
HAL Id: hal-03434221
https://hal.science/hal-03434221

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Varieties
Howard Straubing, Pascal Weil

To cite this version:
Howard Straubing, Pascal Weil. Varieties. Jean-Eric Pin. Handbook of Automata Theory, volume I:
Theoretical Foundations, European Mathematical Society Publishing House, Chapter 16, pp. 569-614,
2021, 978-3-98547-006-8. �10.4171/Automata�. �hal-03434221�

https://hal.science/hal-03434221
https://hal.archives-ouvertes.fr

VARIETIES

HOWARD STRAUBING AND PASCAL WEIL

This chapter1 is devoted to the theory of varieties, which provides an important
tool, based in universal algebra, for the classification of regular languages. In the
introductory section, we present a number of examples that illustrate and motivate
the fundamental concepts. We do this for the most part without proofs, and often
without precise definitions, leaving these to the formal development of the theory
that begins in Section 2. Our presentation of the theory draws heavily on the
work of Gehrke, Grigorieff and Pin [25] on the equational theory of lattices of
regular languages. In the subsequent sections we consider in more detail aspects of
varieties that were only briefly evoked in the introduction: Decidability, operations
on languages, and characterizations in formal logic.

1. Motivation and examples

We refer the readers to Chapter 1, and specifically to Sections 4.2 and 4.3 of
that chapter, for the notion of a language recognized by a morphism into a finite
monoid, and for the definition of the syntactic monoid Synt(L) of a language L.

1.1. Idempotent and commutative monoids. When one begins the study of
abstract algebra, groups are usually encountered before semigroups and monoids.
The simplest example of a monoid that is not a group is the set {0, 1} with the
usual multiplication. We denote this monoid U1.

What are the regular languages recognized by U1? If A is a finite alphabet and
ϕ : A∗ → U1 is a morphism, then any language L ⊆ A∗ recognized by ϕ—that is,
any set of the form ϕ−1(X) where X ⊆ U1—has either the form B∗ or A∗ \ B∗,
where B ⊆ A. In particular, membership of a word w in L depends only on the set
α(w) of letters occurring in w (see Example 4.9 in Chapter 1).

The property ‘membership of w in L depends only on α(w)’ is preserved under
union and complement, and thus defines a boolean algebra of regular languages. Of
course, not every language in this boolean algebra is recognized by U1; for example,
we could take L = a∗∪b∗. However, it follows from basic properties of the syntactic
monoid that this boolean algebra consists of precisely the languages recognized by
finite direct products of copies of U1.

We have thus characterized a syntactic property of regular languages in terms
of an algebraic property of its syntactic monoid. The family of finite monoids that
divide a direct product of a finite number of copies of U1 is itself closed under

The first author was partially supported by NSF Grant CCF-0915065. The second author was
partially supported by ANR Grant ANR-16-CE40-0007 (project DeLTA) and by ReLaX, CNRS
UMI 2000.

1Chapter 16 of the Handbook of automata theory, volume I. J.-É Pin, ed. EMS Publishing,
2021. DOI: 10.4171/Automata.

1

2 HOWARD STRAUBING AND PASCAL WEIL

finite direct products and division. Such a family of finite monoids is called a
pseudovariety. This particular pseudovariety is often denoted J1 in the literature2.

1.1.1. Decidability and equational description. Thus if we want to decide whether
a given language L ⊆ A∗ has this syntactic property, we can compute Synt(L) and
try to determine whether Synt(L) ∈ J1. But how do we do that? There are, after
all, infinitely many monoids in J1. We can, however, bound the size of the search
space in terms of |A|. It is not hard to prove that if M is a finite monoid, and

ϕ : A∗ →M × · · · ×M︸ ︷︷ ︸
r times

is a morphism, then N = ϕ(A∗) embeds into

M × · · · ×M︸ ︷︷ ︸
s times

,

where s = |M ||A|. This settles, in a not very satisfactory way, the question of
deciding whether Synt(L) is in J1: The resulting ‘decision procedure’—check all

the divisors of U2|A|

1 and see if Synt(L) is isomorphic to any of them!—is of course
ridiculously impractical. Fortunately, there is a better approach: U1 is both commu-
tative and idempotent (i.e., all its elements are idempotents).These two properties
are preserved under direct products and division, and consequently shared by all
members of J1. That is, the idempotent and commutative monoids form a pseu-
dovariety that contains J1. Conversely, every idempotent and commutative finite
monoid belongs to J1. To see this, we make note of a fact that will play a large role
in this chapter: If M is a finite monoid and ϕ : A∗ →M an onto morphism, then

M ≺
∏

m∈M

Synt(ϕ−1(m)).

In particular, every pseudovariety is generated by the syntactic monoids it contains.
We now observe that if α(w1) = α(w2), and if ϕ : A∗ → M is a morphism onto an
idempotent and commutative monoid, then ϕ(w1) = ϕ(w2), since we can permute
letters and eliminate duplications in any word w without changing its value under
ϕ. Thus each ϕ−1(m) satisfies our syntactic property, and so by the remark just
made, M ∈ J1.

We can express ‘M is idempotent and commutative’ by saying that M satisfies
the identities xy = yx and x2 = x. This means that these equations hold no
matter how we substitute elements ofM for the variables x and y. This equational
characterization of J1 provides a much more satisfactory procedure for determining
if a monoid M belongs to J1: If M is given by its multiplication table, then we can
verify the identities in time polynomial in |M |.

1.1.2. Connection to logic. Before leaving this example, we note a connection with
formal logic. We express properties of words over A∗ by sentences of first-order logic
in which variables denote positions in a word. For each a ∈ A, our logic contains
a unary predicate Qa, where Qax is interpreted to mean ‘the letter in position x
is a’. We allow only these formulas Qax as atomic formulas—in particular, we do
not include equality as a predicate. A sentence in this logic, for example (with
A = {a, b, c})

∃x∃y∀z(Qax ∧Qby ∧ ¬Qcz)

2It is also written Sl because its elements are called semilattices.

VARIETIES 3

defines a language over A∗, in this case the set of all words containing both a and
b, but with no occurrence of c. It is easy to see that the languages definable in this
logic are exactly those in which membership of a word w depends only on α(w).

The following theorem summarizes the results of this subsection.

Theorem 1. Let A be a finite alphabet and let L ⊆ A∗ be a regular language. The
following are equivalent.

(i) Membership of w in L depends only on the set α(w) of letters appearing in
w.

(ii) Synt(L) ∈ J1, that is, Synt(L) divides a finite direct product of copies of
U1.

(iii) Synt(L) satisfies the identities xy = yx and x2 = x.
(iv) L is definable by a first-order sentence over the predicates Qa, a ∈ A.

1.2. Piecewise-testable languages. Suppose that instead of testing for occur-
rences of individual letters in a word, we test for occurrences of non-contiguous
sequences of letters, or subwords . More precisely, we say that v = a1 · · · ak, where
each ai ∈ A, is a subword of w ∈ A∗ if

w = w0a1w1 · · · akwk

for some w0, . . . , wk ∈ A∗. We also say that the empty word 1 is a subword of every
word in A∗. The set of all words in A∗ that contain v as a subword is thus the
regular language

Lv = A∗a1A
∗ · · ·akA

∗.

We say that a language is piecewise-testable if it belongs to the boolean algebra
generated by the Lv.

1.2.1. Decidability and equational description. It is not clear that we can effectively
decide whether a given regular language is piecewise testable. For the language
class of 1.1, we were able to settle this question by in effect observing that for every
finite alphabet A there were only finitely many languages of the class in A∗. For
piecewise-testable languages, this is no longer the case. It is possible, however, to
obtain an algebraic characterization of the piecewise-testable languages, and this
leads to a fairly efficient decision procedure. We first note two relatively easy-
to-prove facts. First, the monoids Synt(Lv) are all J -trivial : This means that if
m,m′, s, t, s′, t′ ∈ Synt(Lv) are such that m = s′m′t′, m′ = smt, then m = m′.
Second, the family J of J -trivial monoids forms a pseudovariety. It follows then
that the syntactic monoid of every piecewise-testable language is J -trivial. A deep
theorem, due to I. Simon [63], shows that the converse is true as well: Every
language recognized by a finite J -trivial monoid is piecewise-testable.

Clearly, we can effectively determine, from the multiplication table of a finite
monoid M , all the pairs (m,m′) ∈ M ×M such that m′ = smt for some s, t ∈ M ,
and thus determine if M ∈ J. This gives us an algebraic decision procedure for
piecewise-testability.

Can the pseudovariety J be defined by identities in the same manner as J1? The
short answer is ‘no’. This is because satisfaction of an identity u = v, where u and
v are words over an alphabet {x, y, . . .} of variables, is preserved by infinite direct
products as well as finite direct products and divisors. Now consider the monoids

Mj = {1,m,m2, . . . ,mj = mj+1}.

4 HOWARD STRAUBING AND PASCAL WEIL

Each Mj ∈ J, but
∏

j≥1Mj contains an isomorphic copy of the infinite cyclic

monoid {1, a, a2, . . .}, which has every finite cyclic group as a quotient. Thus every
identity satisfied by all the monoids in J is also satisfied by all the finite cyclic
groups, which are not in J.

In spite of this, we can still obtain an equational description of J, provided we
adopt an expanded notion of what constitutes an identity. If s is an element of
a finite monoid M , then we denote by sω the unique idempotent power of s. We
will allow identities in which the operation x 7→ xω is allowed to appear; these are
special instances of what we will call profinite identities. It is not hard to see that
satisfaction of these new identities is preserved under finite direct products and
quotients, and thus every set of such identities defines a pseudovariety.

For example, the profinite identity

xω = xxω

is satisfied by precisely the finite monoids that contain no nontrivial groups. This
is the pseudovariety of aperiodic monoids , which we denote Ap. Similarly, the
profinite identity

xω = 1

defines the pseudovariety G of finite groups. As was the case with J, neither of
these pseudovarieties can be defined by a set of ordinary identities.

It can be shown that the pseudovariety J of finite J -trivial monoids is defined
by the pair of profinite identities

(xy)ωx = (xy)ω

y(xy)ω = (xy)ω,

or, alternatively, by the pair

(xy)ω = (yx)ω

xxω = xω .

1.2.2. Connection with logic. Let us supplement the first-order logic for words that
we introduced earlier with atomic formulas of the form x < y, which is interpreted
to mean ‘position x is strictly to the left of position y’. The language Lv, where
v = a1 · · · ak, is defined by the sentence

∃x1∃x2 · · · ∃xk(x1 < x2 ∧ x2 < x3 ∧ · · · ∧ xk−1 < xk ∧Qa1
x1 ∧ · · · ∧Qak

xk).

This is a Σ1-sentence—one in which all the quantifiers are in a single block of
existential quantifiers at the start of the sentence. It follows easily that a language
is piecewise-testable if and only if it is defined by a boolean combination of Σ1-
sentences.

The following theorem summarizes the results of this subsection.

Theorem 2. Let A be a finite alphabet and let L ⊆ A∗ be a regular language. The
following are equivalent.

(i) L is piecewise testable.
(ii) Synt(L) ∈ J, that is, Synt(L) is J -trivial.
(iii) Synt(L) satisfies the identities (xy)ω = (yx)ω and xxω = xω.
(iv) Synt(L) satisfies the identities (xy)ωx = y(xy)ω.
(v) L is definable by a boolean combination of Σ1-sentences over the predicates

< and Qa, a ∈ A.

VARIETIES 5

1.3. Pseudovarieties of monoids and varieties of languages. We tentatively
extract a few general principles from the preceding discussion. These will be ex-
plored at length in the subsequent sections. Given a pseudovariety V of finite
monoids and a finite alphabet A, we form the family A∗V of all regular languages
L ⊆ A∗ for which Synt(L) ∈ V. We can think of V itself as an operator that
associates with each finite alphabet A a family of regular languages over A. V is
called a variety of languages . (We will give a very different, although equivalent
definition of this term in our formal discussion in Section 2.) From our earlier ob-
servation that pseudovarieties are generated by the syntactic monoids they contain,
it follows that if V and W are distinct pseudovarieties, then the associated varieties
of languages V and W are also distinct. Thus there is a one-to-one correspondence
between varieties of languages and pseudovarieties of finite monoids.

Often we are interested in the following sort of decision problem: Given a regular
language L ⊆ A∗, does it belong to some predefined family V of regular languages,
for example, the languages definable in some logic? If V forms a variety of languages,
then we can answer the question if we have some effective criterion for determining if
a given finite monoid belongs to the corresponding pseudovariety V. (The converse
is true as well: if we could decide the question about membership in the variety of
languages, we would be able to decide membership in V.)

Pseudovarieties are precisely the families of finite monoids defined by sets of
profinite identities. For the time being this assertion — a theorem due to Reit-
erman — will have to remain somewhat vague, since we haven’t even come close
to saying what a profinite identity actually is! Such equational characterizations
of pseudovarieties are frequently the source of the decision procedures discussed
above.

If V is a variety of languages, then, as we have seen, each A∗V is closed under
boolean operations. Observe further that if L ∈ A∗V and v ∈ A∗, then both of the
quotient languages

v−1L = {w ∈ A∗ | vw ∈ L}

Lv−1 = {w ∈ A∗ | wv ∈ L}

are in A∗V , because any monoid recognizing L also recognizes the quotients. For
the same reason, if ϕ : B∗ → A∗ is a morphism, ϕ−1(L) is in B∗V . An important
result, due to Eilenberg, showed that these closure properties characterize varieties
of languages.

Theorem 3. Let V assign to each finite alphabet A a family A∗V of regular lan-
guages in A∗. V is a variety of languages if and only if the following three conditions
hold:

(i) Each A∗V is closed under boolean operations.
(ii) If L ∈ A∗V and w ∈ A, then w−1L ∈ A∗V, and Lw−1 ∈ A∗V.
(iii) If L ∈ A∗V and ϕ : B∗ → A∗ is a morphism of finitely generated free

monoids, then ϕ−1(L) ∈ B∗V.

This theorem can be quite useful for showing, in the absence of an explicit alge-
braic characterization of the corresponding pseudovariety of monoids, that a com-
binatorially or logically defined family of languages forms a variety. We conclude
from this that such an algebraic characterization in principle exists.

6 HOWARD STRAUBING AND PASCAL WEIL

Although it is somewhat involved, Theorem 3 is quite elementary; see [20, 44]. In
the next section we will revisit the definition of varieties of languages and profinite
identities in a way that will permit us to prove both Theorem 3 and Reiterman’s
theorem in a single argument.

Before we proceed with this program, we briefly describe certain classes of regular
languages which admit syntactic characterizations (that is, characterizations in
terms of syntactic monoids and syntactic morphisms), but which are not varieties
in the sense described above.

1.4. Extensions. Interesting classes of regular languages frequently admit charac-
terizations in terms of their syntactic monoids and syntactic morphisms, and the
theory sketched above is meant to provide a formal setting for this algebraic clas-
sification of regular languages. However, the framework is not adequate to capture
all the examples of interest that arise. Here we give three examples.

Consider, first, the family A∗K1 of languages L ⊆ A∗ for which membership
of w in L is determined by the leftmost letter of w. This class forms a boolean
algebra closed under quotients, but is not a variety of languages. To see this, note
that a(a + b)∗ ∈ {a, b}∗K1 and c∗a(a + b + c)∗ /∈ {a, b, c}∗K1, even though the
two languages have the same syntactic monoid. Alternatively, we can reason using
Theorem 3, and note that the second language is an inverse homomorphic image
of the first, and thus K1 fails to be a variety of languages. More generally, we can
define the family A∗Kd of languages L for which membership of w in L depends only
on the leftmost min(|w|, d) letters of w, as well as A∗K =

⋃
d>0A

∗Kd. All these
families are closed under boolean operations and quotients, yet fail to be varieties
of languages.

We obtain an example with a similar flavor if we supplement the predicate logic
described earlier by atomic formulas x ≡q 0, where q > 1, which is interpreted to
mean that position x is divisible by q. (We assume that positions in a word are
numbered, beginning with 1 for the leftmost position.) We denote by A∗QA the
family of languages over A∗ definable in this logic. Languages in A∗QA arise as
the regular languages definable in the circuit complexity class AC0 (see [11]). Each
A∗QA is a boolean algebra closed under quotients, however QA is not a variety
of languages: To see this, consider the morphism {a, b}∗ → {a}∗ that maps a to a
and b to the empty string. The set {a2n | n ≥ 0} is in {a}∗QA, as it is defined by
by the sentence

∀x(∀y(y ≤ x) → x ≡2 0).

