the right and left 

OT ROIs for each threshold type. Bars reflect the group mean; dots are individual observers. C. & F. Decomposition of the mean normalised topographies at threshold 

into the Familiar and Unfamiliar conditions. Scalp activation at Fam -Thresh was comparatively more bilateral for Familiar faces than Unfamiliar ones. 
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emantic associations (e.g., the name and context associated with that

dentity) ( Burton et al., 1999 ; Bruce and Young, 1986 ). By starting with

he premise that a face is present in foveal vision, these models tacitly

mply that low-level detection (e.g., figure-ground segmentation) and

ecognition of face category have already taken place. The fact that this

ssumption does not hold for all observers in our experiments suggests

eneric face recognition is a nontrivial stage function that should be

xplicitly incorporated into extant face recognition models. 

Our approach of indexing two dimensions of face recognition

rompted by the same face encounter aligns with the field’s recent

hift toward acknowledging the inherently multifaceted nature of real-

orld face recognition. Several recent studies have used time-resolved

ultivariate decoding to probe the overlapping time-courses of dis-

inct face categorisations reflected within the same neural response

i.e., decoding “which information is available when ” ( Nemrodov et al.,

016 ; Ambrus et al., 2019 ; Dobs et al., 2019 ; Ghuman et al., 2014 )).

n contrast, our approach of quantifying the differential response to

aces amongst nonfaces regardless of exact timing (e.g., early/fast vs.

ate/slow) enabled us to inspect the temporal/spatial sensory input re-

uirements for generic and familiar face recognition independently of

ny differences in their representational time-courses. In this way, our

ndings bring an complementary perspective to the origin of puta-

ive processing speed differences between various dimensions of face

ecognition: Namely, if two components of face recognition differ in

n  

10 
erms of how soon they can be achieved ( Besson et al., 2017 ; Barragan-

ason et al., 2012 ) or decoded ( Dobs et al., 2019 ; Ghuman et al., 2014 )

fter face onset, this might not strictly reflect a difference in their rela-

ive speed of processing per se, but could equally arise if the processes

nfold at the same speed, but with one requiring comparatively more

vidence (i.e., signal-to-noise) than the other, and therefore being com-

leted later ( VanRullen, 2011 ). 

.1. The minimum presentation duration supporting generic face 

ecognition vs. familiar face recognition 

Although our study is the first to characterise how increasing image

uration affects different forms of recognition arising at the same face

ncounter, many extant studies have considered the minimum viewing

ime required for isolated aspects of face recognition ( Grill-Spector et al.,

000 ; Tanskanen et al., 2007 ; Or and Wilson, 2010 ). One such modular

tudy that presented degraded synthetic faces at various brief durations

ound that observers required just 32 ms image exposure to reach 75%

ccuracy for detecting whether a face was present/absent, but needed

early double that time to reach the same threshold when identifying

hich of two facial identities had appeared ( Or and Wilson, 2010 ). Our

xpt. 1 findings accord well with these results in suggesting that sen-

ory input demands are higher for more complex forms of face recog-

ition (on average, 33–50 ms for generic face recognition vs. 83 ms for
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Fig. 6. Group-level data for Expt. 2. A. Scalp topographies normalised to highlight the peak response locations across cpf values. C. Conditional mean face cate- 

gorisation response profiles within the OT ROI (shown as right inset). D. The familiar face categorisation response profile within the same ROI. Error bars are SEM, 

asterisks indicate SF cutoffs at which a significant response was identified ( p < . 01, one tailed). 
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amiliar face recognition). Notably, however, the same brief exposure

urations that enable observers in that previous study to differentiate

etween faces and very simple distractors (i.e., scrambled face/oval out-

ine) were also sufficient for our participants to distinguish faces from a

ich variety of nonface stimuli (i.e., animals, plants, man-made artefacts,

uildings, etc.). This highlights the efficiency of generic face recognition

echanisms, which appear capable of extracting highly complex visual

nformation contained in natural images as well as simplistic features at

ery short image durations. In a similar vein, our critical image dura-

ions supporting successful generic face recognition neatly overlap those

eported by a recent frequency-tagging investigation of this same face

unction that used full-colour images (instead of the greyscale images

e used here) and a completely orthogonal observer task ( Retter et al.,

020 ) (i.e., ∼33–50 ms vs . ∼33–42 ms). Together with the reliable lower

ound in individual observer thresholds in our Expt. 1, this consistency

f image duration thresholds across differences in task and stimulus

haracteristics underscores the robustness and automaticity of generic

ace recognition in the human brain. Put differently, it appears there

s indeed a hard limit to the minimum sensory input the human visual

ystem requires to discern faces from other natural categories – one that

oes not seem to be lowered by attentional facilitation or richer image

ignal ( Fabre-Thorpe, 2011 ). 

