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ABsTRACT. In this work, we study the stability of a one-dimensional Timoshenko system with localized internal fractional kelvin-
Voigt damping in a bounded domain. First, we reformulate the system into an augmented model and using a general criteria
of Arendt-Batty we prove the strong stability. Next, we investigate three cases: the first one when the damping is localized in
the bending moment, the second case when the damping is localized in the shear stress, we prove that the energy of the system
decays polynomially with rate t—! in both cases. In the third case, the fractional Kelvin-Voigt is acting on the shear stress and

—4
the bending moment simultaneously. We show that the system is polynomially stable with decay rate of type t2—«. The method
is based on the frequency domain approach combined with multiplier technique.
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1. INTRODUCTION

We consider the Timoshenko beams subject to a feedback control combines the fractional and the Kelvin-
Voigt type. The fractional derivative here is of type Caputo and it is defined by:

1 t dw
L1 D] (z,t) = 0w, t :7/ t—s) e 1T = (2, 5)ds,
(1) (D] (1) = 05 (e, 1) = gy [ (0= 9) 77 P s)ds
where « € (0, 1) is the order of the derivative, ¢ is the time variable, n > 0 and v denotes the Gamma function.
Fractional calculus includes various extensions of the usual definition of derivative from integer to real order.
For mathematical description of the fractional derivative see [11]. Now, we mention some recent results treated
the stabilization of beams subject to fractional or Kelvin-Voigt damping. In [4] Contreras and Rivera considered
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the Timoshenko beam with localized Kelvin-Voigt dissipation distributed over two components: one of them
with constitutive law of the type C' and the other with discontinuous law. The third component is simply
elastic, where the viscosity is not effective. They showed that the system is exponentially stable if and only if
the component with discontinuous constitutive law is not in the center of the beam. When the discontinuous
component is in the middle, the solution decays polynomially. In [9] Oquendo and Roberto da Luz investigated
the asymptotic behavior of the solutions of a Timoshenko beam with a fractional damping. The damping
acts only in one of the equations and depends on a parameter 6 € [0,1]. Timoshenko systems with frictional
or Kelvin-Voigt dampings are particular cases of this model. They proved that, for regular initial data, the
semigroup of this system decays polynomially with rates that depend on 6 and some relations between the
structural parameters of the system. Moreover, they showed that the decay rates obtained are optimal and the
only possibility to obtain exponential decay is when § = 0 and the wave propagation speeds of the equations
coincide. Zhao et al. [5] considered the following Timoshenko beam with Kelvin-Voigt damping:

{ pruge — [k1 (uz +y), + D1(uar — yi)], =0, (z,t) € (0,L) x Ry,
p2yie — (kaye + Dayar), + k1 (ue +y), + Di(uze —y:) =0, (2,t) € (0,L) x Ry.

They proved that the energy of the system (1.2) subjected to Dirichlet-Neumann boundary conditions is expo-
nentially stable when coefficient functions D1, Dy € C11([0, L]) and satisfy D; < ¢Dg (¢ > 0). Next, Malacarne
and Rivera [7] considered the Timoshenko system (1.2) under Dirichlet-Neumann boundary conditions. They
showed that the system is analytic if and only if the damping is present in both the shear stress and the bending
moment. Otherwise, the solution decays polynomially no matter where the damping is effective and that rate is
optimal. Later, Tian and Zhang [12] considered the Timoshenko system under fully Dirichlet boundary condi-
tions with locally or globally distributed Kelvin-Voigt damping when coefficient functions Dy, Dy € C([0, L]).
When the Kelvin-Voigt is globally distributed, they showed that the corresponding semigroup is analytic. Then,
for their system with local Kelvin-Voigt damping, they analyzed the exponential and polynomial stability ac-
cording to the properties of coefficient functions Dy, Dy. Next, Ghader and Wehbe [13] studied the stabilization
of the following Timoshenko system with only one locally or globally distributed Kelvin-Voigt damping;:

{ P1Utt _kl (uw+y)r 207 (l‘,t) S (OvL) XR+a
P2yt — (k2yw + Dyut), + k1 (uz +y) =0, (x,t) € (0,L) x R;.

They established that the energy of the system (1.3) under fully Dirichlet or mixed boundary conditions decays
polynomially.

To the best of our knowledge, the stabilization of Timoshenko system with one or two fractional Kelvin-Voigt
damping has never been looked into yet. In particular, in the case, where only the first equation (equation of
shear force) is effectively damped. In the present paper, we investigate the stability of the following Timoshenko
system with fractional Kelvin-Voigt damping:

14 { pruge — [k (ug +y) + D1(2)0;" (ua +y)], =0, (z,t) € (0, L) x Ry,
P2yt — [kayz + D2 (x)07""ya), + k1 (us +y) + D1(2)0;" " (us +y) =0, (x,t) € (0,L) x Ry,
subject to the following initial condidtions:
u(z,0) = up(z), u(z,0) =ui(z), =€ (0,L),
y(2,0) = yo(), 4:(2,0) =wu(z), 2ze€(0,L

and the following boundary conditions:

(1.2)

(1.3)

(1.5)

(1.6) u(0,t) = y(0,t) = u(L,t) = y(L,t) =0, teR,,
(1.7) w(0,t) = y,(0,t) = u(L,t) = y.(L,t) =0, teR,.

The coefficients p1, ps2, ki1, and ko are positive constants, n is non-negative and « in (0,1). We assume that
there exists 0 < a; < by < L, 0 < ay < by < L and two positive constants d; and ds, such that

dy, x € (a,by), dy, x € (az,by),
Di(z) = and Dsy(z) =
0, T € (O,al)U(bl,L), 0, T € (O,CLQ)U(I)Q,L).
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We shall study the direct stability when D; # 0 and Dy # 0. As well as the indirect stability when D; = 0 or
Dy = 0. In other words, we shall study the stability of system (1.4)-(1.5) with boundary conditions (1.6) or (1.7)
by distinguishing between three cases. In the first one, we consider a fully damped system i.e. the two equations
are effectively damped. However, in the other two cases, we assume that the system is partially damped i.e.
only one of these equations is effectively damped. To this end, we introduce the following assumptions on the
damping coefficients D;(z);j =1,2:

(Ay) D1 #0 and Dy #0,
or
(As) D; =0 and Dy #0,
or
(As) Dy #0 and Dy =0.

The remaining of this paper is organized as follows: In subsection 2.1, we reformulate problem (1.4) into an
augmented model and we prove the well-posedness of the problem by semigroup approach. In subsection 2.2,
we show that our system is strongly stable in the sense that its energy converges to zero as t goes to infinity
provided that any one of assumptions (A1), (A2) or (A3) holds. For this aim, a general criteria of Arendt-Batty
is used. Moreover, using a frequency domain approach combining with a specific multiplier method, in section
3 (respectively in section 4), we prove that the energy of our system decays polynomially to zero like as ¢!
when the fractional Kelvin-Voigt damping is acting only on the bending moment equation (respectively only
on the shear force equation). Finally, in the last section 5, we study the polynomial stability of our system
when the fractional Kelvin-Voigt damping is present in both shear stress and bending moment equations. We

establish a polynomial energy decay rate of type tr=e

2. WELL-POSEDNESS AND STRONG STABILITY

2.1. Augmented model and well-posedness. For well-posedness of System (1.4)-(1.5) to either boundary
conditions (1.6) or (1.7), we recall Theorem 2 stated in [8].

Theorem 2.1. Let ao € (0,1), 7 > 0 and p(§) = |§|2a27_1 be the function defined almost everywhere on R. The
relationship between the input V' and the output O of the following system

(2.1) w(x, &, 1) + (52 +n)w(z,&t) —w@V(z,t) = 0, (z,&t)€(0,L) xRxRy,
(2.2) w(z,£,0) = 0, (2, €(0,L)xR,
(23) O(I7t) - H(OZ)/R,LL(E)W(I,E,t)df = Oﬂ (xat) € (OﬂL) X R-H
is given by
(2.4) O = ['->ny,
where -
bt —r)e—tenlt—r sin(am
[TV (2, 1) = /O (t )r o V(z,7)dr and k(a) = Sr ).

Proof.
Stepl. Assume that 7 = 0. From (2.1)-(2.2), we deduce that

(2.5) w(m,f,t):/o u(f)e‘§2(t_T)V(w,T)dT.

Hence by using (2.3), we have

O(z,t) = r(a) /O ( /R |g|2ale€2<”>dg) V(x,7)dr = LHSTM) /O (2 / |§|2ale€2<”>dg) V(z,7)dr.

0

3
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It follows that

. t
O(z,t) = sinar) / (t—7)"T()V(z,7)dr.
™ 0
Using the fact that Srom) = o) (1 = o) in the above equation, we obtain (2.4) in the particular case n = 0.

Step2. Assume that > 0. By using the following change of function

wia, &) = e ", & t)
n (2.1)-(2.3), we obtain

(2.6) Pe(x, & 1) + EP(x, &, t) — "V (z, )u(§) = 0, n>0,t>0
(2.7) P(z,6,0) = 0,
(28) Ofat) =)™ [ w@)itec.de = o
Hence, by using Stepl, (2.6)-(2.8) yield the desired result:
t —a
O(z,t) = e_”t/o menTV(m77)dT'
The proof is thus completed. ([l

Corollary 2.2. System (1.4)-(1.5) with boundary conditions (1.6) or (1.7) may be recast into the following
augmented model

(2.9)  prug — (kl (ugy + ) + &(a)y/ D1 (z / (z,&,t df)

0, (a,8) € (0, L) x Ry,
(2.10) pP2Yit — (kam + k(a)\/ Dy(x / (x,&,t d§

+k1 (uzr +y) + k(a)\/ Dy (z / whz, &, t)dé = 0, (z,t) € (0,1) x Ry

(211) w260 + (€ +nw! (@,61) = VD) (s +y)u(€) = 0, (2,61) € (0,L) xR xRy,
(212) WA 6, 1) + (€ + M@, 61) — VDa@pan(€) = 0, (1,6,1) € (0,L) x R x Ry,
System (2.9)-(2.12) is subject to the following initial condltlons:

(2.13) w(z,0) =up(z), w(x,0)=us(z), x€(0,L),

(2.14) y(z,0) =yo(z), ye(z,0) =w1(x), x€(0,L),

(2.15) wh(2,&,0) = w(z,£,0) =0, (z,€) € (0,L) xR,

with fully Dirichlet boundary conditions

(2.16) u(0) = u(L) = y(0) = y(L) =0,

or with Dirichlet-Neumann boundary conditions

(2.17) u(0) = u(L) =y, (0) =y (L) =0, w?(0,&,t) = w?(L,&,t) = 0.

Proof. Considering the inputs Vi(z,t) = \/D1(z)(uzt(2,t) + ye(2,t)) and Va(x,t) = \/Da(2)yu (2, t) respec-
tively in Theorem 2.1, then using (1.1), we get the following outputs

= /Dy ()17 (ugy + ) (2, 1) = XL Dr(z n(t— T)aT(ux +y)(x,7)dr

(2.18) 1‘“

VD@0 1y + y) (),
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and
t) =V DQ(‘%‘)Il_amytw(‘% t) = 1—% (t - T)_ae_n(t_T)aryI(m7 T)dT
(2.19) 0

= m@?myz(‘r7t)'

Consequently, we obtain the following two systems

wi(z,&,t) + (52 + 77) whz, &) — w(€)/D1(x) (ugt + i) (z,t) =0, (z,6,t) € (0,L) x R x Ry,

(220) wl(m7§7 0) =0, (l‘,f) S (O, L) X R,
\/magm(ux i y) ($7 t) - H(a) /]R u(g)W1(x’ g’ t)df = 07 (xa t) € (0; L) X R+a
and

wi (2, 6,t) + (€ + 1) w(2,&t) — W&V Da(2)ys(z, 1) =0, (2,&,t) € (0,L) x R x Ry,
(2.21) W (2,6,0) =0, (z,€) € (0,L) x R,

VDa(@)0 My, (2,1) — (a) / (€ (1, £,1)dE = 0, (1) € (0,L) x R

From sytem (2.20) and system (2.21), we deduce that system (1.4)-(1.5) to either boundary conditions (1.6) or
(1.7) can be recast into the augmented model (2.9)-(2.15) to either boundary conditions (2.16) or (2.17). The
proof is thus complete. O

Now, let (u,us, y, yi, w',w?) be a regular solution for the system (2.9)-(2.15) to either the boundary conditions
(2.16) or (2.17), its associated energy is given by

1 L
E(t)zg/o (P1|Ut| +palyel* + ko fus + yI? +k2|ym| / / W'+ |w?| )dfdm

Lemma 2.3. System (2.9)-(2.15) subject to either the boundary conditions (2.16) or (2.17) is dissipative in
the sense that it is energy is non-increasing function with respect to t and satisfies

(2.22) E (t) = —r(a) /OL/R (€ +n) (|w1|2 + |w2|2) dedz < 0.

