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Green’s functions and integral representation of generalized continua: the case of
orthogonal pantographic lattices

Claude Boutin and Francesco dell’Isola

Abstract. This paper shows how the classical representation techniques for the solution of elasticity problems, based on the
Green’s functions, can be generalized to second-gradient continua focusing on the specific case of pantographic lattices. As
these last are strongly anisotropic, the fundamental solutions of isotropic second-gradient continua involving bi-Helmholtz-
type operators are not applicable. More specifically we establish the analytical fundamental solution for the linearized
equations governing the equilibrium of pantographic 2D continua in the neighbourhood of the reference configuration.
Moreover, by means of found novel Green’s functions, it is shown that it is possible to solve aforesaid equilibrium equations
by using Fredholm integral equations. It is seen that an approximated analytical solution for the standard bias test for
pantographic 2D continua can be found by using judiciously the found analytical fundamental solutions. The micro-macro-
asymptotic identification allows for a clear and satisfactory physical interpretation of the obtained analytical results.
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1. Introduction

First, gradient continuum models, as developed by Cauchy, were conceived as models in which the con-
sidered deformable bodies can interact with their external world by means of two kinds of interactions:
(i) forces distributed per unit volume (interactions acting at a distance) and (ii) forces distributed per
unit surface (contact interactions between the external surface of the body and its external world). It is
clear that this kind of interactions do not exhaust all the logical possibilities. For instance, it does not
include forces distributed on curves or concentrated on points, nor momentum distributed on surfaces.
There is no reason for which mathematical physics should not introduce also these concepts in its effort
to model physical reality.

As a matter of fact, classical elasticity shows that in the presence of interactions concentrated on lines
or points, the displacement field becomes infinite in the points where these forces are applied. In fact,
this kind of externally applied forces can be a useful conceptual tool in two kinds of circumstances: (i)
when one looks for models capable to describe the deformation induced on physical bodies when a small
region of their contact surface is interacting with the external world and one does not want to describe
in detail how this force is distributed inside this small region or (ii) when one wants to “decompose”
the external interactions into its “basic” components and apply, in the case of linearized systems, the
principle of superposition of effects. While the first circumstance refers to a specific modelling problem,
as it is relative to the choice of the most adapted model to be used to describe a specific deformation
phenomenon, the second one refers to a specific mathematical method, to be used for calculating the
solutions of a boundary value problems.
This specific last method is often called the method of Green’s functions: it is, indeed, based on the
search of the deformation field consequent to the application of a force concentrated in a point, in order
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to represent the general solution of a generic boundary problem, in linearized theories. This representation
is possible notwithstanding the singularity shown, in the point where the concentrated force is applied, by
calculated Green’s functions. Intuitively we can say that the ‘power of the idea’ is based on its simplicity:
to reconstruct every specific deformation field as superposition of the deformation fields caused by a family
of concentrated force. In fact (see e.g. [12]) by using the method of Green’s function the most general
boundary value problem in isotropic (and some types of anisotropic) first gradient linear elasticity can
be solved by finding the solution of suitable Fredholm integral equations of first or second type. In these
integral equations, the unknowns are the fields ‘dual in work’ with the fields that are assigned on the
boundary. In the case of first gradient linear elasticity, the fields assigned on the boundary can be the
displacement field (in the case of so-called essential boundary conditions) or the field of externally applied
contact forces (in the case of so-called natural boundary conditions). The ‘dual in work’ field of assigned
displacement is the corresponding constraint force exerted by the applied kinematical constraint while
the dual in work of the external force assigned on a certain material particle P of the external surface of
the body is the corresponding displacement of P necessary to reach the equilibrium configuration.

Actually, the just described structure of first gradient linear elasticity is consistent with the Postulation
approach to Continuum Mechanics as presented by Cauchy and based on balance laws. In fact, the
development of continuum theories as conceived by Cauchy is based on the famous tetrahedron argument,
on the postulation of balance of forces and moment of forces and on the hypothesis that only the contact
surface and volume (at a distance) interactions are applicable to the continuum. Here it is essential to note
that the set of assumptions used by Cauchy is, in facts, completely equivalent to assume that deformation
energy depends on the first gradient of displacement only [21].
Now, basing the Postulate of Continuum Mechanics on the Principle of Virtual Work, we can consider
media whose deformation energy depends on both the first and the second gradient of displacement
as already clarified by Gabrio Piola (see [21]) and then clearly stated by R. Toupin and P. Germain
when dealing with elasticity, see [25,32]. And once continuum mechanics is suitably generalized, it is
possible to consider continua capable to support, at their boundaries, much more general kinds of external
interactions. In a sense, it is possible to state that second gradient continua are the ‘simplest’ model
generalizing standard Cauchy continua: the reader will recall that in generalized continua some extra
kinematical descriptors are often introduced, beyond the displacement field, and that the deformation
energy may depend of several (all)order gradients of all considered kinematical descriptors.

As the whole set of assumptions used by Cauchy in his Postulation of Continuum Mechanics is, as a
matter of facts, mixing constitutive assumptions and basic principles in such a way that they cannot be
clearly distinguished, it has been recognized that variational principles are a suitable tool for formulating
such generalized models [21].

The variational approach has the advantage of providing a rigorous formal theoretical framework, but
its application is confronted with the fact that they do not explicitly link the micro-morphology of the
medium to the effective parameters of the equivalent generalized continuous medium. The limitation is
lifted by the methods of asymptotic homogenization [30], developed at higher orders [5] or recasted for
highly contrasted media see e.g. [6,8]. The asymptotic method underlines the key role played by the scale
separation between the morphological cell and the phenomenon. In particular, it highlights the conditions
under which a description of Cauchy is sufficient or insufficient to describe the actual behaviour and shows
that strictly homogeneous media are relevantly described by Cauchy’s continua.

To find a conclusive argument in supporting the need of developing higher gradient continuum models,
more recently it has been shown that it is possible to conceive some micro-architectures whose macroscopic
behaviour is suitably modelled by a particular class of second-gradient continua. We specifically refer
to the so-called 2D pantographic micro-architectures, see e.g. [23]. Pantographic 2D continua are in
sense incomplete, or singular: in facts there are some second-order derivatives in the displacement on
which their deformation energy does not depend. Therefore, for pantographic continua the standard
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strong ellipticity arguments cannot be immediately applied: the necessary modification of the standard
treatment to prove some existence and uniqueness results are presented in [13]. The peculiar mechanical
behaviour of pantographic continua has been investigated both from the theoretical point of view and
experimentally. Conceived experiments were based on a careful design aimed to build micro-architectures
whose macroscopic behaviour could not be effectively described without the introduction of second-
gradient continuum models [24].

It has to be remarked that the theoretically designed properties of pantographic continua could be
verified experimentally by exploiting the 3D printing techniques and that one can conclude that it is
possible to actually construct ‘real’ metamaterials having their most desired properties (for an exhaustive
presentation of the state of the art in metamaterial design see [2]).

The study of their linearized elastic behaviour led to some interesting results: this study was made
easier by the identification of the constitutive parameters for the linearized homogenized macro-model
in terms of the relevant micro-mechanical properties and micro-architecture geometry. Mentioned iden-
tification was made possible by applying judiciously the asymptotic homogenization method of discrete
periodic media see [10,20], to pantographic micro-architectures, albeit the obtained macro-model results
to be highly anisotropic. It is possible to say that, at least in the particular case of linearized elasticity,
every macroscopic kinematical or constitutive parameter for pantographic continua can be precisely asso-
ciated to specific micro-geometry and micro-mechanical properties [7], and therefore that a full mechanical
understanding of the obtained macro-second-gradient model has been obtained. This understanding can
be applied to the description of real pantographic sheets, that are constituted by a finite number of
beams. In fact, it has to be remarked, in this context, that the range of applicability of homogenized
models seems to be larger than expected [31].
In this paper, also by exploiting the mentioned mechanical interpretation of macro-constitutive param-
eters, it is shown how the method of representation by means of Green’s functions is applicable to find
the linearized equilibrium configurations of pantographic continua.

The results available, in the literature, for isotropic second gradient continua could not be applied in
the considered instance, because (i), unlike the micro-heterogeneous materials most frequently studied,
the second-gradient effect is not here a perturbating effect but an effect of the same order as that of the
simple gradient, and (ii) because of the strong anisotropy of introduced deformation energy, that does
not depend on (bi-)Laplacian of displacement field. In fact in the case of the particular class of isotropic
second-gradient materials considered in [27], the analysis is made possible by the use of the proper-
ties of Helmholtz operators slightly corrected by bi-Helmholtz-type operators. The aforesaid differential
operators do not appear in the volume linear balance equations for 2D pantographic continua.

To be more precise, we find explicitly here the analytical expression for the fundamental solution of the
mentioned volume equations. The found Green’s functions, as theoretically expected, have a less ‘sharp’
singularity in the neighbourhood of the applied concentrated point forces, than the Green’s functions
of non-pantographic reticulated media (of similar morphology but having stiff instead hinged internal
connexion) described by single-gradient anisotropic continuum. This property had to be expected, and it
is obviously related to the capacity of second-gradient 2D continua to ‘support’ concentrated boundary
contact forces. It is very interesting to check that by combining four of the found fundamental solutions it
is possible to find an analytical approximate solution for the standard bias extension test for pantographic
2D continua.

Finally, based on the found expression for the novel Green’s function introduced, it is shown how
one can, in principle, solve the aforesaid equilibrium problem by using a suitably formulated boundary
elements method, whose formulation is based on the solution of calculated Fredholm integral equations.
The latter involves the classical integral of the first and second type.

