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ABSTRACT
We present results from the search for a stochastic gravitational-wave background (GWB) as predicted by the theory of General
Relativity using six radio millisecond pulsars from the Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA)
covering a timespan up to 24 yr. A GWB manifests itself as a long-term low-frequency stochastic signal common to all pulsars, a
common red signal (CRS), with the characteristic Hellings-Downs (HD) spatial correlation. Our analysis is performed with two
independent pipelines, ENTERPRISE, and TEMPONEST+FORTYTWO, which produce consistent results. A search for a CRS
with simultaneous estimation of its spatial correlations yields spectral properties compatible with theoretical GWB predictions,
but does not result in the required measurement of the HD correlation, as required for GWB detection. Further Bayesian model
comparison between different types of CRSs, including a GWB, finds the most favoured model to be the common uncorrelated
red noise described by a power law with A = 5.13+4.20

−2.73 × 10−15 and γ = 3.78+0.69
−0.59 (95 per cent credible regions). Fixing the

spectral index to γ = 13/3 as expected from the GWB by circular, inspiralling supermassive black hole binaries results in an
amplitude of A = 2.95+0.89

−0.72 × 10−15. We implement three different models, BAYESEPHEM, LINIMOSS, and EPHEMGP, to
address possible Solar system ephemeris (SSE) systematics and conclude that our results may only marginally depend on these
effects. This work builds on the methods and models from the studies on the EPTA DR1. We show that under the same analysis
framework the results remain consistent after the data set extension.

Key words: gravitational waves – methods: data analysis – pulsars: general.

1 IN T RO D U C T I O N

Radio pulsars, and especially radio millisecond pulsars (MSPs),
have been used as astronomical tools to study aspects of funda-
mental physics with remarkable success, thanks to their exceptional
rotational stability. An area of research where MSPs have been
particularly useful is gravity (e.g. Taylor 1993; Kramer et al. 2006;
Will 2014), especially by employing the ‘pulsar timing’ technique
(e.g. Lorimer & Kramer 2005), which relies on high-precision
measurements of the pulses’ times-of-arrival (TOAs) being compared
to a ‘timing model’. The difference between the measured and the

� E-mail: siyuan.chen@cnrs-orleans.fr (SC); caballero.astro@gmail.com
(RNC)

model-predicted TOAs is referred to as the ‘timing residuals’. Any
unmodelled effects will appear in the timing residuals, and the timing
model is revised and/or extended accordingly. The timing models
have astounding predictive power as it only requires the precise
modelling of the pulsar’s rotation, orbital motion, and the signal’s
propagation in space, and not the details of the radiation’s physics or
emission mechanism. Pulsar timing observations provided the first
evidence for the existence of gravitational waves (GWs; Taylor &
Weisberg 1982), by confirming that the measured orbital changes
of the binary pulsar PSR B1913+16 match those predicted by the
theory of General Relativity (GR) due to the system’s energy loss
through the emission of GWs.

MSPs have been proposed as a tool for the direct detection of GWs
at nHz frequencies (Sazhin 1978; Detweiler 1979). The experiment
is based on systematically observing an ensemble of MSPs at many
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sky positions, a configuration called a ‘Pulsar Timing Array’ (PTA;
Foster & Backer 1990). Various theories of gravity, including GR,
predict that the propagation of GWs cause distortions in the space–
time metric, with specific polarization modes (e.g. Eardley, Lee
& Lightman 1973a; Eardley et al. 1973b; Estabrook & Wahlquist
1975). GWs propagating in the vicinity of the Earth and the pulsars
induce spatially correlated variations in the TOAs over the time-
scale of several decades. One of the physically motivated sources
of GWs in the nHz band are inspiralling supermassive black hole
binaries (SMBHBs). The incoherent superposition of a large number
of unresolved SMBHB GW signals forms a GW background (GWB)
that may be detected with a PTA (Rajagopal & Romani 1995; Jaffe &
Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004). In addition,
GWBs from cosmic strings (Kibble 1976; Sanidas, Battye & Stappers
2012) or a cosmological relic GWB from the inflationary era (see
Grishchuk 2005) have also been proposed as PTA target signals. As
such, PTAs can provide direct observational constraints for large-
scale structure and cosmological models.

The basic idea of searching for a GWB with PTAs is to look for this
common red signal (CRS) with the characteristic spatial correlation
in the array of MSPs (see Hellings & Downs 1983; Lee, Jenet & Price
2008). While PTA data are also being used for other applications,
such as probing Solar system planetary parameters (e.g. Caballero
et al. 2018) establishing pulsar-based time-scales (e.g. Hobbs et al.
2020) and measuring local clock instabilities (Li et al. 2020), the
nHz GW search remains the primary objective of PTA efforts.

After the first experimental efforts to establish a PTA pioneered
by Donald Backer and collaborators (e.g. Romani 1988; Foster &
Backer 1990; Backer 1995), collaborations with European partners
to also utilize the Effelsberg 100-m radio telescope (EFF) and the
Nançay Radio Telescope (NRT) started corresponding timing efforts.
Together with regular timing efforts with the Lovell Telescope (LT)
and the Westerbork Synthesis Radio Telescope (WSRT), this laid the
foundation for uninterrupted PTA data sets spanning now up to 24 yr
for a number of sources. Inspired by the formation of the Parkes
Pulsar Timing Array (PPTA; Manchester 2006; Hobbs 2013), the
European Pulsar Timing Array was officially established in January
2006 (Stappers et al. 2006; Janssen et al. 2008) as a collaboration
of European radio observatories and research institutions working
towards the direct detection of nHz GWs. Apart from the PPTA,
the EPTA has also been working alongside the North-American
Nanohertz Observatory for Gravitational Waves (NANOGrav; Jenet
et al. 2009; Arzoumanian et al. 2015). The three groups collaborate
under the International Pulsar Timing Array (IPTA; Verbiest et al.
2016; Perera et al. 2019), with combined data-sets and shared
resources and expertise. The advent of further sensitive telescopes
able to perform precision pulsar timing observations, especially
the Giant Metrewave Radio Telescope (GMRT; Swarup 1990) in
India, which recently formally joined the IPTA, and more recently
the Five Hundred Meter Spherical Telescope (FAST; Jiang et al.
2019) in China, and the MeerKAT telescope (Camilo et al. 2018) in
South Africa with the MeerTIME program (Bailes et al. 2020), adds
important capabilities to the IPTA.

With continuous improvements of the hardware used, the current
EPTA data set (henceforth Data Release 2; DR2) extends the previous
data set (DR1; Desvignes et al. 2016) by up to 7 yr. From early
on, coherent-dedispersion data acquisition hardware has been in
place at some of the telescopes [e.g. the Effelsberg Berkeley Pulsar
Processor (EBPP), the Berkeley Orléans Nançay Instrumentation
(BON), or PuMa II at the WSRT, see Section 2]. Additionally, the
Large European Array of Pulsars (LEAP; Kramer & Stappers 2010;
Bassa et al. 2016a) efforts combine the EPTA telescopes in tied-array

mode to form a 194-m equivalent dish for MSP timing with monthly
cadence for the last 8–10 yr. As a result, the EPTA has effectively
operated as a ‘mini-IPTA’, combining data sets from six different
telescopes. Consequently, the combination of data sets is complex,
but the availability to cross-check the data with multiple overlapping
data set helps enormously in identifying and solving instrumental
problems.

In the EPTA DR1 GWB upper limit analysis, Lentati et al. (2015)
(henceforth LTM15) applied a methodology to probe a number of
physically motivated CRSs in the data set and compare their prob-
ability against the GWB with the Hellings–Downs (HD) correlation
(Hellings & Downs 1983). This methodology was created because
there was some modest evidence in this first data combination of a
common signal and it was recognized that this would likely require
careful examination in a future extended data set. In this work, we
analyse the same six pulsars used in EPTA DR1 GW analyses (Lentati
et al. 2015; Taylor et al. 2015; Babak et al. 2016; Caballero et al.
2016), and present updated results using the EPTA DR2 on the
properties of a CRS in the data. Building upon our DR1 methods
we include the same noise terms for the pulsar properties as well
as the pulse propagation through the ionized interstellar medium
(IISM), which has been the standard first-order analysis approach
in pulsar timing for a number of years. While we are working on
further optimization in modelling and analysis methods, which could
potentially improve our results, conducting the analysis here in the
same model framework as in DR1 allows us to get a direct comparison
and measure of the improvement achieved with the new data. In
order to increase confidence in the results, we make use of multiple
independently developed analysis codes, some of which are used
for the first time, for the parameter estimation, model selection and
modelling of Solar system dynamics. As a first-order examination
of the stationarity of the CRS we also analyse the evolution of this
signal from DR1 to DR2. This work is the first in a series of papers
which will present results from multiple types of analysis using a
larger number of pulsars with the updated EPTA DR2 in order to fully
establish if the CRS persists and what type of spatial correlation it has.

The rest of the paper is organized as follows: In Section 2, we
present the properties of the data used in this study. Section 3 provides
an overview of the modelling and analysis framework. Results from
the single-pulsar analysis are presented in Section 4. Section 5 shows
the results from a search for a CRS with simultaneous analysis of the
signal’s angular correlations and Bayesian model selection between
different possible types of CRSs to gauge which is more supported
by the data. The most supported model is further investigated in
Section 6, where we investigate effects from choices in modelling
the CRS spectrum, the pulsars’ contributions to the common signal,
the time-stationarity of the CRS and the effects of the SSE. We
discuss the results in the framework of the GWB and compare these
to results from the literature in Section 7 and discuss our conclusions
in Section 8.

2 DATA

The EPTA has continued to monitor approximately 50 pulsars with
high observing cadence since the first data release (Desvignes et al.
2016), using the five European radio telescopes both in single-dish
and LEAP modes. High-sensitivity TOAs produced from coordinated
monthly LEAP observations are included for the first time in the
EPTA data set. Current observations utilize the new generation of
data recording systems at all telescopes, primarily using the Re-
configurable Open Architecture Computing Hardware (ROACH)
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4972 S. Chen et al.

FPGA board developed by the CASPER group,1 which allows for
coherent dedispersion (van Straten & Bailes 2011). At EFF, the
observations were conducted mainly at three frequency bands centred
at 1347, 2627, and 4850 MHz, and the data were recorded with
the ‘PSRIX’ backend with a bandwidth of 200 MHz (Lazarus et al.
2016). The LT observations were carried out at a central frequency of
1532 MHz, with data recorded using the ‘ROACH’ pulsar backend
with a bandwidth of 400 MHz (Bassa et al. 2016b). At the NRT,
observations were performed centered at 1484 and 2539 MHz, and
the data were recorded with the ‘NUPPI’ backend with a bandwidth
of 512 MHz (Cognard et al. 2013). At the WSRT, observations were
made at 350, 1380, and 2200 MHz, and the data recording was
performed with the ‘PuMa II’ backend (Karuppusamy, Stappers &
van Straten 2008). The Sardinia Radio Telescope (SRT) is the latest
telescope addition to the EPTA and now effectively participates in
EPTA combined data set. The majority of the SRT observations
were made as part of LEAP sessions. Due to the small number
of the SRT single-telescope observations the corresponding TOAs
were not included in this data set. The SRT observations were
conducted at 1396 MHz with the data recorded using the ‘ROACH1’
backend using a bandwidth of 128 MHz. The LEAP observations
were performed at 1396 MHz using the same backends but with a
recording bandwidth of 128 MHz at each telescope.

The six DR1 priority pulsars used in this paper, are:
PSRs J0613−0200, J1012+5307, J1600−3053, J1713+0747,
J1744−1134, and J1909−3744. Each pulsar is regularly observed
by all the EPTA telescopes, except for J1909−3744 which given
its sky location has so far only been monitored by NRT and the
SRT; however, as noted above, single-telescope SRT data are not
included in the current data set. The data from the new backends
collected at each telescope were processed using the PSRCHIVE
software package (Hotan, van Straten & Manchester 2004), to carry
out calibration and radio-frequency interference mitigation. Then,
for each observation epoch, an ‘integrated profile’ was formed by
averaging the data in time and frequency. For data from EFF, WSRT,
and LEAP, the frequency averaging was performed over the entire
band. For data from LT and NRT, the averaging was done in two and
four sub-bands, respectively, to accommodate their larger bandwidth.
The TOAs of these profiles were then calculated using the canonical
template-matching method (Taylor 1992).

We note that for about 3 yr, observations were made simultane-
ously both with the older backends (as they appear in DR1) and the
new ones with the corresponding TOAs from the new backends.2 In
this work, we replace all those DR1 TOAs. We also exclude single-
telescope data from epochs that were used to create the corresponding
LEAP TOAs. As seen in Fig. 1, although the timespan extension from
DR1 is ∼7 yr, the effective improvement due to the new-generation
data is �10 yr.

