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Abstract

The human hippocampus possesses “concept cells”, neurons that fire when pre-
sented with stimuli belonging to a specific concept, regardless of the modality.
Recently, similar concept cells were discovered in a multimodal network called
CLIP [1]. Here, we ask whether CLIP can explain the fMRI activity of the human
hippocampus better than a purely visual (or linguistic) model. We extend our anal-
ysis to a range of publicly available uni- and multi-modal models. We demonstrate
that “multimodality” stands out as a key component when assessing the ability of a
network to explain the multivoxel activity in the hippocampus.

1 Introduction

The field of machine learning has experienced tremendous breakthroughs in the past few years. A
hallmark of these breakthroughs are deep neural networks (DNNs) that can solve complex tasks
going beyond computer vision to tasks requiring semantic knowledge and understanding, features
characteristic of human intelligence (e.g., story completions, context-based question answering,
code generation etc.,). This feat has been made possible by both the ability of DNNs to learn
expressive representational spaces that enable them to carry out these complex tasks, as well as by
the development of improved optimization algorithms required to train the DNNs.

Importantly for the neuroscience community, DNNs also provide a potential model for understanding
the human brain. Their mathematical pliability combined with their unprecedented expressivity has
opened up novel avenues to investigate the human brain. Efforts are being made to understand
the similarities and differences between these two systems due to their architectures, dynamics,
behavioral patterns, and representational structures [2–5].

At the same time, DNNs themselves are getting better and better on more human-like tasks. Re-
cently, Radford et al. [1] proposed a model that could simultaneously learn visual and linguistic
information from a huge dataset using a constrastive loss function. Importantly, this multimodal
model, known as CLIP, was found to possess neurons in its last layer that encoded specific con-
cepts [6]. These artificial neurons are reminiscent of ‘concept cells’ in the human medial temporal
lobe (MTL) [7, 8], biological neurons that appear to represent the meaning of a given stimulus or
concept in a manner that is invariant to how that stimulus is actually experienced by the observer. For
example, a single neuron in the human hippocampus showed incredible specificity in its response
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to the actress Halle Berry. This neuron responded to different images of the actress, including to
photographs in which she was disguised as Catwoman (her starring role in a movie by the same
name). The same neuron also responded to a semantic representation of the concept, i.e. to the letter
string “HALLE BERRY”. Other studies have since shown that “concept cells” are also activated
when stimulus information is provided in other sensory modalities, for example when the name of
the person is spoken out loud.

The discovery of concept cells in artificial networks raises a natural question — Can a multimodal
model like CLIP explain the activity of brain regions known to possess concept cells better than a
purely visual model? In this work we investigate this question by using publicly available fMRI
data [9], and asking if CLIP can explain the activity of the hippocampus region better than a
comparable feedforward visual model, i.e., ResNet. Because fMRI data does not provide us with
the spatial resolution to identify individual concept cells, we address this question at the level of
multi-dimensional representation spaces rather than at the level of individual neurons. We also
extend our analysis to a variety of models from the literature, trained with unimodal or multimodal
objectives. Using Representational Similarity Analysis (RSA) [10], we report that multimodal
networks consistently rank higher than their unimodal counterparts in their ability to explain fMRI
activity in the human hippocampus. We provide all the code for reproducing our results on Github1.

2 Methods

2.1 RSA

Representational Similarity Analysis (RSA) [10] compares stimulus representations across different
high-dimensional spaces (e.g., brain multi-voxel spaces, model latent spaces, etc.). A first step in
RSA consists of constructing Representational Dissimilarity Matrices (RDMs) in each space. RDMs
are two-dimensional matrices, in which each element measures the pairwise distance between two
stimulus conditions. An important property of RDMs is that their size is the same regardless of
the initial dimensionality of each space, since the number of elements in an RDM only depends
on the number of conditions being compared. RDMs from representational spaces of different
dimensionalities can thus be compared to each other. In this work, we use the Pearson correlation
distance (defined as 1 - correlation) to construct the RDMs, and subsequently compare them with the
Pearson’s r correlation coefficient. Results with other choices of metrics are shown in the Appendix.

2.2 fMRI data

For our investigations, we use publicly available data from [9]. This dataset consists of fMRI
data collected on five healthy participants viewing images from a subset of categories available in
ImageNet. Participants performed a one-back test in the scanner in which they had to press a button
when the same image was repeated on two consecutive presentations. The data were collected on
1200 training images that were presented once, and 50 test images presented 35 times each. For our
experiments, we restrict ourselves to the subset of test images since the higher number of repetitions
provides a more robust estimate of the multi-voxel representation of each image.

