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Abstract—Transfer learning for training brain-computer inter-
face (BCI) decoding algorithms is useful to reduce the calibration
time, increase the accuracy, reduce the risk of overfitting and
allow the application of machine learning methods that require
a large amount of data, such as deep neuronal networks. In this
article we propose a transfer learning method inspired by recent
advances in Riemannian geometry. The method aligns vectors in
the tangent space of a source and a target data set by means of
Procrustes Analysis. We apply the method on a publicly available
P300-BCI database. We show that using our method it is possible
to transfer information reusing data from other subjects. The
classification accuracy we obtain, as compared to the state of
art, shows a clear transmission of information using the transfer
learning method.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a computerized system
for on-line prediction or classification of cognitive states and
intentions of the user. A BCI extracts meaningful features
from an incoming stream of neurophysiological signals and
translates them into discrete events, for instance, commands
for a machine, by means of a machine learning classification
algorithm (1; 2; 3).

In this article we focus on BCIs based electroencephalog-
raphy (EEG), which is not only completely non-invasive, safe
and silent, but also affordable to the large public due to
recent advances in micro-technology (4). Because of these
characteristics EEG suits both a clinical and large public
use, embracing a large spectrum of applications such as
rehabilitation/substitution of motor functions, spellers, video-
gaming, cognitive ability training and more (5).

A major difficulty with EEG-based BCIs is the high inter-
subject and inter-session variability. Typical BCIs operate in
two phases: in the training phase the classifier is calibrated
in a supervised fashion, that is, with examples of EEG data
corresponding to labeled classes; the actual use of a BCI is
named the test phase and is unsupervised, that is, the BCI
classifies EEG data to infer the classes they belong to. Inter-
subject variability refers to the fact that the training is highly
subject-specific, thus in general a calibration is necessary
for each user. Inter-session variability refers to the fact that
the training achieved in one session is sub-optimal in other
sessions of the same user, thus in practice a traditional BCI

requires a calibration at each and every use. Calibration is
time and energy consuming, representing a burden both for
healthy users and the clinical population. Thus, the research
in the BCI domain is currently focusing on methods to reduce
the length of the calibration or to bypass it completely. A
possible strategy in case of a new user is to train the BCI
classifier with data previously collected on other subjects.
Starting from the second session of the same user, data
collected in previous sessions can be used as well for this
purpose. Methods accomplishing these tasks are said to operate
transfer learning, of the between-subject and between-session
type, respectively. Another term used in the literature for those
methods is domain adaption.

We refer to the (known) domain we ought to use for learning
as the source and the domain we want to apply the learning to
as the target. Our goal is to adapt the data of the target subject,
i.e., the subject who will be using the BCI, to the data of some
source subject, i.e., a subject who has already used the BCI.
After that we can train a classifier with the source data and use
the trained classifier on adapted target data kept beforehand
for testing. Source and target data sets may refer to different
subjects or to different sessions, as aforementioned.

Recently, there have been some advances in this kind
of transfer learning using Riemannian geometry. The first
proposition aimed at domain adaptation using the differential
geometry concept of parallel transport on the manifold of
positive-definite matrices; the data points of both the source
and the target are recentered to the origin of the manifold,
which is the identity matrix (6). It turns out that such recen-
tering is equivalent to data whitening. Similarly, in (7) the
authors recentered the data to another common point, namely
the midpoint between the centers of mass of the source and
target data. As one may expect, (8) showed that these two
methods yield the same performance. Another method in the
same spirit, although not in a Riemannian framework, is COR-
relation ALignment (CORAL) (9). The authors proposed an
unsupervised domain adaptation that can be interpreted in the
framework of parallel transport under certain conditions. It
consists in whitening the source domain and recoloring it with
the target domain covariance. This means parallel transporting
from the source base-point to the identity and then to the target
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domain.
Recentering is a translation procedure. Inspired by Pro-