A summary of the combined data set can be found in Table 1. We
refer to Lazarus et al. (2016), Bassa et al. (2016a), Perera et al. (2018),
Liu et al. (2020), and the forthcoming EPTA DR2 paper for more
details of the observations and data from each individual telescope.
The full details for the backends, data and TOA extraction for the

1http://casper.berkeley.edu/
2These periods of observations with simultaneous data recordings using
older and newer instruments are intentionally carried out at the observatories
in order to confirm the good performance of the new instruments during
commissioning, and to accurately measure the necessary phase offset between
the two data sets, as required when creating the combined data set.

DR1 data that are part of this data set can be found in Desvignes
et al. (2016).

3 A NA LY SI S FRAMEWO RK

In this section, we briefly summarize the established mathematical
and algorithmic framework used in PTAs to analyse TOAs. While the
information described in the section can be found in the literature,
we provide this overview as the methods were progressively created
in many publications. This section can also serve as a quick
reference for the planned follow-up papers. The interested reader can
study the provided references for detailed explanations and formula
derivations.

The analysis is divided in two main parts: (a) the single-pulsar
analysis, which provides the pulsar timing parameters and stochastic
noise parameters for each MSP, and (b) the CRS analysis, which
describes the methods used in the search for CRSs, including the
GWB, in the TOAs of all MSPs and the investigation of their spatial
correlations.

3.1 Single-pulsar timing and noise modelling

Our search for common signals between pulsars is preceded by
single-pulsar analyses. This process provides pulsar models that
comprise of the timing and noise parameters. The former induce
deterministic signals, while the latter induce stochastic signals. In
the case of GW searches with PTAs, the pulsar noise analysis is
equivalent to the characterization of a GW-detector noise and is
thus a necessary step before the search analysis, as pulsar noise can
correlate with GW signals and reduce the data’s sensitivity (see e.g.
Caballero et al. 2016). All sources of noise therefore need to be
measured in order to be decorrelated from the signal of interest, and
to properly evaluate the possibility for the existence of any common
signals.

Timing parameters are typically measured progressively as the
pulsar data set increases with new data. Least-squares linear fits
are very effective in producing phase-connected timing models
(i.e. models that account for every pulsar rotation). The timing
analysis in all cases was performed using the pulsar timing package
TEMPO2 (Hobbs, Edwards & Manchester 2006). It is used to first
derive the basic phase-connected timing solution which uses a linear
approximation for the pulsar timing model, i.e. assuming that the
timing-model parameters may only have small, linear deviations
from the true values. In practice, this means that on every update of
the model we assume that there are only linear deviations from the
pre-fit values of the timing parameters to their post-fit values. The
topocentric TOAs (i.e. TOAs at the observatory) were mapped to the
Solar system barycentre to form the barycentric TOAs using the Solar
system ephemeris (SSE) DE438 from the Jet Propulsion Laboratory
(Folkner & Park 2018). The TOAs were referred to the terrestrial
time-scale BIPM2019, provided by the Bureau International des
Poids et Mesures.3

While the least-squares linear approximation timing model is
only valid if the timing data are white-noise dominated, pulsar data
often contain other types of non-white (i.e. time-correlated) noise
processes. In the presence of such correlated noise processes, even
for phase-connected timing models, the values and uncertainties of
the timing parameters can be biased (e.g. Coles et al. 2011). A
full analysis of pulsar timing data with the intention of accurate

3www.bipm.org
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EPTA common-red-signal analysis 4973

Figure 1. Timing residuals of the six pulsars used in this paper. For each pulsar, the residuals before and after subtraction of DM and red noise are shown. The
squares, circles and triangles represent P-band, L-band and S/C-band observations, respectively (see Table 1 for information on the observing frequency bands).
The blue/filled and black/unfilled symbols indicate the new backend data and DR1 TOAs, respectively.
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Table 1. Overview of the six-pulsar data set used in this paper’s analysis. The columns represent the name of the pulsar, the coverage of frequency band, the
number of TOAs, the timespan T of the data set, the median σTOA in each frequency band, the timing residual rms, the rms after subtraction of DM noise,
and the rms after subtraction of both red and DM noise (whitened). The corresponding frequency ranges for the P, L, S, and C bands are 0.3–1.0, 1.0–2.0,
2.0–4.0, and 4.0–8.0 GHz, respectively.

Pulsar name Band NTOA T Median σTOA (μs) rms rms, DM removed rms, whitened
(yr) P L S C (μs) (μs) (μs)

J0613−0200 L, S, C 3022 22.4 – 1.527 7.113 7.400 1.415 1.281 1.168
J1012+5307 P, L, S, C 5837 23.2 4.800 1.705 7.859 4.756 1.393 1.326 1.233
J1600−3053 L, S 3345 14.0 – 0.475 1.762 – 1.376 0.766 0.439
J1713+0747 P, L, S, C 5052 24.0 1.329 0.308 0.696 0.703 0.415 0.355 0.311
J1744−1134 P, L, S, C 1980 23.7 3.700 0.912 3.185 1.046 0.898 0.736 0.653
J1909−3744 L, S 2817 15.7 – 0.268 0.667 – 0.504 0.424 0.228

pulsar parameter measurements is therefore better achieved via
a simultaneous fit of the timing and noise models. In this work
we measure the stochastic noise using the linear approximation
to the timing model by analytically marginalizing the likelihood
over the timing parameters, as we show below. This accounts for
possible covariances between the timing and noise parameters and
has consequently been used in standard PTA analyses. We note that a
more precise timing model can be derived iteratively with TEMPO2
via a generalized least-squares fit, using the covariance matrix of
a noise model (see e.g. Coles et al. 2011), such as the maximum-
likelihood model from the Bayesian noise analysis; this approach
was used to produce the timing residuals presented in Fig 1.

In this study, we use the same pulsar noise models as in the EPTA
DR1 analysis (Caballero et al. 2016; Desvignes et al. 2016). The
model uses two white-noise parameters to properly re-scale the TOA
uncertainties, an achromatic red noise component, and a chromatic
dispersion-measure (DM) noise component. We discuss these noise
components, in brief.

The noise analysis is conducted using a Bayesian framework,
following the same general approach as in the EPTA DR1 (Caballero
et al. 2016), and uses two independent analysis codes to cross-
check for consistency in the results (see Section 4.1 for details).
We present an overview of the mathematical configuration and
provide basic details for the calculations of the noise covariance
matrices, at the level where the used analysis codes follow the
same principles, even though differences can appear in the exact
programming implementations of these principles.

For a single-pulsar timing problem, where we have n TOAs, the
likelihood function was first introduced in van Haasteren et al. (2009)
as

LPSR = e− 1
2 (δ tpost)TC−1(δ tpost)

√
(2π )n|C| . (1)

We use the subscript PSR to denote that the function is for the single-
pulsar problem, and the T superscript to denote the matrix transpose.
The likelihood function is derived under the assumption of operating
in the linear approximation of the timing model, where the initial
values of the timing parameters are close to the correct ones and only
linear deviations are required when re-fitting the data. In this way,
the (post-fit) timing residuals are estimated with the use of the design
matrix of timing parameters, M, and the vector ξ of the amplitudes
of the timing-parameter signals, as δ tpost = δ tpre − Mξ , where δ tpre

are the pre-fit residuals (i.e. prior to the new fit of the timing model).
The effects of the additional stochastic parameters are described via
the pulsar’s total covariance matrix, C. Our noise model assumes
three stochastic noise components in the data: white, red, and DM.
Each of these noise components is defined by a covariance matrix:

CW, CR, and CDM, respectively. The total covariance matrix is the
sum of these,

C = CW + CR + CDM . (2)

van Haasteren et al. (2009) describe a way to analytically marginalize
the pulsar timing parameters using the reduced likelihood function

L′
PSR = e− 1

2 (δ tpre)TC′(δ tpre)√
(2π )n−m × |C| × |MTC−1M|

, (3)

where C′ = C−1 − C−1M(MTC−1M)−1MTC−1, and m is the num-
ber of timing parameters that are marginalized. In this work, the
analytical marginalization over the timing parameters is performed
in one of two ways, depending on the computing algorithm used
(discussed later). We briefly discuss these methods in chronological
order of their appearance in the literature.

One approach currently used for marginalizing the timing model,
which we refer to as the ‘G-matrix’ approach, is a more numerically
stable implementation of the initial formulation. It uses a reduced
likelihood function defined as (van Haasteren & Levin 2013)

L′
PSR,1 = e− 1

2 (δ tpre)TG(GTCG)−1GT(δ tpre)√
(2π )n−m × |GTCG|

, (4)

where G can be derived from the design matrix via a singular value
decomposition (see van Haasteren & Levin 2013, for details). As in
equation (1), the dimensions of the C and G are n × n and n × (n −
m), respectively.

The second marginalization method follows a different route, and
we refer to it as the ‘Gaussian-process’ approach (e.g. van Haasteren
& Vallisneri 2014; Arzoumanian et al. 2016). The post-fit residuals
are now expressed by taking into account effects from the stochastic
noise components in addition to the timing parameters via the design
matrix. Further, the timing model effects are added to the total
covariance matrix (equation 2) resulting in C′

2 = CW + TBTT. The
matrix T includes the design matrix in addition to terms related to the
stochastic noise and B is a matrix used to define the prior distributions
of the timing and noise-related parameters (these are frequency-
domain parameters that sample the noise, as discussed later in this
section, see e.g. equation 10). In this case, the marginalized likelihood
becomes

L′
PSR,2 = e− 1

2 (δ tpre)TC′−1
2 (δ tpre)√

(2π )n × |C′
2|

. (5)

By setting uniform and infinite priors on the timing parameters via
B and using the Woodbury matrix identity (Woodbury 1950; Hager
1989) on C′−1

2 , van Haasteren & Vallisneri (2014) have recovered
an equivalent to the marginalization in equation (3) times a constant
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EPTA common-red-signal analysis 4975

from the prior matrix, B, that acts only as a renormalization in the
Bayesian analysis.

To conclude the basic description of the single-pulsar analysis,
we discuss the noise components and their respective covariance
matrices. In all cases, the stochastic noise components are modelled
as random Gaussian processes. Detailed information on the noise
modelling and the likelihood function can be found in van Haasteren
& Levin (2013), van Haasteren & Vallisneri (2014), Lentati et al.
(2013, 2014a), and references therein, so we only provide an
overview here for completeness.

3.1.1 White noise

The white noise is modelled with the so-called EFAC and EQUAD
stochastic parameters. For each observing system, defined by the
telescope receiver and backend system combination, we apply an
(EFAC, EQUAD) pair to re-scale the initial TOA measurement
uncertainty, σ , according to equation

σ̂ 2 = (σ · EFAC)2 + EQUAD2 . (6)

EFAC is a multiplicative factor that accounts for possible errors in
the estimation of the formal TOA uncertainty as calculated during
the cross-correlation of the pulse profile with a standard template
(Taylor 1992). EQUAD is a term added in quadrature to account for
additional scatter of the TOAs due to physical effects such as pulsar
jitter noise (Ekers & Moffet 1968), an effect that appears to be often
relevant in high precision pulsar timing observations (e.g. Liu et al.
2011, 2012; Osłowski et al. 2011; Shannon et al. 2014; Lam et al.
2016, 2019; Parthasarathy et al. 2021).

The TOA uncertainties are re-scaled such that the data conforms
to our basic assumption that they are drawn from a Gaussian parent
distribution. The case of non-Gaussian uncorrelated TOA noise is
discussed theoretically in the literature (see e.g Lentati, Hobson &
Alexander 2014b; Vallisneri & van Haasteren 2017), and we note that
evidence for non-Gaussianities in TOAs have recently been reported
for a small number of MSPs (Goncharov et al. 2021b). Increasing
TOA precision may result in the need to take non-Gaussianities into
account in the future.

The white-noise covariance matrix, CW, is a diagonal matrix with
the re-scaled variances of the TOAs (equation 6) as its elements, i.e.

CW,i,j = σ̂ 2
ij δij . (7)

3.1.2 Red and dispersion-measure noise

The red noise component addresses the pulsar’s intrinsic low-
frequency noise, achromatic noise, which has mostly been asso-
ciated with pulsar-spin irregularities (e.g. Cordes & Downs 1985;
D’Alessandro et al. 1995). While MSPs have much lower levels of
red noise than young pulsars, the effects are measurable, especially
for long-term data sets and at this high timing precision (e.g. Verbiest
et al. 2009; Caballero et al. 2016; Alam et al. 2021; Goncharov et al.
2021b).

