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Asymptotic Performance Analysis of Subspace Adaptive

Algorithms Introduced in the Neural Network Literature.

Jean-Pierre Delmas ∗ Florence Alberge †

Abstract

In the neural network literature, many algorithms have been proposed for estimating the eigen-

structure of covariance matrices. We first show that many of these algorithms, when presented in a

common framework, show great similitudes with the gradient-like stochastic algorithms usually en-

countered in the signal processing literature. We derive the asymptotic distribution of these different

recursive subspace estimators. A closed-form expression of the covariances in distribution of eigenvec-

tors and associated projection matrix estimators are given and analyzed. In particular, closed-form

expressions of the mean square error of these estimators are given. It is found that these covariance

matrices have a structure very similar to those describing batch estimation techniques. The accuracy

of our asymptotic analysis is checked by numerical simulations, and it is found to be valid not only

for a ”small” step size but in a very large domain. Finally, convergence speed and deviation from

orthonormality of the different algorithms are compared and several tradeoffs are analyzed.

1 Introduction

Over the past decade, adaptive estimation of subspaces of covariance matrices has been applied success-

fully in signal processing to high resolution spectral analysis and, more recently, to the so-called subspace
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approach that is used in blind identification of multichannel FIR filters [1]. At the same time, many neu-

ral network realizations have been proposed for the statistical technique of principal component analysis

in data compression and feature extraction as well as for optimal fitting in the total least square sense.

Among these realizations, several stochastic approximation gradient-like algorithms were proposed by

authors in the neural network community. These algorithms have been studied from two points of view

only: on the one hand, their neural implementation, and, on the other hand, their convergence analysis in

a decreasing step size situation, using the stability study of the associated ordinary differential equation

(ODE), see [2], [3] and the references therein. A classic paper on the practical numerical algorithms

is [4]. In a constant step size situation, it has been shown [5] that the sequence of estimates can be

approximated by the associated ODE, in the sense of weak convergence of random processes as the step

size tends to zero. However, the analysis of their asymptotic performance has not yet been studied. The

purpose of this paper is to use the approach developed in [6], [7], and [8] to study the more common

adaptive algorithms introduced in the neural network literature.

This paper is organized as follows. In Section 2, we give an overview of the main subspace adaptive

algorithms introduced in the neural network literature. These algorithms are presented in a common

framework and connections to some signal processing algorithms are highlighted. These algorithms are

grouped into two families; in the first one, the estimates converge to eigenvectors, and in the second

one, a global convergence to a set of orthonormal bases of an eigenspace is achieved. In Section 3, after

presenting a brief review of a general Gaussian approximation result, we shall focus exclusively on the first

family in this paper, while a study of the second family will be the subject of a forthcoming paper. Closed-

form expressions of the covariance in the limiting distributions of the eigenvector estimators in a constant

step size environment are given by solving Lyapunov equations. Then, thanks to a continuity theorem,

closed-form expressions of the covariance in the limiting distributions of the associated projection matrices

are derived. These expressions are further analysed, compared with those obtained in batch estimation

and some by-products as mean square errors are further derived. Finally we present in Section 4 some
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simulation results with two purposes. First, we examine the accuracy of the expressions of the mean

square error of eigenvectors and subspace projection matrix estimators, and investigate the domain of the

step size for which the asymptotic approach is valid. Second, we examine performance criteria for which

no general results are avalaible, such as the speed of convergence or the deviation from orthonormality.

We evaluate the speed of convergence of the algorithms under study and lastly analyse several tradeoffs

between the mean square error, the speed of convergence and the deviation from orthonormality.

The following notations are used throughout the paper. Matrices and vectors are represented by bold

uppercase and boldlower case characters, respectively. Vectors are by default in column orientation. eni

is the ith unit vector in Rn. T stands for transpose and I is the identity matrix. E(.),Cov(.),Tr(.)

and ‖ . ‖Fro denote the expectation, the covariance, the trace operator and the Frobenius matrix norm,

respectively. Vec(.) is the “vectorization” operator that turns a matrix into a vector consisting of the

columns of the matrix stacked one below another. It is used in conjunction with the Kronecker product

A ⊗ B as the block matrix, the (i, j) block element of which is ai,jB. Diag(a1, . . . , an) is a diagonal

matrix with diagonal elements ai and Diag(A1, . . . ,An) is a block diagonal matrix with block-diagonal

matrices Ai. The symbol 1A denotes the indicator function of the condition A, that assumes the value 1

if this condition is satisfied and 0 otherwise.

2 Review of the algorithms under study

2.1 General structure

For a given n × n covariance matrix Rx = E(xxT ) of a Gaussian distributed, zero mean real random

vector x, denote by λ1 ≥ . . . ≥ λn the eigenvalues of Rx and by v1, . . . ,vn corresponding normalized

eigenvectors. We tackle two kinds of problems. On the one hand, we are interested in adaptively

estimating r normalized eigenvectors corresponding to the r largest [or smallest] distinct eigenvalues

(λ1, . . . , λr) [resp. λn−r+1, . . . , λn] of Rx. And on the other hand, we only consider the recursive updating

of an (approximately) orthonormal basis of an r-dimensional dominant [or minorant] invariant subspace
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of Rx, where we only have to assume λr > λr+1 [resp. λn−r > λn−r+1]. Most of the stochastic algorithms

introduced in the neural network community for estimating such eigenvectors or eigenspaces can be

described in a common framework. They can be derived as a stochastic approximation algorithm, which

can be seen as a counterpart of the “simultaneous iteration method” of numerical analysis [9]. This

stochastic approximation algorithm reads

W′
t+1 = Wt + RtWtΓt (2.1)

Wt+1 = W′
t+1S

−1
t+1 (2.2)

in which Wt = (wt,1, . . . ,wt,r) ∈ Rn×r is a matrix, the columns wt,k ∈ Rn of which are orthonormal

and approximate r dominant eigenvectors of Rx. In (2.1), the matrix Γt is the usual r × r diagonal

gain matrix of stochastic approximation. We assume that Γt = γtIr except in one algorithm, where

Γt = γtDiag(1, α2, . . . , αr) with αi > 0 is used in order to take into account a better tradeoff between

the misadjustment and the speed of convergence. We suppose that the gain sequence γt satisfies the

conditions:
∑∞
t=1 γt = +∞ and limt→+∞ γt = 0. The matrix Rt in (2.1) is an estimate of the covariance

matrix Rx. In all this paper, we shall use for Rt the instantaneous estimate xtx
T
t .