However the inverse image of this language under the morphism is the set of strings
over {a, b} with an even number of occurrences of a, and it is possible to prove by
model-theoretic means that this language is not definable in our logic.

Finally, consider the family A∗J + of languages definable by Σ1-sentences over
the predicates < and Qa with a ∈ A (in contrast to the languages definable by
boolean combinations of Σ1-sentences, which we considered earlier). It is easy to
see that if L ∈ A∗J + and w ∈ L, then Lw ⊆ L. This readily implies that A∗J + is
not closed under complement, since, for example, the complement of (a+b)∗a(a+b)∗

does not have this property. Thus J + is not a variety of languages. On the other
hand, it does satisfy many of the properties of varieties of languages: It is closed
under finite unions and intersections, quotients, and inverse images of morphisms
between free monoids.

VARIETIES 7

It turns out that each of these three examples admits an algebraic character-
ization in terms of classes that are very much like pseudovarieties. For our first
example, in which membership of a word in a language is determined by the left-
most letter, the correct generalization of pseudovarieties was already known to
Eilenberg: One looks not at the syntactic monoid of a language L, but at the image
of the set A+ of nonempty words under the syntactic morphism. This is called
the syntactic semigroup of L. We can define pseudovarieties of finite semigroups
just as we defined pseudovarieties of finite monoids. Then L ∈ A∗K1 if and only if
its syntactic semigroup belongs to the pseudovariety of semigroups defined by the
identity xy = x. While K1 is not closed under inverse images of morphisms between
free monoids, it is closed if we restrict ourselves to non-erasing morphisms—those
that map every letter to a nonempty word.

We can use a similar method to characterize the class QA. Once again we look
not just at the syntactic monoid of a language L, but at the additional structure
provided by the syntactic morphism ηL. It is known that L ∈ A∗QA if and only
if for every k ≥ 0, ηL(A

k) contains no nontrivial groups [11]. The family QA of
morphisms from free monoids onto finite monoids with this property forms a kind of
pseudovariety with respect to appropriately modified definitions of direct product
and division. An equational characterization of QA is provided by the identity

(xω−1y)ω = (xω−1y)ω+1,

where the identity is interpreted in the following sense: ϕ ∈ QA if and only if for
all words u and v of the same length, x = ϕ(u) and y = ϕ(v) satisfy the identity.
QA is closed under inverse images of morphisms f : B∗ → A∗ such that f(B) ⊆ Ak

for some k ≥ 0; these are called length multiplying morphisms . In fact, these
last two examples are instances of a single phenomenon: Families of morphisms
ϕ : A∗ → M onto finite monoids that form pseudovarieties with respect to some
underlying composition-closed class C of morphisms between free monoids.

For the example J + of Σ1-definable languages, the algebraic characterization
involves a different generalization of pseudovarieties. Here the additional structure
on the syntactic monoid is provided by the embedding of ηL(L) in Synt(L) : If
m1,m2 ∈M then we say m1 ≤L m2 if

{(s, t) ∈ Synt(L)× Synt(L) | sm2t ∈ ηL(L)}

⊆ {(s, t) ∈ Synt(L)× Synt(L) | sm1t ∈ ηL(L)}.

This gives a partial order on Synt(L) compatible with multiplication (see Section
4.4 in Chapter 1). We then find that L ∈ A∗J + if and only if this ordered syn-
tactic monoid satisfies the inequality x ≤ 1 for each element x. The family of
partially-ordered monoids satisfying this inequality is a pseudovariety of ordered
finite monoids—it is closed under finite direct products, and order-compatible sub-
monoids and quotients. The theory of pseudovarieties of ordered monoids and the
corresponding positive varieties of languages is due to Pin [45]

In the next section we will formally develop the framework that gives the cor-
respondence between pseudovarieties and language varieties, and the definition by
profinite identities, in a very general setting. Pseudovarieties of finite monoids, as
well as all the generalizations mentioned above, will appear as special cases.

8 HOWARD STRAUBING AND PASCAL WEIL

2. Equations, identities and families of languages

The original statement of Eilenberg’s theorem dealt exclusively with varieties of
languages. Here we will show how to use a whole hierarchy of increasingly complex
equational characterizations of increasingly structured families of languages. Before
we describe these results, we need to give a quick introduction to the free profinite
monoid and its connection to the theory of regular languages

2.1. The free profinite monoid. Say that a finite monoidM separates two words
u, v ∈ A∗ if there exists a morphism ϕ : A∗ →M such that ϕ(u) 6= ϕ(v). Note that
if u 6= v, there always exists such a monoid. Indeed, for each n ≥ 1, consider
the quotient monoid A∗/A≥n: it consists of the set of words of length less than n,
plus a zero, and each product with length at least n (in A∗) is equal to 0. Then
A∗/A≥n separates u and v if n > max(|u|, |v|). We denote by r(u, v) the minimum
cardinality of a monoid separating u and v.

The profinite distance on A∗ is defined by letting d(u, v) = 2−r(u,v) if u 6= v
and d(u, u) = 0. One verifies easily that d is in fact an ultrametric distance (it
satisfies the ultrametric inequality d(u, v) ≤ max(d(u,w), d(v, w)), stronger than
the triangle inequality), and the above discussion shows that the resulting metric
space is Hausdorff.

The topology thus defined on A∗ is not especially interesting: we get a discrete
space, where a sequence (un)n converges to a word u if and only if (un)n is ultimately
equal to u. . . This can be verified using the monoidsA∗/A≥n described above. There
are, however, non-trivial Cauchy sequences. In fact, one can show the following.

Proposition 4. A sequence (un)n is Cauchy if and only if, for each morphism
ϕ : A∗ →M into a finite monoid, the sequence (ϕ(un))n is ultimately constant.

For instance, if u is a word, then (un!)n is a Cauchy sequence (this can be deduced
from the fact that its image under any morphism into a finite monoid is ultimately
constant), but it is non-trivial if u 6= 1. In topological terms, the uniform structure
defined by the profinite distance is non-trivial.

Using a classical construction from topology (analogous to the construction of
the real numbers from the rationals), we can now consider the completion of (A∗, d),

denoted by Â∗. It can be viewed as the quotient of the set of Cauchy sequences
in (A∗, d) by the relation identifying two sequences (un) and (vn) if the mixed
sequence, alternating the terms of (un) and (vn), is Cauchy as well. In particular,

A∗ is naturally seen as a dense subset of Â∗.
The following results can be verified by elementary means.

Proposition 5. Let A be an alphabet.

(1) The multiplication operation (u, v) 7→ uv in A∗ is uniformly continuous.
(2) Every morphism ϕ : A∗ → B∗ between free monoids, and every morphism

ψ : A∗ → M from a free monoid to a finite monoid (equipped with the
discrete distance) is uniformly continuous.

(3) Â∗ is a compact space.

By a standard property of completions, it follows from Proposition 5 (1) that

the multiplication of A∗ can be extended to Â∗: the resulting monoid is called the
free profinite monoid on A. Similarly, Proposition 5 (3) shows that each morphism
ϕ : A∗ → B∗ between free monoids (resp. each morphism ψ : A∗ → M from a

VARIETIES 9

free monoid to a finite monoid) admits a uniquely defined continuous extension,

ϕ̂ : Â∗ → B̂∗ (resp. ψ̂ : Â∗ → M).
For example, consider the Cauchy sequence (un!)n, where u ∈ A∗, which we

discussed above. This represents an element of Â∗, which we will denote uω. Ob-
serve that for any morphism ϕ from A∗ into a finite monoid, the sequence ϕ̂(un!)
is ultimately constant and equal to the unique idempotent power of ϕ(u), so in the
notation we introduced earlier we have, very conveniently,

ϕ̂(uω) = (ϕ(u))ω .

We can similarly define uω−1 as the element of Â∗ represented by the Cauchy
sequence ϕ̂(un!−1).

Finally, we note the strong connection between regular languages and free profi-
nite monoids.

Proposition 6. Let A be an alphabet and let L ⊆ A∗.

(1) L is regular if and only if its topological closure in Â∗, L, is clopen (i.e.,

open and closed), if and only if L = K ∩ A∗ for some clopen set K ⊆ Â∗.

(2) If L is regular and u ∈ Â∗, then the following are equivalent:
(i) u ∈ L;
(ii) ϕ̂(u) ∈ ϕ(L) for every morphism ϕ from A∗ to a finite monoid;
(iii) ϕ̂(u) ∈ ϕ(L) for every morphism ϕ from A∗ to a finite monoid recog-

nizing L;
(iv) η̂(u) ∈ η(L) where η is the syntactic morphism of L.

2.2. Equations and lattices of languages. We begin our study of families of
regular languages with the simplest such family: a lattice of languages over a fixed
alphabet. In this chapter, we define a lattice of languages over an alphabet A to be
a set of languages over A which is closed under finite union and finite intersection,
and which contains A∗ and ∅ (respectively, the union and the intersection of an
empty family of languages).

A profinite equation on A is a pair (u, v) of elements of Â∗, usually denoted by
u → v. If u, v ∈ A∗, the equation is called explicit . A language L ⊆ A∗ is said to
satisfy the equation u→ v, written L ⊢ u→ v, if

u ∈ L =⇒ v ∈ L.

Remark 7. It is important to note that u, v and the words in L are all defined over
the same alphabet A. In contrast to the identities we encountered in Section 1, in
this definition, the letters occurring in u and v are not considered as variables, to
be replaced by arbitrary elements. We will formally define identities in Section 2.4.

The notion of equation is particularly relevant for regular languages. The fol-
lowing results directly from Proposition 6.

Proposition 8. Let L ⊆ A∗ be regular and let u, v ∈ Â∗.

(1) If u, v ∈ A∗, then L ⊢ u→ v if and only if u ∈ L =⇒ v ∈ L.
(2) If η is the syntactic morphism of L, then L ⊢ u → v if and only if η̂(u) ∈

η(L) =⇒ η̂(v) ∈ η(L).

Let E be a set of equations on A. We denote by L(E) the set of regular languages
in A∗ which satisfy all the equations in E. It is immediately verified that this set

10 HOWARD STRAUBING AND PASCAL WEIL

is closed under unions and intersections. Further, both ∅ and A∗ satisfy every
equation. So L(E) is a lattice. The main theorem of this section states that all
lattices of regular languages arise this way.

Theorem 9. Let L be a class of regular languages in A∗. Then L is a lattice if
and only if there exists a set E of profinite equations on A such that L = L(E).

We have already seen that one direction of this equivalence holds: every set of
the form L(E) is a lattice. The proof of the converse is obtained after several steps.
The first concerns the set of equations satisfied by a given language. If L ⊆ A∗, let

EL =
{
(u, v) ∈ Â∗ × Â∗ | L ⊢ u→ v

}
.

Lemma 10. If L is regular, then EL is clopen.

Proof. By definition of the satisfaction of equations, we have

EL =
{
(u, v) ∈ Â∗ × Â∗ | (u 6∈ L) ∨ (v ∈ L)

}
=

(
L
c
× Â∗

)
∪
(
Â∗ × L

)
.

Lemma 10 follows from the fact that Â∗, L and L
c
are compact (since L is regular).

�

The proof of the next claim illustrates the crucial role played by the compactness

of Â∗. Let L be a lattice of regular languages in A∗ and let EL =
⋂

L∈LEL.

Lemma 11. Let L be a regular language in L(EL): that is, L satisfies all the
profinite equations satisfied by all the elements of L. Then there exists a finite
subset K of L such that L ∈ L(EK).

Proof. By Lemma 10, EL and each Ec
K (K ∈ L) are open sets. Moreover, if (u, v)

does not belong to any of the Ec
K (K ∈ L), then (u, v) belongs to each EK , that is,

every language in L satisfies u → v. It follows that L satisfies u → v as well, that

is, (u, v) ∈ EL. Therefore EL and the Ec
K (K ∈ L) form an open cover of Â∗.

By compactness, there exists a finite subcollection K of L such that Â∗ is cov-
ered by EL and the Ec

K , K ∈ K. It follows that EL contains the complement of⋃
K∈KE

c
K , namely the intersection

⋂
K∈KEK . That is, L satisfies all the equations

satisfied by the elements of K, which establishes the claim. �

We are now ready to prove Theorem 9, by showing that if L is a lattice of
regular languages in A∗, then L = L(EL). It is immediate by construction that L
is contained in L(EL). Let us now consider a language L ∈ L(EL). By Lemma 11,
we have L ∈ L(EK) for a finite subset K of L.

For each u ∈ L, let K(u) be the intersection of the languages K ∈ K containing
u. Even though L may be infinite, K(u) takes only finitely many values since K is
finite. By definition of the K(u), we have L ⊆

⋃
u∈L K(u), a finite union.

Conversely, let v ∈
⋃

u∈LK(u). Then there exists a word u ∈ L such that v
belongs to every K ∈ K containing u. That is, every K ∈ K satisfies the equation
u → v. In other words, u → v lies in EK, and hence L satisfies that equation.
Since u ∈ L, it follows that v ∈ L. Thus L =

⋃
u∈LK(u) and hence L ∈ L, which

concludes the proof.

VARIETIES 11

2.3. More classes of languages: from lattices to varieties. Here we explore
how classes of regular languages that are more structured than lattices can be
defined by more structured sets of equations. We start with an elementary lemma.

Lemma 12. Let L be a lattice of regular languages satisfying the profinite equation
u→ v.

(1) If L is closed under complementation, then L also satisfies v → u.
(2) If L is closed under quotients, then L satisfies the equations xuy → xvy,

for all x, y ∈ Â∗.

Proof. It follows from the definition of equations that L satisfies u→ v if and only
if its complement satisfies v → u. The first part of the claim follows immediately.

It is also elementary that, if x, y ∈ A∗ and x−1Ly−1 ⊢ u → v, then L ⊢ xuy →
xvy. Thus, if L is closed under quotients, then L satisfies all the equations xuy →

xvy with x, y ∈ A∗. This holds also if x, y ∈ Â∗ since EL is closed and A∗ is dense

in Â∗. �

We now extend the notion of profinite equations as follows: if u, v ∈ Â∗, we
say that a language L satisfies the symmetrical equation u ↔ v if L satisfies both
u→ v and v → u.

We also say that a language L satisfies the profinite inequality v ≤ u if it satisfies

all the equations of the form xuy → xvy with x, y ∈ Â∗, and it satisfies the profinite
equality u = v if if satisfies both u ≤ v and v ≤ u. The verification of the following
corollary is now elementary.

Corollary 13. Let L be a set of regular languages in A∗.

(1) Then L is a boolean algebra if and only if L = L(E) for some set E of
symmetrical profinite equations on A.

(2) L is a lattice closed under quotients if and only if L = L(E) for some set
E of profinite inequalities on A.

(3) L is a boolean algebra closed under quotients if and only if L = L(E) for
some set E of profinite equalities on A.

2.4. Identities and varieties. We now come to the historically and mathemati-
cally important class of varieties. Varieties of languages were defined in Section 1.3
but we will not use this definition here. In fact, in the course of this section, we
will give an alternate, equivalent definition of varieties.

An important difference between varieties and the lattices of languages over a
fixed alphabet discussed so far in Section 2, is that a variety V consists of a collection
of lattices A∗V , one for each finite alphabet A. More generally, we define a class
of regular languages V to be an operator which assigns to each finite alphabet A, a
family A∗V of regular languages in A∗.

First, we prove a technical lemma.

Lemma 14. Let ϕ : A∗ → B∗ be a morphism, L ⊆ B∗ and u, v ∈ Â∗.

(1) ϕ̂(u) ∈ L if and only if u ∈ ϕ−1(L).
(2) L satisfies ϕ̂(u) → ϕ̂(v) if and only if ϕ−1(L) satisfies u→ v.

Proof. The first statement is trivial if u, v ∈ A∗: indeed, ϕ and ϕ̂ coincide on words,
and the intersection of L (resp. ϕ−1(L)) with A∗ (resp. B∗) is L (resp. ϕ−1(L)).