DM is defined as the integrated column density of free electrons
in the pulsar’s line of sight and can vary over time (You et al.
2007). In principle, it is possible to have DM measurements for
each observation if a sufficient range of observing frequencies
is covered for each observation. In the case of the EPTA data,
however, we are dealing with a very long data set where, due
to differing circumstances at our participating telescopes over the
last 24 years, there is a significant level of inhomogeneity in the
observing frequencies across the data set. We therefore opt to fully

model the temporal DM variations as a combination of deterministic
and stochastic processes, as discussed in Lee et al. (2014). The
timing model parameters of the DM value at a reference epoch and
its first- and second-time derivative give a first-order deterministic
approximation. Delays from stochastic turbulences of the IISM add
an additional DM noise component.

In the models used in this work, both the red and DM stochastic
noise components are described as wide-sense stationary signals with
a single power-law spectrum of the form

S ∝ A2f −γ , (8)

where A is the spectrum’s amplitude and γ its spectral index.
The red-noise covariance matrix is calculated via the Woodbury

identity (Woodbury 1950; Hager 1989). We consider the Fourier
transforms F of the time-domain red noise signal tR, which has
been shown to be a well-performing approximation in pulsar timing
analysis (Lentati et al. 2013; van Haasteren & Vallisneri 2015). We
then have

(CW + CR)−1 = C−1
W − C−1

W F[FTC−1
W F + �−1]−1FTC−1

W . (9)

In matrix notation, the Fourier transforms are

tR = Fa . (10)

The Fourier elements are defined by a limited number of sine-cosine
pairs {sin (2π tf); cos (2π tf)} with coefficients a and corresponding
covariance matrix � = 〈af af ′ 〉 (where the indices f, f

′
correspond to

the different frequencies).
In contrast to the red noise, the DM noise is chromatic and the

model demands that the induced TOA delays are related to the
inverse square of their observing radio frequency, ν, following the
dispersion law of cold plasma (e.g. Landau & Lifshitz 1960). The
covariance matrix of the DM stochastic noise is calculated using the
same recipe as in the case of the red noise component, with one
change that introduces the dependency of the induced time delay
on the observing frequency (Lee et al. 2014). To achieve this in
the frequency-domain noise models used here, the sine and cosine
Fourier transform elements are multiplied by the corresponding (in
time) elements of a vector FDM with length equal to the number of
TOAs and elements (LTM15)

FDM
i = 1/Kν2

i , (11)

where K = 2.41 × 10−16 (Hz−2 cm−3 pc s−1) is the dispersion
constant and ν i is the observing frequency of the ith TOA.

3.1.3 J1713+0747 events

The TOAs of PSR J1713+0747 are characterized by two additional
structures in the timing residuals in this data set, caused by discrete
‘events’ affecting the pulsar’s signal. They manifest as a rapid
decrease in the timing residuals, followed by a recovery occurring
on time-scales of the order of ∼100 d. The first of these events
has been detected by all PTAs (see Demorest et al. 2013; Keith
et al. 2013; Desvignes et al. 2016) and has been linked to discrete
variations in the DM parameter that are not strictly caused by the
turbulence in the IISM. The second one has previously been reported
in Lam et al. (2018) and Goncharov et al. (2021b) with some evidence
indicating a deviation from the DM nature of the event. These events
have been physically interpreted as being caused by plasma lensing
effects, due to discrete, underdense IISM structures (Lam et al. 2018).
Alternatively, Goncharov et al. (2021b) claim that the second event
could be related to a sudden change in the pulsar profile. As these
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events are non-stationary, they are not accurately accounted for when
modelling the power spectrum of the long-term DM and pulsar red
noise.

The first of these events was modelled in the EPTA data using
shapelet basis functions (see Desvignes et al. 2016) and we follow
the same strategy for both events in this work. A comparison
of the single pulsar analyses with and without these two events
shows significant changes in the parameters of the DM stochastic
component, but mostly unaffected red noise properties. When not
including the events, the stochastic DM noise component has a
larger amplitude which compensates for the spectral power located
in the DM variations induced by the events. However, we do note
that quantitative model comparisons significantly support the model
with the additional events for PSR J1713+0737. We will address
these details, including a comparison with findings from other PTAs
(Hazboun et al. 2020; Goncharov et al. 2021b) in an upcoming paper
that will focus on more precise noise models for the EPTA DR2 data
(Chalumeau et al., in preparation). We have verified with test runs
that modelling or not these events separately does not affect the CRS
analysis, as the red noise properties of the MSP (which is the noise
that can correlate with a GWB or other achromatic CRSs) remain
unaffected by including or not the parameters for the additional
events. A more detailed discussion can be found in Chalumeau et al.
(in preparation). Therefore, we note that for simplicity in this work
the GWB search and all analyses regarding the search for common
signals discussed in Sections 5 and 6 use the simpler model that does
not include these events.

3.2 Gravitational-wave background search with pulsar timing
arrays

The GWB is a stochastic signal, which can be parametrized by
a power law that describes the GW-frequency dependence of its
characteristic strain, hc, a measure of the space–time deformation
that the GWB induces (see e.g. Maggiore 2000; Jenet et al. 2006).
This dimensionless strain spectrum is defined as

hc = AGWB

(
f

fc

)α

, (12)

where f is the GW frequency and fc is a reference frequency (typically
set to 1 yr−1), AGWB is the GWB strain amplitude at reference
frequency and α is the spectral index, which varies based on the
physical origin of the GWB. Conveniently, we can express the effect
of hc on the observed pulsar timing residuals, via the one-sided power
spectral density of the GWB induced residuals as

SGWB = A2
GWB

12π2

(
f

fc

)−γGWB

f −3
c . (13)

The spectral indices of the GWB characteristic strain and power
spectrum are related as γ GWB = 3 − 2α. For a GWB from the cosmic
SMBHB population, the value of α depends on the astrophysical
details of the inspiralling SMBHBs, such as whether their orbital
dynamics are coupled with their stellar and gaseous environments
(see e.g. Sesana 2013; Chen, Sesana & Del Pozzo 2017). For the
case of circular, GW-driven binaries, the slope is α = −2/3 or γ GWB

= 13/3.
The timing residuals induced by an isotropic GWB are spatially

correlated. The GWB-induced residuals comprise of two terms:
the pulsar and Earth terms, which are caused by the space–time
deformation from the propagation of the GWB at the pulsar and Earth
positions, respectively. Only the Earth terms are coherent across all
pulsars, leaving the pulsar terms to act as noise. The correlation

coefficients between the timing residuals of all pulsar pairs as a
function of the pulsar-pairs angular correlations is called the overlap
reduction function (ORF; see Finn, Larson & Romano 2009). Owing
to different GW polarization modes or graviton masses, GR and
alternative theories of gravity predict different ORFs (see Lee 2013,
for an overview). In the context of GR, GWs have a quadrupolar
spatial correlation. As pulsars are separated from each other and
from the Earth by multiple GW wavelengths (short-wavelength
approximation) the ORF is approximated by the HD curve (Hellings
& Downs 1983), with terms calculated as

�GWB(ζIJ ) = 3

2
xIJ ln xIJ − xIJ

4
+ 1

2
+ 1

2
δxIJ . (14)

Here, the I, J indices represent the different pulsars, �IJ, is
the predicted correlation coefficient per pulsar pair with angular
separation ζ IJ, δ(xIJ) is the Kronecker delta, and x ≡ [1 − cos (ζ )]/2.
Note that due to the isotropic nature of the GWB, only the angular
separation between pulsar pairs is important, and not the position of
each pulsar. The measurement of the ORF curve is central in every
method developed for GWB searches and detection, as PTAs can
in fact detect different CRSs other than the GWB, as we discuss
below. Therefore, no GWB detection claim can be made without a
statistically significant measurement of the HD curve. As such, the
search for a GWB essentially amounts to searching for a CRS in the
PTA data, determining its spectral properties and ORF and comparing
the results with the theoretical predictions of a HD correlated signal.

For joint analysis of all pulsar data in search of a CRS like the
GWB, the likelihood function can be expressed by generalizing
equation (1) as

LPTA ∝ e− 1
2

∑
I ,J ,i,j (δ̃t I ,i )TC̃−1(δ̃tJ ,j )√

|C̃|
. (15)

We use the subscript PTA to indicate that the equation is for
the multipulsar case, and we use tilted overlines to indicate the
corresponding data and matrices. Therefore, δ̃t is a vector of all
pulsar timing residuals concatenated. The total covariance matrix,
including the CRS signal is then

C̃ = C̃
∗ + CCRS . (16)

where C̃
∗

is the block diagonal of all pulsar covariance matrices. For
any CRS with ORF �CRS(ζIJ ), its covariance matrix elements are
calculated as

CCRS,I ,J ,i,j = �CRS(ζIJ )CCRS(i, j ) , (17)

where CCRS(i, j) is the CRS-induced time-correlation, that is calcu-
lated as in the case of pulsar red noise (equation 9). The corresponding
reduced likelihood will depend on the method chosen to marginalize
over all the timing parameters, as discussed in Section 3.1.

It is also possible to assume the ORF and derive the corresponding
spectral properties. As we will see in Section 5.3, these types of
analyses can provide a basis for examining how well a given model
fits the data with respect to another competing model. This is a
strategy followed when the CRS analysis cannot result in a clear
measurement on the ORF shape. Here, we briefly discuss the main
CRS models other than the GWB that are of particular interest to
PTAs and which we examine separately in Section 5.3. We note that
these models were also discussed and investigated in the framework
of the EPTA DR1 GWB upper limit work presented in LTM15. A
general study and discussion of the effects of these types of signals
in pulsar timing data and PTA GW searches can be found in Tiburzi
et al. (2016).
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EPTA common-red-signal analysis 4977

3.2.1 Common uncorrelated red noise

PTA data may contain a common, but spatially uncorrelated red noise
(we denote this with CURN). A CURN reflects the situation where
the individual pulsar red noise of all pulsars include some noise
component which have very similar spectral properties, either due
to common physical origin or by chance. The CURN case therefore
is not technically a common term, as it is not induced in every
pulsar TOAs from the same extrinsic process. This would, however,
mimic a CRS, but the calculated ORF of all pulsar pairs would be
expected to be randomly distributed around zero, therefore having
no spatial correlations. The CURN is assumed to also be described
by a red signal with a power-law spectrum, following equation (8),
with a unique amplitude and spectral index, ACURN and γ CURN. The
covariance matrix C calculated as in the case of pulsar red noise
in equation (2). In this case, for each pulsar, I, the total red noise
covariance matrix becomes C′

R(I ) = CR(I ) + CCURN. In turn, this
will affect the (block diagonal) multipulsar covariance matrix that
we now use as the total covariance matrix C̃ in the likelihood function
(equation 15).

3.2.2 Clock-error monopolar signal

One source of possible correlated CRS in pulsar TOAs is an error
in the terrestrial time-scale to which we refer all TOAs (we denote
this with CLK). For example, as noted in Section 2, the TOAs in this
work were referred to the BIPM2019 time-scale. As all TOAs are
referred to the same time-scale, any imperfections in this time-scale
will affect the TOAs of all pulsars in a fully correlated way. This effect
has been extensively discussed in the literature and it is exploited in
order to create pulsar-based time-scales that can be complementary
to atomic time-scales (e.g. Guinot & Petit 1991; Hobbs et al. 2012,
2020).

The CLK signal in this work is also modelled as a stochastic red
signal with a power-law spectrum as in previous studies (Lentati et al.
2015; Caballero et al. 2016; Hobbs et al. 2020) with parameters ACLK

and γ CLK. It has a monopolar correlation, with ORF terms

�CLK(ζIJ ) = 1, ∀(I , J ) . (18)

3.2.3 Ephemeris-error dipolar signal

Possible errors in the planetary masses and orbital elements in the
used SSE can induce TOA delays in the PTA pulsars with dipolar
spatial correlations (we denote this with EPH). These signals reflect
the oscillation of the calculated Solar system barycentre position
with respect to the true position. As in the case a of clock-error
signal, this can also be exploited in order to provide upper limits
or measurements of planetary parameters using PTA data (see e.g.
Champion et al. 2010; Caballero et al. 2018; Guo et al. 2019). Unlike
the other signals discussed in this Section, the SSE signals are
deterministic signals associated with planetary orbits. The ORF is
defined as (see e.g. Tiburzi et al. 2016, Appendix A),

�EPH(ζIJ ) ∝ cos(ζIJ ) . (19)

3.3 Bayesian analysis

3.3.1 Parameter estimation

We now remind the reader of the basics of parameter estimation
using Bayesian inference, as this is central to this paper’s work.
For in-depth descriptions of these methods, the interested reader can

find information in technical textbooks, such as Gregory (2005). The
same parameter estimation methods apply both to the single-pulsar
and the common-signal analyses.