In (2.2), St+1 is a matrix depending on W′
t+1, which orthonormalizes the columns of W′

t+1. Thus,

Wt has orthonormal columns for all t. Depending on the form of matrix St+1, variants of the basic

stochastic algorithm are obtained.

2.2 Dominant invariant subspace algorithms

Since the main problem addressed by the adaptive subspace algorithms introduced in the neural network

literature is principal component analysis, these authors focused their attention on the dominant invariant

subspace algorithms.
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2.2.1 Algorithm converging to a rotated basis of an eigenvector subspace

The matrix St+1 orthonormalizes the columns of W′
t+1 in (2.2) in a symmetrical way. Since Wt has

orthonormal columns, for small γt the columns of W′
t+1 in (2.1) will be linearly independent, although

not orthonormal. Then W′T
t+1W

′
t+1 is positive definite, and Wt+1 will have orthonormal columns if

St+1 = (W′T
t+1W

′
t+1)1/2. A stochastic algorithm denoted Subspace Network Learning (SNL) is obtained

when, assuming γt is small, S−1
t+1 is expanded and when the term O(γ2

t ) is omitted from its expansion.

The algorithm reads

Wt+1 = Wt + γt[In −WtW
T
t ]xtx

T
t Wt, (2.3)

which can be written columnwise:

wt+1,k = wt,k + γt[In −
r∑
i=1

wt,iw
T
t,i]xtx

T
t wt,k for k = 1, . . . , r. (2.4)

The convergence of this algorithm has been earlier studied in [10] and then in [11], where it is shown that

the solution of its associated ODE needs not tend to the eigenvectors v1, . . . ,vr, but only to a rotated

basis of the subspace spanned by them.

Written in the form Wt+1 = Wt + γt[xtx
T
t −WtW

T
t xtx

T
t ]Wt, the SNL algorithm is quite similar to

the algorithm presented by Yang [12] and further analyzed in [13]. This latter algorithm is a stochastic

gradient algorithm based on the unconstrained minimization of E‖xt −WWTxt ‖2Fro, and it reads:

Wt+1 = Wt + γt[2xtx
T
t − xtx

T
t WtW

T
t −WtW

T
t xtx

T
t ]Wt, (2.5)

in which the term between brackets is the symmetrization of the term xtx
T
t −WtW

T
t xtx

T
t of the SNL

algorithm. In [12], it is shown that like the SNL algorithm, the globally asymptotically stable solution

of the associated ODE to (2.5) is the set of the orthonormal bases of the r-dominant invariant subspace

of Rx.
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2.2.2 Algorithms converging to an eigenvector basis

Another starting point for deriving practical algorithms from (2.1) and (2.2) is that the matrix St performs

the Gram-Schmidt orthogonalization on the columns of W′
t. An algorithm, denoted Stochastic Gradient

Ascent (SGA) algorithm, is obtained if the successive columns of matrix Wt+1 are expanded, assuming

γt small enough. By omitting the O(γ2
t ) term in this expansion, we obtain

wt+1,k = wt,k + γt[In −wt,kw
T
t,k − 2

k−1∑
i=1

wt,iw
T
t,i]xtx

T
t wt,k for k = 1, . . . , r. (2.6)

An extension of this algorithm is obtained if Γt = γtDiag(α1, α2, . . . , αr) with α1 = 1 and αi > 0,

wt+1,k = wt,k + αkγt[In −wt,kw
T
t,k −

k−1∑
i=1

(1 +
αi
αk

)wt,iw
T
t,i]xtx

T
t wt,k for k = 1, . . . , r. (2.7)

The so called Generalized Hebbian Algorithm (GHA) is derived from the SNL algorithm (2.3) by

replacing the matrix WT
t xtx

T
t Wt of the SNL algorithm by its diagonal and superdiagonal only:

Wt+1 = Wt + γt[xtx
T
t Wt −Wtupper(WT

t xtx
T
t Wt)] (2.8)

in which the operator “upper” sets all subdiagonal elements of a matrix to zero. When written column-

wise, this algorithm is similar to the SGA algorithm (2.6), with the difference that there is no coefficient

2 in the sum:

wt+1,k = wt,k + γt[In −
k∑
i=1

wt,iw
T
t,i]xtx

T
t wt,k for k = 1, . . . , r. (2.9)

Oja et al [16] proposed an algorithm denoted Weighted Subspace Algorithm (WSA), which is similar

to the SNL algorithm, except for the scalar parameters β1, . . . , βr:

wt+1,k = wt,k + γt[In −
r∑
i=1

βk
βi

wt,iw
T
t,i]xtx

T
t wt,k for k = 1, . . . , r, (2.10)

with 0 < β1 < . . . < βr. If βi = 1 for all i, this algorithm reduces to the SNL algorithm.

It was respectively established by Oja [14], Sanger [15] and Oja et al [17], that the only asymptotically

stable points of the ODE associated respectively to the SGA, GHA and WSA algorithms are the eigen-

vectors v1, . . . ,vr. We note that the first vector (k = 1) estimated by the SGA and GHA algorithms,
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and the vector (r = k = 1) estimated by the SNL and WSA algorithms gives the Constrained Hebbian

learning rule of the basic PCA neuron introduced by Oja [18]

wt+1,1 = wt,1 + γt[In −wt,1w
T
t,1]xtx

T
t wt,1. (2.11)

This algorithm also coincides with the algorithm denoted Direct Adaptive Subspace Estimator, which was

proposed by Riou et al [19] for k = 1. This latter algorithm reads

wt+1,k = wt,k + γt[In − (In −
k−1∑
i=1

wt,iw
T
t,i)(wt,kw

T
t,k)]xtx

T
t wt,k for k = 1, . . . , r, (2.12)

and converges, after normalization of wt,k for all k, k > 1, to the eigenvectors v1, . . . ,vr.

2.3 Minorant invariant subspace algorithm

Minor component analysis was also considered in neural network to solve the problem of optimal fitting

in the total least square sense. Xu et al. [20] introduced the Optimal Fitting Analyzer (OFA) algorithm

by modifying the SGA algorithm. This algorithm reads

wt+1,k = wt,k+γt[In−xtx
T
t +wt,kw

T
t,kxtx

T
t −wt,kw

T
t,k−β

n∑
i=k+1

wt,iw
T
t,ixtx

T
t ]wt,k for k = n−r+1, . . . , n.

