
HAL Id: hal-03424286
https://hal.science/hal-03424286

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large-eddy lattice-Boltzmann modeling of transonic
flows

T. Coratger, G. Farag, S. Zhao, Pierre Boivin, P. Sagaut

To cite this version:
T. Coratger, G. Farag, S. Zhao, Pierre Boivin, P. Sagaut. Large-eddy lattice-Boltzmann modeling of
transonic flows. Physics of Fluids, 2021, 33 (11), pp.115112. �10.1063/5.0064944�. �hal-03424286�

https://hal.science/hal-03424286
https://hal.archives-ouvertes.fr


Large-eddy Lattice-Boltzmann modelling of transonic flows

T. Coratger,1 G. Farag,1 S. Zhao (赵崧),1 P. Boivin,1, a) and P. Sagaut1

Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille,

France

(Dated: November 5, 2021)

A D3Q19 Hybrid Recursive Regularized Pressure based Lattice Boltzmann Method

(HRR-P LBM) is assessed for the simulation of complex transonic flows. Mass and

momentum conservation equations are resolved through a classical LBM solver cou-

pled with a finite volume resolution of entropy equation for a complete compressible

solver preserving stability, accuracy and computational costs. An efficient treatment

for wall and open boundaries is coupled with a grid refinement technique and ex-

tended to the HRR-P LBM in the scope of compressible aerodynamics. A Vreman

subgrid turbulence model and an improved coupling of immersed boundary method

with turbulence wall model on Cartesian grid accounts for unresolved scales by Large-

Eddy Simulation (LES). The validity of the present method for transonic applications

is investigated through various test cases with increasing complexity starting from

an inviscid flow over a 10% bump and ending with a turbulent flow over a ONERA

M6 three-dimensional wing.

a)Electronic mail: pierre.boivin@univ-amu.fr
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I. INTRODUCTION

Lattice Boltzmann Methods (LBM) are an alternative powerful tool for the simulation

of fluid dynamics1. Due to its attractive computational cost, its capacities for massively

parallel computing and the ease to deal with complex geometries using multi-level Cartesian

grids, these methods have shown a growing interest both in the academic and industrial

spheres in the past decades2–4.

The development of LBM for compressible flows is still an open issue. Most existing meth-

ods on standard lattices (D1Q3, D2Q9 and D3Q19 or D3Q27) are restricted to isothermal

or weakly compressible flows3, and thus are not applicable to high speed and high Reynolds

flows, such as those found in most aerospace engineering related applications. To obtain

a fully compressible solver, the well-known Mach error must be corrected5, coupled with a

proper way to resolve energy.

In extending LB methods to compressible flows, the main difficulty is to account for

energy conservation6. Two options are then available: (i) increase the number of discrete

velocities as to accurately recover the moment of the probability function corresponding

to energy, and (ii) solve the energy equation in a coupled manner. Approach (i) includes,

e.g. multi-speed approaches7, but the number of discrete velocities (sometimes as high as

73 = 343) seriously thwarts computational performances as compared with nearest-neighbor

lattices, consisting of only 15 to 27 discrete velocities. In the second approach (ii), energy

conservation is tackled separately, either as a second distribution function8 (in so-called

double-distribution function methods), or simply as an additional scalar equation, solved

using finite volumes5,9 (often referred to as hybrid methods).

The hybrid formalism has recently attracted a lot of attention, because (i) it allows to

account for any number of equations straightforwardly and without penalizing memory usage

(e.g. for reactive flow applications10–14, pollutant dispersion15–17...), (ii) physical models

implemented in classical Navier-Stokes solvers can be effortlessly transferred in the LB solver

(since only mass and momentum equations differ), and (iii) they present excellent accuracy

for the transport of elementary Kovasznay modes9,18,19.

Nonetheless, there remains a large gap between the complexity of full-scale industrial

applications tackled by isothermal LB methods20,21, and the compressible tests success-

fully validated using LBM: Kovasznay mode convections9, thermal Couette flow22–24, 2D
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NACA001225–27, flow over bump28,29, shock/vortex interaction9,30, Taylor-Green Vortex14,31

and inviscid flow over wing32,33. Filling that gap, and showing that our hybrid approach9,18,19

is now application-ready is the objective of the present study.

To that end, we present, for our recent pressure-based compressible LB model9,19: (i) an

algorithm to deal with mesh transitions, derived from state-of-the-art approaches33–35; (ii) a

subgrid turbulent model and a compatible wall-model adapted from the literature36–38; and

(iii) an efficient shock-sensor. Equipped with these new developments, we present the first

– to the authors’ knowledge – wall-law large eddy Lattice-Boltzmann simulation of a 3D

transonic flow.

The paper is organized as follows. Section II describes the key elements of the Hybrid

Recursive Regularized Pressure based (HRR-P) model starting from the base of the LBM

algorithm to the treatment of energy equation. Section III investigates the LES turbulence

model including Vreman subgrid model and the wall law description. Section IV introduces

new numerical ingredients for the pressure-based solver to handle complex geometries. Fi-

nally, numerical results obtained with this method are displayed in Section V, followed by

concluding remarks in Section VI.

II. LATTICE-BOLTZMANN MODEL FOR COMPRESSIBLE FLOWS

A. Macroscopic governing equations

Before presenting the Lattice-Boltzmann model, let us introduce the corresponding

macroscopic equations as well as necessary notations.

The motion of a fluid is described by the conservation laws of mass, momentum and

energy.