Bayes’ theorem is the central equation of the analysis and is
expressed as

Pr(
|D, H ) = Pr(D|
,H )Pr(
|H )

Pr(D|H )
⇔ P (
) = L(
)p(
)

Z
. (20)

In this equation, which we have written in the extended and a
simplified version, D denotes our data, H denotes the hypothesis
(i.e. the model), and 
 denotes the model parameters. Pr(
|D,H ),
is the probability of the parameter, given the data and the model
and is the posterior probability distribution. This is the distribution
we are interested in estimating and we denote henceforth as P(
).
Pr(D|
,H ) is the likelihood function, henceforth denoted as L(θ ).

Bayesian inference inherently relies on the assumption of what our
prior information (or belief) is for the probability distribution of the
parameters. This information is encoded in Pr(
|H), the probability
of the parameter given the hypothesis/model, which is known as the
prior probability distribution (or simply the prior) and henceforth
denoted as p(
). The inclusion of priors is integral in Bayesian
inference and the choice of prior distributions has a central effect
on the outcome of the inference, unless we are in the high signal-to-
noise (S/N) regime, at which point the posterior distribution becomes
insensitive to the choice of prior.

The final term in Bayes’ theorem, Pr(D|H ), is the probability
of the data given the model. This is known as the evidence or
marginal likelihood, henceforth denoted as Z. Note that this term
is independent of the model parameters, 
. Therefore, it is not
necessary for parameter estimation, but it is used for comparing
the relative probabilities between models (and will be implemented
in work presented in Section 5.3).

In Bayesian inference we define the likelihood function and
the prior distribution, and use the data to update the posterior
distribution of the model parameters. For most practical problems,
this requires Monte Carlo (MC) sampling algorithms. For the single-
pulsar noise parameter estimation discussed in this paper, we only
use pre-determined models as discussed in Section 3.1, therefore
we are not concerned with accurate estimations of the evidence,
Z. Finding a more optimal noise model for EPTA pulsar data will
be the topic of a separate paper (Chalumeau et al., in preparation).
Parameter estimation therefore is performed by sampling from the
unnormalized posterior distribution and can be expressed as

P (
) ∝ L(
)p(
) . (21)

3.3.2 Model selection with Bayes factors

In Section 5.3, we will be comparing models of different CRSs in
order to evaluate the relative ability of the models to sufficiently
describe the data. This is described by the posterior odds ratio of the
two analyses. We express this via the Bayes factor, B as

R = Z1

Z0

p1

p0
= B10

p1

p0
. (22)

We use the numerical subscripts to denote the model, where 0
denotes the null hypothesis, which is the simpler of the two models
in the case of nested models. We see that in contrast to the case
of Bayesian parameter estimation, for model selection we need
a reliable calculation of the Bayesian evidence, Z, which is the
likelihood integrated over the prior distribution of dimensionality
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n, i.e.

Z =
∫

L(
)p(
) dn
. (23)

The Bayes factor can be calculated directly from the evidences of
the two models Z1 and Z0. The ratio of the samples in each model
is equal to B, under the assumption that the prior probabilities for
the two compared models are equal. Alternatively, both models can
be compared directly against each other in a hypermodel structure,
which allows the sampler to decide which of them is more likely
(Hee et al. 2016).

In this context, the value of B is used as a metric for the model
selection problem. The difficulty lies in the numerical interpreta-
tion of the Bayes factor and empirical guidelines exist based on
studies of multiple problems. In other words, the B values are
not calibrated on a scale to provide a detection significance for
this problem and can fluctuate between different analysis runs.
In this paper, we will comment on our results according to the
interpretation categories listed in tables from Kass & Raftery (1995),
noting that in any case these singular B values only serve the
purpose of discussing evidence in favour or not of one model with
respect to another. As noted in Kass & Raftery (1995): ‘these
categories are not a calibration of the Bayes factor but rather a
rough descriptive statement about standards of evidence in scientific
investigation’.

4 SINGLE- P U LSAR ANALYSIS AND RESULTS

In this section, we discuss the algorithms and settings used for the
single-pulsar analysis and present the results.

4.1 Analysis algorithms

The two algorithms used for pulsar noise analysis are ENTERPRISE
(Ellis et al. 2020) and TEMPONEST (Lentati et al. 2014a). Both
packages use Bayesian inference but have been developed indepen-
dently. They use different approaches to marginalize the timing-
model parameters and additionally, each code uses different Monte
Carlo samplers implementing different sampling methods.

The first analysis was performed using ENTERPRISE with PTM-
CMCSAMPLER (Ellis & van Haasteren 2017), a parallel-tempering
Markov chain Monte Carlo sampler, that has been designed for a high
dimensional parameter space. To verify the analysis, we repeated the
ENTERPRISE analysis with a different (nested) sampler, DYNESTY
(Speagle 2020). Since the results are consistent, only those obtained
with PTMCMCSAMPLER are reported. ENTERPRISE employs the
‘Gaussian-process’ approach to the marginalization of the timing
parameters (equation 5).

The second analysis was performed using TEMPONEST, a
Bayesian pulsar analysis package used as a TEMPO2 plugin which
uses a nested-sampling approach (Skilling 2004). Depending on the
problem’s dimensionality we either use MULTINEST (Feroz, Hob-
son & Bridges 2009) or POLYCHORD (Handley, Hobson & Lasenby
2015) as the sampler, since the latter is more efficient only in cases
with a large number of dimensions. Following suggestions discussed
in Lentati et al. (2016) and also based on results from new tests,
we used POLYCHORD in all cases where the number of parameters
was greater than 55. We mark the cases where POLYCHORD was
used in the tables reporting the results. TEMPONEST uses the ‘G-
matrix’approach for the marginalization of the timing parameters
(equation 4).

Table 2. The prior ranges for the analyses using single power-law spectra
models with parameters amplitude, A, and spectral index, γ . We use the
subscripts RN, DM, and CRS to denote the red noise, DM noise and CRS for
any type of common noise. We also include the pulsar white-noise parameters
EFAC and EQUAD. Uniform and log-Uniform refer to flat priors and priors
that are flat in the log10 space, respectively.

Parameter Prior type Range

ARN, ADM, ACRS log-Uniform [10−18–10−10]
γ RN, γ DM, γ CRS, δCRS Uniform [0–7]
EFACs Uniform [0.1–5]
EQUADs log-Uniform [10−9–10−5]

4.2 Analysis settings and results

We first present some details regarding the noise analysis settings,
which were set to be common between the two analyses.

(i) In principle, the optimal numbers of frequency components
of F from equation (10) to describe the red noise and DM noise
stochastic power-laws can be a free parameter to be estimated
(see Chalumeau et al., in preparation). For this work we choose
conservative numbers based on tests to ensure stable constraints on
the power-law parameters. We use identical numbers for all six MSPs,
the lowest 30 frequency bins for the red noise and 100 for the DM
noise. Frequency binning is linear at frequencies N/T, with N = 1, 2,
3...n, such that n/T is the highest Fourier frequency of the TOA time
series.

(ii) The prior distributions of power-law amplitudes and EQUADs
are uniform in log-space, which we refer to as log-uniform priors.
These types of priors are argued to function as good approximations
of non-informative priors for scale-invariant parameters (Gregory
2005). The spectral indices and EFACs have uniform distributions
in linear space, which we refer to as uniform distributions. Based on
tests performed, we have decided on a given set of prior ranges for
all parameters that we concluded to be adequate for this data set. The
prior types and ranges are overviewed in Table 2.

We conducted the noise analysis with ENTERPRISE and TEM-
PONEST for the EPTA DR2 data set. The results are overviewed
in Table 3. The two analysis codes have produced nearly identical
results.4

5 G R AV I TAT I O NA L - WAV E BAC K G RO U N D
SEARCH WI TH EPTA DATA

In this section, we present the analysis and results for a search for
a GWB in the EPTA data. We first conduct a search for a power-
law spectrum CRS with simultaneous estimation of the ORF, as
the most general method to look for the presence of a GWB in
the data. Subsequently, we perform spectral parameter estimation
for the physically motivated CRS cases discussed in Section 3.2,
using their pre-defined ORFs, and employ Bayesian model selec-
tion to determine which of these models is better supported by
the data.

4We note that the same analyses were performed on DR1, showing consistent
results. This is important in both increasing our confidence in the estimated
values of the noise parameters, as well as in the validity and quality of the
TOAs.
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EPTA common-red-signal analysis 4979

Table 3. Results of single-pulsar noise analysis for ENTERPRISE (EP) and TEMPONEST (TN). The table shows the median values from the
1D marginalized posterior distribution. The uncertainties are calculated such that 95 per cent of the area under the 1D marginalized posterior
distribution of the parameter is symmetrically distributed around the median. TEMPONEST analysis for the pulsars noted with ∗ was performed
using the POLYCHORD sampler.

log10ARN γ RN log10ADM γ DM

Pulsar EP TN EP TN EP TN EP TN

J0613−0200 −14.93+1.11
−1.1 −14.94+1.05

−1.0 5.09+1.77
−2.08 5.12+1.68

−1.93 −12.0+0.33
−0.67 −12.02+0.31

−0.49 2.55+1.68
−1.07 2.59+1.28

−0.95

J1012+5307∗ −13.13+0.17
−0.17 −13.13+0.19

−0.2 1.68+0.71
−0.7 1.68+0.84

−0.81 −11.72+0.1
−0.11 −11.73+0.12

−0.12 1.21+0.45
−0.39 1.2+0.48

−0.42

J1600−3053 −14.02+0.51
−1.08 −14.01+0.52

−1.13 3.46+2.45
−1.49 3.45+2.4

−1.43 −11.46+0.08
−0.07 −11.46+0.07

−0.07 2.14+0.26
−0.23 2.15+0.24

−0.22

J1713+0747∗ −14.18+0.35
−0.44 −14.17+0.41

−0.52 3.37+1.14
−0.98 3.35+1.38

−1.13 −11.84+0.09
−0.09 −11.84+0.1

−0.09 1.44+0.43
−0.41 1.44+0.51

−0.46

J1744−1134 −15.23+1.28
−1.17 −15.41+1.19

−0.9 5.34+1.58
−2.14 5.59+1.27

−1.9 −11.69+0.1
−0.11 −11.7+0.08

−0.08 1.24+0.5
−0.5 1.24+0.36

−0.35

J1909−3744 −14.57+0.6
−0.77 −14.57+0.63

−0.78 4.47+1.98
−1.55 4.46+1.99

−1.59 −12.06+0.11
−0.15 −12.06+0.11

−0.16 2.03+0.58
−0.44 2.03+0.63

−0.43

5.1 Algorithms and analysis settings

For the search of a GWB and other CRSs in the EPTA data, we once
more use two independently developed algorithms for evaluating the
likelihood and with independent Monte Carlo (MC) samplers in order
to increase our confidence in the results by having a cross-check for
possible bugs and analysis mistakes.

The first code employed is ENTERPRISE5 with
PTMCMCSAMPLER,6 allowing us to perform a fully integrated
pulsar noise and correlated signals analysis within the same analysis
suite. We also use ENTERPRISE EXTENSIONS7 (Taylor et al.
2021) adding helpful functionality to ENTERPRISE. As in the
case of the single-pulsar noise analysis, ENTERPRISE uses the
‘Gaussian-process’ approach to perform the marginalization of the
timing model.

The second code used is FORTYTWO, which accepts pulsar noise
analysis parameters from TEMPONEST results as input for further
analysis. Individual modules of FORTYTWO have previously been
used in various publications as they were being developed (Lentati
et al. 2015; Caballero et al. 2016; Caballero et al. 2018; Guo et al.
2019; Hobbs et al. 2020) and a unified version is planned to be
released in the future. For MC sampling, FORTYTWO uses either
PYMULTINEST8 or POLYCHORDLITE,9 PYTHON implementa-
tions of MULTINEST and POLYCHORD, or its own Metropolis–
Hastings sampler, depending on the analysis. To remain consistent
with TEMPONEST FORTYTWO implements the ‘G-matrix’ timing
parameter marginalization method. The only exception to this is
the analysis in Section 6.5 where the timing model additionally
includes SSE planetary parameters, in which case FORTYTWO also
employs the ‘Gaussian-process’ approach enabling the algorithm to
run significantly faster.

In all analyses for common signals in the six pulsar, their red-
noise and DM-noise parameters are simultaneously sampled with the
CRS. There is a significant probability for these pulsar parameters to
correlate with the CRS, especially if the latter is not detected in the
high S/N regime, either due to its weakness or lack of sufficient
pulsar pairs to disentangle common from non-common signals.
In the single-pulsar analysis, we model the white noise with two
parameters per observing system. Keeping such a configuration in
these CRS analyses would result in a currently unmanageable number

5https://github.com/nanograv/enterprise
6https://github.com/jellis18/PTMCMCSampler
7https://github.com/nanograv/enterprise extensions
8https://johannesbuchner.github.io/PyMultiNest/
9https://github.com/PolyChord/PolyChordLite

of parameters. One approach is to fix the EFAC and EQUAD for
each observing system and use a ‘global EFAC’ parameter per pulsar
that acts as a global multiplication factor to regulate each pulsar’s
white noise level. This has been shown to be a good strategy during
the EPTA DR1 GWB analysis, as shown also in LTM15, where
in all cases the global EFAC was found to be very consistent with
unity. This means that the white-noise estimation during single-pulsar
analysis is very robust. In the analyses presented in this work, we have
verified the global EFAC values to be ∼1 once again, allowing us to
fix the pulsar white-noise parameters from the single-pulsar analysis
without significant loss of accuracy in our parameter estimations.