(2.13)

Oja [2] showed that, under the conditions that the eigenvalues are distinct, and that

λn−r+1 < 1 and β >
λn−r+1

λn
− 1, (2.14)

the only asymptotically stable points of the associated ODE are the eigenvectors vn−r+1, . . . ,vn. Note

that the magnitude of the eigenvalues must be controlled in practice by normalizing xt so that the

expression between brackets in (2.13) becomes homogeneous.

3 Asymptotic performance analysis

3.1 A short review of a general Gaussian approximation result

In this section, we evaluate the asymptotic distributions of eigenvector and subspace projection matrix

estimators given by the previous algorithms. For this purpose, we shall use the following result [21, Th.
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2, p. 108]. Consider a constant step size recursive stochastic algorithm

Θt+1 = Θt + γf(Θt,xt) (3.15)

with xt = g(ξt), where ξt is a Markov chain independent of Θt. Suppose that the parameter vector Θt

converges almost surely to the unique asymptotically stable point Θ∗ in the corresponding decreasing

step size algorithm. Consider the continuous Lyapunov equation

DCΘ + CΘDT + G = O (3.16)

where D and G are, respectively, the derivative of the mean field and the covariance of the field of the

algorithm (3.15)

D
def
= E[

∂f

∂Θ
(Θ,xt)]Θ=Θ∗ , (3.17)

G
def
=

∞∑
t=−∞

Cov[f(Θ∗,xt), f(Θ∗,x0)]. (3.18)

If all the eigenvalues of the derivative D of the mean field have strictly negative real parts, then, in a

stationary situation, when γ → 0 and t→∞, we have the convergence in distribution

1
√
γ

(Θt −Θ∗)
L→ N (0,CΘ), (3.19)

where CΘ is the unique symmetric solution of the Lyapunov equation (3.16).

3.2 Asymptotic distributions of eigenvector estimators

To characterize the derivative of the mean field and the covariance of the field of the SGA, GHA, WSA

and OFA algorithms, we use the Vec operator which turns the n × r matrix W into the nr × 1 vector

parameter VecW. Thus the four algorithms (2.7), (2.9), (2.10) and (2.13), which read

wt+1,k = wt,k + γfk(Wt,xtx
T
t ) (3.20)

for k = 1, . . . , r [resp. k = n − r + 1, . . . , n] for the SGA, GHA, WSA [resp. OFA] algorithms, can be

written in a form similar to that of the equation (3.15):

VecWt+1 = VecWt + γf(VecWt,xtx
T
t ). (3.21)
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3.2.1 Local characterization of the field

Derivative of the field Let us denote by Di,j the (i, j) block E[
∂fi(W,xtxT

t )
∂wj

]W=W∗ of the nr × nr

block matrix D, for (i, j) ∈ {1, . . . , r}2 [resp. (i, j) ∈ {n − r + 1, . . . , n}2 ] of the SGA, GHA and WSA

[resp., OFA] algorithms. Since the field fk of definition (3.20) is linear in its second argument, the mean

field at any point W is simply

E(fi(W,xtx
T
t )) = fi(W,E(xtx

T
t )) = fi(W,Rx) (3.22)

If we note that

∂Rxwj

∂wj
= Rx, and

∂wiw
T
i Rxwj

∂wj
= wiw

T
i Rx for i 6= j

∂wjw
T
j Rxwi

∂wj
=


(wT

j Rxwi)In + wjw
T
i Rx for i 6= j

(wT
i Rxwi)In + 2wiw

T
i Rx for i = j

whose values at W = W∗ = (v1, . . . ,vr), are respectively, Rx, λiviv
T
i , λivjv

T
i and λiIn + 2λiviv

T
i , it is

easy to obtain the following results for the SGA, GHA, WSA and OFA algorithms, respectively

DSGA
i,j =



−αi[
∑i−1
k=1(λi + αk

αi
λk)vkv

T
k + 2λiviv

T
i +

∑n
k=i+1(λi − λk)vkvTk ] i = j

O i < j

−αi(1 +
αj

αi
)λivjv

T
i i > j

(3.23)

DGHA
i,j =



−[
∑i−1
k=1 λivkv

T
k + 2λiviv

T
i +

∑n
k=i+1(λi − λk)vkvTk ] i = j

O i < j

−λivjvTi i > j

(3.24)

DWSA
i,j =


−[

∑r
k=1
k 6=i

(λi − (1− βi
βk

)λk)vkv
T
k + 2λiviv

T
i +

∑n
k=r+1(λi − λk)vkvTk ] i = j

− βi
βj
λivjv

T
i i 6= j

(3.25)

DOFA
i,j =



∑i−1
k=1(λi − λk)vkvTk + 2(λi − 1)viv

T
i +

∑n
k=i+1(λi − (1 + β)λk)vkv

T
k i = j

−βλivjvTi i < j

O i > j

(3.26)

From these expressions, the following theorem is proved in the Appendix.
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Theorem 1 The eigenvalues of the derivative D of the mean field of the SGA, GHA and OFA algorithms

are strictly negative real, and those of the WSA algorithm have strictly negative real parts.

Covariance of the field In case the observations xt are independent, the covariance of the field (3.18)

evaluated in W = W∗ is an nr × nr block matrix G, the (i, j) block element of which is

Gi,j = E[fi(W∗,xtx
T
t )fTj (W∗,xtx

T
t )]. (3.27)

We note that the field fi(W∗,xtx
T
t ) reduces to a linear expression in xtx

T
t : Bixtx

T
t vi for the SGA, GHA

and WSA algorithms, and to an affine expression in xtx
T
t : ai + Bixtx

T
t vi for the OFA algorithm, with

Bi depending on the algorithm. Thanks to the classic property:

Vec(ABC) = (CT ⊗A)Vec(B), (3.28)

Bixtx
T
t vi = (vTi ⊗Bi)Vec(xtx

T
t ). Therefore, Gi,j reads

Gi,j = (vTi ⊗Bi)Cov(Vec(xtx
T
t ))(vj ⊗BT

j ), (3.29)

since moreover; (A⊗B)T = AT ⊗BT . Now, for a Gaussian vector x, we have [25, p. 57]

Cov(Vec(xxT )) = Rx ⊗Rx + (Rx ⊗Rx)K, (3.30)

where K is an n2 × n2 block matrix, acting as a permutation operator, in the sense that for any vector

a or matrix A and vector b, we have

K(a⊗ b) = b⊗ a and K(A⊗ b) = b⊗A. (3.31)

