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Abstract: Estimating the temperature field of a building envelope could be a time-consuming task.

The use of a reduced-order method is then proposed: the Proper Generalized Decomposition method. The

solution of the transient heat equation is then re-written as a function of its parameters: the boundary

conditions, the initial condition, etc. To avoid a tremendous number of parameters, the initial condition

is parameterized. This is usually done by using the Proper Orthogonal Decomposition method to provide

an optimal basis. Building this basis requires data and a learning strategy. As an alternative, the use of

orthogonal polynomials (Chebyshev, Legendre) is here proposed.

Key words : Heat transfer; Model order reduction methods; POD; PGD; Approximation Basis; Orthog-

onal Polynomials.

Highlights

• Chebyshev and Legendre polynomials are used to approximate the initial condition

• Performance of Chebyshev and Legendre polynomials are compared to the POD basis

• Each basis combined with the PGD model is compared to laboratory measurements

• The influence of four different parameters on the accuracy of the basis is studied

• For each approximation basis, CPU calculation times are evaluated and compared

1 Introduction1

Modeling the thermal behavior of a building or a group of buildings is a challenging task. It implies that2

several physical phenomena have to be taken into account: short and long-wave radiative heat balance,3

sensible and latent heat flow transported by outdoor air movement and conductive heat transfer through4

the materials. All those heat fluxes may vary over time and through space and thus lead to complex and5

non-uniform boundary conditions.6
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To quantify the global heat loss of a building envelope, the balance between the outdoor thermo-radiative7

heat fluxes and the indoor ones must be estimated. One way of solving the global problem is to split8

the problem into several sub-problems relative to (i) the outside thermo-radiative balance, (ii) the inside9

thermo-radiative balance, and (iii) the heat transfer through the envelope [1]. Each problem is solved using a10

numerical model for each set of governing equations. The whole energy model represents then the aggregation11

of those several sub-models through a coupling procedure also called co-simulation [2]. Each numerical model12

exchanges parameters (i.e. surface energy balance or surface temperature in the case of a thermal problem)13

with the other models during the simulation process.14

This combination of models results in a large computation complexity and we need to reduce the compu-15

tational times.16

We focus here on the problem of the building envelope. To solve the global problem, for each element of the17

building (walls, floor, etc.), the temperature field needs to be computed. For that purpose, the transient heat18

transfer equation needs to be solved for the previously described boundary conditions (indoor and outdoor19

thermo-radiative balance). Usually, a classical numerical model is then used based on finite difference, finite20

element, or finite volume. Those methods provide an accurate solution but for a high computation cost.21

To reduce the computational time keeping an accurate solution, the use of model order reduction methods22

is currently investigated. The main idea is to replace the detailed and time-consuming model with a reduced-23

order model. For that purpose, we investigate the use of the Proper Generalized Decomposition (PGD)24

method.25

Applied to urban soil heat transfer modeling, this model reduction method has shown its efficiency [3].26

A cut computational cost of 80% was observed for a mean surface temperature error below 0.520C. Applied27

to building wall heat transfer modeling, the PGD parametric model computes the solution 100 times faster28

than a classical numerical method [4].29

To reduce the numerical complexity of the problem, the solution is decomposed as a function of parameters30

like the boundary conditions, or the initial condition. The efficiency of the PGD method relies on the number31

of parameters used. To obtain a minimum number of parameters, some of them are usually combined through32

approximation. Those approximations are done by the projection of the field of interest on an approximation33

basis.34

Selecting the right approximation basis that will guarantee the model final accuracy with a minimum35

number of parameters is a challenging task. The purpose of this article is then to overcome this obstacle.36

We investigate here the use of a polynomial basis like Chebyshev or Legendre. Out of the approximation37

theory [5], those basis have proven to be very efficient at solving partial differential equations using spectral38

methods [6, 7].39

The use of a polynomial basis is compared to the use of a classical reduced-order basis obtain through the40

Proper Orthogonal Decomposition (POD) method. For that purpose, section 2 presents each basis and their41

combination with the PGD method. Each combination is compared both on its accuracy and computation42

time. The global methodology applied is explained in section 3. To evaluate the basis in several situations, two43

case studies are presented. The first case study, presented in section 4 is a theoretical application. In section44