The extension to the case where u, v ∈ Â∗ is obtained by density.

12 HOWARD STRAUBING AND PASCAL WEIL

The second statement follows immediately from the first and the definition of
profinite equations. �

We extend the notion of profinite equations, this time to profinite identities, to
permit the treatment of classes of regular languages instead of lattices of regular
languages over a fixed alphabet. Since there is no alphabet of reference anymore,
we will usually denote by X the alphabet over which profinite identities are written.

Let C be a composition-closed class of morphisms between free monoids, u, v ∈

X̂∗ and L ⊆ A∗, where X and A are finite, but possibly different alphabets. We
say that L C-identically satisfies u → v if, for each morphism ϕ : X∗ → A∗ in C,
L satisfies ϕ̂(u) → ϕ̂(v). We say that a class of regular languages V C-identically
satisfies an equation if A∗V does, for each finite alphabet A.

The following statement is a direct application of Lemma 14.

Corollary 15. Let V be a class of regular languages, let C be a family of morphisms
between free monoids closed under composition, such that whenever ϕ : A∗ → B∗ is
in C and L ∈ B∗V, then ϕ−1(L) ∈ A∗V.

If X∗V satisfies the profinite equation u → v (with u, v ∈ X̂∗), then V C-
identically satisfies u→ v.

Using the notions introduced in Section 2.3, we say that L satisfies the profinite
C-identity u = v (resp. profinite ordered C-identity u ≤ v) if L C-identically satisfies
u = v (resp. u ≤ v). If E is a set of profinite equations and for each finite alphabet
A, A∗V is the set of regular languages in A∗ which C-identically satisfy the elements
of E, we say that the resulting class of regular languages V is C-defined by E.

Let us now define (positive) C-varieties: a class V of regular languages is a
positive C-variety (resp. a C-variety) of languages if each A∗V is a lattice (resp. a
boolean algebra) closed under quotients and if, for each ϕ : A∗ → B∗ in C and each
L ∈ B∗V , we have ϕ−1(L) ∈ A∗V .

If C is the class of all morphisms between free monoids, we drop the prefix C and
simply talk of (ordered) profinite identities and (positive) varieties of languages.

Collecting Corollaries 13 and 15, we have the following characterizations.

Theorem 16. Let V be a class of regular languages and let C be a composition-
closed class of morphisms between free monoids. Then V is a positive C-variety
(resp. a C-variety) if and only if V is C-defined by a set of profinite ordered C-
identities (resp. profinite C-identities).

Remark 17. In Section 1.3, we gave a different definition of varieties of languages,
and Theorem 3 stated that it was equivalent to the definition given above. We
will prove this equivalence in Section 2.5 below, thus formally reconciling the two
definitions.

2.5. Eilenberg’s and Reiterman’s theorems. We note that (in)equalities can
be interpreted in the (ordered) syntactic monoid of a language. Let L be a regular

language in A∗ and let u, v ∈ Â∗. By Proposition 8, if η is the syntactic morphism
of L, then L ⊢ v ≤ u if and only if η̂(v) ≤L η̂(u).

Thus membership of a regular language L in a lattice of regular languages closed
under quotients is characterized by properties of the syntactic morphism of L.

We can also interpret identities in abstract finite ordered monoids—that is, finite
monoids in which there is a partial order ≤ compatible with multiplication: If

VARIETIES 13

u, v ∈ X̂∗, we say that a finite ordered monoid M satisfies the profinite identity
u ≤ v if for every morphism ϕ : X∗ →M we have ϕ̂(u) = ϕ̂(v). Likewise a monoid
M satisfies the profinite identity u = v if for each such ϕ we have ϕ̂(u) = ϕ̂(v).
We extend this notion further to C-satisfaction of identities. We call a morphism
ϕ : A∗ →M , whereM is finite and ϕmaps ontoM , a stamp. We also define ordered
stamps as morphisms from a free monoid A∗ onto an ordered finite monoid. (Such
morphisms are automatically order-preserving if we consider the trivial ordering on
A∗ in which w1 ≤ w2 if and only if w1 = w2.) Let C be a class of morphisms between
finitely generated free monoids that is closed under composition and that contains
all the length-preserving morphisms. We say that the ordered stamp ϕ : A∗ →

(M,≤) C-satisfies the profinite identity u ≤ v with u, v ∈ X̂∗ if and only if for all

morphisms ψ : X∗ → A∗ with ψ ∈ C, we have ϕ̂ψ̂(u) ≤ ϕ̂ψ̂(v). We similarly define
C-satisfaction of identities u = v by (not necessarily ordered) stamps.

We have already defined pseudovarieties of finite monoids in Section 1. We can
extend this definition to define C-pseudovarieties of stamps. We call a collection V

of stamps a C-pseudovariety if it satisfies the following two conditions:

(i) If ϕ : A∗ → M is in V, ψ : B∗ → A∗ is in C, and η is a morphism from
Im(ϕψ) onto a finite monoid N , then ηϕψ : B∗ → N is in V.

(ii) If ϕi : A
∗ → Mi are in V for i = 1, 2, then ϕ1 × ϕ2 : A

∗ → Im(ϕ1 × ϕ2) ⊆
M1 ×M2 is in V.

If we restrict the morphisms occurring in these definitions to order-preserving mor-
phisms or ordered monoids, we obtain the definition of ordered C-pseudovarieties of
stamps. Ordinary pseudovarieties coincide with C-pseudovarieties in the case where
C contains all morphisms between finitely-generated free monoids.

We say that a classV of finite (ordered) monoids is defined by a set E of identities
(written V = [[E]]) if V consists of all the finite (ordered)monoids that satisfy all of
the identities in E. Similarly, we say that a family V of stamps is C-defined by E
(we write V = [[E]]C) if V consists of all the stamps that C-satisfy these identities.

Further if V is a class of monoids or stamps, ordered or unordered, we define the
corresponding class V of languages by setting L ∈ A∗V if and only if Synt(L) ∈ V

(if V is a class of monoids) or ηL ∈ V (if V is a class of stamps). We write V 7→ V
to denote this correspondence.

This leads us to a restatement of Eilenberg’s Theorem, Theorem 3 above, as well
as its generalization to C-varieties, and allows us to prove it simultaneously with
Reiterman’s Theorem.

Theorem 18. The following statements hold.

(1) (Eilenberg’s Theorem) If V is a pseudovariety (respectively C-pseudovariety,
ordered pseudovariety) and V 7→ V, then V is a variety of languages (re-
spectively C-variety of languages, positive variety of languages) and in each
case this gives a one-to-one correspondence between pseudovarieties and
varieties of languages.

(2) (Reiterman’s Theorem) A class V of monoids (stamps, ordered monoids)
is a pseudovariety (respectively C-pseudovariety, ordered pseudovariety) if
and only if it is defined (C-defined) by a set of profinite identities.

In the argument we sketch below, we confine ourselves to the case of ordinary
monoids, but everything generalizes in an entirely straightforward fashion to or-
dered monoids and stamps. The key to the proofs of both parts of the theorem

14 HOWARD STRAUBING AND PASCAL WEIL

is Theorem 16 above, along with the following elementary but very useful lemma,
already brought to the reader’s attention in Section 1.1.

Lemma 19. Let ϕ : A∗ →M be a morphism into a finite monoid. Then M divides
the direct product of the syntactic monoids of the languages ϕ−1(m), m ∈M .

Proof. For each m ∈ M , let ηm : A∗ → Synt(ϕ−1(m)) be the syntactic morphism
of ϕ−1(m). It suffices to show that for each u, v ∈ A∗, ηm(u) = ηm(v) for each
m ∈M implies ϕ(u) = ϕ(v).

Indeed, let m = ϕ(u). Then u ∈ ϕ−1(m) and since ηm(v) = ηm(u), we have
v ∈ ϕ−1(m), ϕ(v) = m = ϕ(u). �

Corollary 20. Every pseudovariety of monoids is generated by the syntactic mon-
oids it contains.

Proof. The result follows directly from Lemma 19, sinceM recognizes each ϕ−1(M)
(m ∈M): thus each Synt(ϕ−1(m)) divides M and hence lies in the pseudovarieties
containing M . �

Now let V be a variety of languages and let E be a set of profinite identities
defining V . Let alsoV be the class of finite monoids satisfying the profinite identities
in E. It is easily verified that V is a pseudovariety.

Moreover, if L is a regular language in A∗, we have L ∈ A∗V if and only if
L ⊢ E, if and only if Synt(L) satisfies the profinite identities in E, if and only if
Synt(L) ∈ V.

Thus V 7→ V in the correspondence described in Section 1.3. If W is an-
other pseudovariety such that W 7→ V , then V and W contain the same syn-
tactic monoids, and Corollary 20 shows that V = W. This establishes Eilenberg’s
Theorem.

For Reiterman’s Theorem, we start with a pseudovariety V and consider the
associated variety of languages V . The above reasoning shows that V is defined
by any set of profinite identities which, seen in the setting of classes of languages,
defines V .

Note that these proofs are different from the classical proofs of Eilenberg’s the-
orem, in [20] or [44], and of Reiterman’s theorem, in [3], [49] or [58].

2.6. Examples of varieties. We now look at some concrete instances of varieties,
revisiting our examples from Section 1, among others, in light of the theory pre-
sented above. In doing so, we will work from both sides of the correspondence
between pseudovarieties and varieties of languages, at times beginning with a vari-
ety of languages, at others with a property of a class of finite monoids.

2.6.1. Idempotent and commutative monoids. We begin, as before, with the variety
of languages corresponding to the pseudovariety J1. For each finite alphabet A,
let A∗J1 be the smallest boolean-closed family of subsets of A∗ that contains all
the languages B∗, where B ⊆ A. Equivalently, it is the smallest boolean-closed set
containing all the A∗aA∗ (a ∈ A). Putting it again differently, A∗J1 is precisely
the family of languages L in A∗ for which membership of a word w in L depends
only on the set α(w) of letters of w. This is because

{v ∈ A∗ | α(v) = α(w)} = α(w)∗\
⋃

B(α(w)

B∗.

VARIETIES 15

Observe that for all a ∈ A and B ⊆ A,

a−1B∗ = B∗a−1 =

{
∅ if a /∈ B
B∗ if a ∈ B.

Further, if C is another finite alphabet and ϕ : C∗ → A∗ is a morphism,

ϕ−1(B∗) = (C ∩ ϕ−1(B))∗.

Left and right quotient and inverse image under morphisms all commute with
boolean operations. So these two observations imply, independently of any al-
gebraic considerations, that J1 is a variety of languages, and thus, by Theorem 16
is defined by a set of profinite identities. Further, from our proof of Eilenberg’s The-
orem, the same set of identities defines the corresponding pseudovariety of finite
monoids.

Of course, we have already exhibited these identities, but let us see what they
look like in the context of our equational theory. Let X = {x, y}, and let A be
any finite alphabet. Every language L ∈ A∗J1 satisfies the identities xy = yx and
x2 = x, since for any morphism ϕ : X∗ → A∗ and any u, v ∈ A∗, α(uϕ(xy)v) =
α(uϕ(yx)v), and α(uϕ(x2)v) = α(uϕ(x)v). Conversely, suppose L ⊆ A∗ satisfies
these identities. We will show L ∈ A∗J1: Let w,w′ ∈ B∗, with w ∈ L and
α(w) = α(w′). We claim w′ ∈ L. Since α(w) = α(w′), we can transform both
w and w′ into a common normal form w′′ by successively interchanging adjacent
letters until the word is sorted (with respect to some total ordering on A) and
then replacing occurrences of aa by a, where a ∈ A. Interchanging adjacent letters
entails replacing ua1a2v by ua2a1v, where u, v ∈ A∗ and a1, a2 ∈ A. Since L
satisfies the identity xy = yx, if ua1a2v ∈ L then ua2a1v ∈ L (using the morphism
ϕ : X∗ → A∗ that maps x, y to a1, a2, respectively.). Similarly, replacing aa by
a preserves membership in L, since L satisfies the identity x2 = x. Thus J1 is
defined by this pair of identities. It follows that the corresponding pseudovariety
J1 of finite monoids is defined by the same pair of identities, and thus consists of
the idempotent and commutative monoids.

2.6.2. Piecewise-testable languages. Now let us consider the piecewise-testable lan-
guages of Section 1.2. We denote the family of piecewise-testable languages over a
finite alphabet A by A∗J . Let us look at the profinite identities satisfied by these
languages. As observed earlier (Section 2.1), if u ∈ X∗ then the sequence (un!)n
is a Cauchy sequence whose limit is written uω. Moreover, for any morphism
ϕ : X∗ → A∗, where A is a finite alphabet, ϕ̂(uω) = (ϕ̂(u))ω (the idempotent power
of ϕ̂(u)). Now let X = {x, y}. We claim that every piecewise-testable language L
over A∗ satisfies the profinite identities

(xy)ωx = (xy)ω = y(xy)ω.

This is equivalent to saying that for all s, t, u, v ∈ A∗,

s(tu)ωtv ∈ L⇔ s(tu)ωv ∈ L⇔ su(tu)ωv ∈ L.

Now fix an integer k > 0. For sufficiently large values of n, the words

s(tu)n!tv, s(tu)n!v, su(tu)n!v

contain the same subwords of length k. Since L is piecewise-testable, for sufficiently
large n, all but finitely many of the terms of the three sequences are either all in L

16 HOWARD STRAUBING AND PASCAL WEIL

or all outside of L. Since L is clopen, the three respective limits are either all in L
or all outside L.

Thus, as we showed in Section 2.5, the syntactic monoid of any piecewise testable
language satisfies these same profinite identities. We arrive again at the observation
that the syntactic monoid of every piecewise-testable language satisfies the identities
(xy)ωx = (xy)ω = y(xy)ω. That these identities define the pseudovariety J of finite
J -trivial monoids is simple to establish. That they completely characterize the
variety of piecewise-testable languages is the deep content of Simon’s Theorem [63].

2.6.3. Group languages. Similarly, the pseudovariety G of finite groups is defined
by the profinite identity xω = 1. As a consequence, the corresponding variety G
of languages is defined by the same profinite identity. In contrast to the other
examples presented here, we do not possess a simple description of G in terms of
basic operations on words.

2.6.4. Left-zero semigroups. We already appealed to Eilenberg’s Theorem in Sec-
tion 1 to show that the class K1 is not a variety of languages. But we can show here
that it is a C-variety for a slightly restricted class C of morphisms. Let Cne denote
the class of non-erasing morphisms between finitely-generated free monoids–those
ϕ : A∗ → B∗ such that for all a ∈ A, ϕ(a) 6= 1. Let L ∈ A∗K1. If s, t, u, v ∈ A∗,
and t, u 6= 1, then stuv ∈ L if and only if stv ∈ L. Moreover, this property of
L characterizes membership in A∗K1. One way to state this property is that the
variety of languages K1 is defined by the Cne-identity xy = x. Equivalently, the
corresponding Cne-pseudovariety K1 of stamps is defined by the same Cne-identity.
This means (ϕ : A∗ →M) ∈ K1 if ϕ(uv) = ϕ(u), for u, v ∈ A+.

Alternatively, one may consider, instead of the Cne-pseudovariety generated by
the syntactic morphisms of languages in K1, the pseudovariety of finite semigroups
generated by the images of nonempty words under the syntactic morphisms. This
was the approach originally taken, but here we prefer to emphasize that all these
many different flavors of pseudovarieties can be treated in the same general setting.

2.6.5. Quasiaperiodic stamps. Whenever we have a morphism ϕ : A∗ → M , the
family of sets

{ϕ(As) | s > 0}

forms a subsemigroup of the power set semigroup P(M). As this is a finite cyclic
semigroup, generated by ϕ(A), it contains a unique idempotent. Thus there is some
s > 0 such that ϕ(As) = ϕ(A2s), so that ϕ(As) is a subsemigroup of M . We call
this the stable semigroup of ϕ. Let QA denote the set of morphisms ϕ from a free
finitely-generated monoid onto a finite monoid such that ϕ is surjective, and the
stable semigroup of ϕ is aperiodic.