Proof. Let (u,u,y,y:,w",w?) be a regular solution of (2.9)-(2.15), thus multiplying (2.9) and (2.10) by u,
and 7,, respectively, integrating over (0, L), adding the resulting equations, then using the boundary conditions
(2.16) or (2.17), we get

1d
2 dt

%<n<a> /OLJJTx)(umyt) / u(f)wldfdx> ( /W oo [ e 2dsdx>=o.

Next, multiplying (2.11) and (2.12) by k(a)w! and s(a)w?, respectively, integrating in (0, L) x R, then using
the boundary condition (2 16) or (2.17), we get

E dt/ /'1 Q) deda + (o //£2+17|w (z,€)*déda

L
| (oot + o2l + s ol 4 el ds
(2.23) 0

(2.24) o
W [ VD 00 [ u<g>w1<x,g>dgdx>,
and
k(o) d g 2 24¢d g 2 2 24¢4
- 25 [ [leol 5x+n<a>/ [+ oasas

— ( / /D2 () e / W2(x g)dgdx>.




STABILITY OF A TRANSMISSION PROBLEM INVOLVING TIMOSHENKO SYSTEMS

Finally, by adding (2.24), (2.25) and (2.23), we obtain (2.22). Since « € (0,1), then k(«) > 0, and therefore
E’ < 0. The proof is thus complete. |

Now, let us define the energy spaces H; and Hsy by:

Hy = (HY(0,L) x L? (0,L))* x W2,

Hy = HY (0,L) x L2 (0,L) x H (0,L) x L* (0,L) x W x W,

where
W= L2((0,L) x R),

W* = {feL?((0,L) xR) | f(0,&) = f(L,§) =0},

L
Hj(o,L)_{feHl(o,LH/O fd;z:_()}.

It is easy to check that the space H} is Hilbert spaces over C equipped with the norm

and

2 2
el 0,y = luall™

where || - || denotes the usual norm of L? (0, L). Both energy spaces H; and Ha are equipped with the inner

product defined by:
~ L p—
UU =p / vodz + p /
< >Hj ' 0 ’ 0

L L e —
+ ko / Yal,dr + k() / / <w1w1 + w2w2) dédax,
0 0o Jr

for all U = (u,v,y,z,wl,w2) and U = (ﬂ,i,ﬂ,?,ﬁ,c’ﬁ) in Hj, j = 1,2. We use ||U|y, to denote the

L L
zzdr + ky / (ug + 1) (U + 7)dz
0

corresponding norm. We now define the following unbounded linear operators A; on H; (j = 1,2) by

U= (u,v,y,2 ww?) € H|lv, z€ H}0,L),

(ka (uz +y) + () y/Di () / f) € L*(0,L),

D(Ai) = (kzya + K(a \/7/ (z,€) df) € 120, L), :
—(& +n)w (z,€) + VDi(x)(vz + 2)u(€), [Elwt €W,

—(& +n)w’(x,€) + VDa(2)2:(€), [€|lw® €W

U = (u,v,y,2,w,w?) € H|ve HYO,L), € HL(0,L),

<k1 (uz + ) a)\/Dy(x / dg) € L*0,L),
D(A;) = (kgym + k(a)\/Da(x / (z,8) df) € L*(0,L), ’

—(& +n)w(z,€) + VDi(x)(vz + 2)u(€), [Elwt €W,

—(& +mw?(,€) + VDa(w)zop(€), €l € W7,

yz(O,t) = yz(L7t)
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and for all U = (u,v,y, z,w!,w?) € D (A;), for j = 1,2,

v
1<m(uz+y + k(a)y/Di / x€d£>
P1
z
il k1 _’f(a) 1
AT = | o (o + W@V D) [ (e w10 ) =+ 9)=" B [ e o)

—(€ +nw'(z,6) + V/Di(x)(ve + 2)p(€)

—(&2 4+ n)w?(x, &) + /D2 () 2 u(€)

Remark 2.4. The condition |¢|w? € W, (or in W*), is imposed to make that

/(52 + )| (x,€)[?d¢ € L*(0, L) = Wi (z,€)d¢ € L2(0,L), (j = 1,2).
R

Thus, the Timoshenko system (2.9)-(2.15) is transformed into a first order evolution equation on the Hilbert
space H;

Ui(z,t) = A;U(x,t),
(2.26)
U (l’, 0) = UO(I)7

where

Uo () = (uo(2), u1(x),y0(2), y1(x),0,0)

with j = 1,2 corresponding to the boundary conditions (2.16) and (2.17), respectively.

Lemma 2.5. Let 0 < a <1, n > 0, then the following integrals are well-defined:

2a—1 5 S
) = wta) [ (e ot g =sta) [ S50

r1+&+
Proof. First, I(n, «) can be written as

I _y Ii(oz) +oo §2a71 e
() (1+n)/o 1+1i7 ‘

dfda:, for i=5o0ri=6.

Thus I(n, &) may be simplified by defining a new variable y = 1+ m. Substituting & by (y —1)2 (1+ n)z, we

get
() Foo 1
00) =g | e

Using the fact that 0 < a < 1, it is easy to see that y~1(y — 1)~ € L!(1, 00), therefore I(n, ) is well defined.
On the other hand, using the cauchy-schwarz inequality, we obtain

Fifime) < 20t | - 1'5';‘;7%)% (f |fi|2d£)é < vas@tta) ([ |fi|2d§);

Since I(n, «) is well-defined and f; € W (or f5 € W and fg € W), then I;(fi,n, @) is well-defined. The proof
si thus complete. ([l

Proposition 2.6. The unbounded linear operator A; is m-dissipative in the energy space H;, j =1,2.

7
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Proof. First, for all U = (u,v,y, z,w!,w?) € D (A;), one has

RAG Y, =) [ [ (€ 4n) ([ + 20 deae <o,

which implies that A; is dissipative. Here $ is used to denote the real part of a complex number. We
next prove the maximality of Aj. Indeed, for F' = (f1, fa, f3, fa, f5, fo) € H;, we prove the existence of
U= (u,v,y, z,w',w?) € D(A;), unique solution of the equation

(I — AU
Equivalently, one must consider the system given by
(2.27) u—v = fi,
(2.28) p1U — (/11 (uz +y) + w(a)y/ Dy (x / (z,& d§> = p1fo,
(2.29) y—z = fs,
(2.30) P2z — (Iizyw + k(a)y/Da(x / (z,& df) + K1 (uz +y)
+x(0)y/Difa) [ p(! @6 = pafa
(2.31) (1+& +nw'(@,6) = VDi(2)(ve +2)pu(§) = fs(x,8),
(2.32) (1+& +nw’(@,6) — VDa(2)zep(§) = fo(x,8).
From (2.27), (2.29), (2.31), (2.32) and the fact that n > 0, we get
(2.33) v=u—fi and 2=y fs,
(2.34)  wl(z, &) = f(@.8) | vDi@pue VD@ (M) | VD1@RE)y v Di(@)pu(E)fs
' 1+§2+n 1+£2+77 14+&+n 14+&+9 14+&+n
2o Jo@8) D@y /D@l (fa)
(2.35) e Iy N 1+8+n

Inserting (2.33), (2.34) and (2.35) in (2.28) and in (2.30) respectively, we get

(2.36) pru— (m (ug +y) + Drugl + D1yl — Di(f1)od — Dy f3l + mf5)x =p1(f1+ f2),

P2y — (fizyz + Doyl — Do(f3)oI + \/sz6) +r1(ug + y)+Drugl + Dyl = po (fs + fa)
(2.37) N

+D1(f1)o] + D1 fsl — /D15,
with the following boundary conditions
(2.38) u(0) = u(L) = y(0) = y(L) =0,
or
(2.39) w(0) = u(L) = 2(0) = (L) = 0

where I = I(n,a) and I, = fi(fi,n,a) for i = 5,6, defined in Lemma 2.5. So, let (p,v) € V;(0,L), where
V1(0, L) = H}(0,L) x H}(0,L) and V»(0, L) = H}(0, L) x H!(0,L). Multiplying Equations (2.36) and (2.37)
by ® and 1) respectively, and integrating over (0, L), then we obtain the following variational Problem:

8
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L - . L .
/ (mWJr p2yth + ki (ue + ) (02 +¥) + koyatd, ) dx +I(n, o) / Dy (z)(ue +y) (e +¥)dx
0

L JE—
+1(n, ) / Dy () yz¢zd$=/ (p1 (f1+f2)80+/)2 (fs+ fa) ¥ dﬂﬁ—/ VD1 (2)(pe + ) Isd
(2.40) 0

IToN /D1 V(f1)a(@r T )t 1(0,0) [ D) fs(n + D)da

0

/f GaTodz + (7, /D2 (fo)atinda, V(1) €V;(0,L), j=1,2.

Using the fact that I(n,a) > 0, we get that the left hand side of (2.40) is a bilinear continuous coercive form
on V;(0,L) x V;(0,L), and the right hand side of (2.40) is a linear continuous form on V;(0, L). Then, using
the Lax-Milligram theorem, we deduce that there exists (u,y) € V;(0,L) unique solution of the variational
Problem (2.40). So, defining

(2.41) vi=u— fi and 2=y — f3,

fs(@,&) VDip(©ue  VDip(§)(f1)z  VDi(x)u(€)y Dy (z)p(€) f3
(242) W (r,0) = 1+§2+77+ 1+&+n  1+&+n  1+&+y  1+8+n
and

1+€2+77 1+&2+n 1+&2+0

First, it is easy to see that (v,z) € V;(0,L), j = 1,2. Next, using Equation (2.42), Lemma 2.5 and the fact
that n > 0, a € (0,1), f5 € W, we get

2 2c—1 L
/ /|w mf|dfdm<5/ / @O ey 4 54, /'f'zde/O (a2 + 1(f)al 2+l + | fof2)de

(1+&2+n)? 1+&2+1)

|f5(z, &) 121 8 2 2. (12 2
<5 [ [ g s sy [ e [l 10 + P

d t 2 2 2 2
= W/ /|f5 z,§)Pdgdr + —— r(a) 1(n, )/0 (Jual® + [(f1)e"+yl® + [f3]7)dz < oco.

It follows that w!(z,£) € W. On the other hand, using equation (2.42), we get

&\ f5(z, &)
(2.44) / /|§w (, €)[2dedx <5/ e e

e |£‘2a+1 k 2 2 2 2
w10dy [ e [ (0Pl + 1o

It is easy to see that
£2a+1 £2o¢+1 £2oc+1 1

~ d ~ ,
Q+@+n2 0 0+n? 0 Tr@sgp g

and
£ 11

max = < .
geR (1+&2+n)2 4(1+n) 4
It follows from equation (2.44) and the fact that 0 < a < 1,

L L L
| [t orictr < [ [ i orade e [l + 00+ + 1) < .

9
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This implies that [£|w!(x, &) € W. Similarly, we prove that w?(x, £), and |£|w?(z, £) belong to W if the boundary
conditions (2.38) is considered or belong to W* if the boundary conditions (2.39) is considered. It follows, from
(2.42) and (2.43), that
(§ +7l $§+V U$+Z —wl—f5(x,§)EW,
—(E2 +n)w?(2,€) + V/Dazgp(€) = w? — fs(x,6) €W (or in W*).
On the other hand, taking ¢ € C2°(0,L), % = 0 in (2.40), integrating and using (2.41)-(2.43), we deduce that

/O[plv—<m(ux+y + k(o W/ asgdg)

This implies that

]wm—wn/ Jopdz, Yo € C(0,L).

xT

(m (uz +y) + W/ (z,8) d§> = pi(v— f2) € L*(0, L).