5, the models are then applied to a practical case with realistic boundary conditions. The results of the models45
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will be confronted with laboratory measurements. For each case study, the influence of several parameters46

on the accuracy of the approximation basis is investigated: the number of modes in the approximation basis,47

the number of modes in the PGD model and the discretization.48

2 Materials and Methods49

2.1 Physical problem of heat transfer in building wall50

The physical problem studied is defined to be as close as possible to problems usually solved by building energy51

models (e.g. EnergyPlus [8]). It involves transient one-dimensional heat conduction through a wall without52

volumetric heat dissipation for a time interval Ω τ with t P
“

0 , τ
‰

and space interval Ω xwith x P
“

0 , L
‰

:53

c
Bupx, tq

Bt
“

B

Bx

ˆ

k
Bupx, tq

Bx

˙

, (1)

54

On each side of the wall, a Fourier boundary condition is assumed. On x “ 0, the boundary condition

can be described by the following equation:

´ k
Bupx, tq

Bx
“ qptq ´ h out

´

upx, tq ´ u outptq
¯

, x “ 0 , (2)

The surface energy balance depends on a net radiative heat flux, noted q, and a sensible heat flux. The55

last one is calculated from the outdoor air temperature uout varying over time and from a convective heat56

transfer coefficient h out.57

On x “ L, the boundary condition can be described by the following equation:

k
Bupx, tq

Bx
“ ´ h in

´

upx, tq ´ u inptq
¯

, x “ L . (3)

As it is illustrated with the outside boundary condition, another radiative heat flux could have been added to58

the inside boundary condition to complexify the mathematical model proposed here. The net radiative heat59

flux is neglected on that side of the wall. To support this hypothesis, the error due to this simplification of60

the mathematical model is studied in the appendix A. Note that this assumption will not have an impact on61

the results presented because the same mathematical model is used for all the numerical models developed.62

The sensible heat flux is calculated from the indoor air temperature uin that varies over time and from a63

convective heat transfer coefficient h in.64

The initial temperature is uniform:

upx, tq “ u 0 , t “ 0 . (4)

Equation (1) can be written in a dimensionless form as:65

Bupx, tq

Bt
“ Fo

B 2upx, tq

Bx 2
, (5)
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for a time interval Ω Γ “
“

0 , Γ
‰

and space interval Ω x “
“

0 , 1
‰

, and the boundary condition as:

Bupx, tq

Bx
“ Biout

´

u ´ u out

¯

´ q , x “ 0 , (6a)

Bupx, tq

Bx
“ ´ Biin

´

u ´ u in

¯

, x “ 1 . (6b)

The initial condition becomes:

u “ 0, t “ 0 . (7)

Where the dimensionless quantities are defined as:

u : “
u ´ u 0

u 0
; t : “

t

t ref
; x “

x

L
; Bi in : “

hin.L

k
; Bi out : “

hout.L

k
; Fo : “

k . tref

c L2
“ 1

t ref : “
c L2

k
; u in : “ ´ 1 `

u in

u0
; u out : “ ´ 1 `

u out

u0
; q : “

q .L

k .u0
; Γ “

τ

t ref

66

2.2 The related boundary value problem in the context of co-simulation67

The physical problem involves the partial differential equation (PDE) Eq. (5) together with the boundary68

(Eqs. (6a) and (6b)) and initial conditions (Eq. (7)). As presented on Figure 1, it is solved in the context69

of co-simulation (or coupling) with other numerical models (models 1 and 2), by solving the radiative heat70

balance and the air transfer around the building walls.