∂ρ

∂t
+
∂ρuβ
∂xβ

= 0 , (1)

∂ρuα
∂t

+
∂ρuαuβ + δαβp− Παβ

∂xβ
= 0 , (2)

∂ρE

∂t
+
∂ρHuα
∂xα

=
∂Παβuα
∂xβ

− ∂qβ
∂xβ

, (3)

where uα is the velocity vector, ρ the volumic mass, p the thermodynamic pressure, E =

e+ 1/2uαuα the total energy, and H = E + p/ρ the total enthalpy. The internal energy e is
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defined by e = CvT , assuming constant volume heat capacity Cv. The viscous stress tensor

Παβ is

Παβ = µ

(
∂uα
∂xβ

+
∂uβ
∂xα
− δαβ

2

3

∂uγ
∂xγ

)
, (4)

and the heat flux qβ reads

qβ = −λ ∂T
∂xβ

, (5)

with µ the dynamic viscosity and λ the heat conductivity. To close the above system, we

consider an ideal equation of state

p = ρrT, (6)

with r = R/W the specific gas constant, R is the universal gas constant, W is the molecular

weight. According to dry air properties, r = 2.9× 102 J kg−1 K−1 will be considered in the

following work. Assuming a calorically perfect gas (constant specific heat Cp and Cv, for

constant pressure and volume process respectively), the entropy can be defined as:

s = Cv ln
p

ργ
, (7)

where γ = Cp/Cv is the adiabatic exponent.

B. Lattice Boltzmann Method for mass and momentum conservation

LB methods are based on the kinetic theory of gases at a mesoscopic scale, introducing a

statistical representation of the fluid. The discrete description is done through the so-called

particle distribution function fi(x, ci, t), function of the position x, the particle velocity ci

(discretized as a finite dimension velocity space) and the time t. In the absence of external

forces, the Lattice Boltzmann Equation (LBE) can be derived from the Boltzmann equation

in the velocity space as
∂fi
∂t

+ ci,α
∂fi
∂xα

= Ωi, (8)

Ωi denotes the collision term. With the hypothesis of a single relaxation time collision

operator, the so-called Bhatnagar-Gross-Krook (BGK)39 operator can be introduced:

Ωi = −1

τ
(fi − f eq,19r

i ), (9)
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where τ is the relaxation time toward equilibrium associated to the dynamic viscosity40:

τ =
µ

ρc2
s

(10)

Let us additionally introduce a dimensionless temperature θ as

θ =
T

T0

, (11)

Where T0 is a reference temperature, corresponding to a reference velocity c0.

c0 =
√
rT0 = cs

∆x

∆t
(12)

The collision step brings the distribution fi back to a modified pressure-based9 third order

equilibrium distribution f eq,19r
i

f eq,19r
i = ω

{
ρθ +

H(1)
iα

c2
s

ρuα +
H(2)
iαβ

2c4
s

ρuαuβ

+
1

6c6
s

[
+ 3(H(3)

i,xxy +H(3)
i,yzz)(ρuxuxuy + ρuyuzuz)

+ (H(3)
i,xxy −H

(3)
i,yzz)(ρuxuxuy − ρuyuzuz)

+ 3(H(3)
i,xzz +H(3)

i,xyy)(ρuxuzuz + ρuxuyuy)

+ (H(3)
i,xzz −H

(3)
i,xyy)(ρuxuzuz − ρuxuyuy)

+ 3(H(3)
i,yyz +H(3)

i,xxz)(ρuyuyuz + ρuxuxuz)

+ (H(3)
i,yyz −H

(3)
i,xxz)(ρuyuyuz − ρuxuxuz)

]}
. (13)

The equilibrium function f eq,19r
i is expressed in the D3Q19 rotational symmetry basis of

Gauss-Hermite polynomials to reduce the defect of the third order moment36. In the

pressure-based framework, the moments of the equilibrium distribution function Eq. (13)

(denoted as f eqi for the sake of simplicity) on the nearest neighbor lattices type are:∑
i f

eq
i = ρθ, (14)∑

i ci,α f
eq
i = ρuα, (15)∑

i ci,αci,β f
eq
i = ρuαuβ + ρθc2

s δαβ. (16)

Hi are discrete Hermite polynomials in the velocity space, defined by:

H(0)
i = 1, (17)

H(1)
iα = ciα, (18)

H(2)
iαβ = ciαciβ − c2

sδαβ, (19)

H(3)
iαβγ = ciαciβciγ − c2

s [ciαδβγ + ciβδγα + ciγδαβ] , (20)
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The Lattice Boltzmann equation is then discretized in space and time using a trapezoidal

method3

fi(xα + ciα∆t, t+ ∆t)− fi(xα, t) =
∆t

2
[Ωfi(xα + ciα∆t, t+ ∆t) + Ωfi(xα, t)] (21)

Eq. (21) is implicit since the collision term at t + ∆t depends on the distribution function

fi at the same time step. To remove the implicit treatment of this equation and to ensure

a second-order accuracy in time, a new distribution function is introduced, namely:

f i = fi −
∆t

2τ
(f eq
i − fi) (22)

associated to a new relaxation time:

τ = τ +
∆t

2
(23)

The collision algorithm leading to the post-collide population at time step t + ∆t can be

summarized as:

f
col

i (t+ ∆t, xα) = f eq
i (t+ ∆t, xα) + (1− ∆t

τ
)f

neq

i (t+ ∆t, xα) +
∆t

2
FE
i (t+ ∆t, xα) (24)

in which the forcing term FE
i has been introduced, as described in Appendix A, to recover

an accurate non-equilibrium tensor and to correct the defect of isotropy of the lattice9,18,41.

A hybrid recursive regularized collision kernel36 (HRR) is used to recover a correct viscous

stress tensor.

Regularization procedures of the distribution function fi were proposed to improve the

numerical stability of BGK collision models in pioneering works36,42,43 by filtering out spuri-

ous non-hydrodynamic modes. Hence, a regularized distribution function is introduced prior

to the collision step through recomputing the non-equilibrium parts. This involves a trun-

cation up to second order, projected on the Hermite polynomial basis. The non-equilibrium

regularized population fneq

i is evaluated as

f
neq

i ≡ ωi

[
H(2)
i,αβ

2c4
s

ã
(2),neq
αβ +

H(3r)
i,γ

6c6
s

a(3r),neq
γ

]
, (25)

with the third order off-equilibrium a
(3r),neq
γ recursively derived as detailed in Appendix B.