We claim QA is a Clm-pseudovariety of stamps, where Clm consists of mor-
phisms ψ : A∗ → B∗ between finitely generated free monoids such that all ψ(a),
where a ∈ A, are nonempty words having the same length. (The letters lm stand
for length-multiplying, since the lengths of all words in A∗ are multiplied by a con-
stant factor when ψ is applied.) To see this, suppose (ϕ : B∗ → M) ∈ QA, and
(ψ : A∗ → B∗) ∈ Clm. Let ϕ(Bs) be the stable semigroup of ϕ, ϕψ(At) the stable
semigroup of ϕψ : A∗ → Im(ϕψ), and k the length of each ψ(a) for a ∈ A. Then
ϕψ(At) = ϕψ(Ast) ⊆ ϕ(Akst) = ϕ(As), and thus the stable semigroup of ϕψ is
also aperiodic. Further, if the stable semigroups ϕj(A

sj) of stamps ϕj : A
∗ → Mj,

for j = 1, 2, are aperiodic, then the stable semigroup of ϕ1 × ϕ2 is contained in

VARIETIES 17

ϕ1(A
s1)×ϕ2(A

s2), and is therefore aperiodic.Thus QA is a Clm-pseudovariety, and
is accordingly defined by a set of profinite Clm-identities. What does it mean for
a stamp ϕ : A∗ → M to satisfy a Clm identity u = v? In such an identity, u and

v are elements of X̂∗ for some finite alphabet X . The identity is satisfied if for

every morphism ψ : X∗ → A∗ in Clm, ϕ̂ψ̂(u) = ϕ̂ψ̂(v). Informally, this says that so
long as we replace the letters in u and v by elements of A+ that all have the same
length, the images in M are identical. We claim that QA is defined by the single
profinite Clm-identity

(xω−1y)ω = (xω−1y)ω+1.

Let us prove this. First, we show that QA satisfies the identity. Let (ϕ : A∗ →
M) ∈ QA, and choose p > 0 such that for all m ∈M , mp is idempotent. We then
also have mps idempotent for all m ∈ M , where ϕ(As) is the stable semigroup of
ϕ. If the identity is not satisfied, then there exist words u and v in B∗, both of
length k > 0, such that

(ϕ(ups−1v))ps 6= (ϕ(ups−1v))ps+1.

Thus {(ϕ(ups−1y))ps+r | r ≥ 0} is a nontrivial group in ϕ((As)+) = ϕ(As), contra-
dicting membership in QA. Conversely, suppose a stamp ϕ : A∗ →M satisfies the
identity. Suppose the stable semigroup ϕ(As) contains a group element g = ϕ(u),
with |u| = s. Let e = ϕ(v), where |v| = s is the identity of this group. Since ϕ
satisfies the identity,

e = ϕ((uω−1v)ω) = ϕ((uω−1v)ω+1) = g−1,

so every group in ϕ(As) is trivial.
We introduced the Clm-pseudovariety QA in Section 1 in quite different terms,

by giving a logical description of the corresponding Clm-variety of languages. We
will show in Section 3 that they do in fact correspond.

2.6.6. Σ1-languages. As in Section 1.2.2, we denote by A∗J + the family of languges
over A defined by Σ1 sentences. Languages in this family are precisely the finite
unions of the languages Lv, where v ∈ A∗. We claim that J+ is defined by the
profinite ordered identity x ≤ 1. A language L satisfies this identity if and only if
for all u, v, w ∈ A∗, whenever uw ∈ L, then uvw ∈ L. Clearly, each Lv satisfies
this identity. We must show, conversely, that any language satisfying this identity
is a finite union of Lv for various v ∈ A∗. Certainly, if L satisfies the identity and
v ∈ L, then Lv ⊆ L, so that

L =
⋃

v∈L

Lv.

We need to show that this can be replaced by a finite union. Let T consist of the
subword-minimal elements of L, that is, those v ∈ L such that no proper subword
of v is in L. Then

L =
⋃

v∈T

Lv.

We now invoke a theorem of G.Higman [30]: The subword ordering in A∗ has no
infinite antichains: That is, any set T of words in which no element is a strict
subword of another element is finite.

The corresponding ordered pseudovariety J+ consequently consists of all par-
tially ordered finite monoids for which the identity 1 is the maximum element, and

18 HOWARD STRAUBING AND PASCAL WEIL

thus a language belongs to A∗J+ if and only if its ordered syntactic monoid satisfies
this property.

2.6.7. Languages with zero. All of our examples so far have concerned some flavor of
varieties of languages, language families that are defined across all finite alphabets
and are closed under inverse images of morphisms between free monoids. Part of
the great novelty of the equational theory of Gehrke et al. [25] presented here is
that it applies to language classes with weaker closure properties. Here we give a
simple example.

We say a regular language L ⊆ A∗ is a language with zero if Synt(L) has a
zero. This is equivalent to saying that there is a two-sided ideal J in A∗ such
that either J ⊆ L or L ∩ J = ∅. This property is easily seen to be closed under
boolean operations and quotients. It is, not, however, closed under inverse images
of any composition-closed class C of morphisms that contains the length-preserving
morphisms. Indeed, let L ⊆ A∗ be any regular language without a zero, and let
b be a new letter. Then, viewed as a subset of (A ∪ {b})∗, L has a zero, so this
class is not closed under the inverse image of the length-preserving morphism that
embeds A∗ in (A ∪ {b})∗. Nonetheless, by our Corollary 13, this class of languages
is defined by a set of profinite inequalities.

We now exhibit such a set of inequalities. We start by defining three sequences
of words in A∗. Let

u1, u2, . . .

be any enumeration of the elements of A∗, let

vn = u1 · · ·un,

and

w1 = 1, wn+1 = (wnvnwn)
n!.

Look at the image of the wi under a surjective morphism ϕ : A∗ →M , where M is
finite. Since every u ∈ A∗ occurs as a factor of all but finitely many wi, almost all
ϕ(wi) are in the minimal ideal K of M . Since for all m ∈ M , mn! is idempotent
for sufficiently large n, almost all ϕ(wi) are idempotents in the minimal ideal ofM .
Finally, if ϕ(wi) is such an idempotent e, then ϕ(wi+1) is an idempotent in eKe,
and so is itself equal to e. Thus for every finite monoid, the sequence (ϕ(wn))n
is convergent, so (wn)n converges to an element ρA of Â∗, such that ϕ̂(ρA) is an
idempotent in the minimal ideal of ϕ(A∗).

Suppose L ⊆ A∗ has a zero. Then the minimal ideal of Synt(L) consists of this 0
alone, so if η is the syntactic morphism of L and a ∈ A, η̂(ρA) = η̂(aρA) = η̂(ρAa).
Thus L satisfies the equalities

aρA = ρA = ρAa

for all a ∈ A. Conversely, if L satisfies these equalities, then the minimal ideal of
η(A∗) contains just one element, so L is a language with zero. So these equalities
define the class of languages with zero.

2.6.8. Languages defined by density. Say that a language L ⊆ A∗ is dense if every
word of A∗ occurs as a factor of a word in L, that is, L ∩ A∗uA∗ 6= ∅ for every
u ∈ A∗. The set consisting of A∗ and the non-dense languages forms a quotient-
closed lattice, which is defined by the profinite inequalities x ≤ 0 (x ∈ A∗)—this is
short for aρA = ρAa = ρA for every a ∈ A and x ≤ ρA for every x ∈ A∗ [25].

VARIETIES 19

Now define the density of a language L as the function dL(n) which counts
the number of words of length n in L. A language with bounded density (also
called slender) is easily seen to be a finite union of languages of the form xu∗y
(x, u, y ∈ A∗). Similarly, a language of polynomial density, also called sparse, can
be shown to be a finite union of languages of the form u∗0v1u

∗
1 · · · vnu

∗
n where the ui

and vj are in A
∗. Together with A∗, the set of slender (resp. sparse) languages in A∗

forms a quotient-closed lattice of languages, for which defining profinite inequalities
can be found in [25].

2.7. Deciding membership in an equationally defined class of languages.

We are often interested in decision problems for families of regular languages: We
say that a family F of regular languages over a finite alphabet A is decidable if
there is an algorithm that, given a regular language in L ⊆ A∗ as input, determines
whether L ∈ F . Here a regular language L is ‘given’ by specifying a DFA that
recognizes L, or some other formalism (e.g., regular expression, logical formula)
from which a DFA can be effectively computed. The problem arises, for example,
if we are looking for a test of whether a given language is expressible in some logic
for defining regular languages. (See Section 3.)

We can similarly define decidable families of finite monoids: Such a family F is
decidable if there is an algorithm that, given the multiplication table for a finite
monoid M , determines whether M ∈ F . The definition extends in the obvious
fashion to families of ordered monoids and stamps. For ordered monoids the input
includes, in addition to the multiplication table ofM , a representation of the graph
of the partial order on M . For stamps ϕ : A∗ → M we are also given the values
ϕ(a) for a ∈ A.

We will say that a variety V of languages is decidable if A∗V is decidable for
every finite alphabet A. In this case the Eilenberg correspondence theorem gives a
rather obvious connection between the two kinds of decidable families:

Theorem 21. A (positive) variety (respectively, C-variety) of languages is decidable
if and only if the corresponding pseudovariety of (ordered) monoids (respectively,
stamps) is decidable.

Proof. We give the proof just for the case of ordinary varieties of languages and
pseudovarieties of monoids; the argument is essentially the same for all the other
variants. Let V be a variety of languages and V the corresponding pseudovariety
of monoids. Suppose first that V is decidable. Let A = (Q,A, i, F) be a DFA
recognizing a language L ⊆ A∗. From A we can effectively construct the multi-
plication table of Synt(L). We then apply the algorithm for V to decide whether
Synt(L) ∈ V, and thus whether L ∈ A∗V . Conversely, suppose V is decidable. Let
M be a finite monoid and choose a finite alphabet A together with a surjective
morphism ϕ : A∗ →M . (For example, we could choose A =M and ϕ the extension
to A∗ of the identity map on M .) Then by Lemma 19 and Corollary 20, M di-
vides the direct product of the monoids Synt(ϕ−1(m)) for m ∈M , and each of the
Synt(ϕ−1(m)) in turn divides M . Thus M ∈ V if and only if each of the languages
ϕ−1(m) is in A∗V . Furthermore, from ϕ we can construct a DFA (M,A, 1, {m})
recognizing ϕ−1(m), and thus decide whether each is in A∗V . Thus V is decid-
able. �

Decision problems for varieties of regular languages can have arbitrarily large
computational complexity, or indeed be undecidable. To see this, observe simply

20 HOWARD STRAUBING AND PASCAL WEIL

that if P is any set of primes, then we can form the pseudovariety GP of finite
groups G such that every prime divisor of |G| is in P . Testing membership of a
given prime p in P then reduces, in time polynomial in p, to testing membership
in GP , so GP is at least as complex as P .

On the other hand, Reiterman’s theorem, which says varieties are defined by
sets of profinite identities, suggests that we could determine membership in varieties
simply by verifying whether identities hold in finite monoids. This is deceptive, since

elements of X̂∗ do not generally have simple descriptions that make it possible to
evaluate their images in finite monoids, and, further, the equational description of a
pseudovariety might require inifinitely many profinite identities. We can nonetheless
say something definitive about the complexity of the decision problems in the case
where the equational definition consists of a finite set of profinite identities ρ = σ,

where ρ and σ are ω-terms in X̂∗: This means that ρ and σ are formed from elements
of X by successive application of concatenation and the operation τ 7→ τω .

Theorem 22. Let V be a variety of languages defined by a finite set of profinite
identities of the form ρ = σ, where ρ and σ are ω-terms, and let V be the correspond-
ing pseudovariety of finite monoids. Then V is decidable by a logspace algorithm in
the size of the input multiplication table, and V is decidable by a polynomial space
algorithm in the size of the input automaton.

Proof. We first consider testing membership of a monoidM inV. Let |M | = n. The
multiplication table of M can be represented in O(n2 logn) bits and each element
of M by O(log n) bits. We will show how to determine membership of M in V

using k · log2 n additional bits of workspace, where the constant k is determined
by the length of the longest ω-term occurring in the defining profinite identities
for V. To make the proof easier to follow, let us suppose we have an identity
((xωy)ωz)ω = (xz)ω. The algorithm loops through all triples (x, y, z) of elements
of M and writes them in the workspace. It then uses log2 n bits of additional
workspace to compute xω . This is done by repeatedly consulting the multiplication
table, writing x2, x3, . . . in the same workspace, and after each write, consulting the
multiplication table to check if the element is idempotent. We similarly compute
(xωy)ω, ((xωy)ωz)ω, and (xyz)ω. All in all, we used 7 · log2 n bits of workspace.
After all the values are computed, we compare the last two. The algorithm rejects
if it finds a mismatch. If it finds none, it goes on to the next identity, and accepts
if all the identities are tested with no mismatch.

We now turn to testing membership in V . The algorithm we give is actually
a nondeterministic polynomial space algorithm for nonmembership of a regular
language in A∗V . Since, by Savitch’s Theorem ([60], see, also Sipser [64]) nonde-
terministic polynomial space is equivalent to deterministic polynomial space, and
the latter is closed under complement, this will be enough. Let us work with the
same example identity we used in the first part of the proof. The algorithm begins
by guessing words x, y, z and computing the vectors

(q1x, . . . , qnx),

(q1y, . . . , qny),

(q1z, . . . , qnz),

where {q1, . . . , qn} is the set of states of the input DFA. Observe that the words
x, y, z themselves are not stored. Instead they are guessed letter by letter, and

VARIETIES 21

only the vectors of states are written in the workspace. This requires O(n logn)
bits, where n is the number of states of the DFA. Observe as well that once
we have the vector (q1u, . . . , qnu) we can, with an additional n log2 n bits, com-
pute the vector (q1u

ω, . . . , qnu
ω), since we can write the vectors of the successive

powers (q1u
k, . . . , qnu

k) reusing the same workspace, and then check after each
write whether quk = qu2k for each state q. As a result we obtain the vectors
(q1ϕ̂(ρ), . . . , qnϕ̂(ρ)), (q1ϕ̂(σ), . . . , qnϕ̂(σ)) for some morphism ϕ : X∗ → A∗. If
these vectors turn out to be different, we accept. Thus this algorithm nondeter-
ministically recognizes the complement of A∗V , using O(n log n) space. �

The foregoing theorem illustrates a potentially large gap in complexity between
testing membership in V from an input DFA and testing membership in the cor-
responding pseudovariety V from the multiplication table of a monoid. This is to
be expected, since an automaton is in general exponentially more succinct than
the multiplication table of its transition monoid. In some instances, however, it is
possible to give efficient algorithms that begin with automata, using so-called ‘for-
bidden pattern’ characterizations of varieties. We illustrate this with a very simple
example, using the ordered variety J +. Consider the following figure:

p qv

w w

We say that a DFA (Q,A, i, F) contains this pattern if there are states q1, q2
and words u, v, w ∈ A∗ such that iu = q1, q2 = q1v, q1w ∈ F , q2w /∈ F . We
say the DFA avoids the pattern if it does not contain it. It is easy to see that a
DFA recognizing a language L avoids this pattern if and only if whenever uw ∈ L,
uvw ∈ L. Thus the languages in A∗ avoiding the pattern are exactly those that
satisfy the inequality x ≤ 1; that is, the language family A∗J +. We use this to
prove the following:

Theorem 23. There is an algorithm determining membership in J+ that runs in
nondeterministic logspace in the size of an accepting DFA. (In particular, member-
ship can be determined in polynomial time.)

Proof. We nondeterministically guess letters to obtain an accessible state q1, using
log2 n bits, where n is the number of states in the automaton. We then further
guess letters to obtain another state q2 = q1v, written on another log2 n-bit field in
the work space. Finally, we guess more letters, applying them to both components
of the pair (q1, q2) and arrive at at a state (q1w, q2w). We accept if the first member
of this pair of states is an accepting state of the DFA and the second is not. Thus
we have a nondeterministic logspace algorithm for the regular languages outside
of J +. But by the theorem of Immerman and Szelepcsenyi (see [32], [73], also
[64]), nondeterministic logspace is closed under complement, so we have the desired
result.