Similarly, by taking ¢ =0 and ¢ € C2°(0, L) in (2.40), integrating and using (2.41)-(2.43), we obtain equation
(2.30) and consequently

(kzym-i-ﬁ \ﬁ/ a:gdg) € L*(0,L).

Therefore, U = (u,v,y, z,w",w?) € D(A;) is solution of (I A;)U = F. To conclude, we need to show the
uniqueness of such a solutlon So, let U = (u,v,y, z,w!,w?) € D(Aj) be a solution of equation (I — A;)U = F
with F' = 0, then we directly deduce that U = 0. The proof is thus complete. O

Thanks to Lumer-Phillips theorem (see [10]), we deduce that A; generates a Co-semigroup of contraction e

in H;, j = 1,2. Then the solution of the evolution Problem (2.26) admits the following representation
U(t) = ey, t> 0.
and therefore, Problem (2.26) is well-posed and we have the following result.
Theorem 2.7. For all Uy € #H;, Problem (2.26) admits a unique weak solution
UeC Ry Hyj).
Moreover, if Uy € D (A;), then Problem (2.26) admits a unique strong solution
U e C(R:D(A)NC! RisHy).
O

Remark 2.8. All previous results still valid even when the Timoshenko System (1.4) is considered with only
one fractional Kelvin-Voigt damping i.e. D1 =0 or Dy = 0.

Now, we are able to study the strong stability of system (1.4).

2.2. Strong stability. In this part, we study the strong stability of system (2.9)-(2.15) either in the boundary
conditions (2.16) or (2.17), in which we distinguish between three cases. In the first case, we consider a fully
dissipative system i.e. the two equations are effectively damped. However, in the other two cases, we assume
that the system is partially dissipative i.e. only one equation is effectively damped. For this aim, we use
a general criteria of Arendt-Batty [1] (see Theorem A.2 in the appendix) to show the strong stability of the
Co-semigroup e' associated to the Timoshenko System (2.9)-(2.15). Our main result is the following theorem.

Theorem 2.9. Assume that either (A;), (A2) or (A3) holds. Then, the Cp—semigroup e’ is strongly stable
in the energy space H; in the sense that,

lim [ Tol,, =0, YUo€H;, j=1,2.

t——+o0
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For brevity, we will show the proof of Theorem 2.9 under assumption (Ajz) only, while the proof under assump-
tions (A1) and (Asg) are left to the reader. System (2.9)-(2.12) becomes

(2.45) Pty — <k1 (ug +y) + w(a)\/D1(x / (z,&, t)df) = 0, (x,t) € (0,L) x R4,

x

(2.46) pae — kstins + k(1 + ) + W/ (1,606 = 0, (,8) € (0,L) x Ry,

(2.47) wi (2, &,1) + (€ +nw! (z,&,1) — /Di(a) (uge +y)pu(€) = 0, (x,6) € (0,L) x R x Ry,
subject to the following initial conditions:

(2.48) w(z,0) =up(z), w(z,0)=ui(z), x€(0,L),

(2.49) y(,0) = wo(x),  wi(2,0) =wi(x), we€(0,L),

(2.50) w'(2,£,0) =0, (2,8 €(0,L) xR,

with fully Dirichlet boundary conditions

(2.51) u(0) = u(L) = y(0) = y(L) =0,

or with Dirichlet-Neumann boundary conditions

(2.52) w(0) = u(L) = 42 (0) = ya(L) = 0.

The argument for Theorem 2.9 relies on the subsequent lemmas.
Lemma 2.10. Assume that assumption (As) holds. Then, we have

ker iA] — A;) = {0}, VAeR, j=1,2.
Proof. Let U = (u,v,y,2,w") € D (A;) and X € R such that

A;U =4AU.

Equivalently, we have
(2.53) v =iy,
(2.54) (kl (ugz +y) + w(a)\/D / (x,& df) = ip1 v,
(2.55) z =1\y,
(2.56) koYzaw — k1 (uz + y)—r(a)y/ D1 ( / (z,8)dE = ipa)z,
(2.57) —(2 +n)wt(2,8) + V/D1(ve + 2)u(€) = idwt(, ).
With the following boundary conditions
(2.58) w(0) = u(L) = y(0) = y(L) =0, if j=1
or
(2.59) u(0) = y.(0) =u(L) =y, (L) =0, if j=2.
First, a straightforward computation gives

=R(AU,U)y, = R(A;UU),, = / / (& +n) | x§| dédz,
consequently, since we deduce that
(2.60) wh(z,6) =0 ae.in (0,L) x R.

11
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Combining (2.60) with (2.53)-(2.57) and using the definition of the function D;(z), we get

(2.61) Muz +y) =0, over (ai,br),
(2.62) ki (uz +9)e + p1A2u =0, over (0,L),

and

(2.63) koYww — k1 (uz +y) + p2A?y = 0, over (0,L).

Here we will distinguish two cases.
Casel. If A =0:
From equations (2.53) and (2.55), we get

v=z=0 on (0,L).

1. If j = 1, using equations (2.62), (2.63) and the boundary conditions in (2.58) we can write u and y as

L L? L
(2.64) U= —%x?’ + %xQ — %x and y= %xQ — %x
L2
where a is a constant number to be determined. Now using (2.64) in (2.63) we get a(ks + k1 E) =0.

Since k1, ko > 0, we deduce that @ = 0. Then we get u =y = 0. Hence, U = 0 over (0, L). In this case,
the proof is complete.

2. If j = 2, from (2.62), (2.63), the boundary conditions in (2.59) and the fact that y € H} (0, L) (i.e., fOL ydx =
0), we get
u=y=0, over (0,L),
therefore, U = 0, also in this case the proof is complete.

Case2. If A #0:
From equation (2.61), we get

(2.65) (ug +y) =0 over (a1, by).
By using (2.65), (2.62) and the boundary conditions (2.58) or (2.59), we get
(2.66) u=y=0 over (a1, by).

Combining equations (2.62), (2.63) and (2.66), we get the following system
k1(uz + )z + p1A%u =0, over (0,L),

(2.67) koYuz — k1(ug +y) + paX?y = 0, over (0, L),
u=y =0, over (ay,by).

According to the unique continuation theorem we get U = 0 over (0, L). The proof is thus completed. g

Lemma 2.11. Assume that n =0 and assumption (Asz) holds. Then, the operator —Aj; is not invertible, and
consequently, 0 € o(A;), 7 =1,2.

Proof. Let F = (sin(%%),0,0,0,0) € H;, and assume that there exists U = (u,v,y, z,w') € D(A;) such that
—-A;U=F.
It follows that
v= —sin(%x) in (0,L) and fzwl + E\/Dl cos (W—x)u(g) = 0.

Hence, we deduce that w'(z, &) = fﬁﬁza */D 1cos(—) ¢ W, which contradicts the fact that U € D(A;).

Consequently, the operator —A; is not invertible, as clalmed. The proof is thus complete. O

12
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Lemma 2.12. Let0 < a < 1,7 >0 and f5(x,&) € W. Assume that (n >0 and X € R) or (n =0 and X € R*),
then the following integrals:

1(€)*

2
L) = in(a) [ 28 et

; mdfa Io(\,n,a) = K(O‘)/R d§

and

(s M) = () [ SRS g

are well defined.

Proof. The integrals I; and Is can be written in the following form
i\, a) = NI\ n,a) +iAIs(\,1m,0) and  Io(\, 1, a) = —iAI4(\, 7, @) + Is(\, 7, ),

where

L) = nle) [ e and nna) = o) [ AT,

We need to prove that I5 and I5 are well defined. First, we have
I4(\n, ) = 2k(@) /+00 Ld{ = 2k(«) /1 Ldf + 2k(«) /+OO Ldf.
o o A (E@+m)? o AP+ (€ +n)? 1 AN+ (E@4n)?
Hence, in the both cases where (n > 0 and A € R) or (n =0 and A € R*), we have

£2a71 €2a71 and £2a71 1

24 (2472 o 22+ 72 A2 4 (€2 4 )2 Loo gi2a’

Since 0 < a < 1, then I4(\, 7, «) is well-defined. Next, we have

_ g et R el g l(E )

Similar to I4 in the both cases where (n > 0 and A € R) or (n =0 and A € R*), we have

gl @y e N@rn) | O @h) 1
2+(£2+77)2 0 A2+772 >\2+(§2+n)2 400 53—2&'

Since 0 < a < 1, then I5(\,n,«) is well-defined. For I, using Cauchy-Schwarz inequality and the fact that
f5(x,€) € W and that I, < oo, we get

ULl A d [ peEeee [
I b b ) = N o .
| mstisanaPde = st [ [ g e da
9 5204 1
<r? ([ wi@r )//|f5x§|dfd:c<oo
The proof is thus complete. (Il

Lemma 2.13. Assume that assumption (Az) holds and assume that either (n,\) € RL xR orn = 0 and
A € R*. Then, i\l — A; is surjective, j = 1,2.

Proof. Let F = (f1, fa, f3, fa, f5) € H,, we must prove that there exists U = (u,v,y, z,w') € D(A;) such that

(AU — AU =

13
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Equivalently, we have

(2.68) iAu—v=fi,

(2.69) iy —z=fs,

(2.70) >\2u+<k1(um+y + k(o \ﬁ/ (x fdf) = —fy —iMf1,

(2.71) Nyt Sy — L, 1) By / J(€) (2, €)dE = —fu — iNf,
P2 P2 P2 R

(2 72)w1(9c 5) _ f5($7£) VDlﬂ(g)i)‘uw . \/Dllfc(g)(fl)a:_"_ Dl(x)u(é)Z)‘y _ D1(£C)/L(f)f3

' ’ iIN+HE24+n A+ 4 iN+E2 4 iIN+E2 4+ iIN+E2 4
System (2.68)-(2.72) considered with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann
boundary conditions (2.52). Now, inserting (2.72) in (2.70) and in (2.71), respectively, we get

(2.73) PN U+ (nl (uz +y) + D1 (ue +y) It — D1((f1)2 + f3)I2 + \/HIIS> = I,
(2.74) P2 X’y + Koyor — K1 (e +y)=D1 (s +y) 1 = F,
where

Fiy = —p1(fa +irf1),

Fy = —pa(fa+iAf3)=D1((f1)e + f3) (A, @) + v/ DiTs (A, n, @
and I; := I;(\,n, ), Iz := Io(\,n,«) and Iz := I3(f5,A,n,«) are defined in Lemma 2.12. System (2.73)-
(2.74) considered with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann boundary con-
ditions (2.52). Using Lemma 2.12, we get I;(A,n,a), I2(A,n,a) and Is(fs,A,n,a) are well-defined, and
R(I1 (A m, @) > 0.

Now, we distinguish two cases:

Case 1. > 0 and A = 0, then system (2.73)-(2.74) becomes

(ot s (5 T 0) )

fs(x,€) leﬂ(f)((fl)x"'fS))
—KoUpz + Uy +y) = k(o d
2y k1 ( y) = pafa—r(a)y/ D / ( 210 24 3
with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann boundary conditions (2.52).

By applying Lax-Milligram theorem and using Lemma 2.12 it is easy to see that the above system has a unique
strong solution (u,y) € V;(0,L), 7 = 1,2. In this case the proof is complete.