Wall Model

Model 2

Wall Model

Model 2

Model 1 Model 1

Figure 1: Co-simulation process

71

In this context, the initial boundary value problem Eq. (5) is semi-discretized along the time line [9]. The72

time discretization parameter is denoted by ∆t , corresponding to the time step of coupling between the nu-73

merical models of the co-simulation. The discrete values of functions u px , t q is written as un
def
: “ u px , tn q74

with n “ 1 , . . . , N t . Thus, using an implicit approach, Eq. (5) becomes:75

un`1 “ un `∆t ¨ Fo ¨
B 2un`1

Bx 2
, (8)
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By introducing y ” un`1 , Eq. (8) can be reformulated as:76

y ´ a ¨
B 2y

Bx 2
“ b px q . (9)

Here, y is the unknown of our boundary value problem and depends on the space coordinate x . The coefficient

a
def
: “ ∆t ¨ Fo depends on the properties of the material composing the wall and on the co-simulation time

step. The coefficient b
def
: “ un is qualified as the source term of the boundary value problem, depending

on the space coordinate x . It also varies at each time step of the co-simulation. The boundary conditions

Eqs. (6a) and (6b) are also transformed:

By

Bx
“ Biout ¨ y ´ b out , x “ 0 , (10a)

By

Bx
“ ´Biin ¨ y ` b in , x “ 1 , (10b)

where the coefficients b out and b in are:

b out “ ´Biout ¨ u out p t
n q ´ q p tn q , b in “ Biin ¨ u in p t

n q .

Both are constants given at each time step ∆t of the co-simulation by model 1 and 2.77

2.3 Formulation of the parametric problem78

The boundary value problem Eq. (9) together with the boundary conditions (10) are the main interest to79

build a reduced-order model. Several solvers exist to solve such a problem. A brief overview can be consulted80

in [10]. These numerical models are used to compute a solution y px q only depending on the space coordinate.81

However, it is a challenging problem to build a solution depending on the space coordinate and on extra-82

parameters such as the source term b and the coefficients b out and b in . It requires to solve a so-called83

parametric problem. The use of the PGD methods gives the opportunity to decompose the solution of a84

problem as a function of any parameters to generate a parametric model.85

Taking into account the source term as a parameter is another challenging task. Indeed, once discretized86

in space, the source term is made of discrete values: one information per piece of the mesh. It implies87

inputting as many parameters in the parametric model as the number of pieces of the mesh. To avoid this88

large number of involved parameters, the source term is approximated by its projection on an approximation89

basis with a lower rank:90

b
`

x
˘

“

N
ÿ

j “ 1

Ψ j

`

x
˘

ζ j (11)

where Ψ j is the approximation basis, ζ j are the coefficients of the projection and N the number of modes

in the basis. So, the solution of Eq. (9) is searched as:

u :
”

0 , 1
ı

ˆ Ω b out ˆ Ω b in ˆ Ω ζ j ÝÑ R ,

`

x , b out , b in , ζ j
˘

ÞÝÑ u
`

x , b out , b in , ζ j
˘

.

The sets Ω b out , Ω b in and Ω ζ j are the domain of variations of the coordinates b out , b in and ζ j , respectively.
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They are defined such as:

Ω b out “
“

b´out , b
`
out

‰

, Ω b in “
“

b´in , b
`
in

‰

, Ω ζ j “
“

ζ ´j , ζ
`
j

‰

, j P
“

0 , N
‰

.

Their respective discretization parameters are denoted by ∆ b out , ∆ b in and ∆ ζ j .91

2.4 Approximation basis92

In the literature, several parameterizations have been studied. Chinesta et al. (2013 [11]) and Gonzalez93

et al. (2012 [12]) proposed to use the nodal values corresponding to the piece-wise linear finite element94

approximation of the problem. However, according to Gonzalez et al. (2014 [13]), this method leads to a95

large number of degrees of freedom: their model is made of one parameter per nodal values. That is why96

they proposed to use the POD to provide a suitable parameterization of the initial condition with the lowest97

number of degrees of freedom [13]. More information can be found on this method applied to convective heat98

transfer in [14] and solid dynamics in [13, 15].99

One of the main drawbacks of this method is that a learning process is needed. It has an impact on the100

accuracy of the reduced-order basis. For this reason, the data-set used must be representative of the problem101

(boundary values, initial conditions, materials used).102

According to Gonzalez et al. (2014 [13]) the initial condition could be interpolated by piece-wise poly-103

nomials. However, for the specific field of solid dynamics, this approach is not the best choice, considering104

the behavior of the system. Another solution proposed by Poulhaon et al. (2012, [16]) is to use an auxiliary105

mesh much coarser than the one used for the solution of the problem. A projection is made from the fine106

to the coarse mesh using the least square method. This method is purely mathematical and does not take107

into account physical considerations such as energy conservation or heat flux conservation. According to108