All found analytical results can be physically interpreted by exploiting the micro-macro asymptotic
identification results previously obtained in [7]: these identification results, on the other hand, were a
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Fig. 1. Orthogonal pantographic sheet of periodic cell �x × �y . The lattice is made of orthogonal fibers (blue and grey lines)
connected by pivots (red points). The latter realizes a perfect connexion for force and a vanishing connexion for moments.
On the right, a picture of a pantographic lattice with �x = �y realized by 3D printing (Color figure online)

guidance in the deduction of presented analytical results and gave the possibility to verify and justify
heuristically every results presented.

2. Setting of the problem

We consider orthogonal pantographic lattices of periodic cell �x × �y with �x/�y = O(1), made of x- and y
-fibers of respective axial and bending stiffnesses ExAx, EyAy; ExIx, EyIy. �x/�y = O(1), The properties
of the x- and y fibers are of the same order, i.e. ExAx/(EyAy) = O(1) and ExIx/(EyIy) = O(1). The
specificity of the pantographic lattice lies in the fact that the orthogonal fibers are connected by pivots
that realize a perfect connexion for the forces but a vanishing connexion for the moments of the orthogonal
fibers (Fig. 1).

2.1. The differential operator of orthogonal pantographic lattices

The homogenization approach has made it possible to establish that in orthogonal pantographic lattices,
the axial force in a fibre varies in its length due to the transverse forces that arise by bending in the
orthogonal fibres to which it is connected, see [7]. This situation resulting from the pivot connections is
accompanied by the fact that the axial deformations of the fibres are much smaller than the distortions
(transverse gradient of the axial displacement). Thus, when projecting along �ex and �ey the balance
equations that govern the mechanical behaviour of considered orthogonal pantographic lattices, in absence
of body force and in small deformations regime, (see [7]) one gets:(Dx 0

0 Dy

) (
ux

uy

)
=

(
0
0

)
(2.1)

where the differential operators Dx, Dy are given by:

Dx =
ExAx

�y
∂2

xx − EyIy

�x
∂4

yyyy ; Dy =
EyAy

�x
∂2

yy − ExIx

�y
∂4

xxxx (2.2)

To make writing lighter, let’s introduce (i) the coefficients:

Ke
x =

ExAx

�y
> 0, Kb

x =
ExIx

�y
> 0 ; Ke

y =
EyAy

�x
> 0, Kb

y =
EyIy

�x
> 0

related, respectively, to the extensional and bending stiffnesses of the x- and y- fibers at the interpivot
scale, (ii) the intrinsic lengths ηx, ηy that relates the bending parameters of fibers a given direction and
the tension parameters of fibers the orthogonal direction:
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η2
x =

EyIy

ExAx

�y

�x
=

Kb
y

Ke
x

; η2
y =

ExIx

EyAy

�x

�y
=

Kb
x

Ke
y

(2.3)

and (iii) the normalized differential operators D∗
x, D∗

y defined as follows:

D∗
x = ∂2

xx − η2
x∂4

yyyy =
1

Ke
x

Dx ; D∗
y = ∂2

yy − η2
y∂4

xxxx =
1

Ke
y

Dy (2.4)

Then, the balance equations reads:

Ke
xD∗

x(ux)ex + Ke
yD∗

y(uy)ex = 0

that produces the following normalized equations in each direction:

D∗
x(ux) = ux,xx − η2

xux,yyyy = 0 : force balance along �ex normalized byKe
x (2.5)

D∗
y(ux) = uy,xx − η2

yuy,xxxx = 0 : force balance along �ey normalized byKe
y (2.6)

Since the equations for the variables ux and uy are uncoupled, they can be treated independently. Focusing
on the equilibrium along �ex, the Eq. (2.5)-a can be rewritten as:

D∗
x(ux) = (∂2

xx − η2
x∂4

yyyy)ux = (∂x − ηx∂2
yy)(∂x + ηx∂2

yy)ux = (∂x + ηx∂2
yy)(∂x − ηx∂2

yy)ux = 0

(2.7)

or equivalently:

D∗
x(ux) = D−

x D+
x (ux) = D+

x D−
x (ux) = 0

where D∗
x is decomposed into the two differential operators D+

x , D−
x defined below:

D+
x = ∂x + ηx∂2

yy ; D−
x = ∂x − ηx∂2

yy

2.2. Analogies with diffusion processes

The operators D+
x and D−

x are analogous to the transient 1-D diffusion differential operator ∂t + η∂2
yy,

where the time variable t is replaced by the space variable x. Thus, D−
x would correspond to a physical

diffusion (e.g. thermal) process with positive diffusivity ηx, while D+
x would correspond to a non-physical

(because it is non-causal) diffusion process with negative diffusivity −ηx. The temporal causality require-
ments do not apply to the spatial domain, and the two operators D+

x and D−
x are physically acceptable

for the problem under study.
Note also the direct analogy of D+

x and D−
x with the 2D-steady state diffusion-advection problems of

operator ±v∂x +D∂2
yy, where the diffusion coefficient D is replaced here by the bending parameter Kb

y of
the y-fibers and operates in the y-direction, while the advection of velocity ±v becomes the extensional
parameter Ke

x of the x-fibers, which operates in the +x-direction for D−
x , and in the−x-direction for D+

x .

3. Green’s functions

The Green’s function Gx(x, y)�ex associated with the normalized �ex-balance Eq. (2.7) is the displacement
oriented along �ex for a point force normalized by Ke

x located at the origin (x = y = 0) and oriented along
�ex. Hence, by definition:

D∗
x(Gx)�ex + δ(x, y)�ex = 0 i.e. Gx,xx − η2

xGx,yyyy + δ(x, y) = 0 (3.1)

where δ(x, y) = δ(x)δ(y) is the 2D Dirac distribution. In terms of distribution, (3.1) reads (∗ stands for
the convolution): (D∗

x(δ)
) ∗ Gx + δ = 0 (3.2)
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that means that Gx is the inverse of convolution of the distribution D∗
x(δ) = δ,xx − η2

xδ,yyyy.
Similarly the Green’s function Gy(x, y)�ey associated with the �ey-balance is the displacement oriented

along �ey resulting from a point force (normalized by Ke
y) located at the origin (x = y = 0) and oriented

along �ey, so that:

D∗
y(Gy)�ey + δ�ey = 0 i.e.

(D∗
y(δ)

) ∗ Gy + δ = 0 (3.3)

3.1. Green’s functions for doublet of force and doublet of moment

As a first step in the determination of the Green’s functions Gx(x, y) solution of (3.1), let us consider
the intermediary problem that consists in identifying the functions g+

x (x, y) and g−
x (x, y), respectively,

solution of:

D+
x (g+

x ) + δ(x, y) = 0 and D−
x (g−

x ) + δ(x, y) = 0

According to the classical expression of the spatio-temporal Green’s function of the heat equation, g−
x

reads as follows, see e.g. [11], where H(x) is the step function:

g−
x (x, y) = H(x)

exp( −y2

4ηxx )√
4πηxx

= H(x)
exp( −y2

4ηx|x| )√
4πηx|x| so that g−

x (x, y) = 0 for x < 0

As for g+
x (x, y), one notices that:

−D+(g+
x ) = −(∂x + ηx∂2

yy)(g+
x (x, y)) = δ(x, y)

Thus, changing x into −x yields:

−(−∂x + ηx∂2
yy)(g+

x (−x, y)) = D−(g+
x (−x, y)) = δ(−x, y) = δ(x, y)

so that: g+
x (−x, y) = −g−

x (x, y) and consequently:

g+
x (x, y) = −H(−x)

exp( y2

4ηxx )√−4πηxx
= −H(−x)

exp( −y2

4ηx|x| )√
4πηx|x| so that g+

x (x, y) = 0 for x > 0

Now, consider the linear combination α+g+
x + α−g−

x . By construction:

D∗
x(α+g+

x + α−g−
x ) = D−

x D+
x (α+g+

x + α−g−
x )

= α+D−
x D+

x (g+
x ) + α−D+

x D−
x (g−

x ) = α+D−
x (δ(x, y)) + α−D+

x (δ(x, y))

Consequently:

D∗
x(gx) = (α+ + α−)∂xδ − ηx(α+ − α−)∂2

yyδ

Therefore, considering gx = (g+
x + g−

x )/2 yields:

D∗
x(gx) + ∂xδ = 0 ; gx(x, y) =

sgn(x)
2

exp( −y2

4ηx|x| )√
4πηx|x| (3.4)

Similarly, considering hx = (−g+
x + g−

x )/2 gives:

D∗
x(hx) + ∂yyδ = 0 ; hx(x, y) = − 1

2ηx

exp( −y2

4ηx|x| )√
4πηx|x| (3.5)

Recalling that we focus on the balance along �ex:
– gx�ex is the displacement resulting from the normalized loading ∂xδ�ex. The derivative of the Dirac

along x describes a doublet of opposite normalized �ex-point forces applied at the origin in the
x-direction.
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– hx�ex is the displacement resulting from the normalized loading ∂yyδ�ex. The double derivative of
the Dirac along y describes a doublet of opposite normalized in-plane point moments applied at the
origin.

At this stage, we have established the response of the pantographic lattice to particular doublet of point
loadings. As the problem treated is linear (linear behaviour and small deformation), the principle of
superposition applies. Therefore, by integration, we can deduce the Green’s function for a normalized
point force Gx and a normalized in-plane point moment, Hx.