After downloading the raw fMRI data, we preprocessed them with a standard pipeline us-
ing SPM12 [11]: slice-time correction, realignment, and coregistration to the T1W anatomi-
cal images. We performed a GLM using regressors for each image (the onset and duration),
along with regressors for ‘fixation’ and ‘one-back’. For each subject, the beta coefficients ob-
tained from the GLM were transformed into a common MNI305 space [12] using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu) to allow analysis across subjects. We defined four
regions of interest (ROIs) using the Deskian-Killiany atlas [13] for both the left and right hemispheres:
a visual ROI comprising the lateraloccipital and pericalcarine regions, a fusiform ROI, a hippocampal
ROI and a parahippocampal ROI. fMRI RDMs were built using the beta values in each ROI for each
subject. Since 50 image conditions were compared, each RDM was 50x50 in squareform.

1Link hidden to preserve anonymity
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2.3 Models

We include a variety of models in our analysis to facilitate interpretation and discovery of underlying
trends in different classes of models. All the included models are publicly available, and possess a
ResNet50 backbone to minimize architectural differences.

For CLIP, we used the visual CLIP-RN50 backbone (called CLIP hereafter), which was jointly
trained along with a linguistic head (called CLIP-L hereafter) on a contrastive learning task on 400M
image-caption pairs [1]. Additionally we also considered visual features from TSM [14], another
multimodal model that is trained with a contrastive objective on the HowTo100M dataset [15], in
a task that comprises three modalities (video, text, and audio). The impact of contrastive learning
objectives on the features of these models can be compared to VirTex and ICMLM, multimodal
networks trained with different objectives. For Virtex, the visual backbone is trained on an image
captioning task [16], while for ICMLM, the visual features are trained on a text-unmasking task [17].
Both VirTex and ICMLM are trained on MS-COCO [18], a much smaller dataset compared to those
used for CLIP or TSM.

To tease apart the effect of multimodal training, we also included visual-only models in our com-
parisons. Since dataset size has been suggested to affect the quality of representations learned
by a network, we considered two visual-only models trained on different datasets. We used the
standard ResNet50 model (the control visual model) trained on ImageNet-1K, as well as BiT-M, a
ResNet50 backbone trained on the significantly larger ImageNet-21K dataset [19]. We also included
adversarially robust models (AR-L2, AR-L4, AR-L8) from [20] in our comparisons. These models
are trained to be robust to minute perturbations to the input images by explicitly incorporating such
perturbed (adversarial) images [21] in the training dataset. These models have been observed to
possess more human-like features compared to standard feedforward versions [22], making them
particularly relevant to our analysis.

Unlike human observers who rely on shape information, standard ImageNet models are strongly
biased by the texture of images [23]. Therefore, Geirhos et al. [23] designed a stylized version of
ImageNet to train models that have a stronger bias towards shape than texture. To assess whether
representations optimized for human-like biases are better at explaining brain activity in MTL
regions, we included three StylizedImageNet models in our comparisons: (i) a model pretrained on
only StylizedImageNet (SIN) images, (ii) a model trained on SIN images and ImageNet combined
(SIN-IN), and (iii) the SIN-IN model further fine-tuned on ImageNet (SIN-IN+FIN).

Finally, apart from visual and multimodal models, we also included language models: GPT-2 [24],
BERT [25], as well as CLIP-L. Although these models are not trained to process visual data, they
provide an important basis for comparison along with visual and multimodal networks.

For multimodal and visual backbones, we used the test images shown to the human participants and
obtained their feature representations from the final average pooling layer. For language models,
for each image, we encoded the text ‘a photo of {ImageNet label of the image}’ to obtain the latent
representations. For each model, these latent representations were then used to obtain the RDMs, of
shape 50x50.