Poulhaon et al. (2012, [16]) it should be completed by a mathematical tool to take into account the physics109

of the studied phenomenon.110

Conforming to [17], one important feature for the choice of an approximation basis is the sparsity. It111

ensures that the chosen basis has the required regularity to represent the solution. Spectral basis, such as112

polynomial or trigonometric functions, guarantee sparsity. For such functions, the values of the coefficients113

decrease exponentially with the order of approximation [18]. However, the basis is full (because a spectral114

basis is not interpolative [17]). It implies that the computational cost needed to determine the coefficients115

becomes impractical for large systems.116

Based on the literature review, two methods are here compared: the use of a polynomials basis and the117

use of a POD basis to approximate the temperature profile. Details on how to build each approximation118

basis used are given in the appendix B.119

As stated by the Weierstrass approximation theorem, every continuous function on a bounded interval120

can be approximated by a polynomial to a certain accuracy [5]. Several functions with polynomial basis can121

then be used according to the studied problem. The most simple polynomial basis is the monomial one.122

As described by Peyret (2013 [19]), if a periodic problem is studied, the Fourier method should be used.123

Yet, this method is not suitable for non-periodic problems, because of the Gibbs phenomenon. In this case,124

orthogonal polynomials such as Chebyshev or Legendre polynomials should be used.125
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Considering the numerous polynomial basis, the first difficulty is to select the right basis for the considered126

problem. As the field of interest is a non-periodic, smooth function, Fourier or Laurent polynomials shall127

not be studied here.128

According to Trefethen (2013, [5]), the monomial basis is comfortable but should never be used to ap-129

proximate a function. If we compare the condition number for inversion of the three basis, the Chebyshev130

and Legendre polynomials basis have a smaller condition number than the monomial one. If the condition131

number of a matrix is large, the matrix is close to being singular. The condition number reveals that the132

projection of the field of interest on the monomial basis will be sensitive to numerical round-off errors and133

perturbations in the input data. Moreover, monomial basis do not meet sparsity condition as its coefficients134

increase with the order. Therefore, this basis should not be used here to parameterize the initial condition.135

According to Trefethen (2013, [5]), Legendre points and polynomials are neither better than Chebyshev136

ones for approximating functions, nor worse. The main advantage to use Chebyshev over Legendre points137

center around the use of FFT (Fast Fourier Transform). This function can be used to get the coefficients138

from the point values or the reverse. But this property is not used here. Both polynomials basis will be139

compared.140

The Chebyshev and Legendre polynomials are part of the family of orthogonal polynomials. They are141

calculated respectively at the Chebyshev and Legendre points. Special attention must be given to the142

spatial domain of the problem. The points define a non-uniform mesh for a space interval r´1, 1s. Thus, a143

change of variable must be performed to transform the dimensionless spatial domain r0, 1s to x P r´1, 1s.144

2.5 Proper Generalized Decomposition method145

Several MOR methods can be used to solve a parametric problem. One of them is the Proper Generalized146

Decomposition Method (PGD). It is an a priori MOR method based on the separation of variables. It does147

not reduce the system of equations itself but the whole parametric problem. Any variable can then be defined148

as an extra-parameter of the model [17].149

With spectral methods [20], the PGD method is one of the unique methods that allows to create a150

complete parametric model without knowing a priori the solution of the problem.151

The PGD is used to propose an accurate parametric solution of the formulated BVP problem. The method152

approximates the solution as a finite sum of separable functions. As presented in Section 2.3, the parametric153

model involves three parameters: the space, the boundary condition and the source term. Applying the PGD154

method, the solution is sought as the sum of M functional products involving each function as follows:155

y “

M
ÿ

m “ 1

Xm

`

x
˘

Em

´

bin

¯

Fm

´

bout

¯

N
ź

j “ 1

Gjm
`

ζj
˘

(12)

where X, E, F , and G designate the functions of the parameters. Each function is defined over a domain :156

Ωx “
“

´1, 1
‰

, Ωbin “
“

b´in, b
`
in

‰

, Ωbout “
“

b´out, b
`
out

‰

and Ωζj “
“

ζ´j , ζ
`
j s.157
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The following weak form of the ODE is used with the test function y˚ (Galerkin formulation):158

ż

ΩxˆΩbinˆΩboutˆΩζj

y˚.