In the hybrid recursive regularized collision kernel36, ã(2),neq
αβ is decomposed into two con-

tributions. On one hand, a(2),neq,PR
αβ is the direct projection of fneq

i as:

a
(2),neq,PR
αβ =

19∑
i=1

[(
f i − f

eq
i +

∆t

2
FE
i

)
H(2)
iαβ

]
, (26)
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On the other hand, a(2),neq,FD
αβ is the approximation of the Navier-Stokes viscous stress tensor

resolved by second order finite differences in the core of the fluid and a first order decentered

procedure for the boundary conditions.

a
(2),neq,FD
αβ = −ρc2

sτ

(
∂uα
∂xβ

+
∂uβ
∂xα
− δαβ

2

3

∂uγ
∂xγ

)
, (27)

Improved stability40 is achieved by numerically enforcing a traceless stress tensor, which

allows to filter an additional non-hydrodynamic mode44. Finally, the stress tensor ã(2),neq
αβ in

the non-equilibrium part (25) reads36:

ã
(2),neq
αβ ≡ σ

[
a

(2),neq,PR
αβ − δαβ

3
a(2),neq,PR
γγ

]
+ (1− σ)a

(2),neq,FD
αβ , (28)

with σ ∈ [0, 1] a free parameter. Then, knowing the collide population at time step t, an

intermediate population f i is obtained by a streaming step from neighbors

f i(t+ ∆t,x) = f
col

i (t,x− ci∆t). (29)

This post-streaming population acts as a base for the whole next time step calculations and

the well-known stream and collide algorithm is recovered.

C. A finite difference method for entropy equation

To couple the energy conservation with the LBM solver, an entropy equation under non-

conservative format is solved18 using second order finite difference:

∂s

∂t
+ uβ

∂s

∂xβ︸ ︷︷ ︸
MUSCL-Hancock

=
1

ρT

[
Παβ

∂uα
∂xβ
− ∂qβ
∂xβ

]
︸ ︷︷ ︸

Finite differences - Second order

, (30)

The temporal derivative and the convective flux in Eq. (30) are discretized using a MUSCL-

Hancock method (see Appendix C for details). This scheme is non-local and requires a five-

points stencil per direction. Near boundary conditions, this stencil is not always available,

and a mix9 of second order centered flux (to properly include the boundary condition)

with upwinding (for numerical stability) is used. Thermal conduction and viscous heat are

computed through a simple second order centered finite difference scheme, involving a first

order decentered procedure for near-boundaries nodes.

Note that we recently proposed a numerically conservative scheme45 to solve directly a

total energy equation, but applying it to configurations as complex as presented hereafter is

still under investigation.
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III. FILTERED EQUATIONS: TURBULENCE AND WALL LAW MODEL

A. Vreman subgrid turbulence model

In the context of Large Eddy Simulations (LES)46, the filtered macroscopic equations

(1-3) are
∂ρ

∂t
+
∂ρũα
∂xα

= 0, (31)

∂ρũα
∂t

+
∂ρũαũβ
∂xβ

= − ∂p

∂xα
+

∂

∂xβ

(
Π̃αβ −Rαβ

)
, (32)

∂s

∂t
+ uα

∂s

∂xα
=

1

ρT

∂

∂xα

(
λ
∂T

∂xα
−Qsgs

α

)
+

1

ρT
Παβ

∂uα
∂xβ

, (33)

where () are the grid-filtered quantities and (̃) indicates Favre filter ũα ≡ ρuα/ρ. Rαβ

is the unknown SGS Reynolds stress tensor Rαβ = ρ(ũαuβ − ũαũβ) and Qsgs
α is the sum of

all subgrid contributions coming from the non-linearities in the entropy equation. Here, the

unresolved heat flux will therefore follow from the eddy viscosity model. For the Vreman

model47, the most important subgrid-term is the stress tensor Rαβ which satisfies:

Rαβ −
1

3
Rγγδαβ = −2µt

(
S̃αβ −

1

3
S̃γγδαβ

)
, (34)

with S̃αβ =
1

2

(
∂ũα
∂xβ

+
∂ũβ
∂xα

)
, δαβ is the usual Kronecker symbol and µt the turbulent vis-

cosity. Vreman48 proposed a subgrid model where

µt = c

√
Bβ

αijαij
, (35)

with

αij =
∂ũj
∂xi

, (36)

βij = ∆2
mαmiαmj, (37)

Bβ = βxxβyy − β2
xy + βxxβzz − β2

xz + βyyβzz − β2
yz. (38)

In Eq. (35), c is related to the Smagorinsky constant Cs = 0.18 such that c = 2.5C2
s .

This turbulent viscosity introduced in the momentum equation is coupled with a turbulent

thermal conductivity to model nonlinearities in entropy equation:

Qsgs
α = −λsgs

∂T

∂xα
, (39)

λsgs =
µtcp
Prt

, (40)

where the turbulent Prandtl number is set as Prt = 0.9, following Garnier et al.49.
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B. An explicit wall model for HRR LBM solver

For turbulent flows (at high Reynolds numbers), solving directly the flow conservation

equations near the walls requires a huge number of points, a procedure which is not afford-

able for industrial applications. Hence, to reduce computational efforts, algebraic explicit

wall models are proposed in the literature to cover the entire inner region of the turbulent

boundary layer. In this study, logarithmic laws of the wall are used to calculate the friction

velocity on boundary points, considering the cartesian grid model inherited from the LBM

mesh. Non dimensional quantities:

u+ =
u

uτ
or y+ =

yuτ
ν
, (41)

with uτ the friction velocity, y the distance to the wall and ν the molecular kinematic

viscosity are expressed as a function of the local Reynolds number:

Rey =
uy

ν
= u+y+, (42)

implying for the friction velocity:

uτ =
u

u+(Rey)
or uτ =

y+(Rey)ν

y
. (43)