�

The same reasoning is used in many proofs showing that varieties of languages are
decidable in nondeterministic logspace: find a forbidden pattern characterization of
the variety using a fixed number of states. (For instance, Pin and Weil [50], Glasser

22 HOWARD STRAUBING AND PASCAL WEIL

and Schmitz [26].) While such results appear to bridge the complexity gap between
polynomial-time algorithms that begin with a multiplication table and exponential-
time algorithms that begin with an automaton, forbidden pattern arguments are
not always available. In particular, we have the following result, which we cite
without proof, from Cho and Huynh [18]:

Theorem 24. Testing whether a regular language given by a DFA is aperiodic is
PSPACE-complete.

3. Connections with logic

In Section 1 we outlined, in an informal way, some of the logical apparatus
for expressing properties of words over a finite alphabet. Here we give a more
precise and general description. As before, variable symbols x, y, x1, x2, etc., denote
positions in a word. For each a ∈ A our logics have a unary predicate symbol Qa,
where Qax is interpreted to mean ‘the symbol in position x is a.’ We also have a
binary predicate symbol s, where s(x, y) is interpreted to mean ‘position y is the
successor of position x’. We will usually use the alternative notation y = x+ 1 for
this.

We now consider monadic second-order formulas over this base of predicates.
These are formulas built not merely by quantifying over individual positions, but
also by quantifying over sets of positions, denoted by upper-case variable letters,
and employing an additional relation symbol x ∈ X between positions (first-order
variables) and sets of positions (second-order variables).

For example, consider the monadic second order formula ϕ:

∃x∃y∃X(Qax ∧Qby ∧ x ∈ X ∧ y ∈ X ∧ ϕ1 ∧ ϕ2),

where ϕ1 is

¬∃z(x = z + 1 ∧ z ∈ X) ∧ ¬∃z(z = y + 1 ∧ z ∈ X),

and ϕ2 is

∀z(z ∈ X → (y = z ∨ ∃u(u ∈ X ∧ u = z + 1)).

The formula ϕ is a sentence; that is, it has no free variables. Thus ϕ defines a
language Lϕ over A = {a, b}, namely the set of all words in which the formula is
true. The sentence asserts the existence of positions x and y with letters a and b
respectively, and of a set X of positions that contains both x and y, that contains
the successor of each of its elements with the exception of y, and that contains no
elements less than x. Thus Lϕ is the regular language A∗aA∗bA∗.

This example is an instance of the following important theorem, due to J. R.
Büchi [17] (see [41, 71]).

Theorem 25. A language L ⊆ A∗ is regular if and only if L = Lϕ for some
sentence ϕ of monadic second-order logic.

We obtain subclasses of regular languages by restricting these second-order for-
mulas in various ways. One obvious such restriction is to study first-order formulas:
those formulas that use no second-order quantification. We denote this logic, as well
as the family of regular languages that can be defined in it, by FO[+1]. More gen-
erally, consider any k-ary relation α on the set of positions in a word that does not
depend on the letters that appear in the word. Suppose further that α(x1, . . . , xk)
is definable by a formula of monadic second-order logic. Then we obtain a subclass

VARIETIES 23

of the regular languages by considering those languages definable by first-order sen-
tences in which α is allowed as an atomic formula. We denote this class FO[α], and
similarly write F [α1, α2, . . .] when there are several such predicates. For example,
the relation x < y is definable in monadic second-order logic, by a formula much
like the one used above to define the language L = A∗aA∗bA∗. Thus we obtain the
logic and the language class FO[<]. Of course, L is definable in this logic, by the
very simple sentence

∃x∃y(Qax ∧Qby ∧ x < y).

We can extend the expressive power further, by adjoining, for k > 1, a binary
predicate ≡k that says two positions are equivalent modulo k. These predicates,
too, are definable in monadic second-order logic, and thus we obtain language classes
FO[<,≡k]. We can further restrict these families by bounding the quantifier depth,
or the alternation of existential and universal quantifiers, or the number of distinct
variable symbols.

We are interested in understanding the expressive power of these logics, and
determining exactly what languages can be defined in them. The critical insight is
that, essentially, (nearly) all these language classes are varieties. In some instances
we obtain ordered varieties, in others C-varieties for a class C of morphisms, but in
all cases we obtain families that, at least in principle, admit a characterizations in
terms of the syntactic monoids and morphisms of the languages they contain.

3.1. Model-theoretic games. To see why this is so, we first describe an important
tool for studying the expressive power of logics for words. Consider a first-order
logic FO[α1, . . . , αm]. Look at a pair of words w,w′ ∈ A∗ and suppose that on each
word we have placed k ‘pebbles’ labeled x1, . . . , xk for w, and x′1, . . . , x

′
k for w′. Each

pebble is placed on a single position in its word, but two different pebbles can be on
the same position. We denote the resulting pebbled words by u = (w, x1, . . . , xk)
and u′ = (w, x′1, . . . , x

′
k).

We will now describe a game Gr(u, u
′, α1, . . . , αk) played on these two pebbled

words. (This is called an Ehrenfeucht Fräıssé game.) The subscript r denotes
the number of rounds of the game. There are two players, traditionally called
Spoiler, who plays first, and Duplicator who plays second. We define the rules of
the game by induction on the number of rounds. In the 0-round game, the winner is
already determined: If there is a relation α = αi of arity p, and pebbles xi1 , . . . , xip ,
x′i1 , . . . , x

′
ip
, such that

α(xi1 , . . . , xip)

holds, and

α(x′i1 , . . . , x
′
ip
)

does not, or vice-versa, then Spoiler wins the game. If there are pebbles xi and x
′
i

such that the letter in position xi of w is different from the letter in position x′i
of w′, then Spoiler also wins the game. Otherwise, Duplicator wins. The idea is
that Spoiler wins if the two pebbled words are different, and the difference must be
witnessed by the atomic formulas applied to the pebbled positions.

Now let r > 0. In the r-round game Gr(u, u
′, α1, . . . , αm), Spoiler makes a play by

placing a new pebble xk+1 in u or x′k+1 in u′. If Spoiler played in u then Duplicator
must respond with x′k+1 in u′. Otherwise Duplicator responds with xk+1 in u. The
result is two new pebbled words v, v′. Spoiler and Duplicator proceed to play the

24 HOWARD STRAUBING AND PASCAL WEIL

game Gr−1(v, v
′, α1, . . . , αm). Whoever wins this (r − 1)-round game is the winner

of the r-round game.
Ordinary words may be considered as special instances of pebbled words and

thus we can consider the games Gr(w,w
′, α1, . . . , αm), where w,w′ ∈ A∗. The

fundamental property of such games is given by the following theorem.
Theorem 26. Let w,w′ ∈ A∗, r ≥ 0. The words w and w′ satisfy the same
sentences in FO[α1, . . . , αm] of quantifier depth r or less if and only if Duplicator
has a winning strategy in Gr(w,w

′, α1, . . . , αm).

See, for example, [41, 71].
Here is an example: Consider the two words w = aab and w′ = aaab. Spoiler

has a winning strategy if G2(w,w
′, <): First play pebble x1 on the second a of w′.

If Duplicator replies on the first a of w, Spoiler will play x2 on the first a of w′. If
Duplicator instead replies on the second a of w, then Spoiler plays x2 on the third a
of w′. In either case, Duplicator has nowhere to play x′2 in w and win the game. By
Theorem 26, there must be some sentence of quantifer depth 2 that distinguishes
the two words. Indeed, w′ satisfies

∃x(Qax ∧ ∃y(Qay ∧ x < y) ∧ ∃y(Qay ∧ y < x)),

while w does not. On the other hand, Duplicator has a winning strategy in the
two-round game in aaaab, aaab.

What does this have to do with varieties? We will use games to show that
logically-defined language classes satisfy the closure properties that define vari-
eties. Look, for example, at the family of languages defined by FO[<] sentences of
quantifier depth no more than d, where d ≥ 0. We will denote both this language
family and the underlying logic by FOd[<].

Theorem 27. FOd[<] is a variety of languages.

Proof. Since we have to discuss languages over different alphabets, let us denote by
A∗ FOd[<] the languages over A∗ that belong to this family. Obviously A∗ FOd[<]
is closed under boolean operations, so we must verify closure under quotients and
inverse images of morphisms. Let us write w ∼d,A w′ to mean that w,w′ ∈ A∗

satisfy all the same sentences of FOd[<]. Then ∼d is an equivalence relation of
finite index on A∗, and every language of A∗ FOd[<] is a union of ∼d,A-classes. We
claim that if w ∼d,A w′ and a ∈ A, then both aw ∼d,A aw′, and wa ∼d,A w′a, and
that further, if ϕ : A∗ → B∗ is a morphism, then ϕ(w) ∼d,B ϕ(w′).

To see that this claim implies the result, suppose L ∈ A∗ FOd[<] but a
−1L /∈

A∗ FOd[<]. Then there exist w,w′ ∈ A∗ with w ∈ a−1L, w′ /∈ a−1L, and w ∼d,A w′.
But then wa ∈ L, w′a /∈ L, and wa ∼d,A w′a, contradicting L ∈ A∗ FOd[<]. By the
same reasoning we deduce closure under right quotients and under inverse images
of morphisms.

To prove the claim, note that by Theorem 26, w ∼d,A w′ if and only if Duplicator
has a winning strategy in Gd(w,w

′, <). So we must show that such a winning
strategy implies the existence of winning strategies for Duplicator in Gd(aw, aw

′, <),
Gd(wa,w

′a,<), and Gd(ϕ(w), ϕ(w
′), <). For Gd(wa,w

′a,<), the strategy is this:
Whenever Spoiler plays on the last letter of either wa or w′a, Duplicator responds by
playing on the last letter of the other word; otherwise Duplicator responds according
to the winning strategy in (w,w′). The reasoning is identical for Gd(aw, aw

′, <).
For Gd(ϕ(w), ϕ(w

′), <), suppose w = a1 · · ·ar, w
′ = a′1 · · · a

′
s, and let vi = ϕ(ai),

VARIETIES 25

v′i = ϕ(a′i). Duplicator’s strategy is to keep track of a separate game in w,w′ to
calculate the responses in ϕ(w), ϕ(w′). If Spoiler plays on the jth symbol of vi, then
Duplicator calculates the response, according to the original strategy, to a move by
Spoiler on ai. Let us say this response is on a′k. Observe that ai = a′k, and thus
vi = v′k, so Duplicator can reply on the jth symbol of v′k. In other words, Duplicator
pulls the Spoiler’s plays back to (w,w′), applies the original winning strategy, and
pushes the result forward to (ϕ(w), ϕ(w′)). It is easy to see that this strategy wins
for Duplicator. �

This same reasoning can be adapted to a large number of different situations.
Consider, for example, the logics FOd[+1]. The strategy-copying argument no
longer works to give Duplicator a winning strategy in Gd(ϕ(w), ϕ(w

′),+1), because
ϕ may map a letter to the empty word, and thus we might end up with two pebbles
on adjacent positions in ϕ(w), but find the corresponding pebbles on non-adjacent
positions of ϕ(w′). But the argument does work for non-erasing morphisms, and
thus each FOd[+1], as well as the union FO[+1], is a Cne-variety. Similarly, suppose
we augment the logic FO[<] by adjoining the predicate x ≡q y for equivalence
modulo q. We now find that the strategy-copying argument works as long as all
ϕ(a) for a ∈ A have the same length m, as i ≡q j implies mi ≡q mj. Thus each
FOd[<,≡q] is a Clm-variety of languages.

This reasoning is amenable to further adaptations, by altering the rules of the
games: We obtain a game characterization of languages defined by formulas that
use no more than p distinct variables by allowing only p pebbles, regardless of
the number of rounds. Once all the pebbles have been placed, the Spoiler may
pick up a pebble and move it to a new position; the Duplicator must pick up
the corresponding pebble and move it in the same direction. We obtain a game
characterization of the languages defined by boolean combinations of Σk sentences3,
with quantifier block size bounded by d, by considering k-round games in which
each player is permitted to place d pebbles at a time. We can turn this into a game
characterization of the languages defined by Σk-sentences themselves by requiring
Spoiler to play in w in the first round, in w′ in the second round, etc. Duplicator
then has a winning strategy in the game in w,w′ if and only if every Σk-sentence,
with quantifier block size no more than d, that w satisfies is also satisfied by w′.
We can use this to conclude that Σk[<] is an ordered variety of languages. In all
instances, we find that some variant of Eilenberg’s Theorem applies, and extract
the same conclusion: A logical characterization of the language class implies the
existence of an algebraic characterization.

Care must be taken not to extrapolate this too far. For example, the strategy-
copying argument fails in the case of Σ1[+1]: Let w = abab, w′ = baba. Then w,w′

satisfy the same Σ1[+1]-sentences of block size 2, but wa and w′a do not, since w′a
contains two consecutive occurrences of a.

3.2. Explicit characterization of logically defined classes. While the fore-
going arguments tell us that logically defined language classes form varieties, they
do not provide explicit algebraic characterizations. There are, in fact, a number
of different methods for connecting the structure of defining sentences to algebraic

3Formulas in prenex normal form with at most k− 1 alternating blocks of quantifiers, or with
exactly k blocks where the first block is existential.

26 HOWARD STRAUBING AND PASCAL WEIL

properties, and many results giving explicit characterizations of the language vari-
eties defined by various logics. (See, for instance Straubing [71].) Here we give just
a taste of these techniques and results with what is perhaps the most famous, and
certainly the first, result in this area, the theorem of McNaughton and Papert [42]
giving the equivalence of first-order logic and aperiodic monoids:

Theorem 28. A language L belongs to FO[<] if and only if Synt(L) is aperiodic.

We will only prove one direction of this theorem, namely that first-order defin-

ability implies aperiodicity. We claim that if u ∈ A∗, then u2
d−1 ∼d,A u2

d

. This is
proved by induction on d. For d = 0, there is nothing to prove, since all words are
equivalent modulo ∼0,A. Suppose then that d > 0. We will show that Duplicator

has a winning strategy in Gd(u
2d−1, u2

d

, <). Suppose Spoiler plays x1 in u2
d−1.

u2
d−1 = urvav′us,

where the pebble is played on the position indicated by the letter a, u = vav′, and
r + s = 2d − 2. It follows that either r ≥ 2d−1 − 1 or s ≥ 2d−1 − 1. Suppose the
former (the proof is the same in either case). Then we can write

u2
d

= ur+1vav′us.

Duplicator places the pebble x′1 on the indicated a. Now play proceeds as fol-
lows: By the inductive hypothesis, Duplicator has a winning strategy in the game

Gd−1(u
2d−1−1, u2

d−1

). Thus, by the argument given in the proof of Theorem 27,
Duplicator has a winning strategy in Gd−1(u

rv, ur+1v). Duplicator will follow this
strategy whenever Spoiler plays to the left of x1 or x′1, and simply copy Spoiler’s
move in av′us whenever the play is at or to the right of x1 or x′1. This proves
the claim. It follows that if L is first-order definable, then Synt(L) satisfies the
xm = xm+1 for sufficiently large m, and is thus aperiodic.

We omit the proof of the converse, that if Synt(L) is aperiodic, then L is in
FO[<]. Most of the published proofs of this theorem rely on some decomposition
theory for finite semigroups, either the Krohn-Rhodes decomposition, or the ideal
structure of semigroups. Most proofs also show first that every language recognized
by an aperiodic monoid is a star-free language. We will define star-free languages
in Section 4.2, and show that they are equivalent to first-order definable languages.
Pin [44] gives a relatively streamlined proof using the ideal decomposition theory.
Straubing [71] uses the Krohn-Rhodes decomposition to obtain a first-order sentence
directly. Wilke [84] gives a proof that is remarkable for its absence of hard semigroup
theory, and that produces a formula of temporal logic directly from an automaton
with an aperiodic transition monoid. ⊓⊔

We can use Theorem 28 to deduce a claim we made earlier, giving an explicit
characterization of the Clm-pseudovariety QA:

Theorem 29. L belongs to FO[<,≡m] for some m > 1 if and only if the syntactic
morphism of L is in QA.