In contrast to the extremely brief exposures enabling successful

eneric face recognition, comparatively longer image durations have

een implicated in identity-level face recognition. One study showed

hat 6-way identity discrimination was no better than chance for

masked) image durations of 17 ms and 33 ms, but increased markedly

rom 50 ms upward ( Tanskanen et al., 2007 ). Elsewhere, the tempo-
11 
al processing capacity for face identification (one image per identity)

as been estimated at 10 Hz, with 100 ms exposure providing suffi-

ient inspection time for observers to distinguish recently learned faces

rom novel distractor ones ( Näsänen et al., 2006 ). Yet since the dura-

ion threshold reported by this study corresponded to an arbitrary per-

ormance level (79%), it is likely that this 100 ms estimate represents

either the minimal nor the optimal image duration for face identifi-

ation. Indeed, no study to date has conclusively established the mini-

um viewing time required for successful recognition of highly familiar

i.e., famous) faces. The data presented here indicate that this temporal

hreshold is, on average, very low (i.e., 50–83 ms), and that the infor-

ational dependency of familiar face recognition varies rather widely

cross individuals. 

What gives rise to the wide distribution of familiarity thresholds in

ur data? From our perspective, this variability is unlikely to have re-

ulted from differing degrees of famous identity familiarity in our par-

icipant sample, for two reasons. First, our separate stimulus prescreen-

ng experiment demonstrates that recognition rates for these specific

amiliar identities are very much at ceiling in our test population (see

igure S2 in Supplemental materials). Second, we took the extra step

f excluding participants who performed < 2.5 SD below average on

he post-sequence 2AFC task (1 subject in Expt 1; 2 subjects in Expt

). Although clearly not designed to be a sensitive index of (overt) fa-

iliar face recognition, removing poor performers on this simple task

oes to some extent guard against the possibility that globally “poor

ecognizers ” account for the right tail of our familiar face recognition

hreshold distribution. Moreover, we found no compelling evidence for

 systematic relationship between participants’ neural thresholds for
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amiliar face recognition and their performance on the post-sequence

dentity recognition task (see Figure S5 in supplemental materials). As

uch, a clear target for follow-up investigation are the factors driving

igh variability in sensory input requirements for recognising identity,

hich could include differences in the way observers encode specific

isual features of certain identities, or in the strength of our semantic

ssociations for those people. 

One important question that could arise in considering our data is

hether we can reasonably draw conclusions about the informational

equirements of familiar face recognition given that our familiarity in-

ex is based on a subtraction of signals that reflect face vs. nonface cate-

orisation. Crucial to note here is that while the presence of a significant

esponse at the face presentation frequency acts as a functional marker

f successful generic face categorisation (since this 1 Hz signal will only

rise if the neural response elicited by faces differs consistently from that

licited by nonfaces), the face-selective response itself inherently con-

ains much more information than just perceptual category. Onsetting

round 100 ms post stimulus, this complex response lasts around 420 ms

nd unfolds over four component time-windows from posterior to an-

erior occipitotemporal regions ( Retter and Rossion, 2016 ; Jonas et al.,

016 ). As such, indexing familiarity representations by subtracting the

uantified face-selective responses for familiar and unfamiliar faces is

ot only valid, but specifically advantageous insofar as it ensures we ex-

mine how Familiarity modulates only face-selective neural activity. To

he best of our knowledge, ours is the first study to achieve this. At the

ame time, however, it should be noted that the viewing time threshold

e report here (i.e., 50–83 ms) pertains to recognising face familiarity

n the context of visually dissimilar distractors (akin to unexpectedly

ncountering a face in the environment). Distinguishing familiar and

nfamiliar faces directly within a periodicity based design (e.g., UU-

UFUUUUF…) ( Yan and Rossion, 2020 ) would likely demand a longer

inimum exposure duration due the high stimulus similarity and result-

ng increased masking (akin to recognising a familiar face in a crowd of

eople). 