The general setup of the correlated search is as follows:

(i) For CRS models, we use the lowest 30 frequency bins to
describe the single power-law spectrum. The CRS frequency bins are
determined by a time grid set by the total timespan of the combined
TOA data set. As we also sample the pulsar red and DM noise
parameters simultaneously, we maintain the same frequency binning
for each pulsar as in the single-pulsar analysis, i.e. the lowest 30
and 100 of each pulsar, for red and DM noise, respectively. As such,
although all pulsar red noise components and the CRS component
use 30 frequency bins, they all correspond to different frequencies.

(ii) The prior distribution of the CRS parameters are noted in
Table 2.

(iii) The majority of the analyses use the DE438 SSE model, with-
out any modification. Exceptions to this are discussed in Section 6.5.

5.2 Common-red-signal search and overlap-reduction-function
estimation

We conduct a general search for a CRS including an estimation of the
ORF using both the ENTERPRISE and FORTYTWO packages. We
sampled the CRS spectral properties using the single power-law spec-
trum with amplitude and spectral index Acrs and γ crs, respectively.
The priors are found in Table 2. The spatial correlation curve of the
CRS is modelled using a Chebyshev polynomial. We have introduced
this method in LTM15, and we simply rewrite the formalism here for
easier reading. We again use four Chebyshev coefficients (ci, i ∈ [1,
4]), therefore the correlation curve is approximated by

�(x) ≈ c1 + c2x + c3(2x2 − 1) + c4(4x3 − 3x) , (24)

where x = (ζ IJ − π /2)/(π /2). Chebyshev polynomial priors are flat in
the range [−1,1]. The analysis limits the resulting cross-correlations
�(x) ∈ [−1,1]. In LTM15, we have showed that this approach
approximates very well the direct individual measurements of pulsar-
pair cross-correlations. To confidently transition from our DR1
results, for this analysis we use FORTYTWO with the Metropolis–
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Figure 2. ENTERPRISE (EP) and FORTYTWO (42) results from a search for a CRS modelled with a single power-law spectrum, with simultaneous sampling
of the ORF. The ORF is approximated with a 4th-order Chebyshev polynomial. Left: The posterior distribution for the angular correlation curve of the CRS,
shown as boundaries of the credible regions. The dashed and dotted lines denote the 95 and 99.7 per cent credible regions, respectively. The theoretical HD curve
is overplotted for comparison as a solid red line. The red stars denote the angular separations of the pulsars used in this study. Right: 2D posterior distribution
of the spectral parameters for the single power-law CRS model with the dashed line indicating the expected γ = 13/3 from a GWB from SMBHBs.

Hastings sampler as it was done in LTM15 and compare the results
with those of the ENTERPRISE analysis.

Fig. 2 shows the results of this general CRS search. The analyses
clearly recover a common signal, with the two pipelines providing
very consistent results. The left-hand panel shows the estimation
of the ORF curve and the right-hand panel shows the posterior
distributions for the spectral parameters. The 1D posterior distri-
butions of the spectral parameters are log10 ACRS = −14.32+0.31

−0.39 and
γCRS = 3.83+0.82

−0.72, where we denote the median and uncertainties at
the 95 per cent credible region (see also Table 5). The ORF figure
shows the 95 and 99.7 per cent credible regions. The results are
compatible with the EPTA DR1 GWB analysis from LTM15. The
boundary encompasses the probability for ORF to be the HD curve,
however, other possibilities remain. We therefore examine in the
next section the level of support the data provides to the physically
motivated CRS signals discussed in Section 3.2.

5.3 Bayesian model selection for common red signals

The base model to which we make the model comparisons is
one where the pulsar TOAs only have independent, uncorrelated
individual pulsar noise (we denote this as PSRN), without any
measurable commonality in the spectral properties of the different
pulsars. We compare this base model to models that add only one
CRS, namely either CURN, GWB, CLK, and EPH, as well as models
which add two CRSs, i.e. a combination of CURN with one of the
remaining three ORFs. The models are listed in Table 4. Given the
uncertainty on the ORF this analysis cannot be expected to be fully
conclusive, but can provide indications on whether some of these
CRS models are more supported by the present data set.

We carried out calculations of Bayes factors with both theENTER-
PRISE and the FORTYTWO packages. For ENTERPRISE the Bayes
factors were obtained through a hypermodel structure comparing
two models against each other. With FORTYTWO Bayes factors were
calculated using the global logarithmic evidence for each analysis,
which is calculated byPYMULTINEST using the ‘Importance Nested
Sampling’ option. The two analyses give similar results.

Table 4 shows a summary of the Bayes factors for the different
models. According to the criteria from Kass & Raftery (1995),

the addition of either of the CURN, GWB, or EPH signals to the
base PSRN signal is decisively favoured with a log10 Bayes factor
(log10BF) > 2. The strongest Bayes factor is for the CURN model,
although the evidence for the GWB is only lower by log10BF ≈ 0.4.
This difference provides only a marginal advantage to the CURN,
barely disfavouring the GWB signal. The EPH model, however, is
clearly less favoured with an log10BF difference to CURN or the
GWB of order ∼1, which is a substantial difference. We will examine
the case of EPH in more detail in Section 6.5.2. In contrast to the
three models discussed above, the monopolar correlation is only
mildly favoured with respect to the PSRN base model.

Since the CURN model has the strongest evidence of the models
with a single CRS, we can compare it against models which include
another additional common process. The idea is to test whether
there may be evidence for several physically motivated common
processes coexisting in the data. In general, none of the three spatially
correlated processes add substantial evidence to the single CURN.
The ability to distinguish between different spatial correlations could
be improved by using more than 6 pulsars in the analysis. We thus
plan to expand the analysis to include a larger number of MSPs in the
future.

The log10BFs values obtained with ENTERPRISE and
FORTYTWO are very similar and show the same trends. The dif-
ference in the exact values are within the estimated uncertainties
by MULTINEST, which are typically of the order ∼0.2 at the 1σ

level, suggesting consistency between the two results. MULTINEST
calculates the uncertainty on the evidence using the relative entropy
of the full sequence of samples (see Skilling 2004; Feroz & Hobson
2008), a computationally efficient method that does not require
multiple runs to estimate the variance of the calculated evidence.

In the case of ENTERPRISE, the uncertainties can be estimated
from the number of jumps between the different models (Cornish
& Littenberg 2015) or by randomly selecting different sections
of the MC chain to get a distribution of Bayes factors (Efron &
Tibshirani 1994). From one hypermodel analysis run the calculated
1σ uncertainty is ∼0.03 for both methods. However, the Bayes factor
values are observed to fluctuate at levels about five times higher than
the formal uncertainties when running the same analysis multiple
times. Therefore, further investigations are warranted.
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EPTA common-red-signal analysis 4981

Table 4. Results from model selection analysis, in logarithmic (base 10)
Bayes factors (log10BF), for different CRS models, and with fixed SSE
(DE438). The model-components acronyms are: (i) PSRN = individual
Pulsar noise only, (ii) CURN = common uncorrelated red noise, (iii) GWB
= isotropic GWB with quadrupolar, HD, angular correlation, (iv) CLK =
common signal with monopolar spatial correlation, as expected from a clock
error, (v) EPH = common signal with dipolar spatial correlation, as expected
from SSE errors. PSRN has no log10BF values as it serves as the base model.
See Sections 3.2–3.2.3 for the discussion on these models.

log10BF
ID Model ENTERPRISE FORTYTWO

0 PSRN – –
1 PSRN + CURN 3.8 3.6
2 PSRN + GWB 3.4 3.2
3 PSRN + CLK 0.6 0.8
4 PSRN + EPH 2.1 2.1
5 PSRN + CURN + GWB 3.6 3.7
6 PSRN + CURN + CLK 3.7 3.4
7 PSRN + CURN + EPH 3.7 3.4

6 D E TA I L E D A NA LY S I S O F T H E
COMMON - U N C ORRELATED RED N OISE

Since the CURN is the favourable model without sufficient evidence
to justify the additional inclusion of another physically motivated
CRS such as a GWB, we proceed with investigating the CURN
more closely. In principle, the same tests can be performed in the
case where we would be dealing with a GWB. In this section, we will
specifically examine: (i) the frequency spectrum of the signal, (ii) the
effect of the choice of frequency bins when modelling the signal with
power-law spectra, (iii) the stationarity of the signal and consistency
between DR1 and DR2 inferences, (iv) the consistency of individual
pulsar noise with the common signal, and (v) the possible effects
from SSE inaccuracies in the CRS analysis.

The power-law spectral parameters inferred from all the different
CURN-related analyses can be found in Table 5, along with Jenson–
Shannon divergence calculations that compare the results.

6.1 Individual-frequency modelling vs power-law spectrum

In order to further investigate our results, we use the case of the
CURN to investigate the CRS spectrum modelling. We therefore
proceed to also perform the analysis with an alternative approach to
the power-law spectrum model, where the power of each individual
CRS-spectrum frequency bin is sampled independently. This ap-
proach has been employed in LTM15 and Arzoumanian et al. (2020),
and was first discussed in Lentati et al. (2013). We refer to this as the

‘free spectrum‘ analysis. We conducted the analysis employing both
ENTERPRISE and FORTYTWO, which provided fully consistent
results. We note that for the FORTYTWO analyses, we used the PY-
MULTINEST sampler when implementing the power-law spectrum
model and POLYCHORDLITE for free-spectrum analyses due to the
problem’s high dimensionality. The full posterior distributions can be
found in the Appendix A1. A comparison with the single-pulsar noise
analysis from Table 3 shows the absorbtion of the pulsar red noises
into the CURN, while the DM noises remain relatively consistent.
Fig. 3 shows the main CURN results of these analyses. The left-hand
panel of Fig. 3 shows the power of the CURN at each frequency, the
free spectrum, with the straight lines indicating the median values of
A and γ of the posterior distributions from the power-law spectral
analyses with ENTERPRISE and FORTYTWO respectively. The
full 2D posterior contours for the power-law parameters are shown
on the right-hand panel. Having confirmed the agreement of the two
algorithms, we will be using ENTERPRISE in the rest of the work
in this section, except Section 6.5.

The free spectrum figure in general has two features. At high
frequencies the power is white-noise dominated and can thus be
modelled with a flat horizontal line. The presence of red noise
becomes obvious at the lowest frequency bins and appears to be
dominant for about 10 frequency bins.

The posterior distributions on the parameters of the power-law
model of the CRS are found to be log10 A = −14.29+0.26

−0.33 and γ =
3.78+0.69

−0.59 (95 per cent credible regions), as seen in the right-hand
panel of Fig. 3 and Table 5.

6.2 Choice of the number of power-law frequency bins

The simple power-law model can be modified to include a smooth
transition from red to white noise. This allows us to use the data to
determine how many frequency bins are needed to optimally sample
the low frequency common red noise and which higher frequencies
are likely to be white noise dominated. We can replace equation (13)
with a broken power law (Arzoumanian et al. 2020)

SCRS = A2
CRS

12π2

(
f

fc

)γCRS
(

1 +
(

f

fb

)1/κ
)κ(γCRS−δCRS)

, (25)

where γ CRS and δCRS are the spectral indices in the low and high
frequency regimes, respectively, fb is the bend frequency, where the
common signal transitions from the red-noise to the white-noise
dominated regime. The transition smoothness is determined by κ ,
which has been fixed at 0.1 for this analysis, but could be sampled
over. In order to test which frequencies contribute to the red noise we

Table 5. 95 per cent constraints on the power-law (PL) parameters for the different analyses discussed in Sections 5 and 6 with the Jenson–Shannon divergence
computed relative to the ENTERPRISE fixed SSE run.

Algorithm + Model log10ACRS J–S div. γ CRS J–S div.

ENTERPRISE + DE438 PL −14.29+0.26
−0.33 0 3.78+0.69

−0.59 0

FORTYTWO + DE438 PL −14.33+0.27
−0.31 0.00904 3.87+0.67

−0.60 0.009 42

ENTERPRISE + DE438 CRS PL −14.32+0.31
−0.39 0.00833 3.83+0.82

−0.72 0.008 06

FORTYTWO + DE438 CRS PL −14.39+0.33
−0.43 0.04521 3.97+0.89

−0.74 0.039 29

ENTERPRISE + BAYESEPHEM PL −14.32+0.30
−0.37 0.00604 3.70+0.78

−0.80 0.015 86

ENTERPRISE + EPHEMGP PL −14.42+0.32
−0.41 0.07145 3.91+0.85

−0.83 0.024 82

FORTYTWO + LINIMOSS PL −14.41+0.35
−0.54 0.06118 3.91+1.06

−0.87 0.036 56

ENTERPRISE + DE438 broken PL −14.24+0.31
−0.37 0.02293 3.67+0.76

−0.71 0.020 97
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4982 S. Chen et al.