The turbulent boundary layer can be divided into three parts: the viscous sublayer, the

buffer layer and the inertial layer. In the viscous sublayer:

u+ = y+ =
√

Rey. (44)

In the inertial layer, the velocity follows a logarithmic law:

u+ =
1

κ
log
(
Ey+

)
or y+ =

1

E
exp
{
κu+

}
, (45)

where κ ≈ 0.41 and E ≈ 7.9. Following a sixth order series expansion50 of the Lambert

function W (x), the following explicit version of the logarithmic profile on y+(Rey) in the

inertial layer is obtained:

y+(Rey) =
1

E
exp{W (κE Rey)}, (46)

Then, a unified expression for the entire layer can be given in the form:

y+(Rey) =

(
1− tanh

Rey
s

)p
(Rey)

1/2 +

(
tanh

Rey
s

)p
1

E
exp{W (κE Rey)}. (47)

u+(Rey) =
Rey

y+(Rey)
, (48)
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with the constants p = 0.7894 and s = 86.58 calibrated to the Spalart-Allmaras turbulence

model to minimize the error between the curve y+(Rey) and the target one, taking into

account the three zones of the turbulent boundary layer. The above formulae are used

for κE Rey > e with e being the natural number, to ensure convergence of the expansion.

Otherwise, Eq. (44) should be used. Then, uτ can be deduced using Eq. (43). Following

the Spalart-Allmaras turbulence model, u+ can be written using arithmetic51:

u+(y+) = B + c1 log
(
(y+ + a1)2 + b2

1

)
− c2 log

(
(y+ + a2)2 + b2

2

)
−c3atan2(y+ + a1, b1)− c4atan2(y+ + a2, b2), (49)

where atan2(x, y) returns the principal value of the arc tangent of x/y, expressed in radians.

The values of the coefficients (B, a1, a2, b1, b2, c1, c2, c3 and c4) can be found in51. The

definition of the tangential velocity follows:

u = u+uτ . (50)

IV. NUMERICAL SETUP

A. An artificial viscosity method to capture shocks

The aim of shock capturing techniques is to automatically reduce the Gibbs phenomenon52

that creates oscillations near discontinuities. The methods commonly exploit the effect of

dissipative mechanisms on shocks. The idea is to add artificial dissipation through numerical

viscosity into the conservation equations to increase the thickness of the shock and to make

it of the order of (or larger than) the mesh size. The first step is to detect shocks properly.

For that, a pressure shock sensor based on a Jameson-Schmidt-Turkel53 (JST) scheme is

used:

νsc =
|pi−1 − 2pi + pi+1|
|pi−1 + 2pi + pi+1|

. (51)

This result is turned into an artificial kinetic viscosity modelled by a free parameter sc chosen

by the user. Hence, the effective relaxation time can be summed as:

τ e =
µ+ ρνscsc

ρc2
s

+
∆t

2
. (52)
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B. Immersed solid boundaries via cut cell approach

The boundary conditions of the pressure-based distribution function are implemented by

a finite difference reconstruction approach along with the hybrid regularization procedure42.

First, the macroscopic quantities ρ, u, θ and s are computed. A cut cell method is

adopted to handle solid walls and open boundaries. Macroscopic quantities are calculated

at two reference points with a Shepard’s Inverse Distance Weighting (IDW) algorithm. Then,

the boundary node is given by a second order Lagrangian interpolation to obtain a proper

Dirichlet or Neumann condition26.

Next, the viscous stress tensor is computed using its Navier-Stokes format Eq. (4) and the

velocity gradients are properly decentered with a first order algorithm. The non equilibrium

part of the distribution function is finally recovered using Eq. (28) with σ = 0.

C. Open boundary conditions

For far-field open boundaries and subsonic flows, characteristic boundary conditions are

used. Local One-Dimensional Inviscid (LODI)54 are extended and evaluated within the

hybrid thermal lattice Boltzmann framework. The time evolution of a closed system is

governed by the state in the interior of the domain and by waves entering the domain

through its boundaries. In a characteristic-based nonreflecting boundary condition, the

time derivatives of physical quantities at the boundary are modified. The first goal of this

filter is to minimize the spurious reflection of characteristic waves leaving the domain and the

second one is to enforce the desired value of incoming waves. In the framework of NSCBC

boundary conditions, the amplitude of outgoing waves can be calculated using interior points

and previous time step. But, it is impossible to determine the exact values of the incoming

waves. Approximations have to be done to express the unknown Li’s (incoming waves) as a

function of the known Li’s (outgoing waves).

To implement the characteristic subsonic outflow boundary condition with a prescribed

static pressure p∞ and to avoid spurious pressure drifts, a partially non-reflecting outflow is

built using:

L1 = Kcbc(p− p∞), (53)

where Kcbc has to be changed as a function of a dimensional parameter depending on the
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test case54. Through numerical experiments over transonic test case, it was found that

Kcbc = 0.05 was a stable and robust value for all the cases mentioned in Section V. After

this step, the reconstruction procedure is the same as mentioned before for solid boundaries.

D. Absorbing sponge layer

NSCBC boundary conditions are supplemented by absorbing sponge terms. The com-

pressible Navier-Stokes equations are artificially modified using source terms as follows:

∂ρ

∂t
+
∂(ρuα)

∂xα
= −σs(x)(ρ− ρf ), (54)

∂(ρuα)

∂t
+

∂

∂xβ
(ρuαuβ + pδαβ) =

∂Παβ

∂xβ
− σs(x)(ρuα − ρfuα,f ), (55)

∂s

∂t
+ uα

∂s

∂xα
=

1

ρT

∂

∂xα

(
λ
∂T

∂xα

)
+

1

ρT
Παβ

∂uα
∂xβ
− σs(x)(s− sf ), (56)

Where ρf , uα,f and sf are the prescribed density, velocity and entropy at the reference state,

respectively. The sponge terms on the right-hand side are activated near open boundaries

in order to damp the fluctuations via a relaxation toward a prescribed reference state.