.2. The lowest spatial frequencies supporting generic face recognition vs. 

amiliar face recognition 

Alongside image duration manipulations, face recognition research

lso has a long history of impoverishing faces by selectively removing

ontent at certain spatial scales (i.e., spatial frequencies, SFs) ( Ruiz-

oler and Beltran, 2006 ; Morrison and Schyns, 2001 ) – a manipula-

ion thought to correspond to testing the distance at which faces can

e recognised ( Loftus and Harley, 2005 ). Previous studies using explicit

ategorisation tasks have reported diagnostic SF bandwidths for various

spects of face categorisation, to date largely focussing on higher-level

orms of recognition (e.g., identity, emotional expression, gender, etc.).

n contrast, investigations of critical SFs for recognising a face as a face

ave been much rarer ( Harel and Bentin, 2009 ). Our Expt. 2 results

ake an important contribution in this regard, establishing the relative

nvolvement of SF content for both the basic and finer recognition of a

ace within the same individuals, at the same face encounters. 

In terms of generic face recognition, the ultra-coarse information

hreshold in Expt. 2 (i.e., 2.5 – 4.5 cpf) is consistent with prior stud-

es that have emphasised the importance of low SFs for this function

 Owsley and Sloane, 1987 ; Goffaux et al., 2003 ), albeit using more sim-

listic indices of this process (e.g., contrasting faces with just a single

ther category, such as cars). To date, only one other study has manip-

lated SF content for generic face recognition in the context of multiple

aturalistic visual categories ( Quek et al., 2018 ). In our previous work,

e demonstrated that the brain can achieve this function based on im-

ges containing less than 5 cycles per image (corresponding to < 2 cpf).

ogether with the current results, these findings suggest that discrimi-

ating faces from nonfaces in natural environments depends on detect-

ng the global structure of a face, rather than individual facial features
12 
hich are not yet evident at the coarse spatial resolution of threshold

mages (see Fig. 4 D). 

In contrast to generic face recognition, the contribution of different

patial scales to familiar face recognition has received comparatively

reater attention, with general agreement that the critical SF band-

idth supporting identity-related face tasks comprises midrange val-

es between 8 and 16 cpf ( Näsänen, 1999 ; Gold et al., 1999 ). How-

ver, these studies have largely focused on identifying the optimal SF

ange for familiar face recognition, comparing performance for differ-

nt bandpass-filtered versions of the exact same face stimuli (typically

ust one full-frontal image per identity, presented without any exter-

al features). In contrast, we focused here on identifying the minimal

mount SF content capable of driving successful familiar face recogni-

ion. We filtered images with a progressively increasing low-pass cutoff

hat enabled us to track the impact of cumulatively-integrated SF infor-

ation on generic and familiar face recognition, mimicking coarse-to-

ne information processing in naturalistic vision ( Quek et al., 2018 ).

his approach diverges from other methodologies that are optimised

or probing the related (but distinct) issue of which specific features

ithin a given SF range are diagnostic for functional categorisations of

 face ( Gosselin and Schyns, 2001 ; Dakin and Watt, 2009 ; Pachai et al.,

018 ). Where the latter techniques are classically used in conjunction

ith both explicit (overt) categorisation tasks and/or highly normalised,

ull-frontal view faces, our approach enabled us to capture naturally-

rising categorisations of unsegmented faces, preserving an important

spect of recognizing faces in natural environments, i.e., figure-ground

egmentation. Unexpectedly, this approach revealed a degree of overlap

n the coarse spatial resolutions (i.e., ∼3.5 cpf) capable of driving both

uccessful generic and familiar face recognition in some individuals. Im-

ortantly, however, the fact that familiar face recognition can proceed

ased on highly degraded visual input does not imply that this process

s optimally subserved by such limited image information. Rather, in

he same way that finer-scale information improves the recognition of

he stimulus as a face ( Halit et al., 2006 ), the addition of high SF de-

ails likely serves to refine face identity representations, accentuating

he difference between familiar and unfamiliar faces ( Sergent, 1986 ).

he rising familiar recognition response profiles in our own data sug-

est this is indeed the case. 