3.2. Normalized Green’s functions

3.2.1. Green’s function Gx(x, y)�ex for a normalized point force δ�ex . The Green’s function Gx is asso-
ciated with the normalized force δ�ex, applied at the origin and satisfies:

D∗
x(Gx) + δ = 0 (3.6)

On the other hand, we know that gx is associated with the doublet of normalized forces ∂xδ�ex applied at
the origin. Consequently, comparing (3.4) and (3.6) one deduces by linearity that gx and Gx are related
by (±dX denotes the position of the opposite forces of the doublets):

gx(x, y) = lim
dX→0

Gx(x − dX, y) − Gx(x + dX, y)
2dX

= −∂xGx(x, y) (3.7)

which means that the x-displacement Gx is obtained by integrating −gx. It seems a priori natural to
impose a zero displacement for x → −∞. That yields:

G∞
x (x, y) = −

∫ x

−∞
gx(u, y)du (3.8)

which can be rewritten as follows, as gx(x, y) is odd with respect of the variable x,

G∞
x (x, y) =

∫ ∞

−x

gx(u, y)du =
∫ |x|

−x

gx(u, y)du +
∫ ∞

|x|
gx(u, y)du =

∫ ∞

|x|
gx(u, y)du

Hence, G∞
x (x, y) takes the following expression that is even with respect to both x and y variables:

G∞
x (x, y) =

1
2

∫ ∞

|x|

exp( −y2

4ηxu )√
4πηxu

du (3.9)

However, G∞
x is difficult to handle as it is not bounded. This feature is consistent with the fact that we

consider an infinite domain and that the deformation is O(sgn(x)/
√|x|) for large |x|. This leads to replace

the condition at infinity, by the condition of zero x-displacement on x = −L < 0 (and consequently the
x-displacement is also null on x = L as gx is odd). From similar calculations:

GL
x (x, y) =

1
2

∫ L

|x|

exp( −y2

4ηxu )√
4πηxu

du (3.10)

which takes finite values for any finite |x|. As any L can be chosen, one can take L = 0 which avoid the
introduction of the arbitrary constant L. Then we set:

Gx(x, y) = −1
2

∫ |x|

0

exp( −y2

4ηxu )√
4πηxu

du (3.11)
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and obviously, GL
x (x, y) = Gx(x, y) − Gx(L, y). Furthermore, Gx has the following explicit expression 1:

Gx(x, y) = −
√

|x|
4πηx

exp
( −y2

4ηx|x|
)

+
|y|
4ηx

erfc
( |y|√

4ηx|x|
)

(3.12)

or equivalently:

Gx(x, y) =
|y|
4ηx

(
− exp(−ξ2

x)√
π|ξx| + erfc(|ξx|)

)
(3.13)

where we use the notations:

ξx =
y√

4ηx|x| ; erf(u) =
2√
π

∫ u

0

exp(−u2)du ; erfc(u) = 1 − erf(u)

The Green’s function Gx(x, y), (3.13), in the infinite pantographic sheet, is such that the displacement
Gx�ex vanishes on the fiber x = 0. This corresponds to the situation where the x-displacement of the lattice
is prevented on the line x = 0, i.e. on the y-fiber that crosses the point of application of the normalized
point force δ�ex and is orthogonal to it.

For a normalized �ex-point force located on M(X,Y ), the displacement will be given by Gx(x−X, y −
Y )�ex, with a null x-displacement along the line x = X.

By the superposition principle, the field of displacement for two normalized point x-forces fP δP�ex and
fQδQ�ex, respectively, located on the points P (XP , YP ) and Q(XQ, YQ), is given by:

�u(x, y) = (fP Gx(x − XP , y − YP ) + fQGx(x − XQ, y − YQ))�ex

and �u(x, y) − �u(XA, YA) yields a a zero x-displacement on the point A(XA, YA).

3.2.2. Green’s function Gy (x, y)�ey for a normalized point force δ�ey . The case of a normalized point
force in the y-direction can be treated similarly by inverting x and y and replacing ηx, ExAx by ηy, EyAy.
Thus, the Green’s function for a normalized point force δ �ey is the y-displacement GF

y �ey defined by:

Gy(x, y) =
|x|
4ηy

(
− exp(−ξ2

y)√
π|ξy| + erfc(|ξy|)

)
; ξy =

x√
4ηy|y| (3.14)

solution of:

D∗
y(Gy) + δ = 0 (3.15)

and such that the y-displacement of the lattice vanishes on the line y = 0.

1Since gx(x, y) is odd on x and even on y, Gx(x, y) is even on both x and y so that Gx(x, y) = Gx(|x|, |y|). Thus, it is

sufficient to focus on the case where consider x and y positive. In that case, setting a2 = y2

4ηu
one has,

∫ L

x

exp(−y2

4ηu
)

√
4πηu

du =
−y

4η
√

π

∫ y√
4ηL

y√
4ηx

exp(−a2)

a2
da =

−y

4η
√

π

{ [− exp(−a2)

a

] y√
4ηL

y√
4ηx

− 2

∫ y√
4ηL

y√
4ηx

exp(−a2)da)

}

Then taking L = 0, one obtains the following expression when x > 0 and y > 0:

Gx(x, y) =
−y

4η
√

π

{ exp(( y√
4ηx

)2)

y√
4ηx

− 2

∫
y√
4ηx

+∞ exp(−a2)da)

}

= −
√

x

4πη
exp(

−y2

4ηx
) +

y

4η

(
1 − 2√

π

∫ y√
4ηx

0
exp(−a2)da

)
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3.2.3. Green’s matrix G. If a physical (i.e. non-normalized) point force �F = Fxδ�ex + Fyδ�ey is applied at
the origin, the vectorial field of displacement such that the x-displacement vanishes on the line x = 0 and
the y-displacement vanishes on the line y = 0, reads:

�UG(x, y) =
Fx

Ke
x

Gx�ex +
Fy

Ke
y

Gy�ex

or under matrix form, that highlights the diagonal character of the Green’s matrix G

UG = G.F ; G =

(
Gx = 1

Ke
x
Gx ; 0

0 ; Gy = 1
Ke

y
Gy

)
(3.16)

Remark. �UG(x, y) − �UG(X, y)�ex − �UG(x, Y )�ex + �UG(X,Y )�ex yields a field of zero x-displacement on the
line x = X and of zero y-displacement on the line y = Y

3.3. Features of the Green’s function Gx(x, y)�ex and Gy (x, y)�ex

Since Gx(x, y)�ex is the field of displacement, then ∂xGx(x, y) = −gx(x, y) describes the field of exten-
sion/contraction of the x-fibers, (and, multiplied by the axial stiffness of the x-fibers it gives the field of
tension/compression in these fibers). Thus:

εF
xxx(x, y) = −gx(x, y) = − sgn(x)

2

exp( −y2

4ηx|x| )√
4πηx|x| ; εF

xxx(x, 0) = − sgn(x)
2
√

4πηx|x| (3.17)

Expressions (3.17) show that the tension of the fiber y = 0 presents a singularity at the origin where the
force is applied. In contrast, there is no singularity at x = 0 for any other fibers y �= 0. Besides, apart
from the origin, the extension of the fibers y �= 0 becomes close to that of the fiber y = 0 provided that
|x| � y2/(4ηx).

These features result from the bending stiffness of the constitutive beam elements that enables to
distribute within the whole pantographic array the response to the point force. Indeed, in the case of
null bending stiffness, then the single fiber y = 0 would undergo the force. Thus, it would experience
a uniform extension (or compression) opposite on each side of the loading point with a step singularity
on this point. Unlike standard elastic media where the singularity arises in any directions around the
loading, it is focused here in the single direction corresponding to the common orientation of the fiber
and of the loading.

Note also that ∂yyGx gives the curvature yκF
x of the y-oriented fibers induced by the normalized

force δ�ex, (and the moment that they undergo when multiplied by their bending stiffness constant). It’s
expression can be obtained either by double y-derivation or observing that as Gx is solution of (3.6), then
∂yyGx satisfies Eq. (3.5) whose the solution is hx(x, y). Consequently:

yκF
x (x, y) = ∂yyGx(x, y) = − 1

2ηx

exp( −y2

4ηx|x| )√
4πηx|x| = hx(x, y) (3.18)

Similarly, under a normalized �ey-point force, the deformation in extension of the y-fibers and the
curvature of the y-fibers are, respectively, given by εF

yyy = −gy and xκF
y = ∂xxGy.

Knowing the deformation in extension of the x-fibers and the curvature of the y-fibers, one deduces
the density of elastic energy of deformation wF developed by a normalized point force:

wF = Ke
x(εF

xxx)2 + Kb
x(yκF

x )2 = Ke
x

(
(εF

xxx)2 + η2
x(yκF

x )2
)

(3.19)

and from (3.17) and (3.18) one notices that the energy is equally distributed between the tension of the
x-fibers and the bending of the y-fibers, independently of the fact that the x- and y-fibers have distinct
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Fig. 2. Green’s function Gx for a normalized �ex point-force applied on the origin of an infinite pantographic sheet. Left:
field of displacement Gx, Center: field of extension of the x-fibers εF

xxx Right: density of elastic energy of deformation by

extension of the x-fibers and by bending of the y-fibers, wF . The plot displays the square zone [50ηx × 50ηx]

properties. The density of energy wF and WF for a normalized point force and, respectively, a physical
point force Fxδ�ex reads:

wF (x, y) =
Ke

x

2

exp( −y2

2ηx|x| )

4πηx|x| ; WF (x, y) =
F 2

x

2Ke
x

exp( −y2

2ηx|x| )

4πηx|x| (3.20)

In Fig. 2, the Green’s function Gx and the associated fields of deformation εF
xxx and of energy wF are

displayed. One notices the strong directionality of the response along the loaded fiber together with the
perpendicular “parabolic” diffusion smoothing related to the bending of the orthogonal fibers.