We merely sketch the argument: Suppose u ∈ A+ with |u| divisible by m. Let
d > 0. Then by precisely the same argument as we gave in the proof of Theorem 28,
Duplicator has a winning strategy in Gd(u

r, ur+1, <,≡m) as long as r is sufficiently
large compared to d. This is enough to show that if L is definable by a sentence
of FO[<,≡m], then the stable semigroup of ηL is aperiodic. For the converse, we

VARIETIES 27

consider a language L with ηL in QA. Let ηL(A
t) be the stable semigroup. If we

treat B = At as a finite alphabet, we can use Theorem 28 to obtain a first-order
sentence, with respect to B, defining the sets of words of length divisible by t that
are recognized by ηL, and then translate this to a first-order sentence over A by
means of the predicate ≡t. ⊓⊔

Other logical formalisms. By and large, we have confined our discussion of logic to
the use of first-order quantification. But there are other formalisms studied in the
literature, which also give rise to varieties. We mention in passing two of these:
Formulas with modular quantifiers, which were introduced by Straubing, Thérien
and Thomas [72] and studied extensively in [71], and temporal formulas, which
play an important role in computer-aided verification. An algebraic treatment of
temporal logic, and its connection to varieties of languages, is due to Thérien and
Wilke [76, 77] and Wilke [84, 85].

Considerable effort has been devoted to the effective characterization of particu-
lar fragments of FO[<]. One approach is based on restricting the number of bound
variables appearing in a formula. Consider, for instance the sentence

∃x(Qax ∧ ∃y(Qby ∧ y = x+ 1 ∧ ∃x(Qbx ∧ x = y + 1))),

which defines the set of strings that contain abb as a factor. While the quantifiers
in this sentence are nested three levels deep, only two variable symbols are used,
because we were able to re-use the symbol x. Immerman and Kozen [33] showed
that any sentence of FO[<] can be rewritten as an equivalent sentence that uses
only three variables. We write this result as

FO[<] = FO3[<].

The question that naturally arises is what one can do with two variables—that is,
what is the expressive power of FO2[<]? It is known that the inclusion of FO2[<] in
FO[<] is strict; for example, it is not hard to show that the language (ab)∗ cannot
be defined by a formula with fewer than three variables. The exact answer turned
out to be quite interesting: A language L is definable in FO2[<] if and only if
Synt(L) belongs to the pseudovariety DA defined by the equations

[[(xyz)ωz(xyz)ω = (xyz)ω]].

This variety had been discovered much earlier by Schützenberger [62] and arises in
many different contexts (see, for example, Tesson and Thérien [74] and the discus-
sion in Section 4.2). This opened a rich vein of related research on varieties defined
by two-variable logics (e.g. Kufleitner and Weil [40], Krebs and Straubing [35, 36],
Kufleitner and Lauser [39], Fleischer, Kufleitner and Lauser [24], Krebs et al. [34]).

We have already alluded to the fragments Σk[<] and BΣk[<] (boolean combina-
tions of Σk sentences). These all give varieties of languages (ordered varieties in the
case of Σk[<]), but effective characterization of these varieties for all but the lowest
levels (Σ1[<], BΣ1[<], Σ2[<]) has been an outstanding open problem. Recently,
Place and Zeitoun [51, 53, 54, 57, 56], made a critical breakthrough, developing a
number of novel and difficult techniques for attacking this problem. As a result, we
now possess effective characterizations for the varieties of languages BΣ2[<], Σ3[<]
and Σ4[<].

28 HOWARD STRAUBING AND PASCAL WEIL

Beyond membership. Much of what we have written concerning decision problems
has focused on the membership problem for a pseudovariety V: Given a monoid
M , determine whether it belongs to V, or, equivalently, given a regular language
L, determine whether L belongs to the corresponding variety of languages V . In a
series of papers (see the surveys [54, 56]), Place and Zeitoun have embarked on a
deep study of the separation problem for a variety of languages V . If L1, L2 ⊆ A∗

are disjoint regular languages, we say that L1 is V-separable from L2 if there exists
a language K ∈ A∗V such that L1 ⊆ K and L2 ∩ K = ∅. 4 This problem is
equivalent to another one, expressed in algebraic and topological terms, namely
the computation of V-pointlike pairs of a given monoid M . This was observed by
Almeida in 1999 [4], but the problem of computingV-pointlikes had been considered
even earlier, notably in the difficult case where V = Ap (Henckell [27], see also
[29, 28] for a simpler proof, and [81] for a generalization). Place and Zeitoun’s
breakthrough results concerning the varieties Σk[<] and BΣk[<] depend critically
on the separation problem for varieties.

Further results on separation (or the computation of V-pointlike sets) include
transfer theorems such as those of Steinberg [66] on the computation of V ∗ D

pointlikes, of Place and Zeitoun [55] on the preservation of separation by logical
fragments when enriched with so-called local predicates (successor, min, max), or
of Place, Ramanathan and Weil [52] on the enrichment of logical fragments with
modular predicates.

4. Operations on classes of languages

The idea developed in this section is that certain operations on classes of lan-
guages translate to operations on the corresponding sets of profinite identities, or
on the corresponding classes of syntactic objects (syntactic monoids or semigroups,
ordered or not, etc). This translation, when it can be made explicit, may pro-
vide decomposition results, or membership decision results for complex classes of
languages.

4.1. Boolean operations. If for each i ∈ I, Vi is a class of regular languages,
the intersection W =

⋂
i∈I Vi is the class given by A∗W =

⋂
i∈I A

∗Vi for each
alphabet A. The different classes of families of languages considered so far (lattices
or boolean algebras of languages of some fixed A∗, positive C-varieties) are easily
seen to be closed under (arbitrary) intersection.

The following statement essentially follows from the definition of the satisfaction
of profinite equations.

Proposition 30. Let I be a set and for each i ∈ I, let Ei be a set of profinite
equations on an alphabet A. Then

⋂
i∈I L(Ei) = L(

⋃
i∈I Ei).

In particular, if for each i ∈ I Vi is a class of regular languages that is C-defined
by a set of profinite (ordered) C-identities Ei, then

⋂
i∈I Vi is C-defined by

⋃
i∈I Ei.

4If V is a variety of languages corresponding to a pseudovariety of finite monoids, then this

relation is symmetric: That is, L1 is V-separable from L2 if and only if L2 is V-separable from L1.
However, this is not the case for ordered varieties. Observe that if we can decide V-separability
for pairs of languages, then we can decide the membership problem for V , since this is just the
question of separating L from its complement.

VARIETIES 29

The fact that an arbitrary intersection of lattices of regular languages (resp.
(positive) C-varieties) is again a lattice of regular languages (resp. a (positive) C-
variety) has the following consequence: for each set V of regular languages in A∗

(resp. every class V of regular languages) there exists a least lattice (resp. a least
(positive) C-variety) containing it, which is said to be generated by V (resp. V).

The union of two lattices of languages in A∗ is not a lattice in general. The
relevant operation is the join: the join of two lattices of regular languages in A∗

(resp. classes of regular languages) is defined to be the lattice generated by their
union.

Describing the profinite equations or identities defining a join is difficult. In
fact, Albert, Baldinger and Rhodes exhibit [1] a finite set Σ of computable profi-
nite identities, such that the join of the pseudovariety [[Σ]] with the pseudovariety
Com = [[xy = yx]] of commutative monoids, is not decidable (see also [8]).

Some joins were computed early, based on the structural theory of monoids.
This is the case for instance of J1 ∨G, which is characterized as the class of finite
monoids which are unions of groups and in which idempotents commute (see [31]).
This translates as

J1 ∨G = [[xω+1 = x, xωyω = yωxω]].

Other joins resisted computation until the advent of profinite methods, such as the
joins R ∨ L (Almeida and Azevedo [5]) and G ∨Com (Almeida [2]). The case of
J ∨G is interesting, since this join is decidable but is not defined by a finite set of
profinite identities (Almeida, Azevedo and Zeitoun [6], Steinberg [65, 67], Trotter
and Volkov [80]).

Example 31. The following simple examples will be useful in the sequel. Let
I = [[x = y]] be the trivial pseudovariety of monoids (which consists only of the 1-
element monoid). Let K and D be, respectively, the pseudovarieties of semigroups
K = [[xωy = xω]] and D = [[yxω = xω]]. The elements ofK are the finite semigroups
in which idempotents act as zeroes on the left. Dually, in the semigroups of D,
idempotents act like zeroes on the right. If V is any pseudovariety of monoids, we
let LV be the class of finite semigroups S such that eSe ∈ V for each idempotent
e of S. It is easily verified that LV is a pseudovariety of semigroups, and that it is
decidable if and only if LV is.

It is also easy to verify that the semigroups that are both in K and in D are
exactly the semigroups with a single idempotent, which is a zero (these semigroups
are called nilpotent). Interestingly, the join K ∨D is equal to LI = [[xωyxω = xω]].

4.2. Closure operations and Mal’cev products. An early closure result is
Schützenberger’s theorem on star-free languages. The set of star-free languages
over an alphabet A is the least boolean algebra containing the letters (and the
empty set), which is closed under concatenation. For instance, aA∗ is star-free,
since it is equal to a∅c. A non-trivial question is that of decidability: given a reg-
ular language L, can we decide whether it is star-free? As it turns out, (ab)∗ is
star-free (its complement is the set of all words with two consecutive a’s or two
consecutive b’s, or that start with b or end with a) but (aa)∗ is not.

The solution to this problem was given by Schützenberger [61] with the following
theorem.

30 HOWARD STRAUBING AND PASCAL WEIL

Theorem 32. The class of star-free languages forms a variety of languages, cor-
responding to the pseudovariety Ap of aperiodic monoids. In particular, this class
is decidable.

In view of Theorem 28, this is equivalent to the following statement.

Theorem 33. A language is star-free if and only if it is FO[<]-definable.

Proof. We prove Theorem 33 using game-theoretic methods, as in Section 3. Let us
first show that a FO[<]-definable language is star-free. It is sufficient to show, by
induction on k, that for all w ∈ A∗ and k ≥ 0, [w]k is star-free. The case k = 0 is
trivial, since [w]0 = A∗ for all w ∈ A∗. To prove the general case, we will establish
the equality

[w]k+1 =
⋂

[x]ka[x
′]k \

⋃
[y]kb[y

′]k,

where the intersection is over all factorizations w = xax′ with x, x′ ∈ A∗ and a ∈ A,
and the union is over all triples ([y]k, b, [y

′]k), where b ∈ A and w 6∈ [y]kb[y
′]k. By

induction, the ∼k-classes are star-free languages, so the equality above implies that
the ∼k+1-classes are star-free as well.

To prove the equality, note that the inclusion from left to right is trivial, so we
need only show that if w′ ∈ A∗ is in the set on the right-hand side, then w ∼k+1 w

′.
So we will show that Duplicator has a winning strategy in the (k+1)-round game in
the two words. Observe that inclusion of w′ in the right-hand side means that w,w′

have precisely the same set of factorizations with respect to ∼k, in the sense that
for every factorization xax′ of one word, with a ∈ A, there exists a corresponding
factorization yay′ of the other word with x ∼k x

′, y ∼k y
′. Thus if Spoiler plays on

a position in one of the words, inducing a factorization xax′ of the word, Duplicator
can play on the corresponding position of the other. Duplicator can now correctly
reply in the remaining k rounds of the game by using her winning strategy in the
games in (x, y) and (x′, y′).

Conversely, let us show that every star-free language is FO[<]-definable. In view
of the definition of star-free languages, we need to show, first, that A∗ and every
language of the form {a} (a ∈ A) is FO[<]-definable; and second that if K and
L are FO[<]-definable, then so are the boolean combinations of K and L, and so
is KL. The only non-trivial point concerns the concatenation product, and the
problem easily reduces to showing that KaL (a ∈ A) is FO[<]-definable.

Let us assume that K and L are defined by formulas of quantifier-depth k. Let
w ∈ KaL, say, w = uav with u ∈ K and v ∈ L. We want to show that if w ∼k+1 w

′

— that is, Duplicator has a winning strategy for Gk+1(w,w
′) —, then w′ ∈ KaL.

Let Spoiler put a pebble on the letter a in w witnessing the factorization w = uav,
then Duplicator’s strategy has her put a pebble on a letter a in w′, determining
a factorization w′ = u′av′. We claim that Duplicator wins the k-round game in u
and u′: indeed, such a game can be seen as the 2nd, . . . , (k+1)-st moves in a game
in w = uav and w′ = u′av′. Therefore u ∼k u

′ and hence u′ ∈ K. Similarly v′ ∈ L:
thus w′ ∈ KaL. �

The definition of star-free languages leads, in a natural way, to several hierarchies
of language families. Let A be a finite alphabet, and let B0 consist of all the finite
and cofinite languages in A+. For k ≥ 0, we define Bk+1 to be the boolean closure
of the family of languages of the form

L1 · · ·Lr,

VARIETIES 31

where r ≥ 1 and each Li ∈ Bk. This is the so-called dot-depth hierarchy, introduced
by Cohen and Brzozowski [19]. Clearly, the union of the Bi is the family of star-
free languages in A+. A closely-related, and in certain respects more fundamental
hierarchy, is given by setting

V0 = {A∗, ∅},

and setting, for k ≥ 0, Vk+1 to be the boolean closure of the family of languages of
the form

L0a1L1 · · · arLr,

where r ≥ 0, each Li is in Vk, and each ai ∈ A (Straubing [70],Thérien [75]). Once
again, the union of the Vi is the family of all star-free languages over A, this time
including the empty string.

The levels of the Bk hierarchy, taken over all alphabets, are varieties of languages
corresponding to pseudovarieties of finite semigroups, and the levels Vk are varieties
of languages which correspond to pseudovarieties of finite monoids. Both hierarchies
are closely connected to the logically-defined classes introduced earlier. Indeed, for
each k, Vk consists precisely of the class of languages defined by BΣk[<] sentences,
which we discussed earlier. Further, Bk consists of the languages defined by boolean
combinations of Σk-sentences over the base of atomic formulas that contains, in
addition to the ordering relation <, the successor relation and constants max and
min for the first and last positions in a word (Thomas [78].) For a detailed discussion
of these concatenation hierarchies, see the survey by Pin [46].

Decidability of the membership in the various levels of the hierarchy remains
a largely open problem. It is known that the membership problems for the two
hierarchies are equivalent in this respect: decidability of membership in Vk implies
decidability of Bk, and conversely (Straubing [70]). We have already alluded to the
recent progress on these questions made by Place and Zeitoun [53, 54, 56].

A natural extension of the question answered by Schützenberger’s theorem is
the following: can we characterize the varieties of languages which are closed under
concatenation product? and if V is a variety of languages, can we describe the
least variety containing V and closed under concatenation product? Both problems
were solved by Straubing [68]. In order to state his result, we need to introduce an
operation on pseudovarieties.

Let V be a pseudovariety of monoids and let W be a pseudovariety of semigroups
(resp. ordered semigroups). We consider the class of all finite monoids (resp.
ordered monoids) M for which there exists a morphism (un-ordered) ϕ : M → N
such that N ∈ V and ϕ−1(e) ∈ W for each idempotent element e of N . This class
is not a pseudovariety in general, but it is elementary to verify that the quotients
(resp. ordered quotients) of its elements form a pseudovariety of monoids (resp.
ordered monoids), called the Mal’cev product of V by W, and denoted W M○ V.

Theorem 34. Let V be a variety of languages and let V be the corresponding
pseudovariety of monoids. If W is the least variety of languages containing V
and closed under concatenation product, then the corresponding pseudovariety of
monoids is Ap M○ V.

Schützenberger’s theorem above is the particular case of Theorem 34 when V is
the trivial variety of languages.

Interestingly, the Mal’cev product is also useful for characterizing the closure of
a variety of languages under other types of products. For technical reasons, the

32 HOWARD STRAUBING AND PASCAL WEIL

definition of these products involves intermediate, marker letters: If K and L are
languages in A∗, and if a ∈ A, we say that the product KaL is deterministic if each
word u ∈ KaL has a unique prefix in Ka. Co-deterministic products are defined
dually: the product KaL is co-deterministic if each word u ∈ KaL has a unique
suffix in aL. Another important modality of product is the following: a product
L0a1L1 · · · akLk is unambiguous if every word u in this language admits a unique
decomposition in the form u = u0a1u1 · · · akuk with each ui ∈ Li. Deterministic
and co-deterministic products are particular cases of unambiguous products.