In the absorbing layers, the profile σs(x) could not be a uniformly distributed parameter.

This will induce a significant wave reflection from the interfaces between the wave propa-

gation domain and the sponge domain. Several definitions of this parameter exist. In this

study, we will use55

σs(x) = σA
3125(x− x0)4(Ls − x)

256(Ls − x0)5
, (57)

where σA, x0 and Ls are respectively the sponge strength factor to tune, starting position

and thickness of the absorbing sponge layer, respectively.

E. 3D Grid refinement for compressible HRR-LBM

The grid refinement method for three-dimensional grid is based on multidomain decom-

position. The space is discretized with a hierarchy of uniform embedded meshes, including

a grid step ratio of 2 between two successive refinement areas. In this section, only the prin-

cipal formalism and major equations are presented. Detailed description and explanatory
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schemes can be found in33. The mesh size and time step are defined as:

∆xf =
1

2
∆xc =

1

2(L+1)
∆x0, (58)

∆tf =
1

2
∆tc =

1

2(L+1)
∆t0, (59)

With ∆x0 and ∆t0 the mesh size and the time step at the coarsest level L = 0. Subscripts

f and c denote respectively the fine and coarse grid. With this approach, the stream and

collide algorithm cannot be applied as it for a transition node at the interface between a fine

and a coarse mesh. The detailed communication algorithm between the different levels is

given in33. An interpolation step is needed at the transition interface. The time interpolation

is due to the synchronisation of informations at odd and even time steps. During even time

steps, informations on coarse and fine points are synchronous while they must be interpolated

from coarse to fine grid at odd time steps:

φ
(f)
f = φ

(f−∆tf )

f +
φ

(f+∆tf )
c − φ(f−2∆tf )

f

3
, (60)

where φ(f+∆tf )
c is obtained in advance on the coarse mesh. For transition points on the

fine side which are not in the overlapped region, namely edge and face interfaces, spatial

interpolations are performed, respectively in one and two dimensions. An automatic switch

to asymmetric scheme is adopted when the number of neighbors if not fulfilled33. To better

illustrate these words, examples of these cubic interpolations are provided (with i, j and k

respectively the index in x, y and z directions):

• One-dimensional edge interpolation

φ(i, j, k) = − 1

16
φ(i−3, j, k)+

9

16
φ(i−1, j, k)+

9

16
φ(i+1, j, k)− 1

16
φ(i+3, j, k), (61)

• Two-dimensional face interpolation on x− y plane

φ(i, j, k) =
1

2

[
− 1

16
φ(i− 3, j, k) +

9

16
φ(i− 1, j, k)

+
9

16
φ(i+ 1, j, k)− 1

16
φ(i+ 3, j, k)

]

+
1

2

[
− 1

16
φ(i− 3, j, k) +

9

16
φ(i− 1, j, k)

+
9

16
φ(i+ 1, j, k)− 1

16
φ(i+ 3, j, k)

]
. (62)
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F. Coupling of wall model with immersed boundaries on Cartesian grids

Spurious oscillations are frequently observed near surfaces where wall model is applied in

the context of turbulent flows, especially on Cartesian grids38. The problem is well known

and comes from the stair-step grid boundaries, inducing irregularities on the wall distances.

To reduce these oscillations, several modifications are picked from38.

The first ingredient is to work on uτ interpolations. As it is constant on the wall nor-

mal direction, interpolation can be performed only in the wall parallel direction. Usually,

macroscopic quantities are interpolated and uτ is deduced from the law of the wall. Direct

interpolation of uτ avoids the use of quantities following a rapid change. The tangential

velocity at each neighbour points is calculated through:

ut = u− (u.n)n, (63)

with the parallel distance obtained from:

d2
t,k = ‖xB − xk‖2 − ‖(xB − xk).n‖2. (64)

The inverse is used as a weight to interpolate uτ , inverting the wall function. As in56,

the interpolation support domain includes two layers of points, starting from the boundary

node, in the D3Q19 lattice. Moreover, as the interpolation takes into account only parallel

directions, the order of interpolation is reduced by one.

We observed through numerical experiments that evaluation of the velocity gradients near

the wall is a main source of spurious oscillations. Classicaly, gradients are decentered near

boundaries to achieve a first order scheme. This treatment seems not to be adequate for

turbulent boundary layers where steep gradients are present near the wall. Then, an higher

order method is used, namely, the Weighted Least Square (WLSQ) algorithm. This method

is widely used in classical Navier-Stokes based immersed boundary wall modeling57,58. The

gradient is taken as the unknown, solved by minimizing the error function:

J =
∑
k

(wkek)
2 = eTWe, (65)

The weight W is the inverse distance to the boundary point, in order to give more influence

to close points. The error minimization leads to:

(∇φ)B = (DTWD)−1DTW(φ− φB), (66)

where (DTWD)−1 is a 3× 3 matrix for 3D.
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V. RESULTS

In this section, the proposed HRR-p model coupled with proper boundary conditions, a

shock capturing technique and a turbulence model is assessed on different configurations and

compared to reference solutions that can be either analytical solutions or previous numerical

solutions obtained by validated flow solvers. The validations are aimed at demonstrating

the ability of the present model to accurately reproduce fully compressible effects for a wide

range of physical parameters. Unless it is specified, all the simulations are carried out with

σ = 0.9 and inviscid cases with a dynamic viscosity of µ = 10−15. The classical definition for

the acoustic Courant-Friedrichs-Lewy (CFL) number with respect to infinite state is used

in this study:

CFL =
|u∞|+ c

∆x/∆t
, (67)

with the physical sound speed c =
√
γrT∞. A necessary condition for stability is CFL ≤ 1.

For each test case, this free parameter, to be tuned through a reference sound speed changing

the time step ∆t, will be precised.