3.4. Green’s function Hx(x, y) for a normalized point moment ∂yδ�ex

The Green’s function hx�ex associated with the doublet of normalized moments ∂yyδ�ex and the Green’s
function Hx�ex associated with a normalized moment ∂yδ�ex are related by (±dY denotes the position of
the opposite moments):

hx(x, y) = lim
dY →0

Hx(x, y − dY ) − Hx(x, y + dY )
2dY

= −∂yHx(x, y)

Consequently, imposing a zero x-displacement on the line y = 0 yields:

Hx(x, y) = −
∫ y

0

hx(x, y)dy =
1

2ηx

∫ y

0

exp( −y2

4ηx|x| )√
4πηx|x| dy =

1
4ηx

erf
(

y√
4ηx|x|

)
(3.21)

Thus, the x-component of the displacement is bounded and reach ±1/(4ηx) when y → ±∞. Besides,
εM

xxx = ∂xHx and yκM
x = ∂yyHx are, respectively, the extension of the x-fibers and the curvature of the

y-oriented fibers induced by the normalized moment ∂yδ�ex, and, multiplied by the corresponding stiffness
constants, the tension and the moment that they undergo. Their expressions are

εM
xxx = ∂xHx = − 1

4ηx

y

x

exp( −y2

4ηx|x| )√
4πηx|x| ; yκM

x = ∂yyHx = η−1
x εM

xxx

Hence, as with a point-force, the energy of deformation for a point-moment is equally distributed between
the tension of the x-fibers and the bending of the y-fibers.

Note that two types of moments must be considered depending on the fact that they act either on the
x- or on the y-fibers. Thus, we have similarly Hy(x, y) = 1

4ηy
erf

(
x√

4ηy|y|
)
.
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3.5. Synthesis of obtained results

1) organize in a common pattern the four herebelow equation (3.22 to 3.25) 2) introduce in each case
a larger space after ‘=0’, we have the following explicit solutions for the displacement field �u = ux�ex

governed by the �ex-force balance with different �ex point source distributions normalized by Ke
x:

�ex − force

D(Gx) + δ = 0, Gx(x, y) = − |y|
4ηx

(
−exp(−ξ2

x)√
π|ξx| + erfc(|ξx|)

)
(3.22)

Moment of �ex − force

D(Hx) + ∂yδ = 0, Hx(x, y) =
1
4
erf(ξx) (3.23)

x-Doublet of �ex − force

D(gx) + ∂xδ = 0, gx(x, y) =
sgn(x)

2
exp(−ξ2

x)√
4πηx|x| ; ξx =

y√
4ηx|x| (3.24)

y-Doublet of Moment of �ex − force

D(hx) + ∂2
yyδ = 0, hx(x, y) = − 1

2ηx

exp(−ξ2
x)√

4πηx|x| (3.25)

These solutions are linked by the following relations:

Hx = −∂yGx ; gx = −∂xGx ; hx = −∂yHx = ∂2
yyGx ; ∂ygx = ∂xHx

Similar expressions are obtained for �ey point source distributions normalized by Ke
y , by inverting x

and y, so that ηx and ξx become ηy and ξy.

4. Some loading simulations of pantographic sheet

Consider an infinite pantographic sheet of square period (�x = �y) with identical x- and y-fibers, hence
ηx = ηy. In that case Gx(x, y) = Gy(y, x).

4.1. Equal-axis opposite forces

Consider the case of two opposite normalized point-forces (Fig. 3-1), namely δ(x+d)δ(y)�ex−δ(x−d)δ(y)�ex,
that are applied on the same fiber y = 0 and applied at a distance 2d. The field of displacement and of
energy of deformations read:

�u(x, y) = (Gx(x − d, y) − Gx(x + d, y))�ex ; W (x, y) =
(
wF

x (x − d, y) + wF
x (x + d, y)

)
These expressions are displayed in Fig. 4 for forces distant 2d = 20ηx.

As expected, the strong directionality of the response is observed with a low lateral spread. Displace-
ments at infinity tend towards zero. The deformation is in extension between the two loading points and
in contraction outside. The deformation energy is concentrated in the vicinity of the loading points.

4.2. Uniform extension along the fiber direction

On the infinite sheet, one isolates mentally a rectangular strip of width 2a in the direction
−→
E 1 = (�ex −

�ey)/
√

2 diagonal to the fibers, and of length 2h in the second diagonal direction
−→
E 2 = (�ex + �ey)/

√
2. In
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Fig. 3. Different forces loadings. From left to right. Equal axis loadings: opposite x-forces (see also Fig. 4); opposed uniform
axial loading (see also Fig. 5); Bias loading (see also Fig. 7)

Fig. 4. Infinite pantographic sheet loaded by two opposite point-forces applied on the same fiber y = 0 and applied at the
distance 2d = 20ηx. Left: displacement, Center: extension of the x-fibers Right: density of energy. The plot displays the
square zone [50ηx × 50ηx]

the (�ex, �ey) frame, the position of the four corners A,A′, B,B′ of the strip are:
−→
OA = X�ex + Y �ey ;

−−→
OA′ = Y �ex + X�ey ;

−−→
OB′ = −X�ex − Y �ey ;

−−→
OB = −Y �ex − X�ey

with X = (h+a)/
√

2 and Y = (h−a)/
√

2. In the following numerical examples of this section X = 50ηx

and Y = 30ηx which corresponds to a strip with h = 4a and a = 10
√

2ηx.
The uniform loading corresponds to opposite �ex normalized point-forces distant from the distance 2d

and applied uniformly in between the fibers −b < y < b (Fig. 3-2). The field of displacement and of
energy of deformations read:

�u(x, y) = �ex

∫ b

−b

(
Gx(x − d, y + v) − Gx(x + d, y + v)

)
dv

W (x, y) =
∫ b

−b

(
wF

x (x − d, y + u) + wF
x (x + d, y + u)

)
dv

These expressions are displayed in Fig. 5 (to be compared with Fig. 4) for forces distant of 2d = 20ηx

and a loading zone 2b = 40ηx. On notices the quasi-uniform extension inside the loading zone and the
fast vanishing of the deformation perpendicularly to the force direction.
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Fig. 5. Uniform tension test (details in the text). Same legend as in Fig. 4

Fig. 6. Infinite pantographic sheet loaded by a diagonal point-force �F = F (�ex +�ey)/
√

2. Left: modulus of the displacement,
Center: quadratic mean of the extension of the x-fibers and y-fibers. Right: density of energy. The plot displays the square
zone [50ηx × 50ηx]

4.3. Diagonal point-force

For a point-force oriented along the diagonal of the square lattice, i.e. δ(�ex +�ey)/
√

2 the field of displace-
ment and the energy of deformation are given by

�u(x, y) = F (Gx(x, y)�ex + Gy(x, y)�ey) /
√

2; W (x, y) = F

(
wF

x (x, y) + wF
y (x, y)

)

These fields are displayed in Fig. 6. Although the point force is oriented diagonally to the fibres, its effect
is essentially transmitted in the directions of the fibres with low bending diffusion, perpendicular to the
fibres. Comparison with the Fig. 2 clearly shows that the effect of the diagonal force is simply the sum
of the effects of its two components in the direction of the fibres.

4.4. Discrete bias extension loading

The discrete bias loading is realized through four normalized point-forces distributed as follows (Fig. 3-3).
On the points A,A′ one applies a point-force oriented in the diagonal direction

−→
E 2 = F (�ex +�ey)/

√
2 and

on points B,B′ one applies a point-force in the opposite direction −−→
E 2.
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Fig. 7. Discrete bias loading (details in the text). Left: modulus of the displacement within the zone [100ηx × 100ηx],
Center: the same, zoomed on [50ηx × 50ηx]. Right: density of energy on the zone [100ηx × 100ηx]

Decomposing the forces according to the fibers directions, the displacement field is given by:

�u(x, y) =
�ex√

2

(
Gx(x − X, y − Y ) + Gx(x − Y, y − X) − Gx(x + X, y + Y ) − Gx(x + Y, y + X)

)

+
�ey√

2

(
Gy(x − X, y − Y ) + Gy(x − Y, y − X) − Gy(x + X, y + Y ) − Gy(x + Y, y + X)

)

(4.1)

By construction, �u(0, 0) = �0; by symmetry, the displacement on the line x = y is along the direction−→
E 1 = (�ex − �ey)/

√
2 and the displacement on the line x = −y is along the direction

−→
E 2 = (�ex − �ey)/

√
2.

Figure 7 shows the distribution of the modulus of displacement and of the energy corresponding to such a
type of loading. The observed displacement and deformation is determined by the fact that each diagonal
force is mainly transferred in the direction of the two orthogonal fibres. The energy is concentrated around
the point of application of the forces.

5. Pantographic array versus rigidly connected array

The highly anisotropic second-gradient behaviour of pantographic lattices results from two features,
namely the strong (bi-)directionality related to the fiber orientations and the pivot connexions between
fibers. As demonstrated in [16,20], if the pivots are replaced by rigid connexions then the arrays are
highly anisotropic and behaves as simple gradient medium ruled by the classical Cauchy stresses. Pivots
are introduced in the design of pantographic metamaterials in order to have an high contrast in the
mechanical properties of the micro-architectures: extremely soft and extremely stiff micro-deformations
modes of the periodic cell are the cause of a second-gradient macro-behaviour (for further details see
[7,18]).

A simple way to highlight the paramount importance of the nature of the connexions is to compare the
Green’s functions of two identical orthogonal fiber array, one having pivot connexions, the other having
rigid connexions.