.3. Broader implications and future directions 

At a broader level, the current findings can be contextualised

ithin the coarse-to-fine visual processing framework ( Morrison and

chyns, 2001 ; Sergent, 1986 ; Goffaux et al., 2011 ; Hegdé, 2008 ),

herein limiting the temporal exposure of full-spectrum (i.e., unfiltered)

mages essentially serves to constrain the spatial scales the observer is

ble to extract while the image is onscreen. In this way, our two manip-

lations of face information and resulting findings potentially represent

wo sides of the same coin: upon encountering a face, the human visual

ystem may rapidly extract its (coarse) global structure that suffices to

istinguish it from other object categories, with more fine-grained sen-

ory cues that facilitate familiarity recognition being more gradually

ccumulated. Note, however, that the threshold offset between the two

ecognition functions should not imply that these phenomena represent

ifferent points on the same general evidence accumulation profile. That

s, we do not consider familiar face recognition to be a simple extension

f processes supporting generic face recognition, particularly since it is

lear that the former necessarily involves access to an observer’s long-

erm memory representations of that identity. Rather, processes support-

ng the two functions may operate in parallel, and could potentially even

e sub-served by partly different neural substrates, as their dissociation

n cases of acquired prosopagnosia alludes to ( Rossion et al., 2011 ). Our

ata hint at this possibility, insofar as distinguishing faces from nonfaces

ainly activated right-lateralised posterior sites, while recognising face

amiliarity appeared to recruit a more bilateral network. In particular,

t the individual threshold points for familiar face recognition, familiar
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G  
aces seemed to engage both the left and right OT regions, where unfa-

iliar faces predominantly activated only right OT. However, given the

imited spatial resolution of EEG, it is clear that future studies combining

he current approach with intracerebral recordings or fMRI ( Gao et al.,

018 ) will be important to clarify this outstanding issue. In the same

ein, high spatial resolution measures could also be used to determine

he overlap in neural populations driving the selective response to fa-

iliar and unfamiliar faces at the generic recognition threshold. That

s, while the magnitude of the face-selective response evoked during fa-

iliar and unfamiliar sequences is similar enough to result in identical

eneric face categorisation identical thresholds, the neural populations

hat give rise to the two responses we measure here with EEG could well

e distinct (e.g., already tightly clustered for familiar and more diffuse

or unfamiliar). 

Finally, although we might have expected to find a systematic rela-

ionship between an individual observer’s sensory input thresholds, in

act observers in both experiments exhibited highly consistent thresh-

lds for generic face recognition compared with more variable thresh-

lds for familiar face recognition. To the best of our knowledge, this

elative difference in individual variance is a novel empirical observa-

ion with important implications for the neurofunctional basis of each

rocess. That generic face recognition proceeds based on extremely im-

overished information underlines the “hardwired ” nature of this func-

ion – a process that both develops early ( de Heering and Rossion, 2015 )

nd appears robust to brain lesions that otherwise severely impair famil-

ar face recognition ( Busigny et al., 2010 ). In contrast, the maturation of

ace identity processing, including familiar face recognition, is still much

ebated ( Crookes and McKone, 2009 ; Germine et al., 2011 ) given the

ide inter-individual variability in this function ( Behrmann and Avi-

an, 2005 ; Russell et al., 2009 ). Related to this point, a small subset

f our sample actually exhibited a lower sensory threshold for success-

ul familiar face recognition than generic face recognition. While these

negative ” offsets should be interpreted with caution (since they may re-

ect signal-to-noise fluctuations associated with quantifying responses

t the single-subject level), it is nevertheless interesting to speculate

hether some individuals might detect the familiarity of a stimulus re-

ardless of its visual category. Ascertaining whether these patterns rep-

esent a true functional phenomenon will necessitate probing the func-

ional relevance of the neural thresholds reported here, by directly re-

ating them to behavioural outcomes. 

. Conclusion 

Effective social behaviour in the real world depends on our ability to

fficiently categorise a face along multiple dimensions (e.g., sex, emo-

ion, identity, etc.) at once. How the human brain achieves these man-

fold aspects of categorisation within individual face encounters is not

et well understood. Here we characterized the relative informational

ependencies – quantified in space and time – of two critical recog-

ition functions evoked at every face encounter: generic and familiar

ace recognition. We show that the sensory evidence required by the

uman brain to distinguish faces from other categories is systematically

ower than that required to recognise faces we know, and that informa-

ional thresholds supporting familiarity recognition vary widely across

bservers. These findings underscore the neurofunctional distinctions

etween these two recognition functions - generic face recognition be-

ng robust in terms of its minimal sensory input requirements and low

nter-individual variability, relative to the more demanding and idiosyn-

ratic processes of familiar face recognition. 
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