Note that additional academic validation test cases are available in our initial publication9

and in a recent comparison between pressure-based and density-based solvers59, including

in particular:

• Convection of Kovásznay modes (vortex, entropy, acoustic) up to Mach 4 for the first

two,

• Couette flows up to Mach 3.3,

• Shock tubes problems,

• Shock/vortex interaction.

A. Inviscid transonic flow over a 10% bump

The first test case chosen to validate our model on a two-dimensional configuration in-

volving non-straight walls and a Mach number close to 1 is a transonic flow over a 10 %

circular bump. The length of the domain is L = 3m for a height of the channel H = 1m

on a 300 × 100 mesh. The flow at the inlet is injected in the x-direction corresponding to
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a Mach number M = 0.675 with a total pressure of Pt = 105 Pa and a total temperature

Tt = 293.15K. At the outlet, NSCBC with a prescribed pressure, corresponding to the inlet

conditions, is used to avoid spurious wave reflection into the domain 26. The other bound-

aries (top and bottom surfaces) are frictionless adiabatic walls. Simulation is performed

with the condition CFL = 0.4. To properly capture the shock induced by the curved pro-

file, a shock sensor is applied with sc = 10. Figure 1 shows the adimensional macroscopic

quantities (density, pressure and Mach number) fields. A quantitative comparison is given

in Fig. 2 where the Mach number on the horizontal lower wall is compared to a LU-SGS

scheme using a AUSM+up flux60. It can be seen through these figures that the shock waves

are properly captured by the method with few oscillations.
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Figure 1: Density, Pressure and Mach number (respectively from top to bottom) fields.

Axes are normalized using the height of the channel h.

B. Inviscid supersonic flow over a 4% bump

The second test case reproduces the same channel dimensions including a 4% circular

bump with a 600×200 mesh grid. This configuration is showed here to assess the capability

of the method to deal with supersonic flow including shock waves reflection 61,62. As for the

previous test case, the bump is set in the middle of the channel. At the inlet, a supersonic
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Figure 2: Mach number distribution along the lower wall. ◦ LU-SGS, AUSM+up ;

LBM results. x axis is normalized using the height of the channel h.

condition is imposed with a pressure p = 101325Pa, a density ρ = 1kg m−3 and a velocity

parallel to the x-direction corresponding to a Mach number M = 1.4. The CFL condition is

CFL = 0.4 and the shock sensor coefficient is sc = 3. The top and bottom walls are set as

free-slip adiabatic wall and due to the supersonic configuration, the outlet corresponds to a

Neumann first order condition for each macroscopic variable.

Figure 3 shows the density, pressure and Mach number fields. It can be seen that the

shock waves and reflections through the frictionless walls are properly captured without

non-physical oscillations, exhibiting similar properties with previous work28. On Fig. 4,

values of Mach number are plotted along the top and bottom walls. These distributions

are compared with reference simulation on a 90 × 30 nonuniform body-fitted grid, using

Artificial Compression Method (ACM) with a second-order accuracy scheme63. Our results

are in good agreement with this reference solution. Finally, a comparison is made concerning

Mach number and pressure distributions along horizontal and vertical middle lines with a

reference Jameson Schmidt Turkel second-order accurate finite volume scheme53. In this

case, both solutions are computed with the same mesh size28.
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Figure 3: Density (top), Pressure (middle) and Mach number (bottom) fields. Axes are

normalized using the height of the channel h.

0 1 2 3

x/h

0.8

1

1.2

1.4

1.6

1.8

2

M

Ref Bottom

Ref Top

LBM top

LBM bottom
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using the height of the channel h.
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(right) mid-lines. Abscissa axes are normalized using the height of the channel h.

C. Steady inviscid flow over a NACA0012 airfoil at Mach numbers between

0.6 and 1.2

To increase the complexity of the configurations tested, a simulation of an inviscid flow

over a NACA0012 airfoil is performed to deal with more complex geometrical boundaries

including shock waves 64,65. The simulation domain is x ∈ [−12, 22] × y ∈ [−12, 12] on a

2720 × 1920 mesh including two refinement boxes to capture accurately the shock in the

vicinity of the wing (320 nodes on the chord). The left and bottom boundaries correspond

to subsonic inlets to give an angle of attack to the wing corresponding to α = 1.25◦ leading

to u∞ = U0 cosα and v∞ = U0 sinα with U0 calculated in agreement with the desired Mach

number. Five configurations are tested with M = 0.6, M = 0.75, M = 0.8, M = 0.9 and

M = 1.2 at CFL = 0.4 to see the progression of shock waves increasing the Mach number.

The right and top boundaries correspond to outlet conditions, meaning characteristic

conditions for the subsonic cases and a supersonic outlet for the M = 1.2 case. Free-slip

adiabatic condition is applied to the surface of the wing. All the open boundaries are coupled

with sponge layers, relaxing all macroscopic variables toward a prescribed infinite state. The

Mach number field is plotted on Fig. 6 for the different configurations along with the mesh

refinement regions. A quantitative comparison is given on Fig. 7 using pressure coefficient,
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a dimensionless number describing the relative pressure on a surface:

cp =
p− p∞

1

2
ρ∞u∞2

(68)

Our pressure coefficients are plotted together with a reference body fitted Euler solver

solution66. The results of our algorithm are in good agreement with this reference, demon-

strating the capability of the method to handle shock in a transonic regime for a complex

2D test case.