To this aim, let us consider again the orthogonal �x × �y-periodic lattice made of x- and y-fibers
of respective axial and bending stiffnesses ExAx, EyAy; ExIx, EyIy with ExAx/(EyAy) = O(1) and
ExIx/(EyIy) = O(1). However, in contrast to the pantographic array the x- and y-fibers are rigidly
connected at there crossing points. In small deformations, the effective constitutive law of such lattice
reads as follows, [16,20], where σxx, σxy, σyy are the components of the 2D symmetric stress tensor σ

expressed in the (�ex, �ey) frame and ux, uy the component of the displacement �u in the same frame:
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σyy = Ke
yuy,y; σxy = σyx = M(ux,y + ux,y)/2 (5.1)σxx = Kx

eux,x;

The shear parameters are given by:

1
M

=
1

Mx
+

1
My

; Mx =
12
�2x

Kb
x ; My =

12
�2y

Kb
y (5.2)

Ke
x and Ke

y are directly related to the tension of the fiber, while the effective shear modulus M encapsulates
the combined local bending of the fibers in both directions. Consequently, the shear modulus is much
smaller than the axial moduli. Indeed, dropping the x or y indices, M/Ke = O( I

A�2 ) = O( A
�2 ) � 1 since√

A
� is nothing but the inverse of the slenderness ratio of the fiber taken over the cell length �. In absence

of body force, the balance equation of the array reads: �div(σ) = �0. Now, in presence of a point force
�Fδ(x, y) located at the origin, one has �div(σ) = �Fδ(x, y), that yields the following differential system to
be compared with (2.1):(

Ke
x∂2

xx + M∂2
yy ; M∂2

xy

M∂2
xy ; Ke

y∂2
yy + M∂2

xx

)(
UGx

UGy

)
+

(
Fx

Fy

)
δ(x, y) = 0 (5.3)

Unlike the pantographic array, the variables UGx and UGy are coupled, and the balance equations in
the two directions must be treated conjointly. The coupling results from the shear parameter M inherited
from the local bending. For the pantographic array, the free connection for the moments makes that
the shear coupling disappears. However, because of the stiff connection for the forces, the bending effect
remains on the usual form of a fourth derivative term in the balance equation in both fiber directions.

The set (5.3) corresponds to the balance equations of a specific 2D orthotropic medium, in which,
using the Voigt’s notations, C11 = Ke

x, C22 = Ke
y , C66 = M and C12 = 0. The Green’s functions have

been already established in the general case where C12 �= 0, [19,28]. Introducing the simplification due
to C12 = 0 yields the following symmetric Green’s matrix G:

�UG = G. �F ; G =
1

2(a1 − a2)

(
−a1

b1
ln

(
ρ2
1

)
+ a2

b2
ln

(
ρ2
2

)
; arctan(yb1

x ) − arctan(yb2
x )

arctan(yb1
x ) − arctan(yb2

x ) ; − b2
a2

ln
(
ρ2
2

)
+ b1

a1
ln

(
ρ2
1

)
)

where

ρ2
i =

x2

bi
+ y2bi ; bi = 4

√
Ke

xai

Ke
y

and a1 and a2 are the roots of the second-degree equation:

a2 + (2 − Ke
xKe

y

M2
)a + 1 = 0 therefore a1a2 = 1

Then, for i = 1, 2

ai =
Ke

xKe
y

2M2

(
1 − 2M2

Ke
xKe

y

+ (−1)i+1

√
1 − 4M2

Ke
xKe

y

)
;

√
ai =

√
Ke

xKe
y

2M

(
1 + (−1)i+1

√
1 − 4M2

Ke
xKe

y

)

(5.4)

The salient features of the fundamental solutions given by the Green’s matrix are identical whatever
the parameters ai. Thus, to facilitate the comparison with the Green’s matrix of the pantographic array
(3.13)–(3.14)–(6.2) we focus on the case where the lattice is square, i.e. �x = �y = �, the x- and y-fibers
are identical, i.e. ηx = ηy = η and Ke

x = Ke
y = Ke, so that, referring to the intrinsic length of the

pantographic array, M/Ke = η2/(6�2). Using limit expressions that corresponds to M � Ke, we have in
that case:
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Fig. 8. Field of deformation in a rigidly connected array undergoing a �ex-point force. Left: εxx, Center: εxy , Right: εyy .
The plot is drawn for Ke/M = 5

√
a1 ≈ Ke

M
� 1 ;

√
a2 ≈ M

Ke
� 1 ; bi ≈ 4

√
ai

ρ2
1 ≈

√
M

Ke
x2 +

√
Ke

M
y2 ; ρ2

2 ≈
√

Ke

M
x2 +

√
M

Ke
y2

and

G ≈ M

2π(Ke)2

⎛
⎝−(Ke

M )3/2 ln(ρ2
1) + ( M

Ke )3/2 ln(ρ2
2) ; arctan( y

x

√
Ke

M ) − arctan( y
x

√
M
Ke )

arctan( y
x

√
Ke

M ) − arctan( y
x

√
M
Ke ) ; ( M

Ke )3/2 ln(ρ2
1) − (Ke

M )3/2 ln(ρ2
2)

⎞
⎠

Considering the response under a �ex-point force, one notices that the y-component of the displacement
is not null but bounded, while the x-component presents a logarithmic singularity in any direction around
the loading. Beside, the strain tensor reads:

ε ≈ M

2π(Ke)2

(
−Ke

M
2x
ρ2
1

+ M
Ke

2x
ρ2
2

; −(1 + 2(Ke

M )2) y
ρ2
1

+ (1 + 2( M
Ke )2) y

ρ2
2

−(1 + 2(Ke

M )2) y
ρ2
1

+ (1 + 2( M
Ke )2) y

ρ2
2
) ; x

ρ2
1

− x
ρ2
2

)

The high anisotropy of the response is evidenced in Fig. 8 where the three terms εxx, εxy, εyy, are
displayed and show a strong �ex-directivity. It is worth mentioning that the axial deformation εxx along
the force direction significantly differs from that of the pantographic array, cf. (3.17). Indeed, the tension
of any fiber presents a singularity O(1/x) instead of the singularity O(1/

√|x|) for the single fiber y = 0.
Thus, meanwhile the rigidly connected array is highly anisotropic, the effect of directionality is even
magnified in pantographic arrays. Furthermore, the pivots smoothen the singularity in two manner, i.e.
by reducing O(1/x) into O(1/

√|x|), and by limiting drastically its spatial distribution. The smoothening
in magnitude is well known for isotropic second-gradient material but, up to our knowledge, the spatial
effect was not yet evidenced.

6. Integral representation for pantographic array

The advantage of Green’s functions, apart from providing exact solutions for particular loads, is that
it gives access to exact integral representations of the fields. These formulations, which only involve
boundary values, allow numerical solutions to boundary problems by solving integral equations. This
approach has two advantages. On one hand, as the analytical approach to the problem is preserved
since the local equations are already integrated, the only approximations appear at the boundary. This
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difference with respect to finite elements where the equations are solved at any point of the discretized
medium is particularly interesting for complex media for which the problems can be ill-conditioned. On
the other hand, the resolution only requires the discretization on the boundary. The computational burden
involved in considered numerical problem is therefore greatly reduced.

The aim of this section is to establish the integral representation for pantographic 2D continua.
Taking into account that the components ux and uy are uncoupled, as well as the �ex and �ey balance

equations, we can focus on the field ux governed by the balance along �ex; uy could be treated similarly
considering the balance along �ey. Here we will use the non-normalized equations of equilibrium that allow
the physical sense to appear more easily.

6.1. Setting the problem in the framework of distributions theory

In a finite pantographic sheet, we specify a domain Ω having a smooth border Γ = ∂Ω. Let us consider
that the domain Ω undergoes an �ex-balanced non-null continuous twice derivable field ux, whilst outside
of Ω the field is null, i.e. ux(P ′) = 0 for P ′ /∈ Ω. In addition, we assume for simplicity that the sheet is
free of internal loading (this assumption alleviates the developments but is not essential). Now, on the
boundary Γ the field ux is generally not continuous, then its derivatives has to be considered in the sense
of distributions. This leads us to introduce the distribution Ux(x, y) defined by

Ux(P ) = ux(P ) forP ∈ Ω; Ux(P ′) = 0 forP ′ /∈ Ω

The differential equation Dx(ux) = 0 rewritten in the framework of distributions reads:

Dx(δ) ∗ Ux = Dx(δ) ∗ ux = Dx(ux) = 0 in Ω ; Dx(δ) ∗ Ux = Dx(δ) ∗ 0 = 0 out Ω

However, the distribution Dx(δ) ∗ Ux does not vanish on the boundary and must be determined.
To this purpose, let us recall that on any point Q of Γ, the x-derivative of the discontinuous distribution

U through Γ of outward normal �nQ reads:

∀Q ∈ Γ ∂xδ ∗ UQ = ∂xUQ = [U ]Q�nQ.�exδΓ + (∂xu)Q

where δΓ is the line distribution of Dirac over Γ, and [U ]Q is the jump through Γ taken in the direction
of the outward normal, hence [U ]Q = 0 − uQ. Consequently, denoting unambiguously �nQ.�ex by nx:

∂xUx = −uxnxδΓ + ∂xux

Applying the same rule for the second derivative yields:

∂2
xxUx = ∂x (−uxnxδΓ + ∂xu) = Se

x + ∂2
xxux (6.1)

Se
x = −(uxδΓ,x + ux,xδΓ)nx (6.2)

where Se
x is a line distribution defined over the border Γ. Similarly, introducing the line distribution Sb

y

over Γ (ny stands for �nQ.�ey):

∂4
yyyyUx = Sb

y + ∂4
yyyyux (6.3)

Sb
y = −(uxδΓ,yyy + ux,yδΓ,yy + ux,yyδΓ,y + ux,yyyδΓ)ny (6.4)

Bringing these results together yields:

D(δ) ∗ Ux = Ke
x∂2

xxUx − Kb
y∂4

yyyyUx = Ke
xSe

x − Kb
ySb

y + Ke
x∂2

xxux − Kb
y∂4

yyyyux

Furthermore, ∂2
xxux and ∂4

yyyyux are values inside Ω taken on the border and as such Ke
x∂2

xxux −
Kb

y∂4
yyyyux = D(u) = 0. Thus, Dx(δ) ∗ Ux is the singular distribution on Γ given by:

Dx(δ) ∗ Ux = Ke
xSe

x − Kb
ySb

y (6.5)
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Expliciting Se
x and Sb

y, this expression is reworded as follows:

Dx(δ) ∗ Ux = ux(−Ke
xδΓ,xnx + Kb

yδΓ,yyyny) + (−Ke
xux,xnx + Kb

yux,yyyny)δΓ

+Kb
yux,ynyδΓ,yy + Kb

yux,yynyδΓ,y (6.6)

6.2. Integral representation

The non-normalized Green’s function Gx, is by construction the inverse of convolution of the distribution
Dx(δ). Therefore, we have, using the commutativity and associativity of the convolution:

Gx ∗ (Dx(δ) ∗ Ux

)
=

(
Gx ∗ Dx(δ)

) ∗ Ux =
(Dx(δ) ∗ Gx

) ∗ Ux = −δ ∗ Ux = −Ux

Consequently, using the expression (6.5) of Dx(δ) ∗ Ux:

Ux = −Gx ∗ (Ke
xSe

x − Kb
ySb

y) = −(Ke
xSe

x − Kb
ySby) ∗ Gx (6.7)

and since Se
x and Sb

y are singular distributions on Γ one obtains from the definition of Ux inside and
outside Ω:

∀P ∈ Ω ux(P ) = − ∫
Q∈Γ

(
Ke

xSe
x(Q)Gx(P−Q) − Kb

ySb
y(Q)Gx(P−Q)

)
dl

∀P ′ /∈ Ω 0 = − ∫
Q∈Γ

(
Ke

xSe
x(Q)Gx(P ′−Q) − Kb

ySb
y(Q)Gx(P ′−Q)

)
dl (6.8)

The integral representation can be interpreted according to the Huygens–Fresnel principle: the response
in any internal or external point of Ω results from a density of fictitious source located on the boundary
Γ. The physical meaning of these sources appears clearer by inserting the expressions of different terms
as given by (6.6):

∀P ∈ Ω ux(P ) =
∫

Q∈Γ

(
− (uxnx)(Q)(Ke

xG,x)(P−Q) + (uxny)(Q)(Kb
yGx,yyy)(P−Q)

)
dl

+
∫

Q∈Γ

(
Ke

xux,xnx − Kb
yux,yyyny

)
(Q)

Gx(P−Q)dl

−
∫

Q∈Γ

(ux,yny)(Q)

(
Kb

yGx,yy

)
(P−Q)

dl

+
∫

Q∈Γ

Kb
y(ux,yyny)(Q)(Gx,y)(P−Q)dl (6.9)

Recalling that for a pantographic array, the boundary conditions related to the �ex-balance and the ux

component, are of four different types:
– The two kinematic conditions consisting in the displacement ux and its transverse gradient ux,y,
– The two “static” dual variables consisting in (i) the �ex-force Ke

xux,xnx−Kb
yux,yyyny, which cumulates

the tension of the x-fiber and the shear force for the y-fiber, and (ii) the moment Kb
yux,yyny in the

x-fiber [7].
One recognizes in the four different integrals of (6.9) a combination of the boundary conditions that acts
as sources terms, and of their proper radiation functions derived from the Green’s function. Namely:

– the displacement ux is radiated by the two terms, Ke
xGx,x for uxnx and −Kb

yGx,yyy for uxny,
– the projected rotation ux,yny is radiated Kb

yGx,yy,
– the force Ke

xux,xnx − Kb
yux,yyyny is radiated by Gx,

– the force Kb
yux,yyny is radiated by Gx,y.

If instead of the �ex-balance and ux, one considers the �ey-balance and uy we get an equation similar to
(6.8) or (6.9) except that the roles of x and y are inverted.
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Equation (6.9) allows to calculate the field at any point of the domain as soon as every boundary
radiating fields is known. However, only part of these fields can be imposed as boundary conditions,
the others (i.e. those dual in work to the assigned boundary conditions) result from the response of
the loaded medium and are to be found as a part of the equilibrium problem. To be able to use the
method of boundary integral equations, it is thus necessary to calculate the missing dual boundary fields.
Generalizing the standard procedure presented in classical elasticity, for doing so we introduce the integral
equations that are determined in the next section .

6.3. The two integral equations

Unlike first-gradient elastic media, for which a single integral equation is sufficient, for second-gradient
pantographic media, whose deformation energy depends on first and second gradient of displacement and
for which two independent boundary conditions must be given, it is necessary to establish two integrals
equations.

6.3.1. Integral equation for displacement ux . The integral representation (6.9) applies in the whole space
and then also on Γ. This leads to the integral equation in the x-direction:

∀Q0 ∈ Γ ux(Q0) = −
∫

Q∈Γ

(
Ke

xSe
x(Q)Gx(Q0−Q) − Kb

ySb
y(Q)Gx(Q0−Q)

)
dl

=
∫

Q∈Γ

( − (uxnx)(Q)(Ke
xG,x)(Q0−Q) + (uxny)(Q)(Kb

yGx,yyy)(Q0−Q)

)
dl

+
∫

Q∈Γ

(
Ke

xux,xnx − Kb
yux,yyyny

)
(Q)

Gx(Q0−Q)dl

−
∫

Q∈Γ

(ux,yny)(Q)

(
Kb

yGx,yy

)
(Q0−Q)

dl

+
∫

Q∈Γ

Kb
y(ux,yyny)(Q)(Gx,y)(Q0−Q)dl (6.10)

This equation associates the values of the physical variables at the boundary as well as the function
Gx and its derivatives. The physical variables are regular, but the function Gx and its derivatives can
introduce singularities on Q = Q0. Thus, in order to evaluate integrals, singularities must be identified
and resolved. For this purpose, let us consider a slightly modified Γ∗ boundary around Q0 so that Q0 is
inside the integration domain and then takes the limit when Γ∗ to Γ. Doing so:

u(Q0) = lim
Γ∗→Γ

∫
Q∈Γ∗

−
(
Ke

xSe
x(Q)Gx(Q0−Q) − Kb

ySb
y(Q)Gx(Q0−Q)

)
dl (6.11)

One assumes that Γ is regular at Q0 of coordinates (x0, y0), and that its tangent makes an angle θ with
the x-axis. The disturbed boundary Γ∗ is constructed as follows, see Fig. 9. Isolating a small portion σθ

of Γ centered on Q0, one has Γ = Γ′ ∪ σθ. Then replace σθ by σ0 ∪ σπ/2, where σ0 and σπ/2 are the two
parts of the disturbed border, respectively, parallel to x and y, that forms a rectangular triangle with σθ.
The disturbed boundary Γ∗ is Γ∗ = Γ′ ∪ σ0 ∪ σπ/2, the normal of σ0 is �n0 = �ey and that of σ0 is σπ/2 is
�nπ/2 = �ex.

Over Γ′ there is no singularity, since Q0 /∈ Γ′. On the disturbated path σ0 ∪ σπ/2, the integrals
involving Ke

xnx taken over σ0 vanishes as �n0 = �ey, and similarly the integrals involving Kb
yny taken over

σπ/2 vanishes as �nπ/2 = −�ex. Thus:
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Fig. 9. The boundary Γ and the disturbed boundary Γ∗

∫
σ0∪σπ/2

−
(
Ke

xSe
x(Q)Gx(Q0−Q) − Kb

ySb
y(Q)Gx(Q0−Q)

)
dl

= −
∫

σπ/2

Ke
xSe

x(Q)Gx(Q0−Q)dl +
∫

σ0

Kb
ySb

y(Q)Gx(Q0−Q)dl (6.12)

Furthermore, denoting by 2a the small lenght of σθ, the lengths of σ0 and σπ/2 are, respectively, 2ax =
2a cos(θ), 2ay = 2a sin(θ). Hence, introducing x′ = x − x0 and y′ = y − y0, the integration over σ0 is
performed on x′, with y′ = ay, and the integral over σπ/2 is performed on y′, with x′ = −ax. Consequently,
the integral over σ0 ∪ σπ/2 simplifies into (on σπ/2, nx = −1):

+
∫ ay

−ay

ux(x0−ax,y0+y′)K
e
xGx,x(ax,−y′)dy′ +

∫ ax

−ax

ux(x0+x′,y0+ay)K
b
yGx,yyy(−x′,−ay)dx′

−
∫ ay

−ay

Ke
xux,x(x0−ax,y0+y′)Gx(ax,−y′)dy′ −

∫ ax

−ax

Kb
yux,yyy(x0+x′,y0+ay)Gx(−x′,−ay)dx′

−
∫ ax

−ax

ux,y(x0+x′,y0+ay)K
b
yGx,yy(−x′,−ay)dx′ +

∫ ax

−ax

Kb
yux,yy(x0+x′,y0+ay)Gx,y(−x′,−ay)dx′ (6.13)

Since ux and its derivatives are regular, one deduces, from the expressions of the Green’s function and
their derivatives (cf. Sect. 3.5), that:∫ ay

−ay

ux,x(x0−ax,y0+y′)Gx(ax,−y′)dy′ = O
(
a3/2 ∂xux(Q0)

)
→ 0
a→0∫ ax

−ax

ux,yyy(x0+x′,y0+ay)Gx(−x′,−ay)dx′ = O
(
a3/2 ∂3

yyyux(Q0)

)
→ 0
a→0∫ ax

−ax

ux,y(x0+x′,y0+ay)Gx,yy(−x′,−ay)dx′ = O
(√

a ∂yux(Q0)

) → 0
a→0∫ ax

−ax

ux,yy(x0+x′,y0+ay)Gx,y(−x′,−ay)dx′ = O
(√

a ∂2
yyux(Q0)

) → 0
a→0
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Thus, it remains to evaluate the “self-influence” term:

+
∫ ay

−ay

ux(x0−ax,y0+y′)K
e
xGx,x(ax,−y′)dy′ +

∫ ax

−ax

ux(x0+x′,y0+ay)K
b
yGx,yyy(−x′,−ay)dx′

≈ ux(x0,y0)

(∫ ay

−ay

Ke
xGx,x(ax,y′)dy′ −

∫ ax

−ax

Kb
yGx,yyy(x′,ay)dx′

)
= ux(Q0)J

where the approximation is obtained by expanding ux(Q) around Q0, keeping ux(Q0) and neglecting the
rest (that results in terms O

(√
a ux(Q0)

)
leading to vanishing terms). Now, Gx being the Green’s function:

Ke
xGx,xx(Q−Q0) − Kb

yGx,yyyy(Q−Q0) = −(Ke
xGx,xx(Q0−Q) − Kb

yGx,yyyy(Q0−Q)) = −δ(Q0)

Consequently, integrating over the rectangle |x′| ≤ ax, |y′| ≤ ay yields:∫ ax

−ax

∫ ay

−ay

(Ke
xGx,xx − Kb

yGx,yyyy)(Q0−Q)dx′dy′ = 1

that gives by partial integrations and taking into account that Gx is even with respect to x and y (implying
that Gx,x is an odd function with respect to x and Gx,yyy an odd function with respect to y):

1 = 2Ke
x

∫ ay

−ay

Gx,x(ax,y′)dy′ − 2Kb
y

∫ ax

−ax

Gx,yyy(x′,ay)dx′) = 2J

Remark. At a point where the surface is not smooth, the value of the self-influence term J depends on
the angle and orientation of the corner of the material. The value of J is between 0 (J ≈ 0 corresponds
to a quite obtuse angle (≈ 2π)) and 1 (J ≈ 1 corresponds to an acute angle (≈ 0) ) and generally differs
from 1/2.

To sum up, by taking the limit a → 0, Eq. (6.11) can be rewritten in the following form:

ux(Q0) =
∫

Q∈Γ∗

(
Ke

xSxxQGx(Q0−Q) − Kb
ySyyyyQGx(Q0−Q)

)
dl

= P.V.
for u

∫
Q∈Γ

(
Ke

xSxxQGx(Q0−Q) − Kb
ySyyyyQGx(Q0−Q)

)
dl +

1
2
ux(Q0) (6.14)

in which the notation P.V.
for u

indicates that in the integral, the terms involving u have to be integrated

in the sense of the Cauchy principal value. Finally, for a smooth boundary, the integral equation in the
x-direction reads:

1
2
ux(Q0) = P.V.

∫
Q∈Γ

uxQ

(
Ke

xGx,xnx − Kb
yGx,yyyny

)
(Q0−Q)

dl

+
∫

Q∈Γ

(
Ke

x(uxQ),xnx − Kb
y(uxQ),yyyny

)
Gx(Q0−Q)dl

−
∫

Q∈Γ

(uxQ),yny

(
Kb

yGx,yy

)
(Q0−Q)

dl −
∫

Q∈Γ

Kb
y(uxQ),yyny(Gx,y)(Q0−Q)dl (6.15)

Obviously, a similar equation is satisfied by uy provided that the roles of x and y are reversed.

6.3.2. Integral representation and integral equation for rotation ux,y . In order to establish the integral
equation for the second kinematic descriptor, namely the rotation ux,y, we must first give the integral
representation for this field inside the body and at its boundary. To do this, we start from (6.9) and use
a mathematical property which is established in the theory of distribution: to calculate a convolution
product, it is sufficient to derive one of the two convoluted functions. In our case, the choice to derive
one of the two convoluted function is dictated by the fact that (i) the equation should only involve the
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same physical (natural or essential) boundary conditions, (ii) the level of singularity cannot be increased
to ensure the convergence of the integrals. These considerations lead to express ux,y as follows:

∀P ∈ Ω ux,y(P ) =
∫

Q∈Γ

(
− (uxnx),y(Q)(Ke

xGx,x)(P−Q) + (uxny),y(Q)(Kb
yGx,yyy)(P−Q)

)
dl

+
∫

Q∈Γ

(
Ke

xux,xnx − Kb
yux,yyyny

)
(Q)

Gx,y(P−Q)dl

− ∫
Q∈Γ

(ux,yny),y(Q)

(
Kb

yGx,yy

)
(P−Q)

dl

+intQ∈ΓKb
y(ux,yyny)(Q)(Gx,yy)(P−Q)dl (6.16)

This expression is issued from the y-derivation of (6.9), where we have derived the functions uxnx and
uxny in the first integral, and the function Gx in the second integral, ux,yny in the third integral, and
Gx,y in the last one. After developing the terms (uxnx),y, (uxny),y and (ux,yny),y and simplifying, we
get:

ux,y(P ) =
∫

Q∈Γ

(
− (ux,ynx)(Q)(Ke

xGx,x)(P−Q) + (ux,yny)(Q)(Kb
yGx,yyy)(P−Q)

)
dl

+
∫

Q∈Γ

(
Ke

xux,xnx − Kb
yux,yyyny

)
(Q)

Gx,y(P−Q)dl

+
∫

Q∈Γ

(
− (uxnx,y)(Q)(Ke

xGx,x)(P−Q) + (uxny,y)(Q)(Kb
yGx,yyy)(P−Q)

)
dl

−
∫

Q∈Γ

(ux,yny,y)(Q)

(
Kb

yGx,yy

)
(P−Q)

dl (6.17)

The rotation ux,y results on one hand from the boundary terms that are radiated as follows:

– the rotation ux,y is radiated by the two terms, Ke
xGx,x for ux,ynx and −Kb

yGx,yyy for ux,yny,
– the force Ke

xux,xnx − Kb
yux,yyyny is radiated by Gx,y,

and on the other hand by terms due to the curvature of the border which appears through nx,y and ny,y:

– uxnx,y et uxny,y are, respectively, radiated by Ke
xGx,x and Kb

yGx,yyy

– ux,yny,y is radiated by Kb
yGx,yy.

Considering the �ey-balance and uy,x, one gets an equation similar to (6.16–6.17) by inverting the roles of
x and y.

The representation (6.16–6.17) applies in the whole space and then also on Γ. Replacing in (6.16) P
by Q0 ∈ Γ provides the integral equation satisfied by ux,y.

Since the radiation functions are the same as for the displacement integral Eq. (6.15), the discussion
on singularities can be conducted similarly.

Thus, the first integral must be taken as the Cauchy principal value with a self-influence term of
-1/2 for a smooth surface. Furthermore, as examined above, Gx,y and Gx,yy are regular enough to be
integrable. It only remains to examine the integral where the curvature and the displacement occurs, i.e.:

J =
∫

Q∈Γ

(
− (uxnx,y)(Q)(Ke

xGx,x)(Q0−Q) + (uxny,y)(Q)(Kb
yGx,yyy)(Q0−Q)

)
dl

Let us consider again the integration on the perturbed geometry Γ∗. We note that on both sides σ0 and
σπ/2 the normal is constant, i.e., nx,y = ny,y = 0 and that the set of points where the normal is undefined
is of null measure. The integral on σ0 ∪ σπ/2 is therefore identically null. Taking the limit Γ∗ → Γ,
this ensures the convergence of J . Therefore, for a smooth surface the integral equation associated with
rotation is given by:
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∀Q0 ∈ Γ
1
2
ux,y(Q0) = P.V.

∫
Q∈Γ

(
− (ux,ynx)(Q)(Ke

xGx,x)(Q0−Q) + (ux,yny)(Q)(Kb
yGx,yyy)(Q0−Q)

)
dl

+
∫

Q∈Γ

(
Ke

xux,xnx − Kb
yux,yyyny

)
(Q)

Gx,y(Q0−Q)dl

+
∫

Q∈Γ

(
− (uxnx,y)(Q)(Ke

xGx,x)(Q0−Q) + (uxny,y)(Q)(Kb
yGx,yyy)(Q0−Q)

)
dl

− ∫
Q∈Γ

(ux,yny,y)(Q)

(
Kb

yGx,yy

)
(Q0−Q)

dl (6.18)

Again, a similar equation is satisfied by ux,y provided that the roles of x and y are reversed.

6.4. Solving boundary value problems

From the set of �ex-equations (6.9), (6.16), (6.15), (6.18), and their equivalent in the y-direction, a nu-
merical procedure for solving boundary value problems can be developed by following and adjusting the
classical techniques used for problems governed by second-order differential equations [9]. As demonstrated
in [13], in order to get a well-posed equilibrium problem for pantographic 2D continua, the prescribed
boundary conditions may be of different nature over different regions of the boundary, but when a kine-
matic (essential boundary) condition (concerning either the displacement or the rotation is imposed, the
dual static variable (giving the natural boundary condition) must be considered as unknown and vice
versa. Specifically, of the four (eight if one considers the two directions) types of boundary conditions,
two must be imposed and the other two are to be determined by imposing equilibrium conditions. For
instance, if on some part of the boundary the x-component of the displacement ux is imposed, then the
x-component of the force

(
Ke

x∂xuxnx − Kb
y∂3

yyyuyny

)
, cannot be prescribed, or if the moment Kb

y∂2
yyuxny

is imposed the rotation ∂yux is undetermined, etc..
Let us discretize the boundary Γ into N boundary elements. In this way, we can transform any

boundary integral appearing in the integral Eqs. (6.15), (6.18), into a discrete sum of N terms. Each of
these terms corresponds to a given boundary element and is composed of a radiation factor (calculable
since Green’s functions are known) and a boundary condition (known or unknown). The two discretized
integral Eqs. (6.15), (6.18), expressed for each of the N boundary elements provide 2N discrete equations.
Each of these equations implies the radiation factors and the 4N boundary conditions, 2N being known and
2N being unknown. We therefore have a system of 2N linear equations for 2N unknowns. The resolution of
this system leads to the determination of the 2N boundary conditions which were initially undetermined.
Considering the two directions yields a set of 4N linear equations for 4N unknowns.