Case 2. > 0 and A € R*, then system (2.73)-(2.74) becomes

p1A2u + (:‘il (’U;z + y) + Dl(uz + y)Il ()‘777: a)):t = Gl’
(2.75)

p2/\2y + RoYgr — K1 (Uz +y)—D1(uy +y) 1 (N, 1, ) = Ga,
such that

G1 = —p1 (f2a +irf1) + (Dl((fl) + f3)Ia(A\,n, @) — /DiI3(fs5, A\, m, ) ;

Go = —pa(fa +iMf3)—D1((f1)e + f3)I2(Am, @) + /DiIs(fs),m,
with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann boundary Conditions (2.52). Now
define the linear unbounded operators £y : V;(0,L) = H(0,L) x H}(0,L) — H~(0,L) x H~*(0,L) and
Ly :Va(0,L) = H(0,L) x HX0,L) — H=(0,L) x (HL(0, L))" by

1 k k 1
£i(u,y) = (—m (ka4 9) + D+ 9T 1.0, = 2+ 44D, + y>11<A,n,a>) .

14
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Let U = (u,y) and F = (G1,G3), then we transform System (2.75) with fully Dirichlet boundary conditions
(2.51) or with Dirichlet-Neumann boundary conditions (2.52). into the following form:

(2.76) (NI —L)u="F.

Since £ is an isomorphism from H{ (0, L) x H}(0,L) onto H=1(0, L) x H~1(0, L) and L5 is an isomorphism
from H§(0,L) x H}(0,L) onto H=1(0, L) x (H}(0, L))/ and Z is a compact operator from H2(0, L) x H3(0, L)
onto H~1(0, L) x H=1(0, L) and from H}(0,L)x H}(0, L) onto H=1(0, L) x (Hi (0, L))/), then, using Fredholm’s
Alternative theorem, problem (2.76) admits a unique solution in H~1(0, L) x H=*(0, L) (when j = 1), and in

H}(0,L) x H(0,L) (when j = 2) if and only if A>°Z — £; is injective. For that purpose, let Uy, = (up,yn) €
ker (\*Z — L;). Then, if we set

1 _ M\/EM(@

v = i\up, zp =i\yp, and wp = e 77(% + ),

we deduce that Uj, = (uh,vh,yh, zh,w,lz) € D(A;) is solution of
(IAN=A)U, =0, j=1,2
It follows from Lemma 2.10, that up = vy = yp = 25 = w,lL = 0. This implies that equation (2.76) admits a
unique solution (u,y) in H=1(0, L) x H=1(0, L) (when j = 1), and in H}(0,L) x H}(0,L) (when j = 2) and,
we have
("fl (ux + y) + Dl(u:r + y)Il (Avnva))m € L2(07L)a
KoYaa — K1tz + y)—D1(us + y) 11 (A, n, ) € L*(0, L).
Now, define v := iAu — f1, z :=i\y — f3 and
, D

IAN+E+n A+ 4

It is easy to see that w!(x, &) and |[¢|w!(z,£) € W. This implies that U = (u,v,y, z,w!) € D(A;) is the unique
solution of equation (iAI — A;)U = F, j = 1,2, and the proof is thus complete. O

(2.77) W (@,€) =

We are now in a position to conclude the proof of Theorem 2.9.

Proof of Theorem 2.9. Using Lemma 2.10, we directly deduce that .A; has non pure imaginary eigenvalues.
According to Lemmas 2.10, 2.11 and 2.13 and with the help of the closed graph theorem of Banach, we deduce
that o(A)N iR = {¢} if n > 0 and o(A)N iR = {0} if n = 0. Thus, we get the conclusion by applying Theorem
A.2 of Arendt and Batty. O

In the following sections, we aim to establish the polynomial stability of System (2.9)-(2.15) in three cases: In
the first one, the damping is effective only in the bending moment. However, in the second one, the damping
is effective only in the shear stress. Finally, in the third case, the damping is present in both the shear stress
and the bending moment. For this purpose, we will use a frequency domain approach method, namely we will
use Theorem A.3.

3. POLYNOMIAL STABILITY WHEN THE DAMPING IS EFFECTIVE IN THE BENDING MOMENT.

In this section, we study the polynomial stability of System (2.9)-(2.15) either in the boundary conditions (2.16)
or (2.17) in the case n > 0, when the fractional Kelvin-Voigt damping is acting only on the bending moment
equation, i.e assumption (Ay) holds. In this case, System (2.9)-(2.12) becomes

(31) prutt — k1 (ua? +y)z = 0 (ﬁvt) € (OaL) X RJF?

(3.2)p2y — (kﬂ/z + k(a)y/Da(x / (z,¢, t)d§> + ki (ug + )

x

0, (z,1) € (0, L) x Ry,

(33) wtz(xvfa ) (52 +77 .T 57 Y D2 ytmu - 07 (x,f,t) € (OaL) xR x R—O—,
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subject to the following initial conditions

(3.4) u(z,0) =ug(x), w(z,0)=ui(z), =xe€(0,L),

(3.5) y(@,0) =yo(z), we(x,0) =wp(x), =x€(0,L),

(3.6) w?(z,£,0) =0, (r,&) € (0,L) xR,

with fully Dirichlet boundary conditions

(3.7) u(0) = u(L) = y(0) =y(L) =0,

or with Dirichlet-Neumann boundary conditions

(3.8) u(0) = u(L) = y2(0) = yo(L) =0, w?(0,&,t) = w?(L,&,t) = 0.

Our main result in this section is the following theorem.

Theorem 3.1. Assume that n > 0 and assumption (As) holds. Then, for j = 1,2, there exists ¢ > 0 such
that, for every Uy € D (A;), the following energy estimation holds:

C
(3.9) E(t) < 1 10olpa,. t>0.

According to Theorem A.3 and by taking ¢ = 2, the polynomial energy decay (3.9) holds if the following
conditions

() iR C p(A))

and

(1) sup [[(IAT = A;) e,y = O (1AF) |
AER

are satisfied. Since condition (H;) is already proved in Theorem 2.9 in the case n > 0. We will prove condition
(H2) by an argument of contradiction. For this purpose, suppose that (Hz) is false, then there exists

{n, Uy = (un,vn,yn,zn,wi)T)} C R x D(A;)

with
(3.10) An| = +oo and |[|Uyllw, = ||(un,vn,yn,zn,wi)|\q.[j =1
such that
(311) )\i (’L/\nI — .Aj) Un = Iy = (fl,na f2,7l7 f3,na f4,n7 f5,n)T — 0 in Hj.
For simplicity, we drop the index n. Equivalently, from (3.11), we have
(3.12) iu—v = A2fy in H3(0,L),
(3.13) iAv — %(uz +9)e = A2fy in L?*(0,L),
1
(3.14) iNy—z = A 2fy in O;(0,L),
. ko k(o) 2
(3.15) iz — — |y + vV Dy | u(&)w*(z,£)dE
P2 ke R .
kl —92 . 2
+;(ux +y) = A °fy in L7(0,L),
2
(3.16) (iA+ € +m)w? =0/ Daen(€) = A2 (fs = VDalfa)an(€)) i W,
where
H0,L), ifj=1, W, ifj=1,
0;(0,L) = ‘1( A and W, = 7
H,(0,L), ifj=2. wr, it j=2.
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By inserting (3.12) in (3.13) and (3.14) in (3.15), we deduce that

k
(3.17) N+ p—l(uw +y)e =— (A2 +iX T A),
1

(3.18) Ny + ks (
P2

k _ -
(«,€) df) —;;(uz+y) =—(\fatid T ).
From the above system, ||U||Hj =1 and ||FH;|.L7 = 0(1), we remark that

Jul =0 (I/\Ifl) ; lyll=0 (A1), Hluaall = O (1A]),,

(3.19) H(y / (¢ d§> —0(A).

Our main goal is to find a contradiction with (3.10) such as [[Uy|l;,, = o(1). For clarity, we divide the proof
into several Lemmas.

Lemma 3.2. Let a € (0,1), 7 > 0 and A € R, then

[
Avi=Adma) = / W+ &)

= (| ) -

d¢ = e (|A| +m)F 71,

_
(1Al +m)%

N

and

3 (€ >é_ﬁ1
A "AB(A’”)‘(/R Wrerni™) =T (et

00 _ 1 a1
where ¢; = / Wdy.
1 Y

Proof. A; can be written as

2 +oo £a+%
A1\, ) = (AJH?)/ Ay d¢.

Next, performing the change of variable y = 1 + )\f—jn and substituting & by (y — 1)%()\ + 77)%, we get
o 1i-h

2
Using the fact that a €]0, 1], it is easy to see that y=2(y — 1)%_i € L'(1,+00). Hence, the last integral in the
above equation is well defined. Now, A, can be written as

A1<A7n,a>=<x+n>%%/ dy.
1

2 > 1 2 * 1 2 T
(AQ()\ 77)) ()‘+77) / (1+(\/>§Tn)2)2d£: ()\+77)g/0 (1+82)2 - (/\+77)% * Z

Therefore, Ay = /% . Finally, A3 can be written as

()
o £ 2 0
(AaAn)? = s [ e = <
A+mto 1+ (555)2)! (A+n)% = 32
Then As(\,n) = { (M_l v . The proof has been completed. O
mn 4

Lemma 3.3. Assume that 1 > 0 and assumption (As) holds. Then, for j = 1,2, the solution (u,v,y, z,w?) €
D (A;) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

L
(3.20) /0 /R(g2 +1) |w2(x,g)}2 dédx = o (A7?).
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Proof. Taking the inner product of F with U in H;, then using the fact that U is uniformly bounded in H;,
we get

) /OL /R(£2 ) [ (@, €) " dede = —R (A0 0),, ) =R (AU = 40,05, ) =0 (A2).
O

Lemma 3.4. Assume that 7 > 0 and assumption (As) holds. Then, for j = 1,2, the solution (u,v,y, z,w?) €
D (A;) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

b2
(3.21) / lyo|” dz = o ()\‘(3+a)) .

a

Proof. From (3.16), we get

AV D2(@)E1 ™7 [yal < (N + € + mlw? (@, €)1 + A 21 fs (@, )l + A2 VD@l | (fo)el-

Multiplying the above inequality by (A + &2 + n)~2 ||, integrating over R with respect to the Varlable £, we

obtain
|6w? (2, )| o [ _1&fs(,9)|
VP [ e /Rmd““' fore
+ AT2Del () )\Jlf|§2+77 de.

Next, applying the Cauchy-Schwarz inequality to (3.22), we obtain
1
2

(3.23)  A1v/DolAyal| < A (/R soﬂ(:c,f)l?df) + A2 45 (/ | f5(z,€)] ds) + A2 A0V D2 (f3)a

where Aj, As and Aj are defined in Lemma 3.2. Using Young’s inequality and the definition of the function
Dy(z) in (3.23), we arrive at

ba
dQ/ |A? |ym|2dx<3—/ /\gw (z,€)|?dedz 4 3|\~ / /|f5 x,€)|?dedx + 3|\~ 4d2/ |(f3)e|?d.

It follows from Lemma 3.2 that
2 1 o(1) 1 o(1) = o(1)
d Ny |2de < + — + .
[ PPl < s S e e

Since « € (0,1), we have min (1 + «,4 4+ «,4) = 1 + . Hence from the above equation, we get

o)
/@ APlysfdr = 20

b
: o(1)
/ e = G

The proof is thus completed. O

and so,

Lemma 3.5. Assume that 7 > 0 and assumption (As) holds. Then, for j = 1,2, the solution (u,v,y, z,w?) €
D (A;) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

[} b5

Proof. Using the fact that |P + Q|? < 2P? 4 2Q?, we obtain

bz b2 b2 2
[ " <o [ a2 | ( JEGET Ww2<x,g>dg) ”
az a as R

dx =o(A7?).

, k3 VE +n
b2 b2

<2 / lyal? d + 3 / / (€ + n)|w?(a, €) Pdéde,
a a2 R
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K(a)? o
where ¢y = 2dy —5—A4(a,n) and Ay(a,n) = 3 d¢. We have
k3 ® €2 +7
[ i .
2 o and 2 oo €3 —2a”
€2 +n 0 €17 +m +oo (€]
since 0 < a < 1 and n > 0, then A, is well defined. Using (3.20) and (3.21), we get our desired result. O

Lemma 3.6. Assume that 7 > 0 and assumption (As) holds. Let e < 22792 12. Then, for j = 1,2, the solution
(u,v,y, z,w?) € D (A;) of system (3.12)-(3.16) satisfies the following asymptotlc behavior estimation:

bo—e
(3.24) / |\y|2dx = 0(1).

