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Abstract. Multilayer network embedding approaches are gaining large impetus to anal-
yse omics data. Indeed, network integration approaches have demonstrated their ef-
ficiency for protein-protein interaction prediction, gene-regulatory network (GRN) in-
ference, protein function prediction, and drug target identification. To our knowledge,
very few network embedding methods have been specifically designed to handle hetero-
geneous multilayer networks. Moreover, in gene regulation studies MicroRNAs (miR-
NAs) are important non-coding RNAs and play key roles in tumorigenesis by targeting
oncogenes or tumor suppressor genes. To promote the clinical application of miR-
NAs, the regulatory mechanism of a miRNA to mRNAs (genes) is very important. In
this study, we propose BRANET, a novel multi-omics integration framework for mul-
tilayer heterogeneous networks. BRANET is an expressive and scalable method to
learn node embeddings, leveraging random walk information within a matrix factor-
ization framework. We evaluate BRANET on a TCGA pancreatic cancer dataset and
demonstrate its efficiency for miRNA-mRNA regulatory network (MMRN) inference.

1 Scientific Background
Biological systems are composed of multiple interacting entities. Such entities can

be genes, proteins, miRNAs, metabolites or epigenetic marks. It is a fundamental task
to understand whether and how properties and activities of system entities interact. The
number of high dimensional omics data measuring molecules (for instance, proteins,
miRNA, mRNA) from biological samples have increased. Despite the wealth of numer-
ous available omics datasets, there are some noticeable challenges regarding their ac-
quisition, processing, efficient integration, and interpretation [1]. To this direction, net-
works are widely used to represent biological relationships (edges) between individual
entities (nodes). The major challenge thus pertains to encode these networks in a way
that they can effectively be used as input to machine learning models to perform down-
stream tasks such as bio-marker identification, drug-target prediction, disease-gene as-
sociations, GRN and MMRN inference [2]. In this study, we are inspired by graph
representation learning (GRL) algorithms that allow us to encode the high-dimensional
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graph structure into compact embedding vectors [3]. As a target application, we fo-
cus on the task of MMRN inference, which will be described in detail in Sec. 2. In
particular, we aim to embed graph-based heterogeneous multi-omic information in a
lower-dimensional space towards inferring edges of MMRN.

In the related literature, a variety of algorithms and methodologies have been pro-
posed for network integration that are based on random walks, matrix factorization, and
neural networks [2]. However, the majority of them are applied for single-layer net-
works. Nevertheless, for biological networks there are only a few existing network inte-
gration strategies that leverage GRL. As one of the first proposed models, MASHUP [4]
is a network integration framework based on matrix factorization that builds compact
low-dimensional vector representations of proteins. MULTI-NET [5] is the extension
of the SKIP-GRAM model to graphs that allows to perform random walks by defining
paths to traverse the nodes. More recently, DEEPNF [6] is a network fusion method
based on multimodal deep autoencoder (MDA) to integrate different heterogeneous net-
works. These approaches consider a multilayer network, learning vector representations
for each node and indeed requires extensive parameter tuning. Besides, they are chal-
lenged when applied to omics data which demands comprehensive handling of data
heterogeneity towards preserving biological relevance [1]. In such cases, it is neces-
sary to obtain knowledge-based representations of the nodes, that can assist omics data
analysis.

The goal of this work is to propose BRANET, a novel multi-omics integration frame-
work inspired from graph embedding techniques, and to examine its application to the
task of MMRN inference. Moreover, an expressive transition probability is considered
to relate nodes within random walks, towards learning informative latent node repre-
sentations. We leverage a properly chosen random walk matrix (PPMI matrix that we
use), that allow us to capture relevant context around each node of interest. More pre-
cisely, we introduce network integration with the concept of multilayered heterogeneous
graph embeddings, that perform matrix factorization by approximating the spectrum of
a PPMI matrix. In our preliminary empirical analysis, we evaluate BRANET for the task
of MMRN inference. We apply it over gene (mRNA) and miRNA expression datasets
for pancreatic cancer [8] and compare its performance to baseline methods.
Source code and data availability: https://github.com/Surabhivj/BRANet.

2 Materials and Methods
Data acquisition: MicroRNAs (miRNAs) are small noncoding RNAs employed by

the cells for gene (mRNA) regulation. A single miRNA (≈ 22 nucleotides) can reg-
ulate the expression of numerous genes. Our dataset is comprised of 2, 065 samples
(1, 836: Tumor; 228: Normal) for 1, 045 miRNAs and 20, 501 mRNAs. We eventually
perform differential expression analysis to obtain the list of omics features (mRNAs and
miRNAs) that are differentially expressed in normal vs. tumor samples. miRNA dys-
regulation is known to be associated with cancer as they are actively involved in mech-
anisms like genomic instabilities, abnormal transcriptional control, altered epigenetic
regulation, and biogenesis machinery defects. To study such mechanisms, we select
upregulated miRNAs and downregulated mRNAs for the same experimental conditions
to infer MMRN.