Figure 3. Results from CURN analysis using ENTERPRISE (EP) and FORTYTWO (42), both for the free-spectrum (left-hand panel) and the single power-law
(right-hand panel) analyses. The left plot shows the posterior distribution for the amplitude of the power at each frequency bin using violin plots. Where the
inference provides good measurement of the power, we denote the median with a circle and the 95 per cent uncertainties. We consider the measurement good,
if more than 95 per cent of the posterior probability lies above the lowest 6.25 per cent of the prior. As the results of the two algorithms are almost identical, we
slightly shift the 42 distributions of the lowest 15 frequency bins for easier visual comparison. The right plot shows the 2D posterior distribution for the CURN
power-law amplitude and spectral index with the dashed line indicating the expected γ = 13/3 from a GWB from SMBHBs. The two analysis pipelines have
produced consistent results.

need to probe the high frequency regime beyond the 30th frequency
bin. Thus, a log-uniform prior for log10fb ∈ [−9, −6] is set.

We find that the most likely bend frequency is around the 20th
frequency bin 20/T ≈ 2.5 × 10−8 Hz, below which most of the power
is concentrated. To be more conservative we opted to use the con-
ventional 30 frequencies for single power-law models, knowing that
we are accounting for the majority of significant frequency bins. Ad-
ditionally, we have verified that the power-law spectrum parameters
are consistent between the single power-law and the low-frequency
end of the broken power-law model, as can be seen in Fig. 4.

6.3 Consistency between individual pulsars and the common
signal

In order to find out how much each pulsar’s red noise is consistent
with the CURN or in other terms how much a given pulsar contributes
to the CURN we employ the ’dropout’ method (e.g. Aggarwal et al.
2019; Arzoumanian et al. 2020). The dropout factor is defined as

dropoutk = pk(CURN)

pk(no CURN)
×∫

p(θCURN|dno k)p(θCURN|dk)

p(θCURN)
dθCURN ,

(26)

where θCURN = (ACURN, γ CURN) is a vector denoting the amplitude
and spectral index of the CURN, pk(CURN), and pk(no CURN)
are the probabilities that pulsar k supports or rejects the CURN. The
terms p(θCURN|dno k), p(θCURN|dk), and p(θCURN) are the probabilities
of a CURN with certain spectral properties without pulsar k, from
pulsar k alone and the overall probability, respectively. The spectral
index γ CURN can be fixed to 13/3 for simplicity.10 The integral then
becomes a function of only the amplitude ACURN. In summary, the
dropout factor is a measure of how much a given pulsar k supports the
existence of the common signal. It can also be seen as a consistency

10This also allows for an easier decoupling between the pulsar intrinsic red
noise and the CURN.

factor comparing the intrinsic red noise of pulsar k against the CURN
constrained by the other pulsars. We can use the Bayesian framework
from Section 5.3 to estimate the dropout factors by computing how
much each pulsar favours the CURN in a model comparison with the
full data set.

The values of the dropout factor for each pulsar for a CURN with
freely varying parameters (circles) and fixed γ CURN = 13/3 (squares)
can be seen in Fig. 5. A dropout factor of about 1 (or 0 in the
logarithmic scale, as in Fig. 5) indicates that the pulsar is indifferent
to the CURN. A large dropout factor indicates strong commonality
between the pulsar and the CURN. Five out of the six pulsars are in
’support’ of the CURN in DR2. PSR J1012+5307 is noticeably not
and will be further discussed in Section 7.

Differences between the dropout factors for the same pulsar and
data set depending on whether γ CURN is fixed or not can be seen in
Fig. 5. As the dropout factor can be viewed as a consistency factor,
we can compare the intrinsic red noise of a pulsar against the overall
constraints on the CURN. For example from Table 3 we find the
median red noise γ RN ∼ 3.4 for PSR J1713+0747, while the overall
CURN has γ CURN ∼ 3.8 (see Fig. 3). One can expect the single
pulsar red noise of PSR J1713+0747 to be slightly more consistent
with the varied CURN posterior than a distribution fixed at 13/3, thus
giving a slightly larger dropout factor when varying γ CURN. These
differences become more pronounced using DR1, as the constraints
on the CURN are tighter in DR2, such that the slice at γ CURN = 13/3
is more representative of the recovered 2D CURN posterior with
DR2 in contrast to DR1.

6.4 Consistency with DR1

In this work we have added a substantial amount of more precise
data to the DR1 data. Therefore, we investigate whether the CURN
properties are consistent between DR1 and this new, extended data
set. If the CURN is stationary, the analysis of the two data sets ought
to produce consistent results, where we should get better constraints
with the added data. This is indeed an important test in the framework
of searching for a stochastic GWB, as the signal is theoretically
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Figure 4. 2D posterior distributions comparing the ENTERPRISE CURN search with the single and the broken power-law model with the additional ‘bend
frequency’ (fb) parameter. The blue dash–dotted line indicates the 30th frequency bin, the highest sampled frequency of the single power-law model. The dotted
lines show the median and central 90 per cent credible regions of the 1D marginalized parameter posteriors. The broken power-law analysis suggests a fb that
corresponds to 20 frequency bins. The results of the two analyses are completely compatible, suggesting that the single power-law model with 30 frequency
bins describes the data reasonably well.

expected to be stationary. As DR1 is a very well studied data set, it is
straightforward to confidently make this investigation. We repeated
the single-pulsar analysis for DR1 as with DR2, using the same SSE
(DE438) and terrestrial time-standard (BIPM2019) in order to have
an appropriate comparison. We performed the DR1 CURN power-
law analysis using 22 frequency bins, as this was found to be adequate
in LTM15. Again, we used both ENTERPRISE and TEMPONEST
for the single-pulsar noise analysis and cross-checked the CURN
analysis with ENTERPRISE and FORTYTWO. As the result with
both codes are compatible, we use the ENTERPRISE results here to
make the comparisons of the DR2 and the DR1 subset.

Fig. 6 shows how the common signal has evolved from EPTA
DR1 to DR2, using the posterior distributions of the single power-
laws and free-spectra parameters. One can see that DR2 provides
a much more constrained probability distribution of the power-law
parameters. While the DR1 data set shows a CURN centred around
γ = 2.83+2.14

−1.96 and log10 A = −13.96+0.34
−1.41 (95 per cent credible

region), there is considerable uncertainty in the parameter space
beyond the 95 per cent credible region. The additional data from the

DR2 data set constrain the spectral index closer to the expected value
of γ = 13/3 from a GWB by SMBHBs. The amplitude has decreased,
also more in line with more probable theoretical expectations (e.g.
Chen, Sesana & Conselice 2019; Middleton et al. 2021). The DR2
free spectrum on the left of Fig. 6 also seems to be extending the
DR1 free spectrum. In DR1, about four of the lowest frequencies
support the existence of a CURN. The median DR2 power law also
passes through the DR1 free spectrum power distributions.

While the timespan extension has contributed to the improvement
of the CURN analysis, we note that this also appears to be to a
large degree the result of the much better multifrequency coverage
of the newly added data. This resulted in very significantly improved
constraints of the pulsars’ DM parameter spaces and decorrelation
of said DM parameters from the pulsar red noise parameters. This
is in contrast to DR1, where the DM and red noise parameters
were significantly correlated for multiple pulsars, adding uncertainty
to the pulsar red noise parameters that would subsequently result
in similar uncertainties of common red signals. We can see how
much pulsars have improved in their ability to contribute to the
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Figure 5. Dropout factors for both DR1 and DR2 with varied and fixed
γ CURN = 13/3 spectral index shown with circles and squares, respectively.
The number of pulsars contributing the CURN detection has increased from
three to five with the DR2 data extension. Only PSR J1012+5307 seems
indifferent to the CURN (see Section 7 for a discussion).

recovered CURN, by examining the changes in the dropout factors
for each pulsar, as presented in Fig. 5. PSR J1909−3744 is the most
prominent example of the achieved improvement, as it has moved
from having the smallest contribution to the largest. This pulsar has
the highest TOA precision, however in DR1 it only had a time-span of
9.38 yr (in contrast to 15.7 yr in DR2) and had highly correlated red
and DM noise parameters. The decorrelation of red and DM noise
components is achieved thanks to the wide bandwidth of NUPPI
(as mentioned in Section 2, for this MSP we only use NRT data).
Four other MSPs have increased their dropout factors, supporting the
stationarity assumption of the CURN.

We finally examine if the extension of the data set from DR1 to
DR2 creates any unexpected differences in the Bayes factors between
the different models examined in Section 3.3.2. For the CURN case,
and using the DE438 SSE, the log10BF has increased from ≈1.2
to ≈3.7, further supporting the stationarity assumption, and strongly
suggesting that the signal, irrespective of its origin and interpretation,
is not a statistical fluctuation. We finally note that despite increased

Bayes factors for the different CRS signals in DR2 by comparison to
DR1, the difference in the evidence between CURN and the GWB,
has not drastically change from DR1 (see LTM15), thus still not
allowing to support the finding of a GWB or other spatially correlated
signal. This is most likely due to only using six pulsars in both
cases, which does not offer the necessary sampling of the angular
separations. We also note that the clock-error signal remains the
least favourable physically motivated CRS. This is expected from
the posterior distribution of the ORF in Fig. 2, which is consistently
away from 1 across the pulsar angular separations axis. The full
comparison of Bayes factors between DR1 and DR2 can be found in
Table A2.

6.5 Addressing possible common red signals from Solar system
ephemeris systematics

Previous studies (e.g. Tiburzi et al. 2016; Guo et al. 2019; Vallisneri
et al. 2020) have shown that the SSE modelling plays an important
role in the search for common signals with PTA data. We therefore
investigate the degree by which SSE inaccuracies affect the CURN
parameter estimation, and whether modelling possible SSE-induced
signals affects the CRS model selection results. In this study we apply
three independently developed algorithms that introduce modelling
of the SSE uncertainties into the CRS search. This lays the ground-
work for a robust and cross-checked mitigation of the SSE effects
in future GWB searches. All three algorithms assume that the SSE
parameters are close to the correct ones and as such investigate linear
deviations from their values. The algorithms differ in the method used
to derive the induced TOA delays by SSE parameter inaccuracies and
the SSE used as reference.

The first method applies theBAYESEPHEMmodel (Vallisneri et al.
2020), which has previously been used in studies estimating upper
limits for the GWB and examining common signals (Arzoumanian
et al. 2018, 2020). This algorithm is based on a physical model
that accounts for induced TOA delays due to linear deviations in
planetary masses, rotation rate about the ecliptic pole, and planetary
average orbital elements, resulting in a quasi-Keplerian model for
the orbit. Allowing these parameters to vary with reference to the
SSE DE436 (Folkner & Park 2018) create what we refer to as
variational partials. The linear combination of partials that minimize

Figure 6. Comparison of the CURN recovered signals with DR2 and DR1 in the same style as Fig. 3, both using free-spectrum and power-law analyses with
ENTERPRISE. The CURN signal properties are in agreement with the expected detection evolution of a stationary red signal when extending the timespan.
The improvement is largely due to the significant increase in data quality with the DR2 extension.
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Figure 7. Posterior distributions of CURN power-law parameters using
ENTERPRISE with (i) fixed DE438 SSE, (ii) BAYESEPHEM and (iii)
EPHEMGP and FORTYTWO with LINIMOSS. BAYESEPHEM and EPHEMGP
sample the mass and orbital parameters of Jupiter and Saturn using partials
derived from DE436 and INPOP19a. The LINIMOSS analysis analytically
marginalizes these parameters together with the pulsar timing models in a
fully dynamical analysis with the PMOE SSE.

the differences in the orbit with respect to DE436 (differences well
below detectability by TOA precision of real data) define the values
for the planetary parameters that are used as theBAYESEPHEM initial
values. In this work, BAYESEPHEM includes terms accounting for
the masses of Jupiter, Saturn, Uranus, and Neptune, the rotation
rate around the ecliptic pole and orbital elements for Jupiter as
well as for Saturn, since, the EPTA DR2 is approaching 25 yr
of timespan. Each of these terms is linearly perturbed around the
initial values adding a delay to the TOAs. The overall linear delay
(calculated by projecting the partials on the TOAs) is treated as a
deterministic signal. The SSE model parameters are MC sampled
together with the CRS and pulsar-noise parameters in the Bayesian
framework.