2te A2
Proof. We define the function 6 € C5°(0, L) such that 0 < 6(x) < 1, for all x € (0, L) and
1 if x € (az+e€by—e),
{ 0 if ze€(0,L)\ (ag,b2).

(3.25) 0(z) =

First, multiplying equation (3.18) by 6%, integrating over (0, L), then using the fact that Ay, y are uniformly
bounded in L?(0, L), || f4]| = o(1) and ||f3|| = o(1), we obtain

L k L
(3.26) /O 9|Ay|2dx+p—z/0 ( J;§d§>

Using integration by parts and the definition of 9(96), we get

(0y) dx — —/ O(uy + y)ydr = o(A™2).

x

ko L . ko _
(s (2. dg) (0g) de = 22 ( (0, ) 7o
P2 Jo P2 Jo
k2 / _
_E/O 0 <yx (z,€ d{) ydz.

Now, using (3.21), Lemma 3.5, the definition of Ds(x) and the fact that )\y is bounded in L%(0, L), we get

ke [T ( ) o(1) | o(1)
3.27 —= (z,8)d 0y) dx = + -
(3.27) = €de) (om)de = L+ 5
On the other hand, using Young S 1nequahty, we get

kl |uo: + y‘ 69 2
Consequently, we obtain
k1 k /L |uz + yl? e [* 2

3.28 0 dr < 0 d = 0| \y|“dx.
(3.28) O [l slbar < 1 [P0l oy

Inserting (3.27) and (3.28) in (3.26) and using the fact that u, +y is uniformly bounded in L?(0, L), we arrive
at

L
€ o(1) o(1) 0O(1)
2 1-2 0| Ay[Pdz < - .
(329) (-3 [ opwlar < T+ 25+ 5
Then, for £ small enough, we have
L
o)
(3.30) 0 </0 0| \y|2dx < -
From the above estimation and the definition of §(x), we obtain (3.24). O

Lemma 3.7. Assume that n > 0 and assumption (As) holds. Let 0 < € < }’fo’“. Then, for 5 = 1,2, the
solution (u,v,y, z,w?) € D (A;) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

by —e
(3.31) / lug |*dx = o(1).

2+€
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Proof. First, multiplying (3.18) by —#%u,, integration by parts, using the fact that Au is bounded in L?(0, L),
and || fa|l = o(1), || fsll = o(1), [|(f3)= || = 0( ), we obtain

L ky [F
—/ Nyt dx — —/ (
0 P2 Jo

Consequently, we obtain

by [t by [t L
— O|ug|?dx = ——/ Oyt dx —|—/ N2y, da
P2 Jo 0

(3.32) P2 Jo B
k‘g/ (
_i'_i
P2 Jo

Now, using the integration by parts, the fact that A\u is uniformly bounded in L?(0, L), (3.24) and (3.21), we
obtain

(z,8) d§> (0u,) dz + —/ O(uy + y)ugdr = o(A72).

x

(x,& df) (0u,,) dx + ﬂ

>\2

b e t _ RPN o) , 0(1)
(3.33) ON“yu dx = — O y Audx — Oy Nudr = —5- + ——.
0 0 0 A2 A
Using integration by parts, the fact that Hu;z” = O(1), uy is uniformly bounded in L?(0, L) and Lemma (3.5),
we find
ke [F _
—= (z,8)d¢ (Gux)dx =
P2 Jo
ko
—-— 0)\ Yo + (z,8)d¢ umda@
(3.34) P2 o
k
_K2 9/( +7\ﬁ/ :c§d§>umd$
P2 Jo
o(1)
=o(1)+ —=.
o(1) + X
Next, using (3.24) and the fact that u, is bounded, we see that
I 0o(1)
3.35 — Oyudr = .
( ) P2 Jo Y A2

Now, inserting (3.33), (3.34) and (3.35) in (3.32), it leads to

ke [F )
(3.36) — Oluy|“dz = o(1).
P2 Jo
From the above estimation and the definition of 6(z), we obtain (3.31). O

Lemma 3.8. Assume that n > 0 and assumption (As) holds. Let € < ba—ag 12. Then, for j = 1,2, the solution
(u,v,y,z,w?) € D (A;) of system (3.12)-(3.16) satisfies the following asymptotlc behavior estimation:

(3.37) /b” |\u|?dz = o(1).

2+e€

Proof. First, multiplying equation (3.17) by 6u, integrating over (0, L), using the fact that Au and u are
uniformely bounded in L?(0, L), and the fact that ||fi| = o(1), || f2]| = o(1), we remark that

L L
k
(3.38) / 0 \uldz + i/ (s + 9)a(0T)dz = 0(A~2).
0 P1 Jo

Using integration by parts, we obtain

ki [F ki [ ki [

L (ug 4 y)e(00)de = — 2 / O(uy + y)Uzdr — —1/ 0 (uy + y)udz,

P1 Jo P1 Jo P1 Jo
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inserting the above equation in (3.38), we get

L e ky [
/ O| \ul>de = — / O(uz + y)upde + — / 0’ (uy + y)udz + o(A™2)
0 P1 Jo P1 Jo

k L L L L
= / Olu, |*dx —l—/ Oy, dx +/ 0" u udx +/ 0'yudx | + o(A 7).
P1 \Jo 0 0 0

Now, using definition of 6(x), (3.24), (3.31) and the fact that u bounded in L?(0, L), we get (3.37). O

(3.39)

From what precedes, Lemmas 3.3-3.8, we deduce that
[Ulla, = o(1), over (az+€ by —e).

Lemma 3.9. Assume that n > 0 and assumption (Ay) holds. Let ¢ € C'([0,L]) and ¢(0) = ¢(L) = 0 be
a given function. Then, for j = 1,2, the solution (u,v,y, z,w?) € D (A;) of system (3.12)-(3.16) satisfies the
following behavior estimation:

) dx = o(1).

Proof. First, multiplying equation (3.17) by 2p1¢u,, integrating over (0, L), taking the real part, the fact that
u, is uniformly bounded in L2(0, L), || f1|| = o(1) and || f2|| = o(1), we obtain

L
/ <mAu|2+k1|ux|2+p2|xy|2+k2
0

yx+7\/f/ z,§)

L g4 L o4 L
(3.40) 1 / ¢d—|)\u\2d$ + kq / ¢d—|uw|2dx + R < 2k / BYaTizdr p = o(A7H).
0 € 0 T 0

Now, multiplying equation (3.18) by 2p¢ (yVL +

) /D) | (€ €1 ). gt over (0. L), tak-
2 R

ing the real part, then using the fact that (ygC + #wDQ(I) / u(f)w%m,{)df) is uniformly bounded in
2 R
L*(0,L), llyll = O(IAI™Y), [Ifs]l = o(1) and || fall = o(1), we obtain

R {2p2A2 /OL oy (yL + %\/Dj/ u(f)wQ(%&)d§> dw}

Lod

s /O oy

—R {%1 /O Puy (y + %@ /R moaﬂ(x,@dg) d:v}

R {%1 /0 “ o (y + 5 f)w?(x@d&) dm}
—o(1)

:afe{zm/o G (=22 fa—ixfs) (yﬁ )

=o(A~1)

(3.41)

§)w2(x7§)d£> d:r}.

Moreover, by using the definition of Dy(x) and Cauchy-Schwarz inequality, the fact that 0 < @« <1 and n >0
and by using Lemma 3.3, Lemma 3.6 and the fact that u, is uniformly bounded in L?(0, L), we obtain

L L
%{w? [ ov (5.4 52VBs [ wieiorte o) dx}sz | o e o7,

—R {%1 /OL DUy (ym + ~a) (g)oﬂ(a;,g)dg) dx} = {2k1 /OL qsuzyxdx} +o(A71).
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Inserting the above equations in (3.41), we obtain

d ﬁ—\ﬁ/ daz &a{zkl/ ¢uLyldm}—o(l)

L 4 , L
3.42 — | A\y|“dz+k —
3:42) o [ o inuPdashy [0y
Adding (3.40) and (3.42), then using integration by parts, we obtain (3.9). The proof is thus complete.

O

Lemma 3.10. Assume that > 0 and assumption (As) holds. Then, for j = 1,2, the solution (u,v,y, z,w?) €
D (A;) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

(3.43) [U]|3; = o(1).
Proof.
Let as + € < ag + 2¢ < bg — € and define the cut-off functions 61, 65 € C§°([0, L]) by
1 if z€(0,as+e),
Or1(x)=<¢ 0 if =z € (ag+2€L),
€[0,1] elsewhere

and
1 if ze(by—¢ L),

Oo(x) =< 0 if x€(0,b2 — 2e),
€10,1] elsewhere.
Take ¢ = 26 in Lemma 3.9, then use the fact that [|U|[3, = o(1) in (a2 +¢,b2 —¢) and az +€ < az +2¢ < by —¢,

we have
) dx = o(1),

) dx = o(1).

L
/ x0] <p1|v|2 + kl\uw|2 + p2|z|2 + ko
0

ym+—f/ w?(z, )

(3.44) .,
+/ 01 (P1|U|2 + ky|ug* 4 palz)® + ko
0

yx+—\ﬁ/ w?(x,8)

therefore, we get

ym+—\ﬁ/ w*(z,€)

Moreover, using estimation (3.20), the definition of Dy and (3.45) we observe that

az+te az+te
/ |yz|*da < 2/
0 0

(3.46) dar(a)® [o2Fe 20-1|, 2 2
2 , déd
N lz Am w2z, €)[Pdedz

k3

=o(1)

a2+e
(345) / <p1|v + k1|uI|2 + p2|z‘2 + ko
0

using (3.45) and (3.46), we get
|Ull#, = o(1) on (0,az + €).
Similarly, by taking ¢ = (x — L), we can prove ||U||3;; = o(1) on (by — ¢, L). Therefore,
[Ull#; = o(1) on (0, L).
Thus, the proof is complete. O
Proof of Theorem 3.1. For j = 1,2, from Lemma 3.10, we get that ||U]|3, = o(1), which contradicts (3.10).
This implies that
supH(z’)\I—Aj)le =0 (\?).

AER L(H;)
The result follows from Theorem A.3. O
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4. POLYNOMIAL STABILITY WHEN THE DAMPING IS EFFECTIVE IN SHEAR FORCE.

In this section, we study the polynomial stability of system (2.45)-(2.50) with the boundary conditions (2.51)
or (2.52) in the case n > 0, when the fractional Kelvin-Voigt damping is acting only on the shear force equation,
i.e assumption (A3) holds. Our main result in this section is the following theorem.

Theorem 4.1. Assume that n > 0 and assumption (As) holds. Then, for j = 1,2, there exists ¢ > 0 such
that, for every Uy € D (A;), the following energy estimation holds:

c 2
(4.1) B() <0l t>0.

According to Theorem A.3 and by taking ¢ = 2, the polynomial energy decay (4.1) holds if the following
conditions

(Hs) iR C p(A;j)

and

(L) sup [[(IAT = A) e,y = O (1AF) |
AER

are satisfied. Since condition (Hj) is already proved in Theorem 2.9 in the case n > 0. We will prove condition
(Hy) by an argument of contradiction. For this purpose, suppose that (Hy) is false, then there exists

{()\naU (Unvvnaynaznv } CRXD(-A )
with
(4'2) |)\n| — +00 and ||Un||H_7 = ||<unvvn7yn’znawvlz)”7'lj =1
such that
(43) )\i (Z)\nl - Ag) Un = Fn = (flma f2,n7 f3,na f4,n7 fS,n)T — 0 in Hg
For simplicity, we drop the index n. Equivalently, from (4.3), we have
(4.4) iu—v = A 2fy in Hg(0, L),
k
(4.5)i v — ;Tl ((um \/ / (w,& d§> = M\ 2%fy, in L*(0,L),
1
(4.6) iNy—z = A 2fy in 0;(0,L),
_ k k
(4.7 iNe— e + —(ug + )
P2 P2
Jdé = A2fy in L2(0,L),
(4.8) (i + €2 + 1) w! — iAy/Dy (ug + y)u(€) = [f5 —Dup€) (f1)e + f5)] oW
where

H;(0,L), ifj=1,
0,(0,L) =
50, L) { HN0,L), ifj=2.