D. Steady inviscid transonic flow over an ONERA M6 wing

The complete model is now validated on a fully three dimensional test case with an ON-

ERA M6 wing. It is a swept, semi-span wing with no twist. The free-stream Mach number is

M∞ = 0.8395 including an angle of attack α = 3.06◦. This angle is given to the fluid at the

inlet. The simulation domain is x ∈ [−1.2× 101 m, 2.2× 101 m]×y ∈ [0.m, 1.2× 101 m]×z ∈

[−5.0 m, 5.0 m] on a 340 × 120 × 100 mesh grid, including six rectangular mesh refinement

boxes around the airfoil to simulate the flow around accurately in the interest region while

keeping reasonable computation costs. Table. I introduces the setup and the exact geometry

of mesh refinement areas. A visual description of the refinement setup is presented on Fig. 8

Table I: Setup and levels of refinement for ONERA M6 wing calculation: origin of the

leading edge is located at (0.0, 0.0, 0.0) and mean aerodynamic chord is 0.64607 m

Level Start position End position ∆x (m)

0 (-12.0, 0.0, -5.0) (22.0, 12.0, 5.0) 0.1

1 (-3.0, 0.0, -1.0) (5.0, 5.0, 1.0) 0.05

2 (-2.0, 0.0, -0.5) (3.0, 3.0, 0.5) 0.025

3 (-1.0, 0.0, -0.2) (2.0, 2.0, 0.2) 0.0125

4 (-0.3, 0.0, -0.1) (1.5, 1.5, 0.1) 0.00625

5 (-0.1, 0.0, -0.07) (1.3, 1.3, 0.07) 0.003125

6 (-0.05, 0.0, -0.05) (1.25, 1.25, 0.05) 0.0015625
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Figure 6: Mach number field for (from top-left to bottom-right): M∞ = 0.6, M∞ = 0.75,

M∞ = 0.8, M∞ = 0.9, M∞ = 1.2. Axes are normalized using the chord of the wing c. The

last plot indicates the mesh refinement regions around the wing: a growth on the colorbar

represents a finer mesh and the maximum value indicates the solid body.

Free-stream macroscopic state is given at the inlet and bottom boundaries while a sub-

sonic outlet with a prescribed pressure p∞ is imposed for the outflow to mimic a far field
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Figure 7: Pressure coefficient cp for M∞ = 0.8; LBM results; ◦66; x axis is normalized

using the chord of the wing c.

Figure 8: Mesh refinement regions with the smallest grid size around the wing and the

largest one in the far field space.

condition. The airfoil and the wall attached to it both correspond to free-slip and adiabatic

walls. Sponge zones with a relaxation on density ρ, temperature T and velocity u are pre-

scribed at inlet and outlet boundaries to kill the remaining spurious waves. Our simulation

is compared, in terms of pressure coefficients, to a DG method of the literature67 on Fig. 9.

This validates the method for 3D complex geometry in the scope of transonic regime.
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Figure 9: Pressure coefficient at (from top-left to bottom-right) y = 20%, y = 44%,

y = 65% and y = 90% of the wing span; LBM results; ◦ Euler Ref. x axis is normalized

using the chord of the wing c at the spanwise considered section.

E. Turbulent transonic flow over a ONERA M6 wing

As final validation test case, we repeat the inviscid M6 wing configuration activating

the Vremann turbulence model as well as the wall-law algorithm. The numerical parameters

remain unchanged. The mesh was modified for the turbulent test case, adding one refinement

level compared to the Euler configuration, to satisfy the wall-law y+ requirements (averaging

at 200). Mesh is automatically generated, with the refinement boxes obtained by extrusion
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of the wing geometry (see Fig. 10). The resulting mesh consists of 6.3× 107 elements, with

δx ranging from 7.8× 10−4 m at the wall to 0.1 m in the far field.

Figure 10: Mesh refinement regions with the smallest grid size around the wing and the

largest one in the far field space.

The goal is to validate our shock capturing technique previously applied in combination

with a LES turbulence model and a wall model68. This test case was designed by the

ONERA Aerodynamics Departement, in 1972, as a reference to study three dimensional

high Reynolds number flows. This became a traditional benchmark to assess the capability

of a numerical method to deal with complex phenomena 69.

The free-stream Mach number is M∞ = 0.8395 at CFL = 0.4 and the angle of attack

α = 3.06◦. Viscosity is introduced through a Reynolds number Re = 11.72× 106 related to

the mean aerodynamic chord c = 0.64607m. This configuration induces a typical lambda

shock which should be well captured by the method.

The same inlet and outlet characteristic boundary conditions as for the euler M6 test

case are used to give the proper angle to the flow at the inlet and to avoid spurious wave

reflection at the outlet, prescribing an infinite pressure p∞. Sponge layers are also used. A

Vreman subgrid model to calculate a turbulent dynamic viscosity and an explicit wall law

are applied in order to properly capture the turbulence in the flow, separating small and

large scales.

The pressure coefficient field on the surface of the wing is plotted on Fig. 11 where the

topology of the lambda shock can be observed. This analysis is completed with a quantitative

comparison of cp at different locations on the wing. During experiments, pressure orifices

were present on the upper and lower surfaces of the wing, divided in seven sections as a
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function of the semi-span position. Our results are compared to the given data of this

well-known experiment70 on Fig. 12 and are in good agreement with it.

Figure 11: Pressure coefficient on the top surface of the ONERA M6 wing

VI. CONCLUDING REMARKS

We have presented a number of tools and models compatible with our hybrid pressure-

based Lattice-Boltzmann method9, significantly increasing its capabilities. To deal with

complex aerodynamic geometries, an efficient treatment for wall and open boundaries has

been coupled with a grid refinement technique. Large-Eddy Simulation (LES) has been

introduced through a Vreman subgrid turbulence model and an improved law of the wall

accounting for unresolved scales. The numerical setup also includes an artificial viscosity

method to capture shocks at high Mach numbers and absorbing sponge terms to supplement

NSCBC boundary conditions.

Equipped with these methods, the HRR-P LBM is assessed with a succession of in-

creasingly complex test cases, ending with the first wall-law, large eddy Lattice-Boltzmann

simulation of a full 3D transonic wing. These results allow to envision encouraging perspec-

tives for both industrial and academic configurations. Future works include applications (i)

to aero-acoustics, and (ii) to complex 3D supersonic flows.