Once this step is completed, all the terms are known on the boundary. Then we can transfer the
4N boundary conditions (8N for the two directions) into the integral representations (6.9), (6.16). This
allows us to calculate the displacement and rotation field at any point of the domain. Finally, from these
kinematic fields, we can reconstruct the field of forces and moment by exploiting the constitutive laws.

A description in more details of this method and its numerical implementation are behind the scope
of the present paper and will be developed in a forthcoming work. We explicit remark here that the set of
integral equations, found in the previous section for determining the unknown boundary fields in terms of
the assigned boundary conditions, form a system of first- and second-type Fredholm equations, for which
an alternative theorem is envisageable.
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7. Conclusion

In order to solve the problem of the synthesis of metamaterials ‘capable to undergo planar large deforma-
tions in elastic regime’, the pantographic microarchitecture has been proposed and extensively studied, see
the reviews [23,24], as exhaustively discussed in the introduction. Once it has been theoretically accepted
the use, in the micro-structure synthesis, of perfect pivots, the micro-scale relative rotations permitted to
the micro-beams constituting synthesized micro-architecture allowed for the demanded macro-behaviour.
The possibility of using 3D printing technology did allow for the subsequent experimental validation of
such synthesis concept.

By tailoring the asymptotic homogenization of discrete beam lattices [10,20] to the pantographic con-
text, it has been possible to provide, in the framework of small in-plane deformations and linear elasticity
a consistent macro-description of the pantographic sheet [7]. The latter explicitly discloses the second-
gradient nature of such media and clearly relates the effective parameters to the micro-structure. Such
a micro-macro-identification process enables a straightforward physical interpretation of the analytical
Euler-Lagrange equilibrium conditions, together with the corresponding essential and natural boundary
conditions. Indeed, this approach allows for the identification of contact couples and contact forces in the
pantographic continua, as originated by the contact forces and couples acting in the beams constituting
the subjacent pantographic micro-structure. Furthermore, it was demonstrated by a classical argument of
integration by parts, that this description is consistent with the minimum energy principle. In this way,
this physical interpretation supplies an important check of obtained mathematical results postulating the
minimum energy principle. In addition, it gives a useful hint for the further steps in the mathematical
study of pantographic continua which is presented in this paper. Well-posedness of the linearized de-
formation problem has been proven, for pantographic continua that are the object of the present work
[13].

In fact, considering the deformation field produced by forces and couples concentrated in a point of
an infinite 2D pantographic planar continuum, in this paper we show how it is possible to get the Green’s
functions for the considered equilibrium problem. Using the introduced Green’s functions for solving the
equilibrium boundary problem, one can reduce its solution to the solution of a system of two Fredholm
equations into two unknown functions defined on the boundary of the considered continuum. In other
words, in this paper it is formulated for 2D pantographic continua the method of boundary elements for
the solution of equilibrium problems. Finally, by using four Green’s functions concentrated in the corner
of a rectangular specimen undergoing a bias extensional test, we show how an approximated solution,
in analytical form, can be found that is very close to those previously computer by means of numerical
methods.

Beyond the particular case represented by pantographic media extensively studied, this result provides
a first example of an analytical Green’s function for anisotropic second-gradient media not reducible to
Cauchy media. It also paves the way for formulations in integral representation of generalized continua.
In particular, it shows that the use of distributions is particularly convenient and adapts without major
difficulty to the development of integral representation associated with differential operators of order
higher than two, such as those of generalized continuous media. This type of representation presents a
double interest for the calculation of this type of material: on the one hand, the reduction in dimension
of the numerical problem, on the other hand the exhaustive exploitation of the analytical formulation
of Green’s functions which encapsulates all the physical complexity of the micro-structure and allows to
better tackle poorly conditioned problems.
The future perspectives opened by the presented results seem rather interesting.

– From the mathematical and numerical point of view, it seems interesting to consider the study of
the first and second kind Fredholm equations that we have introduced to solve the generic defor-
mation boundary problem for 2D pantographic continua. Fixed point theorems and the theorem
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of alternative seem applicable; however, a careful analysis of the new kernels may deserve some
attention.

– It is very interesting to explore the possibility to extend the presented results to the problems
of linearized deformation of bi-pantographic 2D planar continua see [3], and to complete second-
gradient 2D continua. These problems are challenging as natural boundary conditions include not
only forces and couples, but also double forces. Therefore, another class of Green’s functions seem
needed.

– The study of out-of-plane displacements of 2D pantographic continua will also be of interest, see
e.g. [17].

– The method used in the present paper for studying linear equilibrium solutions can allow for the
application of Euler standard methods for determining the loss of stability of pantographic sheets
and consequent post-buckling behaviour, that may deserve many surprises (see [1,14])

– The Green’s function method and the associated boundary element method may be very useful also
in studying multi-physics pantographic sheets as those studied in [15] and help in unveiling their
peculiar behaviour.
Probably, once having linearized the corresponding equilibrium equations, some generalization of
the Green’s functions presented here is possible.

To conclude, we are aware that in a generalized continua, the determination of the analytical expression
of functions can be very complex (if not impossible). A possible alternative would then be to look for a
numerical approximation (framed by theoretical considerations) which could be used as a data library
and exploited to carry out calculations through boundary element method.
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[15] Eremeyev, V.A., Ganghoffer, J.F., Konopińska-Zmys�lowska, V., Uglov, N.S.: Flexoelectricity and apparent piezoelec-

tricity of a pantographic micro-bar. Int. J. Eng. Sci. 149, 103213 (2020)

https://doi.org/10.2140/memocs.2017.5.127
https://doi.org/10.1007/978
https://doi.org/10.1007/s10659-017-9660-3


 Page 26 of 26 C. Boutin and F. dell’Isola

[16] Gazzo, S., Cuomo, M., Boutin, C., Contrafatto, L.: Directional properties of fibre network materials evaluated by means
of discrete homogenization. Eur. J. Mech. A. Solids 8(2), 1–19 (2020)

[17] Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibra-
tional analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 473(2207), 20170636 (2017)

[18] Giorgio, I., Ciallella, A., Scerrato, D.: A study about the impact of the topological arrangement of fibers on fiber-
reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials. Int.
J. Solids Struct. 203, 73–83 (2020)

[19] Green, A.E.: A note on stresses systems in aeolotropic materials. Philos. Mag. 34, 416–418 (1943)
[20] Hans, S., Boutin, C.: Dynamics of discrete framed structures: an unified homogenized description. J. Mech. Mater.

Struct. 3(9), 1709–1739 (2008)
[21] dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-

gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solid
20(8), 887–928 (2015)

[22] dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 1(118), 113–125
(2015)

[23] dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I.,
Andreaus, U., Turco, E., Golaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V., Misra, A., Placidi, L., Barchiesi, E.,
Greco, L., Cuomo, M., Cazzani, A., Della, A., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.F.,
Muller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Hild, F.: Pantographic metamaterials:
an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31(4),
851–884 (2019)

[24] dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U.,
Cuomo, M., Eugster, S.R., Pfaff, A., Hoschke, K., Langkemper, R., Turco, E., Sarikaya, R., Misra, A., De Angelo, M.,
D’Annibale, F., Bouterf, A., Pinelli, X., Misra, A., Desmorat, B., Pawlikowski, M., Dupuy, C., Scerrato, D., Peyre, P.,
Laudato, M., Manzari, L., Göransson, P., Hesch, C., Hesch, S., Franciosi, P., Dirrenberger, J., Maurin, F., Vangelatos,
Z., Grigoropoulos, C., Melissinaki, V., Farsari, M., Muller, W., Abali, Bilen E., Diebold, C., Ganzosch, G., Harrison,
P., Drobnicki, R., Igumnov, L., Alzahrani, F., Hayat, T.: Advances in pantographic structures: design, manufacturing,
models, experiments and image analyses. Continuum Mech. Thermodyn. 31(4), 1231–1282 (2019)
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Université Aquila – Memocs
L’Aquila
Italy

(Received: December 11, 2020; revised: January 18, 2021; accepted: January 22, 2021)

https://doi.org/10.1177/1081286520937339
https://doi.org/10.1177/1081286520937339

	Green's functions and integral representation of generalized continua: the case of  orthogonal pantographic lattices
	Abstract
	1. Introduction
	2. Setting of the problem
	2.1. The differential operator of orthogonal pantographic lattices
	2.2. Analogies with diffusion processes

	3. Green's functions
	3.1. Green's functions for doublet of force and doublet of moment
	3.2. Normalized Green's functions 
	3.2.1. Green's function Gx (x,y)x  for a normalized point force δx 
	3.2.2. Green's function Gy (x,y)y  for a normalized point force δy 
	3.2.3. Green's matrix  underlineunderline mathbbG 

	3.3. Features of the Green's function Gx (x,y)x  and Gy (x,y)x  
	3.4. Green's function Hx (x,y)  for a normalized point moment yδx
	3.5. Synthesis of obtained results

	4. Some loading simulations of pantographic sheet
	4.1. Equal-axis opposite forces
	4.2. Uniform extension along the fiber direction
	4.3. Diagonal point-force
	4.4. Discrete bias extension loading 

	5. Pantographic array versus rigidly connected array
	6. Integral representation for pantographic array
	6.1. Setting the problem in the framework of distributions theory
	6.2. Integral representation
	6.3. The two integral equations
	6.3.1. Integral equation for displacement ux
	6.3.2. Integral representation and integral equation for rotation ux,y

	6.4. Solving boundary value problems

	7. Conclusion
	References