By inserting (4.4) in (4.5) and (4.6) in (4.7), we obtain

(4.9) N T ((ux TG NN / u(é)wl(m,f)dé) — D2 4T
p1 k1 R -
@10) Wyt 2y, B, g o B9 B / () (. ) = —N"2fs +iALf3)
P2 P2 P2 R
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From the above system, ||U]||3;; = 1 and || F'|[3, = o(1), we remark that
lull = O (A7), Hlyl = O (IA7Y)+ llyaall = O (1A]),,
(0 + 520D [ e torac) | =0

Our main goal is to find a contradiction with (4.2) such as [|Uny ||, = o(1). For clarity, we divide the proof into
several Lemmas.

(4.11)

Lemma 4.2. Assume that 7 > 0 and assumption (A3) holds. Then, for j = 1,2, the solution (u,v,y,z,w!) €
D (A;) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

L
(4.12) /0 /R(g2 +1) \wl(a;,g)ﬁ dédz = o (A 7?).

Proof. Taking the inner product of F with U in H;, then using the fact that U is uniformly bounded in #;,
we get

a) /OL /R(§2 +n) | (@, 6)| dédz = —R (<AjU, U>Hj) — R (< iINU — AU, U>Hj) o (A?).
0

Lemma 4.3. Assume that 7 > 0 and assumption (A3) holds. Then, for j = 1,2, the solution (u,v,y,z,w!) €
D (A;) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

by
(4.13) / lug +y> dz = o ()\_(3+”‘)) :
ai
Proof. From (4. 8) we get
INVDL@)IE T [y +y| < (1A + €2+ m)|w? (2, )] + N2 fs(2, &) + N2V Di@)[e] " [(f1)e + fal-
Multiplying the above equation by (A + &2 +n)~2|£|, integrating over R and proceeding in a sumlar way as in
Lemma 3.4 (Section 3), we get our desired estimation (4.13). Thus, the proof is complete. O

Lemma 4.4. Assume that 7 > 0 and assumption (Ag) holds. Then, for j = 1,2, the solution U € D (A;) of
system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

b1
/ 2V [ e o €1
a1
Proof. using the fact that |P + Q|?> < 2P? + 2Q2, we obtain

by by by VR 2
/ da: < 2/ lug + y|? do + 2d; ()’ / (/ WWl(%f)Cﬂf) dx
ay a a R

(uz +9) dac =o(A7?).

(ug +

1 k% \/§2+77
b1 9 bl
<2 / hig + 9P de + s / / (€ + )l (x, ) Pdéda
ai al R

K(a)?
k2

1
result. Hence, the proof is complete. O

where ¢3 = 2d; Ay(a,n) and Ag(a,n) is defined in Lemma 3.5. Using (4.12) and (4.13), we get our desired

Lemma 4.5. Assume that n > 0 and assumption (A3z) holds. Let € < blz‘“. Then, for j = 1,2, the solution
(u,v,y,z,w) € D (A;j) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

bl—E
o(1)
(4.14) / |ulPde = —==.
a1+e >‘2
Proof. We define the function 65 € C§°(0, L) such that 0 < f5(z) < 1, for all z € (0, L), by
1 if xe€ (a1+€,b1 —6),
03(x) = {

(4.15) .
0 if ze€(0,L)\ (a,b1).
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First, multiplying (4.9) by 637, integrating over (0, L), using the fact that Au and w are uniformly bounded in
L?(0,L) and || f1]] = o(1), || f2|| = o(1), we obtain

(4.16) / 03| \u|?dx + —/ [ (ug +y) + 7\/7/ (z,€) df] (037)dx = o(A72).

Using integration by parts on the second term of the left hand side of (4.16) we get

L
b [(uw +y) \/ / (z,8) df} (Osu)dx = _h 93 [(um +y)+ —\/ / (z,8) d§] Uydx
p1 Jo p1
hk Le, {(u n \ﬁ/ (z,¢ dg} udz.
P1Jo ’ - )

Now, using (4.13), Lemma 4.4 and the fact that Ay is bounded in L?(0, L), we get

ﬁ g3 {(uz )+ 7\/7/ (z,¢ dg} Updx

P1
k
=— 03 [(Uﬁy +—\/ / xfdf] (W +7)dx
(4.17) P
k
- agA[u )+ 52D [ et €1 Omia
P Jo
_ o) ol
TaEE T
Thanks to Lemma 4.4 and the fact that Au is uniformly bounded in L?(0, L), we have
ke [*1 o(1)
4.18 — 05— — YdE | Audr = —5~.
(118) [ o s+ 2D [ a1 &
Now, inserting (4.17) and (4.18) in (4.16), we get
o(1)
(4.19) / 03| \u|?dx = VR
0
From the above estimation and the definition of #3(x), we obtain (4.14). Thus, the proof is complete. O

Lemma 4.6. Assume that 7 > 0 and assumption (As) holds. Let € < b-a 74, then, for j = 1,2, the solution
(u,v,y,2,wt) € D (A;) of system (4.4)-(4.8) satisfies the following asymptotlc behavior estimation:

by —e
(4.20) / |\y|2dz = o(1).

1+e

Proof. First, multiplying (4.10) by 05(u, + y), integrating over (0, L), using integration by parts, the fact that
Au, Ay are uniformly bounded in L?(0, L) and || f3]| = o(1), || f4]| = o(1), we obtain

L g kz L - kl L )
2 Jo

(4.21)
f’%‘/ 05/ D (x / (z, €)de iz T g)da = o(A2).
2 Jo
Using (4.12), (4.13) and the fact that §||ys.| = O(1), we get
kQ / - 0(1)
- o :E:E)‘ z + dr = )
o Jo 3)\9 (u y)dx )\1T
ke [F ) o(1)

M/Wf/ (0, ey T ) = S

P2
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Inserting (4.22) in (4.21) and since 0 < o < 1, we get

L L 0(1)
(4.23) / 03\2yi, dx +/ 03| \y|?de = =
0 0 A2
Using the integration by parts, we get
L L L
(4.24) Os N2yt dr = —/ O \yNudzr — / O3y, \udz.
0 0 0

Now, using (4.14) and the fact that Ay and y, are uniformly bounded in L?(0, L), we get

L
(4.25) / 03 \2yTidr = o(1).
0

Inserting (4.25) in (4.23), we get

L
/ 03| \y|?dx = o(1).
0
From the above estimation and the definition of 83(x), we obtain (4.20). Thus, the proof is complete. O

Lemma 4.7. Assume that n > 0 and assumption (A3) holds. Let € < b—ay 7+, Then, for j = 1,2, the solution
(u,v,y,z,w) € D (A;) of system (4.4)-(4.8) satisfies the following asymptotlc behavior estimation:

blfe
(4.26) / |y |2da = o(1).
a1+e

Proof. First, multiplying (4.10) by 637, integrating over (0, L), using integration by parts, using the fact that
Ay is bounded in L?(0, L), || f3]| = o(1) and || f4|| = o(1), we obtain

(4.27)
L kQ L kl L K) «

/ 03/\2|y|2d1:+—/ 03ymydo:——/ 03(uy + y)yde — / 05/ D / (z,€)degdr = o(A72).
0 P2 Jo P2 Jo P2 Jo

Using integration by parts for the second term of the left hand side, we get

ky [* _ ke [, ks [* 2
(4.28) = | Osyuyde = —— [ Oy, Gdv — — [ Os]y.|"dw.
P2 Jo P2 Jo P2 Jo

Inserting (4.28) in (4.27), using (4.20), (4.12) and the fact that y, and u, +y are uniformly bounded in L?(0, L),
we get

ke [* )
(4.29) — O3y |“dx = o(1).
P2 Jo
From the above estimation and the definition of #3(x), we obtain (4.26). Thus, the proof is complete. O

From what precedes, from Lemmas 4.2-4.7, we deduce that
[Ull3, = o(1), over (a1—¢€bi—e).

Lemma 4.8. Assume that 7 > 0 and assumption (A3) holds. Let h € C'(]0,L]) and h(0) = h(L) = 0 be
a given function. Then, for j = 1,2, the solution (u,v,y,z,w') € D (A;) of system (4.4)-(4.8) satisfies the
following asymptotic behavior estimation:

) dx = o(1).

(x,&)d¢€, from Lemma 4.2, the definition of Dj(z) and the fact that

Um+7r/ wh(z, )

L
/ (mIAuF + ka|yz|® + p2|Ay|? + k1
0

Proof. Let S :=u

Uz is uniformly bounded in L2(0 L) we get S is uniformly bounded in L?(0, L). First, multiplying (4.9) by
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2p1hS, integrating over (0, L), taking the real part, then using the fact that ||f1|| = o(1) and || f2| = o(1), we

obtain
L B L L
éﬁ{pl/ 2h)\2ude}+§R{k:1/ hydez}Jrkl/ h<|S\2) da
0 0 0 x

4.30 L
(4.50) = §R{2p1/ h(A2f2+i)\1f1)de}.
0

o(A-1)

Moreover, from the definition of S and the definition of D (z) and from using Cauchy-Schwarz inequality, the
fact that 0 < a < 1 and 7 > 0, Lemma 4.2, Lemma 4.5 and the fact that y, is uniformly bounded in L?(0, L),
we obtain

L L b1
R {21@1/ hy$5dx} =R {2k1/ hymuwdm} +R {2m(a)d1/ hye / u(f)wl(a:,f)dfdx},
0 0 ar R

—o(A-1)
L L by
R pl/ 2hA*uSda =p1/ h(\AuF) dz + R 2p1“(0‘)d1/ hA%/u(g)wl(x,g)dgdx .
0 0 r kl ay R
—o(A-1)

Inserting the above estimations in (4.30), we get

L L L
(4.31) pl/ h <|>\u|2> dx + kl/ h (\S|2) dz + R {%1/ hymuzdx} = o(A71).
0 x 0 T 0

Now, multiplying (4.10) by 2p2h¥;, integrating over (0, L), taking the real part, then using Lemma 4.2, the
fact that y, is uniformly bounded in L2(0, L), |ly|| = O(|A|7Y), || f3]l = o(1) and ||f4]| = o(1), we obtain

L L L L
pg/ h(\,\y|2> daj—|—]<;2/ h(|yw|2) dx—%{%l huwyw}dm‘—%{k‘l/ 2hyyx}dx
0 r 0 ke 0 0

=o0(1)

by L
—R {2/{ )dy / hyl/ (z,8) d§d$} =R {—Zpg/ h ()\72]‘4 + i/\71f4) ywdx} .
0
Adding (4.31) and (4.32), then using integration by parts, we obtain

=o(A-1) =o(A1)
um—I—i\/i/ (x,€) )dx:o(l).

The proof is thus complete. O

(4.32)

L
(4.33) / <p1|/\u|2+k2|yw|2+p2|/\92+k1
0

Lemma 4.9. Assume that 1 > 0 and assumption (A3) holds. Then, for j = 1,2, the solution (u,v,y, z,w') €
D (A;) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

(4.34) 1Ull3; = o(1).
Proof.
Let a1 + € < a1 + 2e < by — € and define the cut-off functions 64, 65 € C§°([0, L]) by
1 if z€(0,a1 +¢),
O4(x)=1¢ 0 if =€ (a1+2¢L),
€10,1] elsewhere
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and
1 if xze€ (bl — 67L),
95(1‘) = 0 if ze (O,bl — 26),
€[0,1] elsewhere.
First, by taking ¢ = 264 in Lemma 4.8 and proceeding in a similar way as in Lemma 3.10 we get ||U|l3, =

o(1) on (0,a; + €). Moreover, by taking ¢ = (x — L)fs, we can prove ||U||3, = o(1) on (by — ¢, L). Thus, the
proof is complete. 0

Proof of Theorem 4.1. From Lemma 4.9 we get that ||U|3;, = o(1), which contradicts (4.2). This implies
that

sup
AER

(N — Aj)—lHﬁ(Hj) —0(2).