It is natural to extend these operations to classes of languages. Given a class
of languages V , we denote by DetV the class of languages such that, for each
alphabet A, A∗ DetV is the set of all boolean combinations of languages of A∗V
and of deterministic products of these languages. DetV is called the deterministic
closure of V . The co-deterministic closure coDetV and the unambiguous closure
UPolV are defined similarly. Schützenberger [62, 44] characterized algebraically
these operations for varieties of languages.

Theorem 35. Let V be a variety of languages and let V be the corresponding pseu-
dovariety of monoids. Then DetV, coDetV and UPolV are varieties of languages,
and the the corresponding pseudovarieties of monoids are K M○ V, D M○ V and
LI M○ V, respectively.

Example 36. Consider the variety of languages J1, described in Sections 1.1
and 2.6.1: for each alphabet A, A∗J1 is the boolean algebra generated by the
languages of the form B∗, with B ⊆ A. It is elementary to verify that A∗ DetJ1 is
the boolean algebra generated by the products of the form A∗

0a1A
∗
1 · · ·akA

∗
k, such

that for each 0 < i ≤ k, ai 6∈ Ai−1. Theorem 35 tells us that DetJ1 forms a variety
of languages, and that the corresponding pseudovariety of monoids is K M○ J1.

Semigroup theory helps us characterize this pseudovariety. K M○J1 is the class R
of all so-called R-trivial finite monoids, that is, the monoids M in which principal
right ideals have a single generator: sM = tM implies s = t. In addition, one can
show that R = [[(xy)ωx = (xy)ω]]. This immediately implies the decidability of
DetJ1.

A dual result characterizes D M○J1, the pseudovariety associated with coDetJ1,
as the class L of L-trivial finite monoids. It is interesting to note that R ∩ L = J.
The variety of piecewise testable languages discussed in Section 1.2 is therefore the
class of languages that can be described simultaneously as boolean combinations
of deterministic and of co-deterministic products of the form A∗

0a1A
∗
1 · · · akA

∗
k with

each Ai a subset of A.
Similarly, Theorem 35 shows that the pseudovariety of monoids corresponding

to UPolJ1 is is LI M○ J1. Again, one can show that this pseudovariety is the class
of finite monoids in which every regular element is idempotent, usually denoted by
DA, and equal to [[(xyz)ωz(xyz)ω = (xyz)ω]]. It follows, here too, that UPolJ1 is
decidable. Let us note in addition that it coincides with the class of languages that
can be defined by FO[<] sentences that use at most two variable symbols. (See
[74].)

The following result is of the same nature as Theorems 34 and 35 but it involves
a positive variety of languages, and the corresponding pseudovariety of ordered
monoids. If L is a set of regular languages in A∗, we denote by PolL (the polynomial
closure of L), the lattice generated by the languages of the form L0a1L1 · · ·akLk,

VARIETIES 33

with Li ∈ L and ai ∈ A for each i. If V is a class of regular languages, then PolV is
the class such that, for each alphabet A, A∗ PolV = Pol(A∗V). Then the following
result holds, see [49].

Theorem 37. Let V be a variety of languages. Then PolV is a positive variety of
languages, and the the corresponding pseudovariety of ordered monoids is [[xωyxω ≤
xω]] M○ V.

In general, the results reported above do not provide explicit decision algorithms,
even if V is decidable (see [8]). However, the structural theory of semigroups
yields some such results. In particular, we can use a result by Krohn, Rhodes and
Tilson [38] to show that if V is decidable, then so are DetV , coDetV and UPolV
(generalizing the specific instances discussed in Example 36).

It is not known whether Ap M○ V is decidable whenever V is. A positive so-
lution to this problem would imply a positive solution to an open instance of the
complexity problem, which we discuss below in Section 4.3.

Topological methods also [49] provide sets of profinite identities describing Mal’cev
products. In the cases of interest for us, it yields the following statement.

Proposition 38. Let V be a variety of languages. Then the least variety containing
V and closed under concatenation is defined by the set of profinite identities of the

form xω+1 = xω, where x ∈ X̂∗ and V satisfies x = x2.
Similar statements hold for DetV (respectively, coDetV, UPolV and PolV),

replacing the profinite identity xω+1 = xω by xωy = xω (respectively, yxω = xω,

xωyxω = xω and xωyxω ≤ xω), where x, y ∈ X̂∗ and V satisfies x = x2 = y.

These results were extended to C-varieties, and in the case of PolV, to lattices
of regular languages closed under quotients [47, 16]. In practice, the resulting sets
of profinite identities are infinite and sometimes even uncomputable. However,
in a number of situations, one can extract from these sets more manageable, yet
sufficient subsets, yielding decision algorithms.

Example 39. Branco and Pin [16] use Proposition 38—applied to the lattice of
slender languages (see Section 2.6.8)— to prove the decidability of the lattice gen-
erated by the languages of the form L0a1L1 · · ·akLk where the Li are either A∗ or
of the form u∗ for some u ∈ A∗.

4.3. Product operations and semidirect products. We now consider products
of the form LaA∗, where L is a language and a ∈ A: LaA∗ is the language of all
words with a prefix in La. Given a monoid M accepting L, one can construct a
monoid accepting LaA∗ using the operation of semidirect product.

In general, let S and T be monoids. A left action of T on S is a mapping
λ : T × S → S, written (t, s) 7→ t · s, such that for each t, the map λt : s 7→ t · s is
an endomorphism of S, and such that the map t 7→ λt is a morphism from T to
the monoid of endomorphisms of S. Once such an action λ is given, the semidirect
product S ∗λ T (we usually write S ∗ T) is the monoid of all pairs (s, t) ∈ S × T ,
with product

(s, t)(s′, t′) = (s λ(t, s′), tt′).

Lemma 40. If ϕ : A∗ → T accepts the language L, then UT
1 ∗ T accepts LaA∗.

34 HOWARD STRAUBING AND PASCAL WEIL

Proof. We consider the action λ of T on UT
1 given by λ(t, (sx)x∈T) = (s′x)x∈T , with

s′x = sxt. Let then ψ : A∗ → UT
1 ∗ T be given by , for each b ∈ A,

ψ(b) =
(
(s(b)x)x∈T , ϕ(b)

)
with

s(b)x =

{
0 if x ∈ ϕ(L) and b = a,

1 otherwise.

Using the definition of the product in UT
1 ∗ T , we find that

ψ(a1 · · ·an) = ((rx)x∈T , ϕ(a1 · · · an)) with

rx = s(a1)
x s

(a2)
xϕ(a1)

· · · s
(an)
xϕ(a1···an−1)

=

{
0 if for some 1 ≤ i ≤ n, xϕ(a1 · · · ai−1) ∈ ϕ(L) and ai = a,

1 otherwise.

In particular, we observe that a1 · · ·an ∈ LaA∗ if and only if r1 = 0. �

Remark 41. Observe that the construction of the semidirect product UT
1 ∗T given

above does not use anything special about U1, and thus can be applied to any pair
of monoids U and T . This is called the wreath product U ◦ T . The wreath product
is closely related to the semidirect product, in the sense that first, it is, of course, a
semidirect product with T of a member of the pseudovariety generated by U , and,
second, every semidirect product U ∗ T embeds in U ◦ T . The wreath product,
in a sense that can be made precise, captures the notion of series composition of
automata [20]. As a consequence it is frequently used, exactly as in the proof of
Lemma 40 above to prove decomposition results.

The operation of semidirect product is naturally extended to pseudovarieties: if
V and W are pseudovarieties, we let V ∗W be the pseudovariety generated by the
semidirect products S ∗ T with S ∈ V and T ∈ W. Then we have the following
theorem.

Theorem 42. Let V be a variety of languages, and for each alphabet A, let A∗W
be the boolean algebra generated by the languages of A∗V and the languages of the
form LaA∗ with L ∈ A∗V. Then the class of languages W is a variety and the
corresponding pseudovariety of monoids is J1 ∗V.

Proof. Since U1 ∈ J1, Lemma 40 shows that every language in A∗W is accepted by
a monoid in J1∗V. The proof of the converse is a particular case of the more general
wreath product principle (Straubing [69]). Let ϕ be a morphism ϕ : A∗ → S ∗ T
and for each a ∈ A, let ϕ(a) = (sa, ta). Let ψ : A∗ → T be the morphism given by
ψ(a) = ta. Let also B = T ×A and let σ : A∗ → B∗ be the map

σ(a1 · · · an) = (1, a1) (ψ(a1), a2) · · · (ψ(a1 · · · an−1), an).

Note that σ is a so-called sequential function [12, 59], not a morphism. We observe
however that, if χ : B∗ → S is the morphism given by χ(t, a) = t · sa, then

ϕ(a1 · · · an) = (χσ(a1 · · · an), ψ(a1 · · · an)) .

It follows that if (s, t) ∈ S ∗ T , then ϕ−1(s, t) = ψ−1(t) ∩ σ−1(χ−1(s)). If T ∈ V,
then ψ−1(t) ∈ A∗V . And if S ∈ J1, then χ

−1(s) is a language in B∗J1, and hence
a boolean combination of languages of the form B∗(t, a)B∗ ((t, a) ∈ B). Then
σ−1(χ−1(s)) is a boolean combination of languages of the form σ−1(B∗(t, a)B∗).

VARIETIES 35

Now σ(a1 · · ·an) ∈ B∗(t, a)B∗ if and only if, for some 1 ≤ i ≤ n, we have (t, a) =
(ψ(a1 · · · ai−1), ai), that is, if and only if a1 · · · an ∈ ψ−1(t)aA∗. In particular,
χ−1(s) and ϕ−1(s, t) are in A∗W , and so is any language accepted by ϕ. �

Remark 43. The semidirect product is a powerful tool for decomposing pseu-
dovarieties. The operation V ∗W is associative on pseudovarieties and Krohn and
Rhodes [37] established that every finite monoid M sits in an iterated product
X1 ∗ · · ·∗Xk where each Xi is either G or Ap (and the G and Ap factors alternate
since G ∗G = G and Ap ∗Ap = Ap). This gives rise to a famous open problem,
the so-called complexity problem: given M , can we compute the minimum number
of G factors in a product of Ap and G containing M?

An analogous operation, the 2-sided semidirect product, can be used to handle
the products of the form KaL (K,L ⊆ A∗). This time, we need to consider not
only a left action of T on S (as for the semidirect product), but also a right action
of T on S, a map ρ : S × T → S, written (s, t) 7→ s · t, with the dual properties of
a left action (ρt : s 7→ s · t is an endomorphism of S and t 7→ ρt is a morphism),
and such that, for all t, t′ ∈ T , λt and ρt′ commute: t · (s · t′) = (t · s) · t′. Then
the 2-sided semidirect product S ∗∗λ,ρ T (written S ∗∗ T) is the monoid of all pairs
(s, t) ∈ S × T , with product

(s, t)(s′, t′) = (ρ(s, t′) λ(t, s′), tt′).

Again, the operation is extended to pseudovarieties, by letting V ∗∗ W be the
pseudovariety generated by the products S ∗∗ T with S ∈ V and T ∈ W. Then the
following analogue of Theorem 42 holds.

Theorem 44. Let V be a variety of languages and for each alphabet A, let A∗W
is the boolean algebra generated by the languages of A∗V and the languages of the
form KaL with K,L ∈ A∗V. Then the class W is a variety and the corresponding
pseudovariety of monoids is J1 ∗∗V.

Proof. The first step of the proof consists in verifying that if K and L are accepted
by a monoid in T ∈ V, then KaL is accepted by UT×T

1 ∗∗T . (Note that if K and L
are accepted by monoids T1 and T2, then they are both accepted by T1 × T2, so it
is no restriction to assume that K and L are accepted by the same monoid.) This
step is performed essentially as in Lemma 40, and the details are left to the reader.

The second step, to prove that if ϕ is a morphism ϕ : A∗ → S ∗∗ T with S ∈ J1

and T ∈ V, then each ϕ−1(s, t) is in A∗W . Here too, we use (a 2-sided version
of) the wreath product principle [82]. For each a ∈ A, let ϕ(a) = (sa, ta). Let
ψ : A∗ → T be the morphism given by ψ(a) = ta, let B = T × A × T and let
σ : A∗ → B∗ be the map

σ(a1 · · · an)

= (1, a1, ψ(a2 · · · an)) (ψ(a1), a2, ψ(a3 · · ·an)) · · · (ψ(a1 · · ·an−1), an, 1).

Then, if χ : B∗ → S is the morphism given by χ(t, a, t′) = (t · sa) · t′, then

ϕ(a1 · · · an) = (χσ(a1 · · · an), ψ(a1 · · · an)) .

We conclude as in the proof of Theorem 42. �

Remark 45. In view of Schützenberger’s theorem (Theorem 32 above), one can
use this result to show that the least pseudovariety closed under the operation
V 7→ J1 ∗∗V, is the pseudovariety Ap of aperiodic monoids.

36 HOWARD STRAUBING AND PASCAL WEIL

Semidirect product decomposition yields very difficult decision problems, such
as the complexity problem briefly described in Remark 43. Tilson showed that
the consideration of certain categories offered a systematic tool for understanding
semidirect (and 2-sided semidirect) product decompositions ([79], see also [71]).
Almeida and Weil combined this category-theoretical approach with topological
methods to provide sets of profinite identities describing many instances of semidi-
rect products [7]. As with Mal’cev products, these sets are usually infinite and do
not offer immediate solutions to decidability problems, see [8].

For the products discussed in this section, [7] gives the following descriptions.

Proposition 46. Let V be a pseudovariety of monoids. Then J1 ∗ V is defined
by the set of profinite identities of the form xy2 = xy and xyz = xzy for all

x, y, z ∈ X̂∗ such that V satisfies xy = xz = x.
J1 ∗∗ V is defined by the set of profinite identities of the form xy2x′ = xyx′

and xyzx′ = xzyx′ for all x, y, z, x′ ∈ X̂∗ such that V satisfies xy = xz = x and
yx′ = zx′ = x′.

In [7], this result is used to show the decidability of J1 ∗ J and J1 ∗∗ J.
It is interesting also to note that 2-sided semidirect products and category-

theoretical extensions of the notion of pseudovariety can be used to decompose
unambiguous products, that is, to decompose the operation V 7→ LI M○V, see [48].

5. Varieties in other algebraic frameworks

The fundamental notions explored in this chapter—classes of algebras defined
by identities, properties preserved under products and quotients, etc.—properly
belong to the domain of universal algebra. We have applied these ideas to finite
monoids, ordered finite monoids, and stamps, but in fact they are applicable in a
much wider variety of settings. Here we will briefly discuss some of these extensions.

The study of varieties originates in the work of Birkhoff [13], who showed that
a family of algebras (defined in a very general sense) is closed under formation of
subalgebras, quotients and products if and only if it is defined by a set of identities.
Such families of algebras are called varieties because of a loose analogy with the
varieties of algebraic geometry defined by sets of polynomial equations. Note that
the classes of finite monoids that we have discussed are not varieties in this sense
because they are not, of course, closed under infinite direct products, nor even finite
quotients of infinite direct products, and consequently they cannot be defined by
sets of explicit identities (as opposed to profinite identities).

Efforts to adapt Birkhoff’s Theorem to finite algebras include work of Eilenberg
and Schützenberger [21], and of Baldwin and Berman [9], who both showed that
pseudovarieties are indeed defined by sets of identities, in the sense that an algebra
belongs to a pseudovariety if and only if it satisfies all but finitely many identities
of the set. A different treatment, and the one that we have followed here, based
on identities in free profinite algebras, was given by Reiterman, who proved the
second part of Theorem 2.15 in the setting of arbitrary finite algebras [58] (see also
Banaschewski [10]).

The first part of Theorem 2.15, characterizing the language classes correspond-
ing to pseudovarieties of finite monoids, is from Eilenberg [20]. A generalization
applicable to pseudovarieties of single-sorted finite algebras is given by Almeida [3].

VARIETIES 37

The ordered monoids considered in this chapter are not, strictly speaking, alge-
bras, but rather instances of finite L-structures, which are algebras together with
a set of relations compatible with the operations in the algebra. Pin and Weil [49]
prove an analogue of Reiterman’s Theorem for such structures. In this setting
the profinite identities are replaced by profinite relational identities. The profinite
ordered identities discussed in this chapter are a particular instance.