It follows that

Gi,j = (vTi ⊗Bi)(Rx ⊗Rx + (Rx ⊗Rx)K)(vj ⊗BT
j ), (3.32)

thanks to (3.31) and to the classic property

(A⊗B)(C⊗D) = (AC⊗BD). (3.33)
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Therefore, Gi,j becomes

Gi,j = vTi Rxvj ⊗BiRxB
T
j + vTi RxB

T
j ⊗BiRxvj

= λi1i=jBiRxB
T
j + λiλjv

T
i BT

j ⊗Bivj (3.34)

Last, taking into account the different values of Bi, and thanks to the relation vTi ⊗ vj = vjv
T
i , it is

straightforward to obtain the values of the blocks Gi,j for the SGA, GHA, WSA and OFA algorithms

respectively

GSGA
i,j =



∑i−1
k=1 α

2
kλiλkvkv

T
k +

∑n
k=i+1 α

2
iλiλkvkv

T
k ] i = j

−α2
iλiλjvjv

T
i i < j

−α2
jλjλivjv

T
i i > j

(3.35)

GGHA
i,j =


∑n
k=i+1 λiλkvkv

T
k i = j

O i 6= j

(3.36)

GWSA
i,j =


∑r
k=1 λiλk(1−

βi
βk

)2vkv
T
k +

∑n
k=r+1 λiλkvkv

T
k i = j

(1− βi
βj

)(1− βj
βi

)λiλjvjv
T
i i 6= j

(3.37)

GOFA
i,j =


∑i−1
k=1 λiλkvkv

T
k + (1 + β)2 ∑n

k=i+1 λiλkvkv
T
k i = j

(1 + β)λiλjvjv
T
i i 6= j

(3.38)

3.2.2 Solution of the Lyapunov equation

For independent observations xt and for the investigated algorithms, which can be written in a form

similar to (3.15) with ξt = xt for which the derivative of the mean field have strictly negative real parts

(Theorem 1), the hypotheses of the model of Benveniste et al ([21, Th. 2, p. 108]) are fulfilled. However,

the underlying assumption for the results by Benveniste et al is that the solution of the corresponding

stochastic approximation type algorithms with decreasing step size, almost surely converges to the unique

asymptotically stable solution of the associated ODE. Since the normalized eigenvectors are defined up

to a sign, the global attractor W∗ is not unique. However, the practical use of the Benveniste results in

such situation is usually justified (for example in [22]) by using formally a general approximation result
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([21, Th. 1, p. 107]). Furthermore, the almost sure convergence of the associated decreasing step size

algorithms are not strictly fulfilled for the SGA, GHA, WSA and OFA algorithms. This a.s. convergence

would need a boundedness condition, whose satisfaction is a challenging problem. However, as it is

discussed in [23], this condition was proved for only the algorithm (2.11), where Oja et al [24] showed

that if this algorithm is used with uniformly bounded inputs xt, then wt,1 remains inside some bounded

subset. If we allow ourselves the Benveniste results in our situation, the Lyapunov continuous equations

can be solved exactly. The following theorem is proved in the Appendix.

Theorem 2 The covariance matrices CW of the asymptotic distribution that appears in (3.19) read

CW =
∑

1≤i≤r
1≤k 6=i≤n

bk,i(e
r
ie
rT

i ⊗ vkv
T
k ) +

∑
1≤i 6=j≤r

ci,j(e
r
ie
rT

j ⊗ vjv
T
i ) (3.39)

with for the SGA, GHA, WSA and OFA algorithms respectively

bSGAk,i =
αkλiλk

2(λk − λi)
1k<i +

αiλiλk
2(λi − λk)

1k>i cSGAi,j = − αiλjλi
2(λi − λj)

1i<j −
αjλiλj

2(λj − λi)
1i>j (3.40)

bGHAk,i =
λ2
i

2(λk − λi)
1k<i +

λiλk
2(λi − λk)

1k>i cGHAi,j = −
λ2
j

2(λi − λj)
1i<j −

λ2
i

2(λj − λi)
1i>j(3.41)

bWSA
k,i = λiλkc

ki1k<i + λiλkb
ik1i<k≤r +

λiλk
2(λi − λk)

1k>r cWSA
i,j = λiλjd

ij1i<j + λiλjd
ji1i>j(3.42)

bOFAk,i =
λiλk

2(λk − λi)
1k<i + gik1k>i cOFAi,j = hij1i<j + hji1i>j , (3.43)

and where bij, cij, dij, gij and hij are defined in the proof. For the OFA algorithm, the two summations

are respectively over n− r + 1 ≤ i ≤ n, 1 ≤ k 6= i ≤ n and n− r + 1 ≤ i 6= j ≤ n.

Remark Of course, if k = r = 1, the covariance matrices CW of the SGA, GHA and WSA algorithms

coincide with the expression of the covariance matrix of the Oja rule as given by Yang [6, Eq. (26)]:

CW =
n∑
k=2

λ1λk
2(λ1 − λk)

vkv
T
k . (3.44)

For the WSA algorithm, we note that when βi tends to 1 for all i, bij , cij and dij tend to 0 from (B.30).

Therefore, CW tends to the finite value:

CW =
∑

1≤i≤r<k≤n

λiλk
2(λi − λk)

(erie
rT

i ⊗ vkv
T
k ), (3.45)
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whereas when βi = 1, for i = 1, . . . , r the WSA algorithm coincides with the SNL algorithm, which does

not converge to the eigenvectors. We will show in Section 4, that if CW keeps a finite value, the speed of

convergence worsens when all the parameters βi tend to 1. Since in many applications we are interested

in the associated projection matrix estimators Pt = WtW
T
t , we consider now its asymptotic distribution.