When discontinuities are encountered at a Mach number higher than 1.5, only the HRR-

P LBM coupled with the total energy equation under a conservative format can lead to

the correct Rankine Hugoniot jump relations. A first model including this feature has
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Figure 12: Pressure coefficient at (from top-left to bottom-right) y = 20%, y = 44%,

y = 65% and y = 90% of the wing span; LBM results; ◦ Expt. x axis is normalized

using the chord of the wing c at the spanwise considered section.

been proposed and validated under academic configurations71 but the extension to complex

applications including shocks at Mach numbers higher than 1.5 is still an open issue.
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Appendix A: Forcing terms

Depending on the order of the Gauss-Hermite quadrature3 used in the LB model, an

adequate forcing term should be added to achieve a correct viscous stress tensor:

aneq
αβ ≈ −Παβ = −µ(

∂uα
∂xβ

+
∂uβ
∂xα
− 2

D

∂uγ
∂xγ

δαβ), (A1)

with D the spatial dimension. For the D3Q19r basis, the projected forcing term reads as

aF
E

αβ = c2
suα

[
∂(ρ(1− θ))

∂xβ

]
+ c2

suβ

[
∂(ρ(1− θ))

∂xα

]
+ δαβρc

2
s

2

D

∂uγ
∂xγ
− acor

αβ + aFD
αβ (A2)

where acor
αβ is a correction tensor due to the deflection of second order moments of the

population introduced by the modification of the mass equation, which can be evaluated as

acor
αβ ≡ c2

sδαβ
∂(ρ(1− θ))

∂t
, (A3)

which can be discretized using a backward Euler operator and aFD
αβ the correction tensor due

to the defect of the lattice at third order

aFD
αβ = −


(ρu3

x),x (ρuxuyuz),z (ρuxuyuz),y

(ρuxuyuz),z (ρu3
y),y (ρuxuyuz),x

(ρuxuyuz),y (ρuxuyuz),x (ρu3
z),z

 (A4)

where all the differential operations are performed using first order upwind FD except for

the divergence operator for which a second order centered FD scheme was employed. The

final expression of the forcing term is then

FE
i =

ωi
2c4
s

H(2)
i,αβa

FE

αβ . (A5)
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Appendix B: Recursive reconstruction of third order off-equilibrium tensor

The third order non-equilibrium tensor is achieved via a recursive procedure from second

order tensor, and reads as

a
(3),neq
αβγ = uαã

neq
βγ + uβã

neq
αγ + uγ ã

neq
αβ (B1a)

a
(3r),neq
1 ≡ a(3),neq

xxy + a(3),neq
yzz (B1b)

a
(3r),neq
2 ≡ a(3),neq

xzz + a(3),neq
xyy (B1c)

a
(3r),neq
3 ≡ a(3),neq

yyz + a(3),neq
xxz (B1d)

a
(3r),neq
4 ≡ a(3),neq

xxy − a(3),neq
yzz (B1e)

a
(3r),neq
5 ≡ a(3),neq

xzz − a(3),neq
xyy (B1f)

a
(3r),neq
6 ≡ a(3),neq

yyz − a(3),neq
xxz (B1g)

Appendix C: MUSCL-Hancock method

Let’s consider the following 1D transport equation

sn+1
i − sni

∆t
+
F (sn

i+ 1
2

)− F (sn
i− 1

2

)

∆x
= 0. (C1)

MUSCL-Hancock intercell fluxes F (sn
i+ 1

2

) and F (sn
i− 1

2

) for a non-conservative form are com-

puted as follows :

i) Data reconstruction. Evaluate the extrapolated intercell values at the left and right

sides of the ith cell as

si,L = si −
1

2
φi∆i, si,R = si +

1

2
φi∆i (C2)

with ∆i the local approximated slope

∆i =
1

2
[(1 + κ) (si − si−1) + (1− κ) (si+1 − si)] (C3)

and φi a Van Albada flux limiter, only used for shocked flows, which reads

φi =
r(r + 1)

1 + r2
, r =

si − si−1

si+1 − si
. (C4)

In order to improve the accuracy, it was chosen to evaluate dynamically κ =
1

3

[
2∆t ui

∆x
− sign(ui)

]
, leading to a third-order accurate scheme in both space and

time for a constant ui value72.
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ii) Data evolution. Let the extrapolated boundary values evolve of a time ∆t
2

according

to

si,L = si,L +
∆t ui
2∆x

(si,L − si,R) , (C5)

si,R = si,R +
∆t ui
2∆x

(si,L − si,R) . (C6)

iii) Solution of the piece-wise constant problem. Finally we simply compute F (sn
i+ 1

2

) and

F (sn
i− 1

2

) using :

F (sn
i+ 1

2
) =

 ui si,R if ui ≥ 0

ui si+1,L if ui < 0
(C7)

F (sn
i− 1

2
) =

 ui si−1,R if ui ≥ 0

ui si,L if ui < 0
(C8)

Note that this scheme uses a 5-points stencil because the evaluation of the slope is

non-local.

35


	Large-eddy Lattice-Boltzmann modelling of transonic flows
	Abstract
	Introduction
	Lattice-Boltzmann model for compressible flows
	Macroscopic governing equations
	Lattice Boltzmann Method for mass and momentum conservation
	A finite difference method for entropy equation

	Filtered equations: turbulence and wall law model
	Vreman subgrid turbulence model
	An explicit wall model for HRR LBM solver

	Numerical setup
	An artificial viscosity method to capture shocks
	Immersed solid boundaries via cut cell approach
	Open boundary conditions
	Absorbing sponge layer
	3D Grid refinement for compressible HRR-LBM
	Coupling of wall model with immersed boundaries on Cartesian grids

	Results
	Inviscid transonic flow over a 10 % bump
	Inviscid supersonic flow over a 4 % bump
	Steady inviscid flow over a NACA0012 airfoil at Mach numbers between 0.6 and 1.2
	Steady inviscid transonic flow over an ONERA M6 wing
	Turbulent transonic flow over a ONERA M6 wing

	Concluding remarks
	Acknowledgements
	Data availability
	References
	Forcing terms
	Recursive reconstruction of third order off-equilibrium tensor
	MUSCL-Hancock method