Variety theories of the kind described here have also been successfully extended
to a number of many-sorted algebras that arise in the domain of automata theory,
and which we briefly describe:

Wilke [83] and Perrin and Pin [43] consider regular languages of infinite words.
Here the corresponding algebraic objects are two-sorted algebras called ω-semi-
groups. These are pairs (Sf , Sω), where Sf is a semigroup, and where there are
additional operations Sf ×Sω → Sω and Sf → Sω. Here the free object (analogous
to the free monoid in the case of pseudovarieties of finite monoids) is the pair
(A+, Aω) of finite and infinite words over A. The three operations correspond to
ordinary concatenation of finite words, concatenation of a finite word and an infinite
word to obtain an infinite word, and taking the infinite power of a finite word to
obtain an infinite word.

Ésik and Weil [22, 23] describe a theory of varieties for regular languages of
ranked trees. These are finite trees in which the nodes are labeled by letters of a
finite alphabet Σ that is the disjoint union of subalphabets Σ0, . . . ,Σn, where the
label of a node with k children belongs to Σk. In particular, the number of children
of any node in such a tree is bounded above by n. The corresponding algebraic
objects are called finitary preclones. These are sequences of finite sets S0, S1,
The operation takes an element f of Sk, and a sequence g = (g1, . . . , gk), where
gi ∈ Smi

, and yields an element f · g of Sm, where m = m1 + · · · +mk. The free
object is the sequence (ΣM0,ΣM1, . . .), where ΣMk consists of k-ary ranked trees:
these are ranked trees in which k of the leaves, reading in left-to-right order, have
been replaced by the variable symbol v1, . . . , vk. In this free preclone, the operation
f · (g1, . . . , gk) is that of replacing the k variables in f by the trees g1, . . . , gk to
obtain an m-ary ranked tree.

The theory can be extended as well to regular languages of finite unranked
forests, in which there is no bound on the degree of branching of the nodes (e.g., Bo-
janczyk and Walukiewicz [15], Bojanczyk, Straubing and Walukiewicz [14]). Here
the corresponding algebraic objects are called forest algebras. These are pairs (H,V)
of monoids where V acts on H . The letters H and V stand for ‘horizontal’ and
‘vertical’: The free object is the pair (HA, VA) where HA consists of forests labeled
by letters of A, and VA consists of contexts: forests in which the letter at one leaf
has been deleted and replaced by a single variable. The product in HA is simply
concatenation of forests to obtain larger forests; the product in VA is substitution
of one context for the variable in another context; and the action of VA on HA is
substitution of a forest for the variable in a context so as to obtain a larger forest.

For further details on this algebraic approach of the theory of regular tree lan-
guages, we refer the reader to Chapter 22 in this Handbook.

References

[1] D. Albert, R. Baldinger, and J. Rhodes. Undecidability of the identity problem for finite
semigroups. J. Symb. Logic, 57:179–192, 1992.

38 HOWARD STRAUBING AND PASCAL WEIL

[2] J. Almeida. Some pseudovariety joins involving the pseudovariety of finite groups. Semigroup
Forum, 37(1):53–57, 1988.

[3] J. Almeida. Finite Semigroups and Universal Algebra. World Scientific, Singapore, 1994.
[4] J. Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen,

54(suppl.):531–552, 1999. Automata and formal languages, VIII (Salgótarján, 1996).
[5] J. Almeida and A. Azevedo. The join of the pseudovarieties of R-trivial and L-trivial monoids.

J. Pure Appl. Algebra, 60(2):129–137, 1989.
[6] J. Almeida, A. Azevedo, and M. Zeitoun. Pseudovariety joins involving J -trivial semigroups.

Internat. J. Algebra Comput., 9(1):99–112, 1999.
[7] J. Almeida and P. Weil. Profinite categories and semidirect products. J. Pure Appl. Algebra,

123(1-3):1–50, 1998.
[8] K. Auinger and B. Steinberg. On the extension problem for partial permutations. Proc. Amer.

Math. Soc., 131(9):2693–2703 (electronic), 2003.
[9] J. Baldwin and J. Berman. Varieties and finite closure conditions. Colloq. Math., 35:15–20,

1976.
[10] B. Banaschewski. The Birkhoff theorem for varieties of finite algebras. Algebra Universalis,

17:360–368, 1983.
[11] D. A. M. Barrington, K. Compton, H. Straubing, and D. Thérien. Regular languages in NC1.

J. Comput. System Sci., 44(3):478–499, 1992.

[12] J. Berstel. Transductions and context-free languages. Teubner Studienbücher, Stuttgart, 1979.
[13] G. Birkhoff. On the structure of abstract algebras. Proc. Cambridge Phil. Soc., 31:433–454,

1935.
[14] M. Bojańczyk, H. Straubing, and I. Walukiewicz. Wreath products of forest algebras, with

applications to tree logics. Logical Methods in Computer Science, 8(3), 2012.
[15] M. Bojańczyk and I. Walukiewicz. Forest algebras. In J. Flum, E. Grädel, and T. Wilke,

editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas].,
volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press, 2008.

[16] M. J. Branco and J.-É. Pin. Equations defining the polynomial closure of a lattice of regular
languages. In Automata, languages and programming. Part II, volume 5556 of Lecture Notes
in Comput. Sci., pages 115–126. Springer, Berlin, 2009.

[17] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen
Math., 6:66–92, 1960.

[18] S. Cho and D. T. Huynh. Finite automaton aperiodicity is PSPACE-complete. Theoret. Com-
put. Sci., 88:96–116, 1991.

[19] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. J. Comput. System Sci.,
5(1):1–16, 1971.

[20] S. Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, New York
and London, 1976.

[21] S. Eilenberg and M. Schützenberger. On pseudovarieties. Adv. Math., 19:413–418, 1976.

[22] Z. Ésik and P. Weil. Algebraic recognizability of regular tree languages. Theoret. Comput.
Sci., 340:291–321, 2005.

[23] Z. Ésik and P. Weil. Algebraic characterization of logically defined tree languages. Internat.
J. Algebra Comput., 20:195–239, 2010.

[24] L. Fleischer, M. Kufleitner, and A. Lauser. The half-levels of the FO2 alternation hierarchy.
Theory Comput. Syst., 61(2):352–370, 2017.

[25] M. Gehrke, S. Grigorieff, and J.-É. Pin. Duality and equational theory of regular languages.
In Automata, languages and programming. Part II, volume 5126 of Lecture Notes in Comput.
Sci., pages 246–257. Springer, Berlin, 2008.

[26] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Theory Comput. Syst., 42(2):256–286,
2008.

[27] K. Henckell. Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure Appl.
Algebra, 55(1-2):85–126, 1988.

[28] K. Henckell, J. Rhodes, and B. Steinberg. Aperiodic pointlikes and beyond. Internat. J.
Algebra Comput., 20(2):287–305, 2010.

[29] K. Henckell, J. Rhodes, and B. Steinberg. A profinite approach to stable pairs. Internat. J.
Algebra Comput., 20(2):269–285, 2010.

[30] G. Higman. Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc., Third
Series, 2:326–336, 1952.

VARIETIES 39

[31] J. M. Howie. An introduction to semigroup theory. Academic Press [Harcourt Brace Jo-
vanovich Publishers], London, 1976. L.M.S. Monographs, No. 7.

[32] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17(5):935–938, 1988.

[33] N. Immerman and D. Kozen. Definability with bounded number of bound variables. Inform.
and Comput., 83(2):121–139, 1989.

[34] A. Krebs, K. Lodaya, P. K. Pandya, and H. Straubing. Two-variable logic with a between
relation. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 106–115, 2016.

[35] A. Krebs and H. Straubing. An effective characterization of the alternation hierarchy in two-
variable logic. In D. D’Souza, T. Kavitha, and J. Radhakrishnan, editors, Proc. 32nd Conf. on
Foundations of Software Technology and Theoretical Computer Science, volume 18 of LIPIcs,
pages 86–98, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[36] A. Krebs and H. Straubing. An effective characterization of the alternation hierarchy in two-
variable logic. ACM Trans. Comput. Log., 18(4):30:1–30:22, 2017.

[37] K. Krohn and J. Rhodes. Algebraic theory of machines. I. Prime decomposition theorem for
finite semigroups and machines. Trans. Amer. Math. Soc., 116:450–464, 1965.

[38] K. Krohn, J. Rhodes, and B. Tilson. Homomorphisms and semilocal theory. In M. Arbib,
editor, The Algebraic Theory of Machines, Languages and Semigroups. Academic Press,

1965.
[39] M. Kufleitner and A. Lauser. Quantifier alternation in two-variable first-order logic with

successor is decidable. In N. Portier and T. Wilke, editors, STACS 2013, Proc. 30th Symp.
Theoretical Aspects of Comp. Sci., volume 20 of LIPIcs, pages 305–316. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[40] M. Kufleitner and P. Weil. On logical hierarchies within FO2-definable languages. Log. Meth-
ods Comput. Sci., 8(3):3:11, 30, 2012.

[41] L. Libkin. Elements of finite model theory. Texts in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, Berlin, 2004.

[42] R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, Cambridge, Mass.,
1971.

[43] D. Perrin and J.-É. Pin. Infinite words. World Scientific, Singapore, 2004.

[44] J.-É. Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.

[45] J.-É. Pin. A variety theorem without complementation. In Russian Mathematics (Izvestija
vuzov.Matematika), volume 39, pages 80–90, 1995.

[46] J.-É. Pin. The dot-depth hierarchy, 45 years later. In S. Konstantinidis, N. Moreira, R. Reis,
and S. Jeffrey, editors, The Role of Theory in Computer Science - Essays Dedicated to Janusz
Brzozowski, pages 177–202. Word Scientific, 2017.

[47] J.-É. Pin and H. Straubing. Some results on C-varieties. Theoret. Informatics Appl., 39:239–
262, 2005.

[48] J.-É. Pin, H. Straubing, and D. Thérien. Locally trivial categories and unambiguous concate-
nation. J. Pure Appl. Algebra, 52:297–311, 1988.

[49] J.-É. Pin and P. Weil. A Reiterman theorem for pseudovarieties of finite first-order structures.
Algebra Universalis, 35:577–595, 1996.

[50] J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory Comput. Syst.,
30(4):383–422, 1997.

[51] T. Place. Separating regular languages with two quantifiers alternations. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July
6-10, 2015, pages 202–213, 2015.

[52] T. Place, V. Ramanathan, and P. Weil. Covering and separation for logical fragments with
modular predicates. arxiv.org/abs/1804.08883, 2018.

[53] T. Place and M. Zeitoun. Going higher in the first-order quantifier alternation hierarchy on
words. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Proc. 41st
Int’l Conf. on Automata, Languages, and Programming (ICALP) Part II, volume 8573 of
Lecture Notes in Comput. Sci., pages 342–353. Springer, 2014.

[54] T. Place and M. Zeitoun. The tale of the quantifier alternation hierarchy of first-order logic
over words. SIGLOG News, 2(3):4–17, 2015.

[55] T. Place and M. Zeitoun. Adding successor: a transfer theorem for separation and covering.
arxiv.org/abs/1709.10052, 2017.

40 HOWARD STRAUBING AND PASCAL WEIL

[56] T. Place and M. Zeitoun. Concatenation hierarchies: New bottle, old wine. In P. Weil, editor,
Proc. 12th International Computer Science Symposium in Russia, CSR, volume 10304 of
Lecture Notes in Comput. Sci., pages 25–37. Springer, 2017.

[57] T. Place and M. Zeitoun. Separation for dot-depth two. In Proc. 32nd IEEE Symp. on Logic
in Computer Science, pages 1–12. IEEE Computer Society, 2017.

[58] J. Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis, 14:1–10, 1982.
[59] J. Sakarovitch. Elements of automata theory. Cambridge University Press, Cambridge, 2009.

Translated from the 2003 French original by Reuben Thomas.
[60] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

J. Comput. System. Sci., 4:177–192, 1970.
[61] M. P. Schützenberger. On finite monoids having only trivial subgroups. Inform. and Comput.,

8:190–194, 1965.
[62] M. P. Schützenberger. Sur le produit de concaténation non ambigu. Semigroup Forum, 13:47–

75, 1976.
[63] I. Simon. Piecewise testable events. In H. Barkhage, editor, Automata Theory and Formal

Languages, Proc. 2nd GI Conference, volume 33 of Lecture Notes in Comput. Sci., pages
214–222. Springer, 1975.

[64] M. Sipser. Introduction to the Theory of Computation, 2nd Edition. Course Technology, 2006.
[65] B. Steinberg. On pointlike sets and joins of pseudovarieties. Internat. J. Algebra Comput.,

8(2):203–234, 1998. With an addendum by the author.
[66] B. Steinberg. A delay theorem for pointlikes. Semigroup Forum, 63(3):281–304, 2001.
[67] B. Steinberg. On algorithmic problems for joins of pseudovarieties. Semigroup Forum, 62(1):1–

40, 2001.
[68] H. Straubing. Aperiodic homomorphisms and the concatenation product of recognizable sets.

J. Pure Appl. Algebra, 15(3):319–327, 1979.
[69] H. Straubing. Families of recognizable sets corresponding to certain varieties of finite monoids.

J. Pure Appl. Algebra, 15(3):305–318, 1979.
[70] H. Straubing. Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra, 36(1):53–94,

1985.
[71] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston,

Basel and Berlin, 1994.
[72] H. Straubing, D. Thérien, and W. Thomas. Regular languages defined with generalized quan-

tifiers. Inform. and Comput., 118(2):289–301, 1995.
[73] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta

Inform., 26(3):279–284, 1988.
[74] P. Tesson and D. Thérien. Diamonds are forever: The variety DA. In G. M. D. Gomes Moreira

Da Cunha, P. V. A. D. Silva, and J.-É. Pin, editors, Semigroups, Algorithms, Automata and
Languages, Coimbra (Portugal) 2001, pages 475–500. World Scientific, 2002.

[75] D. Thérien. Classification of finite monoids: the language approach. TCS, 14(2):195–208,
1981.

[76] D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier alter-
nation. In Proc. 30th Ann. ACM Symp. Theor. Comput., STOC 1998, pages 234–240. ACM,
1998.

[77] D. Thérien and T. Wilke. Temporal logic and semidirect products: An effective characteri-
zation of the until hierarchy. SIAM J. Comput., 31(3):777–798, 2001.

[78] W. Thomas. Classifying regular events in symbolic logic. J. Comput. System Sci., 25:360–376,
1982.

[79] B. Tilson. Categories as algebras: An essential ingrediant in the theory of monoids. J. Pure
Appl. Algebra, 48:83–198, 1987.

[80] P. G. Trotter and M. V. Volkov. The finite basis problem in the pseudovariety joins of aperi-
odic semigroups with groups. Semigroup Forum, 52(1):83–91, 1996. Dedicated to the memory
of Alfred Hoblitzelle Clifford (New Orleans, LA, 1994).

[81] S. van Gool and B. Steinberg. Pointlike sets for varieties determined by groups. arxiv.org/
abs/1709.10052, 2018.

[82] P. Weil. Closure of varieties of languages under products with counter. J. Comput. System
Sci., 45(3):316–339, 1992.

[83] T. Wilke. An algebraic theory for regular languages of finite and infinite words. Intern. J.
Algebra Comp., 3:447–489, 1993.

VARIETIES 41

[84] T. Wilke. Classifying discrete temporal properties. In C. Meinel and S. Tison, editors, STACS
99, Proc. 16th Symp. Theoretical Aspects of Comp. Sci., number 1443 in Lecture Notes in
Comput. Sci., pages 32–46. Springer, 1999. Invited Lecture.

[85] T. Wilke. Linear temporal logic and finite semigroups. In J. Sgall, A. Pultr, and P. Kol-
man, editors, Proc. 26th Symposium, Mathematical Foundations of Computer Science 2001,
volume 2136 of Lecture Notes in Comput. Sci., pages 96–110. Springer, 2001.

Computer Science Department, Boston College, Chestnut Hill, Massachusetts 02467,

USA

Email address: straubin@cs.bc.edu

Univ. Bordeaux, CNRS, LaBRI, UMR 5800, F-33400 Talence, France and CNRS, Re-

LaX, UMI 2000, Chennai, India

Email address: pascal.weil@cnrs.fr