˜

y ´ a
B 2y

Bx 2
´

N
ÿ

j “ 1

Ψ j

`

x
˘

ζ j

¸

dx.dbin.dbout.dζj “ 0 (13)

The weak form of the ODE is regarded as an optimization problem. It leads to a nonlinear optimization159

problem due to the functional product of the subspaces. It can be solved with an iterative procedure that160

features two nested loops: the alternating direction strategy and the enrichment process [21]. The calculation161

of the unknowns is performed alternatively along each dimension until convergence [22]. In this way, the162

algorithm splits the high dimensional problem into a series of low dimensional ones. The complexity of the163

problem then grows linearly with the number of parameters. Each function Xm, Em, Fm and Gjm is first164

randomly initialized and then solved by iterations. The alternating directions process stops once a fixed point165

is reached. The criterion ε̃ used to make this determination is defined by the user [11]. Once this criterion166

is reached, the new functions are added to the previous one in the PGD basis. The enrichment process of167

the PGD basis stops when the ε criterion, defined by the user, is reached [11]. Details on the alternating168

directions strategy equations and algorithms for a similar problem can be found on [3]. For further details169

on the method and its developments, the interested reader may refer to [11, 15].170

Each function (Xm, Em, Fm, Gjm) defined previously depends on a continuous variable. To solve the171

parametric problem with the previous algorithm, the continuous variables need to be discretized. For that172

purpose, the continuous variable is projected on a mesh. The continuous variable is then described by a173

vector. The finer the mesh of discretization of each parameter, the closer the discrete value to the continuous174

one. But as a results, the number of elements in the vectors used to describe the parameter increases.175

According to Leon et al. (2018, [23]), the final accuracy of a PGD model depends on the number of terms176

M in the final sum, on the number of parameters/vectors ( x, bin, bout, ζj) and the discretization of those177

parameters. However, by increasing the number of elements in the mesh of discretization for each parameter,178

we increase the complexity of the problem. In the case of a PGD model, this complexity grows linearly with179

the number of parameters [17, 22]. As a comparison, the complexity of a grid-based discretization (finite180

element, finite difference) grows exponentially with the number of mesh elements. The number of elements181

on each vector is a matter of CPU time and space to save the PGD parametric model. As the purpose of182

building a PGD parametric model is to decrease the calculation time (compared to a classical model: finite183

difference, finite element) the number of elements in each vector should be then optimized.184

For the spatial parameter and the boundary condition, the methodology to defined the discretization is185

classical, no special interrogation arises. However, each mode of the approximation basis also needs to be186

discretized. Several questions can arise for the coefficients ζj of the source term approximation. Spectral basis187

such as Chebyshev or Legendre guarantee sparsity. When this condition is met, the order of magnitude188

of the coefficients ζj decreases exponentially with the order of approximation [18]. The discretization of each189

coefficient needs to fit the order of magnitude of each mode. To simplify our study and only use one parameter190

to define the discretization of each coefficient of the basis, we propose to use dimensionless numbers for the191

coefficients ζj defined as ζj .192

ζj “
ζj ´min pζjq

max pζjq ´min pζjq
(14)
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where ζj P r0, 1s and ζj P rmin pζjq ,max pζjqs.193

2.6 Offline/online strategy194

The use of the PGD method, to solve the parametric problem, features an offline-online strategy. During the195

offline stage, the model is built for the set of parameters. It is then used online combined with other models.196

Online, the use of the model requires no more than reading the unknown value in an abacus.197

As previously described, one of the parameters of the problem consists of the source term b. Taking198

into account the source term as a parameter is a challenging task. Indeed, once discretized in space, the199

source term is made of discrete values: one information per piece of the mesh. It implies inputting as many200

parameters in the PGD parametric model as the number of pieces of the mesh, plus the boundary conditions201

and spatial coordinates. The PGD method has shown success for problems up to dimension 100. However,202

the efficiency of a parametric model depends on the number of involved parameters [13, 16].203

To avoid this large number of involved parameters, one can gather some of them. Considering the204

source term, this is usually done by using an approximation basis. The temperature field is projected on an205

approximation basis of a smaller size. The use of different approximation basis is investigated in this work:206

Chebyshev, Legendre polynomials and the POD reduced basis.207

The PGD method is combined with the approximation basis to build a PGD parametric model for the208

previous presented physical problem. Each step of the offline/online strategy is described in Figure 2.