Workflow of BRANET: In Fig. 1, an illustration of the BRANET framework is
presented. It consists of four main components to infer relationships from omics data.
Given a set of p omics matrices X

(i)
|ni|×|mi|, i = 1, . . . , p, where ni is a set of omics

features (for instance, genes, miRNAs, CpGs) and mj represents the samples of test
and control expression datasets, BRANET infers a network of |N | nodes, where N
⊆ {n1 ∪ n2 ∪ · · · ∪ np}. We select N by performing differential expression analysis
on each omics data independently. We first build a multilayer network G, represented

https://github.com/Surabhivj/BRANet
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Figure 1: Overview of the BRANET model.

by its supra-adjacency matrix Ā, enhanced with biological a-priori information. Then,
for this graph we obtain a random walk-based positive pointwise mutual information
(PPMI) matrix (S) via a closed-form solution. Matrix S is then factorized using Singular
Value Decomposition (SVD), and the d-dimensional embedding vectors Ωd ∈ R|N |×d
(d � |N |) are given by its top-d singular vectors. Next, we describe the workflow of
BRANET in detail.

Differential expression analysis: We identify |N | important omics features for the
selected p datasets. To do this, we measure the level of expression, also known as
differential expression analysis of each element in ni for “control” and “test” samples.
Features are selected based on the empirical fold change (FC) threshold that defines up-
regulation (log2(FC) ≥ 2 ) and down-regulation (log2(FC) ≤ −2 ). For the selected |N |
features, co-expression networks are constructed. Intra-omics relationship is defined
based on the Pearson correlation coefficient (ρ) for |ρ| > 0.8. It provides a metric of
similarity among feature’s expression level across different samples and conditions.

Construction of a multilayer network: The networks obtained from the above step
correspond to intra-omics feature similarity matrices and the biological a priori knowl-
edge is the known information about these features. This, for example, could be the
binding sites for miRNAs in the 3′–UTR (untranslated region) of their target mRNAs
(genes/transcripts) or the presence of epigenetic mark in the promoter region of a gene.
A multilayer network (G) is built using these matrices and biological a priori knowl-
edge, that is given by the supra-adjacency matrix Ā defined as: Ā =

⊕
p A(p) + C,

where
⊕

p A(p) is the intra-layer adjacency matrix and C is a block matrix with zero
diagonal blocks that stores a priori knowledge of inter-layer connections.

Representation learning: To embed nodes from different omics modalities into a
common latent space towards capturing relevant information of inter- and intra-omics
relationships, we construct a PPMI matrix S for graph G. The PPMI matrix is defined
by the random walk transition probabilities to traverse nodes within and across layers.
Starting from node n inG, a random walk traverses the multilayer graph, moving across
neighborhood nodes chosen uniformly at random. This process repeats for a predefined
number of walks per node. Nevertheless, for large networks, simulating random walks
is computationally expensive and therefore it is not a recommended approach. To ad-
dress this limitation, we leverage the relationship between random walk-based GRL
algorithms that rely on the SKIP-GRAM model (for instance, DEEPWALK) and matrix
factorization [7]. In particular, a multilayer random walk matrix (S) is defined by com-
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Figure 2: (a) Precision@k for top 1, 000 edges compared to baseline methods. (b)
Precision-Recall curve for all inferred edges compared to baseline methods.

puting the closed-form of a properly normalized random walk transition matrix. For any
graph G, S is given by:

S = log

{
vol(G)

bT

[
1

T

T∑
r=1

P r

]
D−1

}
, (1)

where Ā and D are the adjacency and degree matrices of the graph G respectively, P is
the “power” matrix defined by D−1Ā, and vol(G) is the sum of the node degrees of G.
T corresponds to the window size and b is number of negative samples [7]. In order to
obtain node embeddings from matrix S, we perform spectral decomposition using SVD,
given by, S = UΣV>. Since S is a real and symmetric matrix, U and V correspond
to the real eigenvector matrices and Σ is the diagonal eigenvalue matrix. The integrated
embedding matrix Ωd of dimension |N | × d is given by the first d eigenvectors of S,
appropriately weighted by the square root of Σd as: Ωd = Ud

√
Σd.

Network inference: The similarity score for each omics feature in Ωd is defined by
computing the scalar product for each inter- and intra-omics interaction. The integrated
network is inferred by selecting the top edges of the nodes that have high FC value.

3 Results
Experimental setup: We substantiate BRANET for omics inference. After perform-

ing differential expression analysis, 1, 070 omics features are selected ((as mentioned
in above section). We compute co-expression networks (> 0.8) for 192 miRNAs and
878 mRNAs. The biological a priori is given by the presence of miRNA binding site
in the 3′–UTR region [9]. As mentioned in the section above, a multilayer network
G is constructed, whose adjacency is given by Ā. We learn node embeddings using
the methodology described in Sec. 2 (Fig. 1). The parameters for constructing the
PPMI random walk matrix, such as the window size T and number of negative sam-
ples b are set to 3 and 1 respectively, whereas the embedding dimension d is 128. The
same pipeline and embedding size are used for the baselines MASHUP, DEEPNF, and
MULTI-NET. To infer regulatory interaction from the learned embeddings, we define
the similarity between the embedding vectors by computing the scalar product for each
miRNA-mRNA interaction.