crustes analysis, the authors in (8) proposed to add two more
matching steps after recentering: a stretching operation to
match the dispersion of the points of the source and target set
and a rotation. The Riemannian version of Procrustes analysis
has been named by the authors Riemannian Procrustes Anal-
ysis (RPA). They showed that RPA allows superior transfer
learning performance as compared to recentering only. The
methods described so far carry out the transfer learning on
the manifold and the data are then projected onto the tangent
space for classification purposes (10). In (11) a recentering on
the manifold is followed by the projection onto the tangent
space, where the tangent vectors are submitted to a principal
component analysis (PCA), independently for the source and
target data sets. This method has the advantage of being un-
supervised. However, in contrast with the very aim of transfer
learning, PCA does not result in the alignment of the source
and target tangent vectors. Furthermore, as acknowledged by
the authors, PCA suffers from a sign ambiguity, which requires
a manual correction of the sign of the principal vectors, making
the method less viable in practice. Note that such a PCA was
already proposed in (12), but for variable selection only.

In this paper we propose to align the tangent vectors
using procrustes analysis in the tangent space. Under certain
conditions this is equivalent to aligning the source and target
tangent vectors by Maximum Covariance Analysis (MCA)
(13). The transfer learning method we propose encompasses
those above reported; while it can be conceived as a MCA on
the feature vectors, thus as the bivariate extension of the PCA
applied in (11), it is cast as a Procrustes analysis. This results
in a tangent space version of the RPA applied in (8). Since
our method applies in the tangent space, in contrast to RPA, it
can be used in all circumstances, not just in the framework of
Riemannian machine learning. For the same reason, it can be
used with any kind of data, it generalizes well with any number
of classes and not just in BCI, thus our method is of the utmost
generality. It also does not need an iterative alogrithm as it
yields an exact solution. In this way, the algorithm is faster
than RPA and holds the potential to be more precise. This is
achieved at the price of a tangent space approximation.

We test the proposed transfer learning approach, named Tan-
gent Space Alignment (TSA), on BI.EEG.2012-GIPSA (14),
a publicly available database comprising 25 subjects using
a P300-based BCI. We compare the single-trial classification
accuracy obtained with transfer learning to the golden standard
(GS), represented by the usual training-test estimation of
accuracy without transfer learning and to the CORAL transfer
learning method.

II. METHOD

A. Riemannian geometry

As machine learning we employ the framework offered by
Riemannian geometry (12; 15). This framework has proven
very effective in the BCI field, both in terms of accuracy

and robustness, as demonstrated by the winning score ob-
tained in five international BCI data classification competitions
(16). Riemanniann classifiers encode EEG data segments into
positive-definite matrices, in practice, some form of covariance
matrices. Those positive-definite matrices are then treated as
points in a Riemannian manifold of non-positive curvature
adopting the affine-invariant metric (17; 18). In such manifold,
the notion of shortest path and distance between two points,
center of mass of several points and projection onto a tangent
space are naturally defined as shown in Fig. 1. This figure
shows on the left-hand side the geodesic relying points P1

and P2 passing through its-mid-point (mean) G (green curve),
the tangent space at point G with tangent vectors to geodesic
from G to P1 and from G to P2 (blue arrowed lines) and
the distance δ(G,P2). It also shows on the right-hand side
the center of mass (also named geometric mean) G of points
P1, . . . , P4 defined as the point minimizing the sum of the four
squared distances δ2(G,Pi), for i = 1, . . . , 4.

Since the tangent space is an Euclidean space, by projecting
observations onto it we can employ usual machine learning
algorithms such as support vector machines or LASSO logistic
regression, which have been shown to successfully capture
the essence of BCI data (16). Deep neuronal networks can be
used as well. In this work we employ a Linear Support Vector
Classifier (SVC) (19). The general functioning of Riemannian
classifiers is as it follows: an EEG epoch (a trial) is encoded
in the form of a positive-definite matrix, typically, some form
of covariance matrix. A representative point is taken on the
manifold of positive-definite matrices, e.g., the center of mass
of all observations, and all points are projected onto the tangent
space defined at this point. Once vectorized, the points in
the tangent space are treated as feature vectors, so as to be
submitted to classical machine leaning algorithm in order to
determine a decision function (12; 15).