2.4 Voxel Selection from anatomical ROIs based on Noise ceilings

We start by evaluating the signal of the selected beta coefficients. In each ROI, we calculated the noise-
ceiling, defined as the average inter-subject correlation between RDMs. The noise ceiling provides an
estimate of the reliability of the fMRI signal in a given ROI across subjects. Due to the visual nature
of the task, the more visual regions (visual ROI, fusiform and parahippocampus) unsurprisingly
showed higher values for the noise-ceiling (between 0.2 and 0.6). In contrast, the noise ceiling in the
hippocampus was relatively low, and not significantly different from zero (−0.012± 0.012). This
could be due, in part, to the fact that the fMRI signal in the hippocampus is generally less reliable.
However, single neuron recordings in the human hippocampus have also revealed that only a small
proportion of cells (≈15% of recorded cells) is responsive to visual stimuli, and even fewer (≈5%)
qualify as “concept cells”. In fact, the hippocampus is well-known for its implication in non-visual
tasks, i.e. spatial navigation or memory retrieval and consolidation. If only a small subset of voxels
in the hippocampus respond to visual stimuli, it stands to reason that a noise ceiling computed across
all voxels would not capture any meaningful visual information.
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Figure 1: Noise ceilings after selecting subsets of voxels from each region The panels show the
noise ceilings (i.e., inter-subject correlation) calculated after selecting different numbers of voxels
from each region of interest. The noise ceilings were computed using either voxels with the highest
beta values (blue) or via a random sampling of voxels (orange). The gray regions denote the standard
error of mean. For certain ROIs (visual region, fusiform), most voxels are informative about the
visual stimulus, and the two selection methods yield similar results. For other ROIs (hippocampus,
parahippocampus), the noise ceiling depends on the selection method, implying that some voxels
(with the highest betas) are more informative than others (randomly selected). The hippocampus
shows an improved noise ceiling when 30 voxels with the highest beta values are selected, with
additional voxels degrading the signal.

To circumvent this issue, we defined a quantifiable criterion to select a limited number of voxels
from each ROI. Specifically, we selected the N voxels with the highest beta value (for any of the 50
stimuli), and calculated the noise ceiling based on this voxel selection. We varied N systematically.
As a control, we used random selections of N voxels. As Figure 1 shows, the noise ceiling in the
more visual regions (visual region, fusiform, parahippocampus) increased rapidly and then stabilized
after the inclusion of ≈20% of the total voxels. This was true, even when the voxels were randomly
selected, indicating that most voxels in these regions carry information about visual stimuli. In the
hippocampus however, the noise ceiling was virtually zero when based on random voxel selections:
most hippocampal voxels do not appear to encode visual information. Nonetheless, when selecting
the N most-activated voxels, the noise ceiling peaked at ≈30 voxels, before sharply dropping down
to random levels. This is consistent with our hypothesis that although a relatively small number of
hippocampal voxels are reliably activated by visual inputs, the signal in these voxels (as measured by
the noise ceiling) is reliably above chance. For the main RSA analysis, we thus considered only these
top-30 hippocampus voxels. Note that this selection criterion only ensures that the considered brain
responses are meaningful, but does not bias the outcome of the RSA with neural network models
(i.e., there is no danger of circular reasoning). For the other ROIs, we also considered the top-30
voxels for a fair comparison; yet we also report a different selection procedure (based on a fixed beta
threshold) in the Supplementary Material.

3 Results

To investigate whether CLIP explains multivoxel activity patterns in MTL regions better than its
visual (or linguistic) counterparts, we computed RSA between the brain RDMs and each model
RDM. The noise ceiling places an upper limit on brain-model comparisons because it is an estimate
of inter-subject variability. Thus, we normalized the RSA values by the noise-ceiling to allow for
comparisons across models and across regions. The normalized RSA values for each model in each
ROI are shown in Figure 2A, and averaged across groups of models in Figure 2B. (The corresponding
non-normalized values are shown in the Appendix.)

RSA values for the majority of models and brain regions were positive. However, comparisons
between individual models (e.g., CLIP vs. ResNet in hippocampus) were not significant (Wilcoxon
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Figure 2: Multimodal models better explain fMRI response patterns in the hippocampus: Panel
A shows the correlation values obtained with different models across selected regions of interest
(ROI). Only 30 voxels were selected from each ROI. The values are normalized with the noise-ceilings
to facilitate comparisons across regions. Panel B shows the correlation values after aggregating
them over mutlimodal (green), visual (red) and language (blue) models. Statistical significance is
calculated by using Welch’s t-test and is denoted by an asterisk.

signed-rank test), possibly because of the small number of fMRI participants. Thus, we grouped
the models according to their modalities (for example, BERT, GPT2 and CLIP-L as the language
models). We thus obtained three classes of models (visual, language, multi-modal), and asked whether
one class outperformed the others in explaining brain activity in each ROI. In the hippocampus, in
line with our main hypothesis, multimodal models significantly better explained activity patterns
compared to both visual and linguistic models (Welch’s t-test. Figure 2B). In fact, the multimodal
networks reached the noise ceiling in the hippocampus, meaning that they could explain all of the
explainable variance in brain responses–this result did not happen for any other model group in any
other ROI. A similar trend was observed in other regions (even reaching statistical significance in
the fusiform ROI), but the RSA values were lower and more variable compared to the hippocampus.
Finally, the visual and vision-language models performed systematically better than the linguistic
models–as expected since all stimuli were visual.