3.2.3 Asymptotic distributions of projection matrix estimators

The tool we use is a continuity theorem that can be directly adapted from the classic theorem (see [26,

Th. 6.2a p. 387]). Applying this theorem to the differentiable mapping W = (w1, . . . ,wr) → P =

∑r
k=1 wkw

T
k gives the asymptotic distribution of subspace projector matrix estimator Pt for the different

algorithms

1
√
γ

(Vec(Pt)−Vec(P∗))
L→ N (O,CP ), (3.46)

when γ → 0 and t→∞. In (3.46), P∗
def
=

∑r
k=1 vkv

T
k , and CP is equal to

CP =
dVec(P)

dVec(W)
CW

dTVec(P)

dVec(W) W=W∗

(3.47)

with

dVec(P)

dVec(W)
= (In ⊗w1 + w1 ⊗ In, · · · , In ⊗wr + wr ⊗ In). (3.48)

Of course, the previous results also apply to the OFA algorithm with W = (wn−r+1, . . . ,wn). Therefore

CP =
∑

1≤i,j≤r
(In ⊗ vi + vi ⊗ In)CWi,j (In ⊗ vTj + vTj ⊗ In) (3.49)

where CWi,j denotes the (i, j) block of the nr × nr block matrix CW . From Theorem 2

CWi,i =
∑

1≤k 6=i≤n
bk,ivkv

T
k and CWi,j = ci,jvjv

T
i . (3.50)

Thanks to (3.33) and the relation vjv
T
i = vj ⊗ vTi = vTi ⊗ vj , in case of the SGA, GHA or WSA

algorithms, (3.49) reads

CP =
∑

1≤i≤j≤n
(bj,i1i≤r<j + di,j1i<j≤r)(vi ⊗ vj + vj ⊗ vi)(vi ⊗ vj + vj ⊗ vi)

T (3.51)
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with di,j
def
= ci,j + cj,i + bi,j + bj,i. Of course, (3.51) also holds in case of the OFA algorithm, where the

two indicators are over j < n− r + 1 ≤ i and n− r + 1 ≤ i < j respectively. From the expressions of bi,j

and ci,j derived from (3.40), (3.41), (3.42) and (3.43), the terms di,j read for the SGA, GHA, WSA and

OFA algorithms, respectively:

bSGAj,i =
αiλiλj

2(λi − λj)
dSGAi,j = 0 (3.52)

bGHAj,i =
λiλj

2(λi − λj)
dGHAi,j =

λj
2

(3.53)

bWSA
j,i =

λiλj
2(λi − λj)

dWSA
i,j = λiλj(b

ij + cij + 2dij) (3.54)

bOFAj,i =
λiλj

2(λj − λi)
dOFAi,j =

λiλj
2(λi − λj)

+ 2hij + gij (3.55)

where bij , cij , dij , gij and hij are defined in the Proof of Theorem 2. For the WSA algorithm, we note

that when βi tends to 1 for all i, di,j tends to 0, because of (B.30). Therefore, CP which is given by

(3.51) tends to

CP =
∑

1≤i≤r<j≤n

λiλj
2(λi − λj)

(vi ⊗ vj + vj ⊗ vi)(vi ⊗ vj + vj ⊗ vi)
T , (3.56)

which is an expression that coincides with the covariance in distribution of the projection matrix estimator

of the Yang algorithm [8]. This property will be explained in a forthcoming paper.

3.3 Analysis of the results

First, the expressions (3.39), (3.51) and (3.56) can be compared with the covariances in the asymptotic

distributions obtained in batch estimation. We know from ([25, Th. 13.5.1 p. 541]) that if Wt =

(wt,1, . . . ,wt,r) denotes the eigenvector matrix computed from the eigenvalue decomposition of the sample

covariance matrix 1
t

∑t
k=1 xkx

T
k , then

√
t (Vec(Wt)−Vec(W∗))

L→ N (O,CW ) (3.57)

when t→∞, provided λ1, . . . , λr+1 are distinct. In (3.57), CW is equal to

CW =
∑

1≤i≤r
1≤k 6=i≤n

λiλk
(λi − λk)2

(eie
T
i ⊗ vkv

T
k )−

∑
1≤i 6=j≤r

λiλj
(λi − λj)2

(eie
T
j ⊗ vjv

T
i ) (3.58)
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in close similarity to (3.39). Similarly, if Pt =
∑

1≤i≤r wt,iw
T
t,i denotes the batch estimated orthogonal

projection matrix, we have, from [8]

√
t (Vec(Pt)−Vec(P∗))

L→ N (O,CP ) (3.59)

with

CP =
∑

1≤i≤r<j≤n

λiλj
(λi − λj)2

(vi ⊗ vj + vj ⊗ vi)(vi ⊗ vj + vj ⊗ vi)
T (3.60)

which is also in close similarity to (3.56) and to the first term of the summation (3.51). We note that

unlike the expression (3.39) for CW , (3.51) for CP is in fact an eigenvalue decomposition. This property

will be used further in the paper.

Second, a simple global measure of performance of our adaptive algorithms is the MSE between

Wt and W∗, and between Pt and P∗. These MSE can be obtained from the asymptotic distribution of

Vec(Wt) and of Vec(Pt), if we suppose that both the first and second moments of the limiting distribution

of 1√
γ (Wt −W∗) are equal to the corresponding asymptotic moments. In batch estimation, both the

first and second moments are identical ([27, Theorem 9.24 p. 343]). Motivated by this observation, we

postulate that this property also holds in our adaptive estimation. Therefore, ‖E(Wt) −W∗ ‖2Fro =

o(γ) and Cov(VecWt) = γCW + o(γ), and by expanding P around P∗, ‖E(Pt) − P∗ ‖2Fro = o(γ), and

Cov(VecPt) = γCP + o(γ). Thus the MSE between Wt and W∗ and between Pt and P∗ is given

respectively, by the trace of the covariance matrix in the asymptotic distribution of Wt and of Pt

E‖Wt −W∗ ‖2Fro = γTr(CW ) + o(γ) and E‖Pt −P∗ ‖2Fro = γTr(CP ) + o(γ). (3.61)

Since the trace is invariant under the orthonormal change of basis (B.1), Tr(CW ) = Tr(Σ′). From the

expressions of Σ′i1 and Σ′i,j2 given in the proof of Theorem 2, the trace of CW is equal respectively for

the SGA, GHA, WSA and OFA algorithms to

Tr(CW ) =
r∑
i=1

n∑
j=1
j 6=i

αmin(i,j)
λiλj

2|λj − λi|
(3.62)

=
r∑
i=1

n∑
j=1
j 6=i

λmax(i,j)λi

|λj − λi|
(3.63)
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=
∑

1≤i≤r<j≤n

λiλj
2(λi − λj)

+
∑

1≤i<j≤r
λiλj(b

ij + cij) (3.64)

=
1

2

n∑
i=n−r+1

i−1∑
j=1

λiλj
λj − λi

+
∑

n−r+1≤i<j≤n
gij . (3.65)