The result follows from Theorem A.3. O

5. POLYNOMIAL STABILITY WHEN THE DAMPING IS EFFECTIVE IN SHEAR FORCE AND BENDING MOMENT.

In this section, we study the polynomial stability of system (2.9)-(2.15) in the case n > 0, when the fractional
Kelvin-Voigt damping is present in both shear stress and bending moment equations and the support of D,
and Dy intersect, i.e assumption (A1) holds and 0 < a1 < a2 < by < be < L. Our main result in this section is
the following theorem.

Theorem 5.1. Assume that n > 0 and assumption (A1) holds. Then, for j = 1,2, there exists ¢ > 0 such
that, for every Uy € D (A;), the following energy estimation holds:

C 2
tﬁ ||U0||D(_A]) ) t> 0.

(5.1) E(t) <

According to Theorem A.3 and by taking £ = 1 — ¢, the polynomial energy decay (5.1) holds if the following
conditions

(Hs) iR C p(A;)

and

(H) sup [| (AT = A;) e,y = O (1A' #),
A€ER

are satisfied. In the case > 0, according to Theorem 2.9, condition (Hs) is proved. Now, we will prove
condition (Hg) by an argument of contradiction. For this purpose, suppose that (Hg) is false, then there exists

{(/\mUn = (Umvmynaznaw}lawi)—r)} CRx D(-AJ)

with

(5.2) Ml = +oo and  [[Unllze, = [[(tn, Uns Yy 20, s w2) I3y, = 1
such that

(5.3) M E (Al = A) Uy = Fy = (fins fons fams frns fons fon) T — 0 in Hy.
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For simplicity, we drop the index n. Equivalently, from (5.3), we have

(5.4) iu—v = ATl in H(0,L),
(5.5) i)\v—%(Sdl)w = A2 lfy in L%(0,1),
1
(5.6) iNy—z = XeTlfy in 0;(0, L),
k k
(5.7) iz — p*i(%) p; (s + )
PO [ wds = M i 0.,
(5.8) A+ 4n)w —iADilus+ )€ = A= VDia©) (e + f)] W,
(59) (iA+ €+ ) w? —ix/Dayen(§) = A3 [fo— @(fz)mu(é)} in Wj,
where ) o o
oj(o,L){ gg(o,LL ?f]'il, j{ W; lfyf_l,
*(OvL)7 lf']—2, W lf]—2
Sar = ((um +y) + %WDT /R u(f)wl(:af)df) and Sa, = ( Ya (w,€ df)

Here we will check the condition (Hg) by finding a contradiction w1th (5. 2) by showmg |Ull%, = o(1). For
clarity, we divide the proof into several Lemmas.

Lemma 5.2. Assume that 7 > 0 and assumption (A1) holds. Then, for j = 1,2, the solution (u, v, y, z,w!,w?) €
D (A;) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

L L
2 1 2 =o(Az71) an 2 Wi (z 2 r=o0(N\2"!
(5.10) /0 /R@ ) |t ()| dede = 0 (AE ) d/o /R@ ) WP 6 dede = 0 (AE 1)

b] bl
(5.11) / |yr|2dx:0()\_%_2) and / |zgﬁ|2 dmzo()\_%) ,
asg az
by N by .
(5.12) / lug + y|? dr=0(A"27%) and / |vz+z|2d:c:o()\*f) ,
as az
by N by .
(513) R e e A}
as az

Proof. First, we proof the second estimation of (5.11). From (5.6), we have

Ry = Z)\ym - )‘%71(f3)m~
It follows that

o1) | o1)
AT AR
Since a € (0,1), we have min(§,1 — §) = ¢, hence, from the above equation, we get

b1 “
/ |2 |2dx = o(A™2).

a2

22l 22(azb) < 1Ml L2a2,00) + AETHI(Fs)all L2 (a2 0) <

Now, we proof the second estimation of (5.12). From (5.4) and (5.6) we have
vy = iduy —AETH(f), and  z=idy — ATl fs.
It follows that

||’U$ + Z||L2(a2-,b1) < ”)‘(uw + y)HL2(a27b1) + |)‘|%_1H(f1 + f3||L2 (az,b1) S >\Z )\17% .
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Since « € (0,1), we get

b1
/ [vy + z|?dx = o(A72).

as
Finally, the proof of the remaining estimations can follow using similar computations as in Section 3 (Lemmas

3.3, 3.4 and 3.5) and Section 4 (Lemmas 4.2, 4.3 and 4.4). O
Lemma 5.3. Assume that 7 > 0, assumption (A;) holds. Let g € C*([ag, b1]) such that

b1) = —g(az) =1, max =c,and max |¢(2)] = cy,
olb) = ~glaz) =1, mas lg(o) =, ond_max |g/(2)] =,

where ¢, and ¢ are strictly positive constant. Then, for j = 1,2, the solution (u,v,y, z,w',w?) € D (A;) of
system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

by
(5.14) [Sin )+ 1Sunaz) P < 22N [ oo+ o),
2 as
and
b
L 1
(5.15) |2(b1)]? + |2(a2))? < ( '02 )\177 +2c] )/ |2)%dx + %.

Proof. First, we will prove equation (5.14). Multiplying (5.7) by —Z%QT@ and integrating over (as,b;), we
get

by b
A - ke [ -
Sin(b)f? + [Sus(a) = [ gsd2|dx+%<p,ji [ gzsdzdx>+%( ol (ux+y)5dzd$>

az

by
+§R< . / gV D / xfdedex> %(2]52 /\?*1/ gf45d2dac>,
2 as 2 az

by )\ by k by
Sin(b)? + 1Su(az)* < ¢, [ 180+ 2522, [l Sl do 25ty [ lua 401 |Sun] da
(5.16) a2 b 2 asz 2 as

consequently,

K(a 2 a_ b1
25 %a1c, [ [ et @0 swlao+ 22 3316, [ 1l
k2 a R k2 as
Using Young’s inequality and second estimation of (5.13), we obtain
2p2Acy poAITE o 2poAlTE pg)\1+% 9
5.17 —— 2] |84, | < ——715 1).
(5.17) 20 150, < PO ot 4 P g, < PR e o

Using Cauchy-Schwarz inequality, first estimations of (5.10) and (5.12), second estimation of (5.13) and using
the fact that || f4]| = o(1), we obtain

b] bl
[ et alisitar =247, [ 1salar= 20
a >\§ a )\ 2
(5.18) b i
1 o1 o 1 o1
| [ et erae] 15 an = S 5 [ il ae = 50
az R az 2 4

Inserting (5.17) and (5.18) in (5.16), and since a € (0, 1), we obtain

A+5 b1
(519 Su®)P + 1Swa) < 220 [T s do o)
asz

Now, we will prove (5.15). From equation (5.6), we have
(520) Zr = Z)\yx - Agil(fi%)m
Multiplying Equation (5.20) by 2¢Z and integrating over (ag,b;), then taking the real part, we get

bl bl bl
\z(b1)|2+|z(a2)|2:/ g’|z|2dx+§}e{2m/ gyxzdm} —%{m‘%—l/ g(fg)xzdx}.
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Then,

b1 o bl
el |2l + 26,231 / (fa)al 2]d.

by
5.21 z(by 2+za22§c/ 2|2dx + 2 A
9 9
a az a

Using Young’s inequality, we have

2

-2 2k202 a o _ c —24«
2e M pall2] < GENTE P+ TEENFR P and 263 (faalla] < e o+ SEATEEO ()l
gl

ko

Using the above inequalities, first estimation of (5.11) and the fact that ||(f3)z|| = o(1), then equation (5.21)
becomes

b1 1
|2(0) + J2(az)* < <p2 ATE 4 2¢y )/ |2[2de + %

O

Lemma 5.4. Assume that 7 > 0 and assumption (A7) holds. Then, for j = 1,2, the solution (u, v, y, z,w!,w?) €
D (A;) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

bl bl
o(1) o(1)
(5.22) / [oPde = ey and / ylPde = o
az

a2

Proof. Multiplying Equation (5.7) by —iA~!Z and integrating over (as, b1), then taking the real part, we get

b1 k2 bl k b1
/ |22 de = —=\7IR / (Say), Zdz p + —A7IR z/ (uy + y)zdx
as p2 P2 as
bl bl
15}%{ / VD / (z,€ dgzdx} A‘Sz’a%{i f4zdx},

consequently,
b 2 ko -1 b = -1 ko -1
| ean < 20| [ (S0 2o + 2 |sd2<b1>|\z<b1>|+gx S (a2)] |2(a2)]
(5.23) N b . ) .
—i—g/\_1 / (ugy + y)zdz| + / /D / (xz,&)d¢zdx| + /\5_2/ | fal|z]dz.

Using Cauchy-Schwarz inequality, the fact that z is uniformly bounded in L?(0, L) and || f4]| = o(1), we get

(5.24) A / [fall2ldz = o(A%2).
az
Using Cauchy-Schwarz inequality, the second estimations in (5.11) and (5.13), we get
ky o | ™ _ o(1)
(5.25) —=A (S4,) Zodx| = —5~.
p2 a2z >\§

Using Cauchy-Schwarz inequality, the first estimation in (5.12) and the fact that z is uniformly bounded in
L?(0,L), we get

By
P2

o(1)

Pt

b1
(5.26) -t / (ug + y)zdx
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Using Young’s inequality, Cauchy-Schwarz inequality and the first estimation of (5.10), we get

/ \/72/ Wl (x, &)d¢ dx

1 w(0)*d " ’
<= x1+%/ 2% da + La-t- */ (/ u(é)wl(x,é“)dﬁ) dz
2 as 2,02 as R 5
b1 bl 2
(527) S 1)\714’%/ |Z‘2 dm+ ( ) dl A~ 1— O‘/ /M(g)v g +nw1(x7£)d§ dx
2 as 2p2 az R \/m
1 N by o by
<gAE / ot en [ [ (€ ]w e o) dedo
a as R
1. o(1)
2 2a0—1
where ¢4 = () dy €] d€. Since 0 < < 1 and 1 > 0, then ¢4 is well defined.

205 Jr |€)* 4+
Inserting estimations (5.24)-(5.27) in (5.23), we get

by
(5.28) (1—;,\—1%‘)/&2 EIRCAES %A—H% (|z(a2)|2+|z(b1)\2) k2 )\‘1‘* <|Sd2(a2)| + 1S, (b1)] )
Lo, o)

AZ AZTE
Now, inserting estimations (5.14) and (5.15) in (5.28), we get
1 1 e Ky, qpa. [™ o(1)  o(1)  o(1)
5.29 — oA THE L =T / 2dr < . . :
(5.29) Gt et ) s e e Ty

Since 0 < o < 1, then min(2 — §,1+ &, %) =1+ §. Consequently,
1 1

(5.30)

o k o [ o(1)
-1+% 2 1 y—14+2 2 <
(2 2)\ pgcg)\ 2)/a2 |z|7dr < &

Since |A\| — +o0, for A large enough, we get

I 1, 470 ko, 140 b 2 o(1)
(531) 0< (5 — 5)\ 2 — Ecg)\ 2) o, |Z| dx S )\1 =
hence, the first asymptotic estimate of (5.22) holds. Then inserting the first asymptotic estimate of (5.22) in
(5.6), we get the second estimate of (5.22). Thus, the proof is complete. O

Lemma 5.5. Assume that 7 > 0 and assumption (A;) holds . Then, for j = 1,2, the solution (u, v, y, z, w!,w?) €
D (A;) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

by
(5.32) Sy (b1)[* + |Sa, (a2)]? < QL,;AH%/ [v|*dz + o(1)
and
b
! 1
(5.33) [v(b1)]? + |v(ag))? < (2’2 M=% 42 )/ [v|?dx + Q

Proof. First, we will prove equation (5.32). Multiplying (5.5) by —22* ngl and integrating over (ag,b1), we
get

b b b
! A ! — 2 1
(5.34) |84, (b1)|? + |Sa, (a2)|* = / q'|Sq, |Pdx + §R{ p;: / gdeldm} — ?R{ kpl )\7_1/ g fa Sdldx} ,

2 2

consequently,

b b
1 A _ 1
535 150 00F +Su e <) [ 150 e+ 280, [ iy e - 2038 e, [ 115
a2

az kl az
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Using Young’s inequality and first estimation of (5.13), we obtain

pATE 2p1)\1_%c£27 S, |2 < pIAITE
2k kq il = 2k

Using Cauchy-Schwarz inequality, first estimation of (5.13) and using the fact that || f2|| = o(1), we obtain

by 1
/ |Sd1|2d'r: 0( )

2p1 A
(5.36) T ol S| < ol + ol +o0(1).