Fig. 1: Schematic illustration of the Riemannian manifold of
positive-definite matrices.

B. EEG data encoding
In this work we focus on P300-based BCIs. In these BCIs

there are two classes of event-related potentials (ERPs): + and
0 class. The + class corresponds to the response to stimulations
of items the user wants to select. The 0 class corresponds to
the response to all other stimulations. Following previous work
on P300-based BCIs (20; 16), in order to encode efficiently
the temporal information of ERP data we first define a ”super-
trial” as

X ′ =

[
X
P+

]
, (1)
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where X is the single-trial N ×T data matrix of N electrodes
and T samples and P+ is the N × T ’prototype’ matrix for
the + class, usually taken as the mean of + trials. The super
trials are thus 2N × T data matrices. Once obtained, they
are encoded as positive-definite matrices by computing their
sample covariance matrix

C =
1

T
X ′X ′T , (2)

where superscript T denotes matrix transposition. Large arte-
facts jeopardize the condition number of sample covariance
matrix estimations, making them numerically close to sin-
gularity. In order to avoid numerical problems in ensuing
computations, all covariance matrices are regularized using the
Ledoit-Wolf shrinkage method (21).

C. Feature vectors

In Riemannian classifiers acting in the tangent space the
feature vectors are the tangent vectors (12; 15). They are
obtained by first estimating, for each data set separately, a
center of mass of all available trials, also named Riemannian
geometric mean (16). Unlike previous works, we compute the
weighted geometric mean assigning to each trial a weight
inversely proportional to the class numerosity. This way each
class contributes equally to the determination of the center
of mass, it does not matter if the classes are balanced or
unbalanced (they are unbalanced in P300-based BCI). Then,
all trials are recentered (parallel transported to the identity (6)),
which, as discussed in the introduction, is a common step to all
transfer learning procedures. Finally, the covariance matrices
are projected onto the tangent space.

Let M be the geometric mean and C the covariance matrix
of a trial, all the above operations amount to transformation

S = Log
(
M−1/2CM−1/2

)
, (3)

where Log() is the matrix logarithm function. Finally, the
feature vector is obtained as

z = uvec
(
S ◦Q

)
, (4)

where Q is a matrix holding 1 on the diagonal elements and√
2 elsewhere, ◦ is the Hadamard (element-wise) product and

uvec() vectorizes the upper triangular part of the argument.
Weight

√
2 is given to the off-diagonal elements of S in order

to preserve the Euclidean norm, i.e., to yield ‖S‖F = ‖z‖2.

D. Feature vector alignment

The method we propose is named Tangent Space Aligne-
ment (TSA). Let

ZT =
[
zT,1 · · · zT,PT

]
and ZS =

[
zS,1 · · · zS,PS

]
(5)

be the matrix holding in its columns a packet of PT and PS

feature vectors taken from a target and source subject’s run,
respectively. Now let us consider the mean tangent vectors

Z̄T =
[
z̄T,0, z̄T,+

]
and Z̄S =

[
z̄S,0, z̄S,+

]
, (6)

where z̃T,0 is the mean tangent vector for class 0 and z̃T,+

is the mean tangent vector for class + for the target subject
and similarly for the source subject. In order to re-align the
tangent vectors of the target to those of the source, we solve
the Procrustes problem

arg max
P∈O

∥∥PZ̄T − Z̄S

∥∥
F
, (7)

where O is the orthogonal group. For doing so, we consider
the cross-product of the two packets, i.e.,

K = Z̄T Z̄
T
S (8)

and compute its singular value decomposition as

K = UT ∆V. (9)

It is well-known that problem (7) has solution P = V UT ,
where U and V are the orthogonal matrices in (9). Therefore
the transformed feature vectors of the Procrustes problem for
the target are obtained by

Z ′T = V UTZT . (10)

In practice, the number of columns in U and V is chosen
so as to explain 99% of the cross-covariance.