Figure 2: Offline/online strategy

209

The first step of the offline phase consists of building an approximation basis. In the case of Chebyshev,210

Legendre basis, it is made of the polynomials. In the case of the POD reduced basis, a learning process211

is required. The POD basis is built on a data-set. The latter can be provided from available measurements212
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or from another model defined as a Large Original Model (LOM). To get an accurate approximation basis,213

the learning process needs to be representative of all future modeled combinations. In the specific case of a214

building energy model, the basis should be representative of every material and climate data that could be215

used. The learning process needs a large amount of data and could be very time-consuming.216

The approximation basis Ψ aims at representing the source term in a minimum number of parameters217

called modes. For that purpose, the approximation basis is truncated. A number of modes in the approxima-218

tion basis, N , is defined to achieve the desired approximation accuracy. Note that this number has a direct219

influence on the number of parameters used in the PGD parametric model and its accuracy.220

Then, all the parameters of the model (the mesh, the boundary conditions, and the approximation basis221

modes) are converted into parameter vectors. The discretization (∆x, ∆b out, ∆b in, ∆ζ) selected for each222

vector has an impact on the accuracy of the PGD parametric model.223

Finally, as a last step of the offline phase, the parametric problem can be solved with the PGD algorithm.224

The PGD parametric model is built for a number of PGD modes M. This parameter also influences the225

accuracy of the parametric model.226

Once the PGD parametric model has been built, it can be applied for any value within the previously227

defined intervals, online. The source term b is projected on the approximation basis Ψ to identify the228

parameters ζj . Afterwards, the PGD modes are computed for the defined parameters x, bin, bout and ζj .229

The evaluation of the solution demands no more than reading a look-up table [17].230

3 Methodology231

The purpose of this article is to overcome the obstacle of parameterizing the initial condition of a PGD232

parametric model. It is then necessary to quantify and compare the accuracy of each approximation basis in233

the framework of their combination with the PGD. The proposed study will therefore cover several issues:234

1. the accuracy of the approximation basis for a given number of modes N ,235

2. the discretization of each of the parameters vectors,236

3. the number of PGD modes M.237

For the use of the POD approximation basis, a supplementary issue has to be added: the efficiency of the238

learning process.239

3.1 Methods assessment’s procedure240

To evaluate the approximation basis in several situations, two case studies are presented. The first case study241

is a theoretical application. It is used to study the influence of the three first issues cited previously.242

The built basis are then applied to a practical case with realistic boundary conditions. The results of243

the models will be confronted with laboratory measurements. The influence of the learning period is studied244

through this second case study.245
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They may seem simple and we could have considered more complicated case studies. However, the246

parametric model would have been more complex. It would then have been more complicated to identify the247

influence of the studied parameters on the final error of the model.248

For each case study, the global methodology consists of two main steps. First, the approximation of249

the source term is evaluated to study the behavior of the basis alone. Then the PGD parametric model is250

evaluated to verify if the basis have the same behavior once applied in the PGD framework. The performance251

of the three basis is compared with regards to the model errors and CPU time. The chosen indicators are252

presented hereafter.253

3.2 Error indicator of the model254

For each step of the assessment procedure, the error indicator chosen is the `8 norm. It is computed as255

the Root Mean Square Error between two spatial profiles. Only the maximum of the previous function is256

observed. This Section describes the errors calculated for each of the three parameters studied in this paper.257

3.2.1 Evaluation of the source term approximation258

Source terms Source term approximation

Figure 3: Evaluation of the source term approximation

For each metrics introduced hereafter, Figure 3 summarizes the methodology. First, the performance of259

each basis to approximate the source terms is evaluated by projecting the source terms (actual b and reference260

bref ) on the different basis and by then calculating the errors µ as follows:261