(5.37) ,
a_ ! o(1
A7 [ plisalar = S
az 277

Inserting (5.36) and (5.37) in (5.35) and since 0 < o < 1, we get

)\1—}-% by
(5.39) Sua o) + S @) < 25 [ ol o+ o).

1 as

Now, we will prove (5.33). From equation (5.4), we have
(5.39) Vg = iMug — A2 f1)
Multiplying equation (5.39) by 2¢gv and integrating over (b1, as), then taking the real part, we get

b] b1 bl
l0(b1)]? + |v(az))? :/ g’|v|2dx+§}?{2i)\/ guxvdx} —3?{2)\(5_1/ g(fl)mvdm}.

Then,
by by N by
G40 )P + o) < [ oPdo+2e) [ fusllelds + 26,33 [ () elde,
asz az az
Using Young’s inequality, we have
o 2k1c2 o c2
(5.41) 2cyM|ug|jv] < ;711)\1*7|v|2 + %)\H? ug|>  and  2e, AN (f1)al|v] < cprfvF+ c—gl/\a*2|(f1)x\2.
9

Using equation (5.41) and the fact that ||(f1)z]| = o(1), then equation (5.40) becomes

@ b1 2k 02 o b1 1
(542) o)+ lo(ag)? < [ LEAF 42, / [of*de + =\ / g 2o+ 202
2/€1 as P1 as )\
Using the first estimation of (5.12) and the second estimation of (5.22), we get
o by o by @ by
AR / ug[Pde < 2AF3 / |uz + y|Pdz + 2A1+7/ ly|*dx
as as az
D o)
5.43 < & v
(5.43) < St
< D
- A
Now, inserting (5.43) in (5.42) and 0 < a < 1, we get
b
a ! 1
(5.44) (b)) + [v(az)? < [ Z2A5 4+ 2¢, / [v|2dz + oll)
2k, . )

O

Lemma 5.6. Assume that 7 > 0 and assumption (A1) holds. Then, for j = 1,2, the solution (u, v, y, z,w!,w?) €
D (A;) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

b b
! 1 ! 1
(5.45) / lv|2dx = o(l) and / lu|?dz = o(l) .
a a:

- AT

2
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Proof. Multiplying Equation (5.5) by —iA~'% and integrating over (as, b;), then taking the real part, we get

by k_l by N by
/ |v]2de = ——\"'R / (Say), vdx p — A2TIR fevdx

/ lv]2de < — A~
as pl

by
+AT2FE / | fo||v|da.
az

consequently,

by
/ (S4,) Updx| + —

2

k
1S4, (b1)][o(b1)] + p—ixl |Sa, (az)| [v(az)]

(5.46)

From the fact that v is uniformly bounded in L?(0, L) and || f2|| = o(1), we get

b1
(5.47) A—2+%/ folloldz = o(A=2+5),
as
Using the second estimation in (5.12), the first estimation in (5.22) and the first one in (5.13), we get
k1 b1 k1 b1 L k1 by
—At / (S4,)Tpdz| < —A71 / (S4,) (v + 2)da| + —A"" / (Sq,) zdz
pl a pl as pl a
(5.48 _ o) o)
N3 A2
< W
A2
Inserting (5.47) and (5.48) in (5.46), we get
b 2 kl —1+4 2 2 kl JE -1 2 2
pPde < AT (Jo) + fo(az) ) + AT E (186, (00 + IS0, (a2) )
(5.49) az 2pm 201
. o) o)
A2 AT
Now, inserting (5.32) and (5.33) in the above estimation, we get
1 ko, b1 o(1) o(1)  o(1)
5.50 = AT / 2dr < - - :
( ) (2 P 2) . v[*dz < -3 +)\1+ + \e
Since 0 < a < 1 and |A\| — o0, for X large enough, we get
L ki, " o(1)
. — < —=.
(5.51) 0< (5= e )/ag e < 3

Hence, we get the first asymptotic estimate of (5.45). Inserting the first asymptotic estimate of (5.45) in (5.4),
we get the second estimate of (5.45). Thus, the proof is complete. O

From what precedes and from Lemma 5.2-5.6, we deduce that
U3, = o(1), over (az,b1).

Lemma 5.7. Assume that 7 > 0 and assumption (A;) holds . Let h € C'([0,L]) and h(0) = h(L) = 0 be a
given function. Then, for j = 1,2, the solution (u,v,y,z,w',w?) € D (A;) of system (5.4)-(5.9) satisfies the
following asymptotic behavior estimation:

) dx = o(1).

/ W <p1|v|2+kz yz+—\/D2 / +;02|Z|2+k1
0
(x,&)d¢€, from Lemma 5.2, the definition of Dj(z) and the fact that

ux+7\ﬁ/

Proof. Let S :=u

Uz is uniformly bounded in L2(0 L) we get S is uniformly bounded in L?(0, L). First, multiplying (5.5) by
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2p1hS, integrating over (0, L), taking the real part, and using the fact that || f2| = o(1), we obtain

L - L . L
%{pl/ thAdea:}—&e{zkl/ hydex} —kl/ h(|S|2> da
0 0 0 x
5.52 Lo
( ) =§R{2p1/ h)\zlfQde}
0

From equation (5.4), we have

XNt = —T5 — A2 (f1)a
Then,
(5.53) iNS = —T; — AT, + A ) \/171/ p(§)w (z, €)de.
ky R

Moreover, from the definition of S and D;(z), Cauchy-Schwarz inequality, the fact that 0 < o < 1 and
n > 0, Lemma 5.2, Lemma 5.6, equation (5.53), the fact that y, and v are uniformly bounded in L?(0, L) and

1(f1)all = o(1), we get

L L by
%{21@1/0 hydel’} 2%{2/{1/0 hyxuzdx} +%{2n(a)d1/ hyw/ﬂgu(ﬁ)wl(x,f)dgdm},

—o(1

[N

A

L L L b1
?R{pl/o th)\dea:} =—p1/0 h(\v|2)mdx—>\%*12p1/o hv(fl)xdx—&—ﬂ?{Zplnl(::)dl /a2 hiAvAu(g)wl(x7§)d§dx}.

__o()
P

=o0(1)

Q|

Inserting the above estimations in equation (5.52), we obtain

(5.54) —p1 /OLh(vﬁ)wdx—kl /OLh(sﬁ)xdm—éR{le /OLhywumdx} = o(1).

K}ij)\/m/ﬂku(amdg), integrating over (0, L),

taking the real part, then using the fact that (yL + %\/ Dy () / (&)w?(z, 5)d5> is uniformly bounded in
2 R
L?(0, L), equation (5.10), equation (5.13), |ly|| = O(|A|~1) and || f4]| = o(1), we obtain

L o L d
R 2p27)\/ hZSdZd{E —kg/ hi
0 0 d:l:

L L L
+R {2k1 / hudezdﬂc} +R {2k1 / hySdzdx} +x {2&(04)/ hy/ D1 /Ru(é)wl(x, f)dedzdx}
0 0 0

e — @)
A
L . L
:%{m/ h)\2‘1f45d2dm}.
0

o(1

AT

Now, multiplying (5.7) by 2p2hSg, = 2p2h (y$ +

(5.55)

Rl

From equation (5.6), we have
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Then,

f/ (&)w?(x, €)dE.

Moreover, from the definition of Sy, and Ds(z), Cauchy-Schwarz inequality, the fact that 0 < o < 1 and
n > 0, Lemma 5.2, Lemma 5.4, equation (5.56), the fact that u, and z are uniformly bounded in L?(0, L) and

I(f3)z]] = o(1), we have

L L by
?R{le/o hudezdx} :%{2161/0 huwypdm}+§}%{22m(a)dg /a2 huz/Ru(g)w%x,f)dgdx},

(5.56) iNSa, = — % — AT (Fa)a + N

L o L . L
m{pQ/ 2hi)\zSd2da:} :7p2/ h(|z|2) dx—)ﬁ*lQpl/ hz(f3)adz
0 0 z 0
b1
+9%{2p2“ do / th/ (z,€ dgdx}

=o0(1)

Inserting the above estimations in (5.55), we obtain
(5.57)

L
—pz/ h—|z| dm—kg/ hdi z—i——\/ / dx—l—%{le/ huxyxdx} = o(1).
0 0 0

Adding (5.54) and (5.57), we get our desired result. O

Lemma 5.8. Assume that 7 > 0 and assumption (A;) holds. Then, for j = 1,2, the solution (u,v,y, z, w!, w?) €
D (A;) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimation:

[Ull3; = o(1).
Proof. Proceeding in a similar way as in Lemma 3.10, we get our desired result. ]

Proof of Theorem 5.1. From Lemma 5.8 we get that ||U|3, = o(1), which contradicts (5.2). This implies
that

ilég H(ix\[ - Aj)_lHL(H,-) =0 (\'7%).

The result follows from Theorem A.3. O

6. CONCLUSION

We have studied the stabilization of a one-dimensional Timoshenko system with localized internal fractional
kelvin-Voigt damping via non-smooth coefficients. We proved the strong stability of the system using Arendt-
Batty criteria. Polynomial stability results has been proved in three cases: The case of fractional kelvin-Voigt
damping acting on the bending moment equation. We showed a polynomial energy decay rate of type t~'. The
case of fractional kelvin-Voigt damping acting on the shear force equation. We proved a polynomial energy decay
rate of type t~'. In the last case, the fractional kelvin-Voigt damping acting on the shear force and bending
moment equations. We established a polynomial energy decay rate of type =y Thereby, we highlight the
following important open problems: the optimality of the obtained decay rates and the generalization of our
results to a Bresse system.
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APPENDIX A. SOME NOTIONS AND STABILITY THEOREMS

In order to make this paper more self-contained, we recall in this short appendix some notions and stability
results used in this work.

Definition A.1. Let A : D(A) C H — H generates a Cy—semigroup of contractions (etA) on H. The

t>0
tA . .
)tZO is said to be

1. Strongly stable if

Cy-semigroup (e

lim |le"ao|lg =0, Vo€ H.
t——+oo
2. Exponentially (or uniformly) stable if there exist two positive constants M and e such that
||6tA£L'0||H§M€_€t||$OHH, Vit>0,Vzye€H.
3. Polynomially stable if there exists two positive constants C' and a such that
||€tA$0||H Sct_éHAi()Hhﬁ Vit>0,Vux ED(A)
O

Now, we look for sufficient conditions to show the strong stability of the Cp-semigroup (etA) 1>0- We will rely
on the following result obtained by Arendt and Batty [1]. -
Theorem A.2. (Arendt and Batty [1]) Let A: D(A) C H — H generates a Cp—semigroup of contractions
A
(et )tZO on H. If
1. A has no pure imaginary eigenvalues,
2. o (A) NiR is countable,
where o (A) denotes the spectrum of A, then the Cp-semigroup (etA) 4 is strongly stable. O

Concerning the characterization of polynomial stability stability of a C'y—semigroup of contraction (etA) >0 Ve

rely on the following result due to Borichev and Tomilov [3] (see also [2] and [6])

Theorem A.3. (Batty in [2|, Borichev and Tomilov in [3]). Assume that A is the generator of a strongly
continuous semigroup of contractions ("), on H. If o (A) N iR = @, then for a fixed £ > 0 the following
conditions are equivalent:

(AT — A)_1HL(H) — 0 (]

t>0

1. Sup)\eR ‘

2. || AUo]|n < gl IUollpcay, ¥Vt >0, Uy€ D(A), for some C > 0.
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