As for Tr(CP ), using (3.51) and the relation Tr(viv
T
j ⊗ vkv

T
l ) = 1i=j1k=l, we get respectively, for the

SGA, GHA, WSA and OFA algorithms

Tr(CP ) =
∑

1≤i≤r<j≤n
αi

λiλj
λi − λj

+ 0 (3.66)

=
∑

1≤i≤r<j≤n

λiλj
λi − λj

+
r∑
i=1

iλi (3.67)

=
∑

1≤i≤r<j≤n

λiλj
λi − λj

+ 2
∑

1≤i<j≤r
λiλj(b

ij + cij + 2dij) (3.68)

=
∑

1≤j<n−r+1≤i≤n

λiλj
λj − λi

+
∑

n−r+1≤i<j≤n

λiλj
λj − λi

+ 4hij + 2gij . (3.69)

Finally, a finer picture of the MSE of CP can be derived from the regular structure (3.51) of the covariance

matrix CP by decomposing the error Pt −P∗ into three terms

Pt −P∗ = P1,t + P2,t + P3,t, (3.70)

with

P1,t
def
= P∗(Pt −P∗)P∗, P2,t

def
= P∗PtP

⊥
∗ + P⊥∗ PtP∗, and P3,t

def
= P⊥∗ PtP

⊥
∗ . (3.71)

Using In = P∗ + P⊥∗ , this is easily seen to be an orthogonal decomposition:

‖Pt −P∗ ‖2Fro = ‖P1,t ‖2Fro + ‖P2,t ‖2Fro + ‖P3,t ‖2Fro. (3.72)

Since the closed-form expression (3.51) represents an eigenvalue decomposition with orthonormal eigen-

vectors
vi⊗vj+vj⊗vi√

2
, 1 ≤ i ≤ j ≤ n, we have:

CP =
∑

1≤i≤j≤n
2(bj,i1i≤r<j + di,j1i<j≤r)

(vi ⊗ vj + vj ⊗ vi)√
2

(vi ⊗ vj + vj ⊗ vi)
T

√
2

, (3.73)

and therefore, the three mean square error terms in the right-hand side of (3.72) read respectively, for

each of the four algorithms

E‖P1,t ‖2Fro = 2γ
∑

1≤i<j≤r
di,j + o(γ), (3.74)

16



E‖P2,t ‖2Fro = 2γ
∑

1≤i≤r<j≤n
bj,i + o(γ), (3.75)

E‖P3,t ‖2Fro = o(γ). (3.76)

Note that (3.74) reduces to o(γ) in case of the SGA algorithm. Note also that the formula (3.74) [resp.,

(3.75)] is equal to the first [resp., second] term of (3.66) (3.67) (3.68) (3.69), depending on the considered

algorithm. As for the OFA algorithm, these two sommations are respectively over n− r + 1 ≤ i < j ≤ n

and 1 ≤ j < n − r + 1 ≤ i ≤ n. We note that our first order performance analysis cannot determine

an equivalent expression for the deviation of orthonormality E‖WT
t Wt − Ir ‖2Fro. We show in Section 4,

that this MSE is (to the first order) proportional to γ for the GHA and OFA algorithms and to γ2 for

the WSA and SGA algorithm.

4 Simulations

We consider throughout this Section, the case n = 4, r = 2 associated with Rx = Diag(1.75, 1.5, 0.5, 0.25).

Clearly, the eigenvalues of Rx are 1.75, 1.5, 0.5 and 0.25 and the associated eigenvectors are eni , i =

1, . . . , 4. The entries of the initial value W0 are chosen randomly uniformly on [0,1], then w0,k, k = 1, . . . , 4

are normalized and all the learning curves averaged over 100 independent runs.

First of all, in order to compare the different algorithms studied, we consider the parameterized

algorithms only. Fig. 1 and Fig. 2 show the learning curves of the mean square error of Wt for the SGA

and WSA algorithms and of Pt for the SGA, WSA, and OFA algorithms respectively. We note that the

choice n−r = r allows us to compare the mean square errors of Pt for minorant and majorant algorithms.

For the different algorithms, the step size γ is chosen so as to provide the same value for, respectively,

γTr(CW ) and γTr(CP ). We select the values α2 = 1 and β2
β1

= 0.6 for estimating eigenvectors and α2 = 2,

β2
β1

= 0.9 and β = 5 for estimating projection matrices associated with the faster speed of convergence.

For these parameters, Fig. 3, [resp. 4] shows the learning curves of the mean square error of Wt [resp.,

Pt] and the learning curves of the associated deviation from orthonormality for these algorithms. We see

that the SGA algorithm is the fastest for estimating both eigenvectors and projection matrices.
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Fig. 5 shows the ratio of the estimated mean square error E‖Pt−P∗ ‖2Fro over the theoretical asymp-

totic mean square error γTr(CP ), as a function of γ, for the different algorithms studied. Our present

asymptotic analysis is seen to be valid over a large range of γ (γ < 0.01), and the domain of “stability”

is γ < 0.035 for which this ratio stays close to 1. This result supports our conjecture that the asymptotic

covariance matrices of our recursive eigenvectors estimators are identical to the covariance matrices in

the limiting distributions.

Finally, Fig. 6 shows that the deviation from orthonormality d2(γ)
def
= E‖WT

t Wt − Ir ‖2Fro is propor-

tional to γ [resp., to γ2] in the domain of validity of (3.61) for the GHA and OFA algorithms [resp., for

the WSA, SGA and Yang algorithms [8] ], because log10 d
2(γ) = log10 c+ α log10 γ with α = 1 or α = 2.

5 Conclusion

In this paper, we have derived closed-form expressions of the covariance in distribution of the estimators

of eigenvectors and of the associated projection matrix used in some adaptive gradient-like algorithms

introduced in the neural network literature, after presenting these algorithms in a common framework.

The asymptotic performances of these algorithms have been studied and closed-form expressions for the

MSE, simulations for the convergence speed and the deviation from orthonormality have been derived.

These results should prove useful in selecting the best algorithm for a given application and may also

serve to popularize such algorithms in the signal processing community.