Evaluation: We investigate the ability of our model to infer regulatory interactions by
reconstructing the MMRN for pancreatic cancer datasets. As a ground truth for the eval-
uation, we use a MMRN available in public databases and demonstrate its effectiveness
by comparing to other network integration approaches. In practice, biological networks
show small-world topological properties, where nodes are linked by a short chain of
acquaintances. These properties could be extracted by focusing on important edges in
the graph. In our context of binary edge inference, the precision metric computes the
accuracy to retrieve correctly inferred edges. Therefore, to evaluate the performance
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of graph inference and to retrieve such relevant information, we measure the precision
at the top k inferred edges (Precision@k), that corresponds to the number of correctly
inferred edges among the top k ones. We choose to study the top 1, 000 edges of the in-
ferred MMRN (Fig. 2a). We compare the performance of our model to the performance
of the baseline methods used. As shown in Fig. 2a, our method is able to outperform
DEEPNF, MULTI-NET and MASHUP by correctly inferring top 100 edges. Looking at
the performance for the top 1, 000 edges, MASHUP proves to perform equally well as
the proposed BRANET model.

Although we are mainly interested to study the most important edges, we withdraw
the network size bias and further measure the performance of our model for all edges.
To do this, we have computed the area under the Precision-Recall curve (AUPR) for the
whole inferred network (Fig. 2b). More formally, Precision = TP

TP+FP ; Recall = TP
TP+FN

where, TP: true positives; FP: false positives; and FN: false negatives. The Precision-
Recall curve shows the trade-off between Precision (result relevancy) and Recall (mea-
sure of how many truly relevant results are returned) for different thresholds. High area
under the curve (AUPR) represents high precision and recall, where high precision re-
lates to a low false positive rate, and high recall relates to a low false negative rate. In the
obtained results, we observe that the AUPR of BRANET (0.76) is higher than MASHUP

(0.74), DEEPNF (0.110) and MULTI-NET (0.42). Moreover, since biological datasets
are usually unbalanced (the number of true edges is much smaller than the number of all
possible edges), accuracy can provide overoptimistic estimation of the classifier’s abil-
ity on the class with large number of samples. Therefore, to avoid this bias we compute
Matthews correlation coefficient (MCC). The results show that MCC of BRANET for
different threshold of edge scores is higher than MASHUP, DEEPNF and MULTI-NET

(Fig. 2c). Overall we also observed that, to obtain a well trained model, methods like
DEEPNF require large training data involving tuning of numerous parameters. This may
face overfitting/underfitting problems. Moreover, the best performance of such baseline
models can be achieved by extensive hyper-parameter tuning.

In Fig. 3a, we show the inferred network for the top 500 edges of important nodes
(high FC) for the selected pancreatic cancer datasets. Nodes in orange and turquoise
correspond to miRNAs and mRNA respectively. The edges in yellow are the truly
inferred edges that were not present in the input graphs besides are the result of in-
tegration. From Fig. 3a, we can observe that this network is driven by two miRNAs
(hsa-miR-1246 and hsa-miR-1231) that are well studied miRNA biomarkers for pan-
creatic cancer research. In addition to this, Fig. 3b shows the pathway enrichment of
miRNA targets in Fig. 3a. Ion channels have been well studied and are associated with
the malignant phenotype of cancer cells and contribute to all basic cellular processes
such as proliferation, differentiation, and apoptosis. Potassium transport channels show
the highest association, also known to play role in pancreatic duct adenocarcinoma [10].

To summarize the empirical analysis, the performance of BRANET (Fig. 2a, 2b
and 3a) is especially appealing mainly because of three reasons. First, our approach
integrates experimental data with biological a priori knowledge which facilitates the
inference of inter-omics relationships. Second, it can generate meaningful embeddings
by preserving the inter- and intra-omics interactions. Third, its objective function is in-
dependent of the downstream task (MMRN inference), thereby it is adaptable to various
omics data inference tasks.

4 Conclusion
Recent wide application of high-throughput experimental techniques has provided

complex high-dimensional protein association data; in turn, the wide availability of
these omics data have driven the need for the development of methods that can take
advantage of this heterogeneous data. We have presented, an integrative analysis of
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Figure 3: (a) MMRN for the top 5, 000 edges. Nodes in orange correspond to miRNAs,
while mRNAs are indicated with turquoise. Edges in yellow and grey represent truly
inferred edges that are novel (not present in the input network). (b) Pathway enrichment
of miRNA targets that are down-regulated in pancreatic cancer omics datasets.

multilayer heterogeneous networks for learning low-dimensional omics feature repre-
sentations from different data types. BRANET relies on a GRL technique to learn
embeddings that can capture relevant omics features from complex networks. Besides,
we have presented a preliminary performance analysis comparing our approach with
state-of-the-art integration methods.

In the future work, we intend to look at the added value of biologial apriori by solely
considering expression datasets. Besides, we also intend to explore integration on other
data types, such as epigenetic marks, protein sequences, and structures. Represented as
similarity networks, these data types can aid researchers to give direction towards more
accurate identification of biomarkers and insilico drug discovery.
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