E. Pipelines
For the assessment and comparison of our approach, we

construct pairs of data sets ZT and ZS (5) following the
processing method described in sections II-B, II-C and II-D.
Using calibration data, we take each subject in a database as
the target and all the others as the source in order to construct
the cross-product K in Eq. (8) and solve the procrustes
problem. Let ZTest be a third dataset of feature vectors from
the target subject using the test data. The golden standard
pipeline is the classical calibration-test procedure. We use it
as a comparison for all the following pipelines, where ZT is
considered as the training set and ZTest as the testing set for
classification:

1. TSA: Using the TSA method, we consider
Z ′T = V UTZT as per (10). Finally, ZS forms the training
set and ZT will not be used anymore. Z ′Test = V UTZTest is
used as the testing set. A schematic description of the TSA
transfer learning method is shown in Fig. 2.

2. CORAL: In order to allow a fair comparison with TSA,
the source and target feature vectors used for CORAL are
ZS and ZT as they are vectors lying in the Euclidean tangent
space. In addition the test data ZTest are also kept for testing.

F. Database
In this paper we employ a publicly available database for

analysis. It has been recorded at GIPSA-lab, in Grenoble
(France) and involved a BCI experiment using the P300-
based Brain Invaders video game (22). The base BI.EEG.2012-
GIPSA (14) contains EEG recordings from 25 healthy sub-
jects. EEG signals were acquired by means of the NeXus-
32 (MindMedia, Herten, Germany), a research-grade amplifier.
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Fig. 2: TSA pipeline : A Linear SVC is trained on source
data ZS . Calibration target tangent vectors ZT are used as
alignement data. Finally, the test data ZTest tangent vectors
are aligned and then used as the testing set. See text for details.

The EEG cap was equipped with 16 Silver/Silver Chloride wet
electrodes, placed according to the 10-20 international system.
The electrode locations were F7, F3, F4, F8, T7, C3, CZ, C4,
T8, P7, P3, PZ, P4, P8, O1 and O2. The ground was placed
at the FZ location, The NeXus-32 machine does not use any
reference electrode but a hardware common average reference.
Data from three subjects were found to be corrupted and for
another subject an insufficient number of trials were available.
Therefore, 21 subjects were kept for subsequent analysis.

The P300 is an event-related potential (ERP). It peaks in-
between 240-600 ms after stimulus onset. The classification
task in this BCI paradigm is a 2-class problem, with the ratio
of trials per class being 6:1 (non-target:target). Each subject
performed both a calibration and a test run.

G. Computations

All analyses have been performed using in-house code writ-
ten in the Julia programming language (23). The estimation of
covariance matrices is done using the CovarianceEstimation.jl
library1. For the manipulation of data in the Riemannian
manifold of positive-definite matrices we have used the Di-
agonalizations.jl, PosDefManifold.jl and PosDefManifoldML.jl
packages (24) all publicly available2. Finally the classification
has been achieved with an SVC imported from the Python
Scikit-Learn library3.

III. RESULTS

Since the classes are unbalanced, the balanced accuracy is
used in all analysis. It is defined as

Balanced accuracy =
specificity + sensitivity

2
. (11)

We show in Fig. 3 the balanced accuracies as a function of
the number of trials used for alignment for TSA and CORAL
compared with a simple train-test using the alignment data
as training data for the golden standard algorithm. Golden
standard has higher standard deviation since the curve is
the average over the 21 subjects whereas for both alignment

1https://github.com/mateuszbaran/CovarianceEstimation.jl
2https://github.com/Marco-Congedo
3https://github.com/scikit-learn/scikit-learn

methods the curve is the average of the 20*21=420 source-
target pairs.

We observe that with a low number of trials used for
alignment the CORAL method results in a better accuracy
as compared to both the TSA method and the GS train-test
evaluation. However, the higher the number of trials used for
alignment, the better TSA becomes, whereas the CORAL
method floors and is eventually surpassed. For the ensuing
analysis, we focus on three distinct parts of these curves :
• The low alignment based on less than 120 trials
• The medium alignment based on in-between 120 and 240

trials.
• The high alignment based on more than 240 trials.