A Proof of theorem 1

If U
def
= Diag(V, . . . ,V) denotes the nr×nr block diagonal orthonormal matrix with n×n block diagonal

V = (v1, . . . ,vn), the nr × nr matrix D of the SGA, GHA and OFA algorithms can be written as

D = U∆UT (A.1)
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where ∆ is an nr×nr triangular matrix. From (3.23),(3.24) and (3.26), the diagonal entries of the n×n

diagonal blocks ∆i,i of ∆ are, for the SGA, GHA and OFA algorithms respectively

(∆i,i)k,k = −αi[(λi + αk
αi
λk)1k<i + 2λi1k=i + (λi − λk)1k>i], k = 1, . . . , n i = 1, . . . , r

= −[(λi1k<i + 2λi1k=i + (λi − λk)1k>i], k = 1, . . . , n i = 1, . . . , r

= (λi − λk)1k<i + 2(λi − 1)1k=i + (λi − (1 + β)λk)1k>i, k = 1, . . . , n i = n− r + 1, . . . , n.

(A.2)

Thanks to the decreasing order of the eigenvalues λi, and to (2.14), (∆i,i)k,k < 0, and thus, the eigenvalues

of D are strictly negative real.

As for the WSA algorithm, ∆ is no longer a triangular matrix; rather, ∆ = ∆1 + ∆2, where ∆1 is

a diagonal matrix. The diagonal entries of the n× n diagonal blocks ∆1
i,i of ∆1 are

(∆1
i,i)k,k = −[(λi − (1− βi

βk
))1k<r,k 6=i + 2λi1k=i + (λi − λk)1k>r], k = 1, . . . , n. (A.3)

As for the block matrix ∆2, its (i, j) block has all its entries equal to zero, except the entry at the position

(j, i)

∆2
i,j = −λi

βi
βj

erje
rT

i . (A.4)

Consider the nr × nr orthonormal matrix U′, the columns of which come from a permutation of the

columns of U such that U′
def
= (U′1,U

′
2), where U′1 is the nr × (n − r + 1)r block diagonal matrix

Diag(V1, . . . ,Vr), with Vi
def
= (vi,vr+1, . . . ,vn), and where U′2 is the nr × (r − 1)r block matrix made

of the r(r−1)
2 matrices nr × 2 (eri ⊗ vj , e

r
j ⊗ vi) for all pairs (i, j) such that 1 ≤ i < j ≤ r. We note that

the particular ordering of these pairs is irrelevant for the following. Therefore

D = U′∆′U′T (A.5)

with

∆′ = Diag(∆′1,∆
′
2). (A.6)

In (A.6), ∆′1 is the (n− r + 1)r × (n− r + 1)r block diagonal matrix

∆′1 = Diag(∆′11 , . . . ,∆
′r
1 ) (A.7)
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with

∆′i1 = Diag(−2λi,−(λi − λr+1), . . . ,−(λi − λn)) (A.8)

and ∆′2 is the (r − 1)r × (r − 1)r block diagonal matrix

∆′2 = Diag(. . . ,∆′i,j2 , . . .) (A.9)

with

∆′i,j2 = −

 λi − (1− ai,j)λj λiai,j

λja
−1
i,j λj − (1− a−1

i,j )λi

 for 1 ≤ i < j ≤ r, (A.10)

and with ai,j
def
= βi

βj
< 1. If x′i,j and x′′i,j denote the eigenvalues of ∆′i,j2 , it is straightforward to see that

x′i,jx
′′
i,j = (λi − λj)((a−1

i,j − 1)λi − (ai,j − 1)λj) > 0 and x′i,j + x′′i,j = −(ai,jλj + a−1
i,j λi) < 0,

so that x′i,j and x′′i,j are either strictly negative real or conjugate complex with strictly negative real part.

Last, observing, that the eigenvalues of D are those of ∆′i1 and ∆′i,j2 , theorem 1 is proved.

B Proof of theorem 2

A closed-form expression of CW can be given thanks to the previous change of basis. With the orthonor-

mal basis U′ 1 defined in Theorem 1, we have:

D = U′∆′U′T , G = U′Γ′U′T and CW = U′Σ′U′T . (B.1)

On the basis U’, (3.16) reads

∆′Σ′ + Σ′∆′T + Γ′ = O (B.2)

where ∆′ and Γ′ have the same structure as above [see eq. (A.6), (A.7) and (A.9)]. More precisely, the

matrices ∆′i1 and ∆′i,j2 for the SGA, GHA, and OFA algorithms read, respectively

∆′i1 = Diag(−2αiλi,−αi(λi − λr+1), . . . ,−αi(λi − λn)) i = 1, . . . , r (B.3)

1for the OFA algorithm, U′1
def
= Diag(Vn−r+1, . . . ,Vn) with Vi

def
= (vi,v1, . . . ,vn−r) and U2

′ is the nr × (r − 1)r block

matrix made of the r(r−1)
2

matrices nr × 2 (er
i ⊗ vj , e

r
j ⊗ vi) for all pairs (i, j) such that n− r + 1 ≤ i < j ≤ n.
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∆′i,j2 = −

 αi(λi − λj) 0

αj(1 + αi
αj

)λj αj(λj + αi
αj
λi)

 1 ≤ i < j ≤ r (B.4)

∆′i1 = Diag[−2λi,−(λi − λr+1), . . . ,−(λi − λn)] i = 1, . . . , r (B.5)

∆′i,j2 = −

 λi − λj 0

λj λj

 1 ≤ i < j ≤ r (B.6)

∆′i1 = Diag[(λi − λ1), . . . , (λi − λn−r), 2(λi − 1)] i = n− r + 1, . . . , n (B.7)

∆′i,j2 =

 λi − (1 + β)λj −βλi

0 λj − λi

 n− r + 1 ≤ i < j ≤ n (B.8)

and for the SGA, GHA, OFA and WSA algorithms, the matrices Γ′i1 and Γ′i,j2 read, respectively

Γ′i1 = Diag(0, α2
iλiλr+1, . . . , α

2
iλiλn) i = 1, . . . , r (B.9)

Γ′i,j2 = α2
iλiλj

 1 −1

−1 1

 1 ≤ i < j ≤ r (B.10)

Γ′i1 = Diag(0, λiλr+1, . . . , λiλn) i = 1, . . . , r (B.11)

Γ′i,j2 = λiλj

 1 0

0 0

 1 ≤ i < j ≤ r (B.12)

Γ′i1 = Diag(λiλ1, . . . , λiλn−r, 0) i = n− r + 1, . . . , n (B.13)

Γ′i,j2 = λiλj

 (1 + β)2 (1 + β)

(1 + β) 1

 n− r + 1 ≤ i < j ≤ n (B.14)

Γ′i1 = Diag(0, λiλr+1, . . . , λiλn) i = 1, . . . , r (B.15)

Γ′i,j2 = λiλj

 (1− ai,j)2 (1− ai,j)(1− a−1
i,j )

