Shock wave refraction patterns at a slow–fast gas–gas interface at superknock relevant conditions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physics of Fluids Année : 2021

Shock wave refraction patterns at a slow–fast gas–gas interface at superknock relevant conditions

Yann de Gouvello
  • Fonction : Auteur
Mathilde Dutreuilh
  • Fonction : Auteur
Stany Gallier
J. Melguizo-Gavilanes
Rémy Mével

Résumé

Shock wave refraction theory and high-resolution numerical simulations were employed to predict the refraction pattern under super-knock relevant conditions at slow-fast gas-gas interfaces which are characterized by a higher acoustic impedance in the incident phase than in the transmitted phase. First, our theoretical and computational methodologies were validated against results from the literature for planar shock-planar oblique interface interactions. Second, our framework was applied to planar shock-/cylindrical shock-cylindrical interface interactions. The theoretical regime diagram agrees well with the numerical predictions for the former configuration whereas significant discrepancies were observed for the latter. Numerical results show the formation of temperature and pressure peaks as the refraction structure transits from a Free Precursor Refraction to a Twin von Neumann Refraction. This change in thermodynamic state can induce a significant reduction in ignition delaytime, potentially leading to detonation onset.
Fichier principal
Vignette du fichier
POF21-AR-03741_accepted.pdf (7.61 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03424173 , version 1 (10-11-2021)

Identifiants

Citer

Yann de Gouvello, Mathilde Dutreuilh, Stany Gallier, J. Melguizo-Gavilanes, Rémy Mével. Shock wave refraction patterns at a slow–fast gas–gas interface at superknock relevant conditions. Physics of Fluids, 2021, 33 (11), pp.116101. ⟨10.1063/5.0066345⟩. ⟨hal-03424173⟩
13 Consultations
55 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More