In addition to BAYESEPHEM, in this work we also use two other
algorithms to control for the effects of SSE errors, namely EPHEMGP
and LINIMOSS. For both, this is the first time they have been
used in the context of any CRS analysis and this work provides
a first comparison of their performances against BAYESEPHEM
with real data. While EPHEMGP is similar to BAYESEPHEM, it
implements a different model from independent SSE information.
LINIMOSS, however, is different from both models, as it has access
to the full equations and input parameters of a published dynamical
SSE model.
EPHEMGP (Chalumeau et al., in preparation), describes SSE

uncertainties as a Gaussian process. The SSE design matrix is based
on the partials derived using the INPOP19a SSE fit (Fienga et al.
2019), which are mapped onto the TOAs via the induced delays.
In this work, we use EPHEMGP paired with the ENTERPRISE
package and fit for the parameters of Jupiter and Saturn orbital
elements in the Bayesian search of the CURN. The modified residuals
correspond to the deviations in the initial orbital elements of Jupiter
and Saturn and mimic the time-varying uncertainties in the position
of the Solar system barycentre. Similarly to BAYESEPHEM, we have

sampledEPHEMGP parameters together with CURN and pulsar noise
parameters. The addition of this analysis allowed for a cross-check
of the BAYESEPHEM results, within the same analysis framework of
likelihood estimation and MC sampler.
LINIMOSS (Guo et al. 2019) is integrated with FORTYTWO, and

is a fully dynamical model of the major Solar system bodies based on
the PMOE SSE (Li & Ni 2003; Li et al. 2008b). This ephemeris was
used to optimize the orbit (Li et al. 2008a) of the space-based GW
observatory ‘Laser Interferometer Space Antenna’ (LISA; Amaro-
Seoane et al. 2017). LINIMOSS is built by making modifications in
PMOE to match the initial conditions used in the DE435 SSE. In
Guo et al. (2019) it has been demonstrated that LINIMOSS/PMOE
is compatible with the DE435 SSE, with differences well below
our data precision, and can therefore be confidently used for pulsar
timing. The design matrix for the planetary parameters is directly
derived by first linearly perturbing the planetary masses and orbital
elements and numerically re-integrating the SSE; TOAs predicted
using the original SSE are then fitted with the modified SSE, and
these SSE-induced TOA delays are added as deterministic signals
in the pulsar design matrices. In this study we use LINIMOSS to
analytically marginalize the SSE mass and orbital parameters for
Jupiter and Saturn together with the rest of the timing models during
the search for common signals.

6.5.1 Effects on the parameter estimation of the common signal

We first focus on the CURN parameter estimation and produce
their posterior distributions with the three different algorithms. The
analyses with BAYESEPHEM and EPHEMGP perform MC sampling
on the SSE parameters and priors are therefore carefully defined.
Both methods determine the prior range phenomenologically by
allowing the parameters to vary enough to cover differences between
various SSE models, as well as keeping the resulting residuals of
the pulsar TOAs below a certain threshold to stay within the linear
regime. For BAYESEPHEM the delays are limited to about μs level,
while EPHEMGP allows for delays from SSE systematics up to
about 100 μs. Both use uniform priors for the orbital elements,
BAYESEPHEM uses Gaussian priors for the planetary masses, while
they are held fixed in this analysis with EPHEMGP, after confirm-
ing that no mass-error signals could be detected by the pulsar
data.
LINIMOSS analysis performs analytical marginalization of plan-

etary masses and orbital elements together with the pulsar timing
model using uniform infinite priors, making this the analysis with
the wider priors. We note that this analytical marginalization of the
SSE parameters used here is not the only way it is possible to use
LINIMOSS, as in principle we may marginalize with specified prior
types and ranges, or also MC sample these parameters together with
the CRS parameters during the Bayesian inference process. In this
study, we use the full analytical marginalization as a complementary
analysis to the MC sampling used by BAYESEPHEM and EPHEMGP,
and will present the details of general LINIMOSS use in GWB
searches separately (Guo et al., in preparation). This has certain
limitations in the model selection process, but also serves as a useful
check to see whether our analyses produce the expected results, as
we discuss below in Sections 6.5.1 and 6.5.2.

Fig. 7 shows the comparison of the ENTERPRISE results without
any SSE fitting, and with the use of BAYESEPHEM, EPHEMGP,
and LINIMOSS (while the LINIMOSS analysis uses FORTYTWO,
note that the fixed DE438 distributions from both ENTERPRISE
and FORTYTWO are nearly identical, see Fig. 3, and therefore it is
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Table 6. Results from model selection analysis, in logarithmic (base 10)
Bayes factors (log10BF), for different CRS models, using ENTERPRISE and
fitting SSE parameters with BAYESEPHEM. The model IDs and acronyms
are the same as in Table 4. PSRN has no log10BF values as it serves as the
base model.

ID Model ENTERPRISE+BAYESEPHEM
0 PSRN –
1 PSRN + CURN 2.9
2 PSRN + GWB 2.7
3 PSRN + CLK 2.3
4 PSRN + EPH 1.0

sufficient to only show one fixed DE438 result). We can see that all
three methods show consistent posterior distributions. The inclusion
of the SSE models slightly increases the uncertainties in the recovered
parameters, while still keeping them highly confined. As expected,
the contours become progressively broader than the DE438 contour,
as the allowed prior increases from BAYESEPHEM to EPHEMGP, to
the full marginalization in LINIMOSS.

6.5.2 Effects on the model selection for common red signals

The next step is to examine how including the SSE parameters
in the analysis affects the results for the model selection, as dis-
cussed in Section 3.3.2. We first examine this in the framework of
ENTERPRISE+BAYESEPHEM. The BAYESEPHEM model acts as
an additional common signal to all pulsars in the array with a dipolar
nature. As such, it is possible to do a Bayesian model comparison
between a CURN analysis (or indeed any of the models listed in
Table 4) with a fixed SSE and one using BAYESEPHEM. We find only
a small log10BF ∼ 0.4 in favour of the addition of BAYESEPHEM
to the PSRN model, while for the CURN model the addition of
BAYESEPHEM is disfavoured by approximately the same number.
Although the addition of BAYESEPHEM models the data better than
pulsar noise can alone, a simpler CURN provides an equivalently
good fit to the TOAs and is therefore the more preferred model. The
small log10BFs indicate that the TOAs are not strongly dependent on
any (possible) SSE-parameter inaccuracies.

The log10BFs when including BAYESEPHEM in the analysis for
the same models as in Section 3.3.2 can be found Table 6. As
we have seen that models with two CRS components in addition
to PSRN are not an improvement to models with only one CRS
added, we only focus on the latter models. The evidence for
CURN, GWB remain very significant even if we add uncertainty
modelling into the SSE. However, the log10BF for the EPH CRS
is significantly lower. This is an expected result as BAYESEPHEM
is designed to take care of the possible systematics in the SSE
encoded in the Solar system barycentre. The drop in significance
of the (PSRN+EPH) model corresponds to the absorption of dipolar
correlations by BAYESEPHEM. At the same time, the CLK model
now has a much stronger support. This suggests that after modelling
the SSE parameters the ORF may become flatter and more similar
to a monopolar signal, and that indeed the use of only six pulsars
makes it difficult to distinguish between different angular correlation
shapes.

In addition to the model selection process using BAYESEPHEM,
we also perform an analogous analysis using LINIMOSS. It differs
from the BAYESEPHEM analysis in that we cannot discern if a model
selection would prefer a fixed SSE or the inclusion of SSE fitting
with LINIMOSS. This is because the analytical marginalization of

Table 7. Results from model selection analysis, in logarithmic (base 10)
Bayes factors (log10BF), for different CRS models, using FORTYTWO and
fitting SSE parameters with LINIMOSS.The model IDs and acronyms
conventions are the same as in Table 4. PSRN has no log10BF values as it
serves as the base model. Note that these results are not directly comparable
to those in Table 6 as explained in the main text.

ID Model FORTYTWO+LINIMOSS
0 PSRN –
1 PSRN +

CURN
1.3

2 PSRN + GWB 1.3
3 PSRN + CLK 1.2
4 PSRN + EPH 0.0

the SSE parameters implies the use of improper (un-normalizable)
priors that makes the model with and without the SSE fit not
directly comparable. Nevertheless, we may still perform Bayesian
model selection, if all models in question are affected by the
marginalization over the improper prior. We therefore additionally
compare the same models reported in the Table 6, but now using
LINIMOSS and analytical marginalization (infinite priors) over the
planetary parameters. Table 7 overviews these results. There are
two important observations one can immediately make. First, the
model (PSRN+EPH) is significantly disfavoured by comparison
to other CRS models as LINIMOSS fully absorbs any dipolar
correlations related to SSE signal in the data with the analysical
marginalization. This is an expected and highly desired result. The
second observation is that the Bayes factors for the CURN and GWB
are reduced more than in the case of BAYESEPHEM, and in addition,
the evidences for the CRS to be a CURN, a GWB, or a CLK signal
are equalized, following a similar trend as with BAYESEPHEM,
but more prominently. These differences from the BAYESEPHEM
results are most likely because the full marginalization of the SSE
parameters, while only using six pulsars in the analysis, can lead to
indiscriminate absorbtion of other types of CRS, correlated or not.
Tests using simulated data have confirmed this scenario. The equal
evidences in CURN, a GWB, or a CLK signals after fitting the SSE
with LINIMOSS also supports that the data with six pulsars cannot
distinguish the nature of any remaining CRS after fitting for the
SSE. A more detailed analysis using LINIMOSS with more precise
techniques in order to fully interpret the results, will be published
separately (Guo et al., in preparation).

We also plan to compute Bayes factors and perform similar
investigations withEPHEMGP in a future publication (see Chalumeau
et al., in preparation). As we have access to the full design matrix
of INPOP19a, more planet masses and orbits can be added to the
EPHEMGP model used in this work. The effects of a properly chosen
prior range will also be tested.

The general conclusion is that overall the SSE analytical marginal-
ization is very good at absorbtion of dipolar signals but is less safe
with respect to leaving a true GWB signal in the data unabsorbed;
this is in agreement with findings by Tiburzi et al. (2016). As such,
this type of analysis is a good basis for a very conservative GWB
search or strain upper limit. On the other hand, the approach of
sampling the SSE parameters requires careful prior choices as it
may leave some dipolar signal unmodelled, potentially affecting the
measurement of parameters and detection significance of a true GWB
signal. These issues can be reduced significantly with more pulsars
to better sample the angular separations, which highly motivates the
work for the preparation of the upcoming full EPTA DR2 data set.
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Figure 8. CURN search free spectrum and power-law recovery comparison between EPTA DR2 and NG12 with DE438 (Arzoumanian et al. 2020) in the same
style as Fig. 3.

Figure 9. Comparison of the CURN recovered signals with EPTA DR2, DR1
and NG12 (Arzoumanian et al. 2020), using fixed DE438 and BAYESEPHEM
with ENTERPRISE and fixed γ CURN = 13/3.

7 D ISC U SSION OF RESULTS AND
COMPARISON W ITH LITERATURE

A CURN process has been reported by independent data sets and
their analysis by other PTA collaborations (Arzoumanian et al. 2020;
Goncharov et al. 2021a). We will briefly compare the results from
this work against the constraints on the power-law parameters of the
CURN and the model selection Bayes factors from Arzoumanian
et al. (2020). A more detailed comparison between the inferences
from the different regional PTA groups will be presented in a relevant
upcoming IPTA paper (Antoniadis et al., in preparation).

Fig. 8 compares the fixed DE438 CURN analysis from the EPTA
DR2 against the NANOGrav 12.5 yr data set. The left-hand panel
shows a broad agreement in the power distributions by frequency.
As the EPTA DR2 is almost twice as long as the NANOGrav data,
it provides a tighter constraint on the CURN power-law spectral
slope, and consequently amplitude. In addition, this result is largely
insensitive to the choice of the number of frequency bins used in
the analysis, see Section 6.2 and Fig 4, in contrast to NANOGrav’s
recovered spectral properties.

We can also compare the amplitude of a CURN at fixed γ = 13/3,
which corresponds to a GWB from massive black hole binaries. The
EPTA DR2 results give an amplitude of ACURN = 2.95+0.89

−0.72 × 10−15

(95 per cent credible region). Fig. 9 shows a comprehensive compar-

ison of the relevant CURN amplitude posterior distributions when
using the DE438 SSE and when fitting SSE planetary parameters
with BAYESEPHEM, for EPTA DR2 and DR1 and the NANOGrav
12.5-yr results from Arzoumanian et al. (2020). We note that the
EPTA results are obtained with an upper prior bound of log10A
= −10 and simultaneously fit for the pulsar DM stochastic noise,
whereas NANOGrav uses a log10A = −14 upper prior bound and
observationally measured piecewise DMX values to model the pulsar
DM variation over time (e.g. Arzoumanian et al. 2015; Jones et al.
2017). As such, this comparison can only be indicative.