(1− ai,j)(1− a−1
i,j ) (1− a−1

i,j )2

 1 ≤ i < j ≤ r (B.16)

Thus, the unique symmetric solution Σ′ of (B.2) is in the same form as ∆′ and Γ′, and (B.2) reduces to

uncoupled 1-D and 2-D Lyapunov equations. Therefore

Σ′ = Diag(Σ′1,Σ
′
2) (B.17)

where Σ′1 is the (n− r + 1)r × (n− r + 1)r block diagonal matrix

Σ′1 = Diag(Σ′11 , . . . ,Σ
′r
1 ), [resp., Diag(Σ′n−r+1

1 , . . . ,Σ′n1 ), for the OFA algorithm] (B.18)
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and Σ′2 is the (r − 1)r × (r − 1)r block diagonal matrix

Σ′2 = Diag(. . . ,Σ′i,j2 , . . .) (B.19)

with Σ′1 and Σ′2 solutions of uncoupled 1-D and 2-D Lyapunov equations, respectively. In particular, Σ′1

is the unique symmetric solution of the diagonal n− r + 1-dimensional Lyapunov equation:

∆′i1Σ′i1 + Σ′i1∆′i1
T

+ Γ′i1 = O. (B.20)

Thus, making use of (B.9)-(B.3), (B.11)-(B.5), (B.13)-(B.7), and (B.15)-(A.8), Σ′i1 reads respectively for

the SGA, GHA, OFA and WSA algorithms

Σ′i1 = Diag[0, αi
λiλr+1

2(λi − λr+1)
, . . . , αi

λiλn
2(λi − λn]

) i = 1, . . . , r (B.21)

= Diag[0,
λiλr+1

2(λi − λr+1)
, . . . ,

λiλn
2(λi − λn)

] i = 1, . . . , r (B.22)

= Diag[
λiλ1

2(λ1 − λi)
, . . . ,

λiλn−r
2(λn−r − λi)

, 0] i = n− r + 1, . . . , n (B.23)

= Diag[0,
λiλr+1

2(λi − λr+1)
, . . . ,

λiλn
2(λi − λn)

] i = 1, . . . , r (B.24)

and Σ′i,j2 is the unique symmetric solution of the triangular 2-D Lyapunov equation:

∆′i,j2 Σ′i,j2 + Σ′i,j2 ∆′i,j2

T
+ Γ′i,j2 = O (B.25)

the solution of which, thanks to (B.4), (B.10), (B.6), (B.12) and (A.10), (B.16), in case of the SGA, GHA

and OFA algorithms, is respectively

Σ′i,j2 =
αiλiλj

2(λi − λj)

 1 −1

−1 1

 (B.26)

=
λj

2(λi − λj)

 λi −λj

−λj λj

 (B.27)

=

 gij hij

hij
λiλj

2(λi−λj)

 (B.28)
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with gij
def
= − λiλj

2(λi−(1+β)λj) [(1 + β)2 − 2λi
λj

(1 + β + βλi
2(λj−λi))] and hij

def
= λi

β (1 + β − βλi
2(λi−λj)) . As for the

WSA algorithm, since (B.25) is no longer triangular, Σ′i,j2 reads after some tedious calculus

Σ′i,j2 = λiλj

 bij dij

dij cij

 , (B.29)

with

bij =
2λiai,jd

ij − (1− ai,j)2

2(λj(1− ai,j)− λi)
, cij =

2λja
−1
i,j d

ij − (1− a−1
i,j )2

2(λi(1− a−1
i,j )− λj)

, (B.30)

and with dij
def
= − (1−ai,j)2a−1

i,j (λ2i (2a−1
i,j−1)+λ2j (2ai,j−1)+λiλj(4−ai,j−a−1

i,j ))

2(λjai,j+λia
−1
i,j )(λ2i (a−1

i,j−1)+λ2j (ai,j−1)+λiλj(2−ai,j−a−1
i,j ))

.

Putting together the results (B.21)-(B.26), (B.22)-(B.27), (B.23)-(B.28) and (B.24)-(B.29), and thanks

to (B.1), Theorem 2 is proved.
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Figure 1: Learning curves of the mean square error E‖Wt−W∗ ‖2Fro averaging 100 independent runs for

respectively the SGA [resp. WSA] algorithm for different values of parameter α2 = 10 (1), 0.5 (2), 2 (3),

1 (4), [resp. β2
β1

= 0.96 (1), 0.9 (2), 0.1 (3), 0.2 (4), 0.4 (5), 0.6 (6)], compared to γTr(CW ) (0).
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Figure 2: Learning curves of the mean square error E‖Pt −P∗ ‖2Fro averaging 100 independent runs for

respectively the SGA [resp. WSA and OFA] algorithms for different values of parameter α2 = 10 (1), 0.5

(2), 1 (3), 2 (4) [resp. β2
β1

= 0.1 (1), 0.2 (2), 0.6 (3), 0.9 (4), β = 2.5 (1), 10 (2), 3 (3), 5 (4)], compared

to γTr(CW ) (0).
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Figure 3: Learning curves of the mean square error E‖Wt −W∗ ‖2Fro and deviation to orthonormality

E‖WT
t Wt − Ir ‖2Fro averaging 100 independent runs for respectively WSA algorithm β2

β1
= 0.6 (1), GHA

algorithm (2) and SGA algorithm α2 = 1 (3), compared to γTr(CW ) (0).
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Figure 4: Learning curves of the mean square error E‖Pt − P∗ ‖2Fro and deviation to orthonormality

E‖WT
t Wt − Ir ‖2Fro averaging 100 independent runs for respectively OFA algorithm β = 5 (1), GHA

algorithm (2), WSA algorithm β2
β1

= 0.9 (3) SGA algorithm α2 = 2 (4), compared to γTr(CW ) (0).
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Figure 5: Ratio of the estimated mean square error E‖Pt−P∗ ‖2Fro by averaging 400 independent runs to

the theoretical asymptotic mean square error γTr(CP ) as a function of γ for the SGA algorithm α2 = 2,

the GHA algorithm, the WSA algorithm β2
β1

= 0.9 and the OFA algorithm β = 5.
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Figure 6: Deviation from orthonormality d2(γ)
def
= E‖WT

t Wt − Ir ‖2Fro at “convergence” estimated by

averaging 100 independent runs as a function of γ in log-log scales for the Yang (1), SGA (2), GHA (3),

WSA (4), OFA (5) algorithms.
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