In our main analysis, the RSA was performed using a subset of 30 voxels that showed the highest beta
values in each ROI. While this threshold is reasonable in the hippocampus based on our noise-ceiling
calculations (Fig 1), visual regions did have a larger number of voxels with reliable beta values.
Thus, in a control analysis, in each ROI we selected the N voxels that had beta values greater than
a common threshold (determined so as to yield 30 hippocampal voxels). Figure 4 in the appendix
shows that including a larger number of voxels had little impact on the main results shown in Figure 2.
Finally, we assessed if the trends observed in Figure 2 are robust to the choice of distance metrics by
using other metrics commonly used for fMRI data (see Appendix).

4 Discussion and Conclusion

We applied RSA to study the ability of different neural network models – multi- or uni-modal –
to explain the fMRI activity patterns in various brain regions. Based on recent findings [6], our
hypothesis was that CLIP (and similar multimodal networks) would be specifically adept at explaining
brain activity in the hippocampus–where ‘concept cells’ are found. This hypothesis was supported by
the data: the multimodal nature of a model was as a key component in explaining the activity in the
human hippocampus – a trend that proved robust to different methods of voxel selection and distance
metrics.

Our findings could provide a novel insight for making more brain-like models. While many studies
have reported a reliable correspondence between deep neural network representations and neural
activity along the ventral visual pathway, the similarity is far from absolute [26]. In particular, Xu
and Vaziri-Pashkam [27] casted doubt on the utility of DNNs for explaining higher regions in the
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brain. Our findings provide a potential way forward to address this limitation: building models
that explain higher regions in the brain might require using datasets spanning different modalities.
This can be further combined with bio-plausible architectural changes to the DNNs. For example, it
would be interesting to investigate the effects of training a bio-inspired recurrent neural network [28]
using multimodal objectives. Combining these architecture- and objective-based approaches could
potentially have synergistic effects in learning human-like representations.

We hope the findings in this work further contribute to the efforts in bridging the gap between machine
learning and neuroscience.
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A Appendix

A.1 Non-normalized data corresponding to Figure 1
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Figure 3: Non-normalized RSA values between model and brain RDMs. The brain RDMs are
calculated based on selecting 30 voxels from each ROI, as in the main analysis. The gray bands
show the upper and lower bounds of the noise-ceilings calculated by adding and subtracting it’s s.e.m.
respectively.

A.2 Voxel-selection based on a fixed beta-value threshold.

In the main analysis, we selected 30 voxels in each ROI based on the noise-ceiling analysis in the
hippocampus. In other words, in each ROI we selected the 30 voxels with the highest beta values.

As a control method, instead of restricting the number of voxels to 30, we used the value of the 30th
voxel from hippocampus as a threshold for other ROIs. The number of voxels found in each ROI
for each participant is depicted in Table 1 and the RSA values in Figure 4. We observed that this
alternate criterion did not affect the overall trend in other regions.
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Figure 4: Non-normalized RSA values after using the beta value of the 30th voxel from hippocampus
as a threshold for other ROIs for each participant.

Table 1: Number of voxels found in each region after thresholding
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

visual 530 831 343 707 592
fusiform 532 376 217 368 508

hippocampus 30 30 30 30 30
parahippocampus 122 67 85 111 167
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A.3 RSA computed using different metrics

We verified the robustness of our results by using other metrics to compute the RDMs and RSA.
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Figure 5: The RDMs were calculated using the Pearson correlation distance, and the Spearman rank
correlation was used to compute the RSA.
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Figure 6: The RDMs were calculated using the Cosine distance, and the Spearman rank correlation
was used to compute the RSA.
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Figure 7: The RDMs were calculated using the Cosine distance, and the Pearson correlation was used
to compute the RSA.

A.4 Licenses of the assets used

Asset License

FreeSurfer https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
SPM12 GNU GPL

fMRI data CC0
CLIP MIT

VirTex MIT
TSM Apache-2.0

ICMLM N/A
BiT-M Apache-2.0
ResNet MIT

AR models MIT
SIN models https://github.com/rgeirhos/texture-vs-shape/blob/master/DATASET_LICENSE

GPT2 MIT
BERT Apache-2.0

Table 2: Available Licences of all the assets used in the study. Links to the appropriate webpages are
provided for special licenses.

A.5 Broader Impacts

The research discussed above analyses the ability of neural networks to explain the human neural
activity, specifically it demonstrates that multimodal neural networks are better than visual or linguistic
models in explaining the activity in the hippocampus.

Importantly, this research provides potential insights for designing better bio-plausible networks.
Upon diligent use, such networks can elucidate mechanisms in biological brains necessary to help
patients. At the same time, we are aware of the possibilities for nefarious use of such systems, and
urge all researchers to consider their implications.
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