Fig. 3: Mean (line) and standard deviation (shaded area)
balanced accuracy over the number of trials used for alignment
for all methods presented in Section II.

Following Rodrigues et al. (8), we use seriation plots to
display the balanced accuracy for all possible source-target
pair for the TSA and CORAL methods. We evaluate the
attained balanced accuracies obtained for the low, medium
and high alignment, respectively. The corresponding seriation
plots are shown in Fig. 4. For each sub-plot, each row
corresponds to a target subject and each column corresponds
to a source subject. The rows and columns are sorted by
ascending accuracy for targets obtained on the TSA method.
Please note that in each row there is a dummy value (black),
which corresponds to the case where the source subject is also
the target subject. Additionally, a golden standard seriation
plot has also been computed even though the source has no
impact on the accuracy since it is not used. The aim of these
plots is only to facilitate a visual comparison with TSA and
CORAL.

We observe that for the CORAL method the accuracy of a
given subject highly depends on both the target and the source.
For the TSA method we observe that it mainly depends on
target subject only. This shows that when enough alignment
trials are available it is possible to achieve little dependency
on the choice of the source data. This means that we are able
to align the data between subjects without caring much about
how ”compatible” they are. This is an interesting feature for a
BCI transfer learning algorithm as it means that if subjects are

4

https://github.com/mateuszbaran/CovarianceEstimation.jl
https://github.com/Marco-Congedo
https://github.com/scikit-learn/scikit-learn


(a) TSA

(b) Coral

(c) Golden Standard

Fig. 4: Seriation plot obtained with TSA (first row), Coral (second row) and Golden Standard (third row) for, from left to right
column, low, medium and high alignment situation, respectively.

aligned with enough data, their feature space will be aligned
no matter how far they were originally. Possible uses of such
a feature will be discussed in more details in the Discussion
section.

Finally, we perform statistical analysis to compare the
overall accuracy (averaging across number of trials used for
alignment) obtained by each of the two pipelines with respect
to the GS. For each source subject, we compare the accuracy
between the three methods by applying paired Student’s t-tests
to the data shown in Fig. 3. For all source subjects TSA is
superior to both GS and CORAL. The p-value is inferior to
0.001 for 17 out of 21 subjects comparing TSA to CORAL
and for 7 out of 21 subjects comparing TSA to GS.

IV. CONCLUSIONS AND DISCUSSION

The contribution of this article is a novel transfer learning
method for BCI purposes. It allows a very efficient transfer

of information from one subject to the other, with results
surpassing a well-established method provided that a sufficient
number of trials for alignment is used.

The TSA method here introduced demonstrates a good
potential for transfer learning in the case of P300-based BCI
data, where the mismatch between subjects’ data distributions
is pretty severe in general. In this study, the method is used to
align vectorized tangent vectors of symmetric positive-definite
matrices living in a Riemannian manifold, however it is not
limited to this case and could be applied to any kind of feature
vectors lying in an Euclidean space.

In this study TSA presents with systematic improvement
of accuracy for all subjects, regardless their GS accuracy,
as soon as about 120 trials are available for alignment. We
observe that with the TSA method, the accuracy obtained for
a given target is hardly dependent on source data. This kind of
feature makes possible the creation of a database composed
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of the alignment of multiple subjects. Such a database has
the potential to help the field taking advantage of using deep
neural networks which highly depend on data quantity in order
to create a robust algorithm with reliable inter-session and
inter-subject adaptation. It should be stressed that the method
has been tested only on a single dataset. Therefore further
testings have to follow in order to ensure the ability of TSA
to execute accurate transfer learning in general.

In further studies, more databases will be used in order to
ensure the effectiveness of the method in other BCI paradigms.
Other studies may also investigate the accuracy of this method
with more than two classes. Finally, research on cross-database
transfer learning also seems promising since TSA method may
align databases with different number of channels. This is due
to the fact that it uses Singular Value Decomposition (SVD)
in order to align data, and SVD is possible on rectangular
cross-product matrices.
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