In this paper, we have compared power-law models for common
red signals (CRSs) with different overlap reduction functions (ORFs)
while retaining the spectral index as a free parameter. We obtain
a log10BFs of ≈3.7 for PSRN+CURN versus PSRN (DE438). In
order to make a more direct comparison with the NANOGrav model
selection results, we have repeated our analysis by fixing the spectral
index γ = 13/3 and matching the NANOGrav prior on the common
signal amplitude. In this case, we find log10 BF � 4 compared to the
NANOGrav result of 4.5 (DE438) with an estimated uncertainty of
0.9. We can therefore conclude that the EPTA DR2 and NANOGrav
12.5-yr results are in general agreement.

Our EPTA DR2 model comparison results appear to be less
affected by SSE uncertainties than the NANOGrav 12.5-yr results.
A possible reason is that the NANOGrav data set has a maximum
timespan of roughly half a year longer than the Jovian orbital period,
while the EPTA data covers close to two Jovian orbits and is a few
years short of Saturn’s orbit. As such, the EPTA data may be more
effective in distinguishing signals induced by errors in Jupiter’s orbit
from pulsar noise. Another possibility, however, is that the present
EPTA data set does not efficiently recover the dipolar correlations
with BAYESEPHEM due to only using six pulsars, with sparse
coverage of the pulsars angular separations space. The addition of
more pulsars in the EPTA array will provide more information on
this.

The commonality of the single pulsar red noises, which could be
interpreted as a CRS, has been investigated by the PPTA (Goncharov
et al. 2021a). Though not unexpected, the PPTA has used simulated
data to unambiguously demonstrate that individual pulsar noises
can be recovered by the analysis code as a CURN, if the spectral
properties are similar. This is something that must be considered
carefully, as MSPs possibly may have common underlying mech-
anisms that produce intrinsic stochastic noise (see e.g Jones 1990;
Shannon & Cordes 2010; Melatos & Link 2014). In Fig. 10, we
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Figure 10. Single pulsar noise spectra (Maximum aposteriori values from ENTERPRISE noise analysis) for each of the six pulsars, compared to the CURN
power law (median values) shown with the dashed line.

show the power spectra for each of the 6 EPTA pulsars using the
maximum a posteriori values of the SPNA runs from ENTERPRISE.
One can see a broad agreement of all pulsars with the CURN,
thus strengthening this CURN as a common noise floor. However,
PSR J1909−3744’s red noise power is poorly constrained at the
lowest frequency, consequently, plotting a point estimate can give the
impression of a dip below the CURN. Looking at PSR J1012+5307,
the red noise is clearly present in this pulsar and its shape is consistent
with other pulsars. However, the level of white noise is higher and,
as a result, its slope appears to be lower and thus inconsistent with
the CURN. This is a possible cause of results of dropout analysis
observed for this pulsar in Fig. 5.

The noise properties of the six pulsars used in this study are
analysed in greater detail and the results will be published separately
in an upcoming paper (Chalumeau et al., in preparation). In a
similar fashion that Lentati et al. (2016) have examined the noise
properties of the IPTA DR1 and more recently Goncharov et al.
(2021b) of the PPTA DR2, the EPTA is optimizing the pulsar
noise models via Bayesian model selection. One important aspect
will be on the chromaticity, i.e. radio-frequency dependence, of
the noise. Apart from DM, scattering variation can also introduce
a significant noise term to the TOAs (Main et al. 2020). Other
additional noise components such as band noise (i.e. noise confined
in a specific observing-frequency band) and system noise (i.e. noise
attributed to one specific observing system, therefore not being
intrinsic pulsar noise) will also be investigated. Finding system noise
requires overlapping data by multiple observing systems in the same
frequency band. The addition of new-generation-backened data are
now allowing better such investigations than DR1, where only some
basic investigation could be applied (see Caballero et al. 2016) and
further work had to be completed on the IPTA DR1 (Lentati et al.
2016). Despite the DR2 improvement, The IPTA remains the best
framework to identify possible system noise components.

8 C O N C L U S I O N S

The EPTA has collected and analysed observations for six MSPs
using five radio telescopes for a timespan of up to 24 yr. Data
are collected both from single-telescope and phased-array (LEAP)
observations, in a wide range of radio frequencies. The DR1 has been
published in Desvignes et al. (2016) and analysed to place an uppper
limit on the isotropic stochastic GWB strain amplitude (LTM15);
the corresponding amplitude limit at the 95 per cent credible region
for circular, GW-driven SMBHB was 3 × 10−15 on the GWB. Initial
analysis with the DR1 on the correlated search had shown the possible
presence of a CRS amongst the six MSPs. In this work we re-analyse
the same six MSPs using the extended DR2 data and find increased
and strong evidence for the CRS, the properties of which are now
very well measured and remain consistent with the DR1 results.

We have determined the pulsar noise properties with two separate
pipelines with fully consistent results. A simultaneous search for the
spectral properties and spatial correlation of a common red signal
detects a well-constrained contour for the power-law spectral param-
eters with log10 A = −14.32+0.31

−0.39 and γ = 3.83+0.82
−0.72 (95 per cent

credible regions), but no conclusive measurement on the spatial
correlation. Thus, we employed Bayesian model selection to compare
different physically motivated spatial correlations in their ability to
fit the data. In the case where the SSE is fixed to DE438, we find
strong evidence for a CURN in addition to intrinsic, individual pulsar
red noise with a log10 BF ∼ 3.7 for varying spectral index. This is
a significant increase from the log10 BF ∼ 1 in DR1. The model
selection for CRSs with different ORFs shows very little evidence
for a monopolar and some evidence for a dipolar signal. The HD
correlation is slightly disfavoured compared to the CURN, but more
favoured than the dipolar correlation. None the less, we cannot rule
out that the CRS is due to SSE systematics with this current results.
We further analysed the data sets using three independent SSE-error
mitigation models: BAYESEPHEM, EPHEMGP, and LINIMOSS.
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While we concluded that our results are not significantly affected by
SSE inaccuracies, we have confirmed that including SSE modelling
reduces the evidence for a dipolar CRS in the data, and confirmed that
the evidence reduction is stronger with wider priors on the values of
planetary mass and orbital parameters. The effect of the SSE fitting
in the general CURN search is a slight increase in the confidence
intervals of the amplitude and spectral index of the power-law model.
Longer timespan, more precise TOAs and more pulsars can help to
diminish the effects of SSE systematics in the CURN recovery.

Assuming a single power-law model for the CURN, the recov-
ered parameters constraints from the EPTA DR2 are log10 A =
−14.29+0.26

−0.33 and γ = 3.78+0.69
−0.59 (95 per cent credible regions). This

power-law spectrum model uses the 30 lowest frequency bins. An
analysis with a ‘broken power law’ spectrum has indicated the
optimal number of frequency bins for the red part of the spectrum
is ∼20. However, the corresponding 2D posterior contours are
consistent with those of the single power-law analysis, confirming
the robustness our results to the exact number of frequency bins.

We have measured the contributions of the individual pulsars to
the CURN using the dropout method. This produces a factor of
consistency between the red noise of a given pulsar with the CURN.
We find support for five out of six pulsars contributing to the CURN.
This is an increase from three pulsars in DR1. The overall dropout
consistency also increases significantly, particularly for J1600−3053
and J1909−3744, where DR2 adds the most data relative to DR1.

The nominal amplitude AGWB for a power law at fixed γ = 13/3
at 1 yr−1 has been found to be 2.95+0.89

−0.72 × 10−15. While there is a
notable difference in the reported amplitude median values compared
to the NG12 amplitude of 1.9 × 10−15 and PPTA DR2 amplitude of
2.2 × 10−15, an overlap at the 2–3σ -level remains; in particular the
significantly large NG12 parameter space for the spectral properties
of the CURN cautions in drawing conclusions only from median
values. Differences at this point, nevertheless, could have a multitude
of reasons. One particular point could be in the covariance and
modelling of the pulsar noise, which could leak into the CURN.
Further investigations and cross-comparisons between the different
data sets will be done in the IPTA framework.

If the full amplitude of 3 × 10−15 of the EPTA DR2 is due
to the GWB, this would necessitate various strong astrophysical
effects (see e.g. Sesana 2013; Kelley et al. 2017; Siwek, Kelley &
Hernquist 2020). Following Middleton et al. (2021), the two main
observables are the black hole binary mass and the merger time-
scale. The hypothetical amplitude of 3 × 10−15 is close to the
upper bound of possible values. In order to achieve such a strong
GWB emission, black hole binaries have to be very heavy and
the overall merger time-scale needs to be short. This would place
very stringent limits on current massive black hole formation and
evolution models. Alternatively, a number of other GW emission
mechanisms can produce such an amplitude, such as cosmic strings
(see e.g. Ölmez, Mandic & Siemens 2010; Sanidas, Battye &
Stappers 2012), primordial black holes (see e.g. Grishchuk 2005;
Lasky et al. 2016), phase transitions (see e.g. Caprini, Durrer &
Siemens 2010; Kobakhidze et al. 2017) and numerous other sources.

This paper is the first of a series introducing the next generation
of the EPTA data set DR2. In this work, we have focused on the
six MSPs that have been analysed previously with DR1. Despite
the strong evidence for a CRS, we have no measurement of the
characteristic HD spatial correlation of the GWB. This is expected
given the small number of pulsars used. The EPTA is preparing
the expansion data set to ∼25 pulsars, carefully selected based on
their data quality, noise properties and sky positions to maximize
our sensitivity to a GWB with HD ORF. The EPTA is also working

on analysing the expanded DR2 data set more carefully regarding
all aspects of the analysis, including, but not limited to, the pulsar
timing and noise analysis, chromatic noise mitigation, Solar system
dynamics modelling and more consistency checks on any CRS signal.
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APPENDI X A : SUPPLEMENTA RY MATERIAL

Table A1. Results of single-pulsar noise analysis for ENTERPRISE (EP) and TEMPONEST (TN) for DR1 in the same style as Table 3.

log10ARN γ RN log10ADM γ DM

Pulsar EP TN EP TN EP TN EP TN

J0613−0200 −14.44+1.3
−1.81 −14.34+1.13

−1.49 4.11+2.69
−3.12 4.03+2.64

−2.57 −11.6+0.14
−0.21 −11.6+0.12

−0.15 1.1+0.87
−0.66 1.11+0.64

−0.53

J1012+5307 −12.99+0.17
−0.2 −12.99+0.14

−0.16 1.48+0.86
−0.68 1.47+0.64

−0.57 −15.22+3.24
−2.65 −15.41+3.17

−2.37 2.8+3.93
−2.67 3.03+3.48

−2.77

J1600−3053 −13.27+0.2
−4.38 −13.29+0.21

−4.45 1.38+4.75
−1.05 1.44+4.91

−1.12 −13.93+2.48
−3.86 −13.52+2.08

−4.24 2.0+4.65
−1.76 1.92+4.68

−1.65

J1713+0747 −15.01+1.2
−1.91 −15.03+0.97

−0.92 4.89+1.97
−3.36 5.09+1.69

−2.05 −11.69+0.11
−0.11 −11.7+0.08

−0.08 1.28+0.56
−0.53 1.22+0.44

−0.4

J1744−1134 −14.21+0.8
−3.38 −14.0+0.56

−3.0 3.03+3.61
−2.47 3.01+3.24

−1.78 −11.79+0.19
−0.22 −11.83+0.2

−0.2 0.64+0.88
−0.6 0.58+0.93

−0.54

J1909−3744 −13.9+0.21
−3.61 −13.9+0.21

−3.62 1.91+3.67
−1.36 1.91+3.7

−1.35 −14.87+2.79
−2.98 −14.94+2.86

−2.91 2.55+4.14
−2.36 2.58+4.12

−2.39

Table A2. log10BF comparison between DR1 and DR2 in the same style as Table 4.

DR1 DE438 DR2 DE438
Model ID Model ENTERPRISE FORTYTWO ENTERPRISE FORTYTWO

0 PSR − − − −
1 PSR + CURN 1.3 1.2 3.8 3.6
2 PSR + GWB 0.9 0.8 3.4 3.2
3 PSR + CLK −0.3 −0.3 0.6 0.8
4 PSR + EPH 0.6 0.3 2.1 2.2
5 PSR + CURN + GWB 1.2 0.5 3.6 3.7
6 PSR + CURN + CLK 1.0 0.4 3.7 3.4
7 PSR + CURN + EPH 1.1 0.5 3.7 3.4
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Figure A1. Comparison of the parameter posterior distributions from the CURN search between ENTERPRISE (EP) and FORTYTWO (42) split by pulsar noise
parameters. The numbers indicate the 95 per cent credible regions from the EP analysis.
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