µ : pN , Ψq ÞÑ max
t

¨

˝

g

f

f

e

1

Nx

Nx
ÿ

0

«

bref ´
N
ÿ

j “ 1

Ψ j ζ j

ff2
˛

‚ (15)

where Nx is the number of elements over the axis. The reference source term (noted bref ) outcomes from262

the reference solution calculation at each point of the spatial mesh and for each studied time step. The error263

is calculated for each approximation basis Ψ. The influence of the parameter N on the accuracy of the basis264

µ will be studied.265

To integrate the approximation basis into the PGD framework, each parameter of the model has to be266

discretized. The error due to this discretization noted ν is evaluated for each approximation mode. The error267

is calculated as follows for the PGD variable ζ:268

ν : pN , Ψ, ζ, ∆ζq ÞÑ max
t

¨

˝

g

f

f

e

1

Nx

Nx
ÿ

0

«

bref ´
N
ÿ

j “ 1

Ψ j ζ j

ff2
˛

‚ (16)
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with ζ the dimensionless coefficients.269

3.2.2 Evaluation of the PGD parametric model270

Figure 4: Methods assessment’s procedure sum-up

Finally, the approximation basis are introduced into a PGD parametric model to get a combined para-271

metric model. The error of the combined model noted ε is computed between the calculated temperature272

profile and the reference solution. Figure 4 summarizes the methodology.273

ε : N , ζ, Ψ, ∆ζ,M ÞÑ max
t

¨

˝

g

f

f

e

1

Nx

Nx
ÿ

0

«

y ref ´
M
ÿ

m “ 1

Xm

`

x
˘

Em

´

bin

¯

Fm

´

bout

¯

N
ź

j “ 1

Gjm
`

ζj
˘

ff2
˛

‚

(17)

274

3.3 Indicator for the CPU time275

A fair comparison of the computational time for various methods is not easy to undertake as it will depends276

on the way we code and the tools we use. To get a fair comparison, calculation times were measured on277

the same computer and on the same environment. Except for the reference solution calculation (where the278

Matlab toolbox Chebfun has been used), we developed all the other computational codes by ourselves. We279

paid attention to code each model in the same way (for example the same algorithm is always used to solve280

a system of equation).281

For each step, the CPU calculation time is evaluated on a Lenovo, windows 10 with 8Go RAM IntelCore282

i5, 2.60 GHz. The CPU calculation time is normalized by the time constant t0. It corresponds to the283

maximum CPU time observed. This information will be given in the titles of the figures. The CPU time284

ratio is noted ρCPU and defined as follows:285

ρCPU “
tCPU
t0

(18)
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4 Theoretical case study286

4.1 Description of the case study287

4.1.1 Physical constants used288

The case study consists of a wall of one-layer of thickness L “ 0.20m, made of concrete, with a thermal289

conductivity k “ 1.75W.m´1.K´1 and a specific heat capacity c “ 2.2 10 6 J.m´3.K´1.290

On the outdoor side of the wall, a sinusoidal variation of the air temperature and the net radiative heat291

flux are considered. Their variations are defined as:292

u out “ u o,m ` δ o, 1 sinp 2 π ω o, 1 tq ` δ o, 2 sinp 2 π ω o, 2 tq (19)

293

q “ q m sinp 2 π ω q, tq 20 (20)

On the indoor side of the wall, a sinusoidal variation of the air temperature is considered, as described below:294

u in “ u i,m ` δ i sinp 2 π ω i,1 tq (21)

As presented before, the net radiative heat flux is neglected on that side of the wall. The error due to this295

simplification of the mathematical model is studied for the specific case study in the appendix A.296

The following numerical values are considered for the outdoor and indoor boundary conditions:

u o,m “ 20 r 0 C s, δ o, 1 “ ´4.4 rK s, ω o, 1 “
1

72
r h´1 s, δ o, 2 “ ´11.7 rK s, ω o, 2 “

1

24
r h´1 s,

q m “ 500 rW.m´2 s, ω q, “
1

48
r h´1 s, u i,m “ 20 r 0 C s, δ i “ ´2.0 rK s, ω i,1 “

1

48
r h´1 s.

Some of the numerical values are inspired from 1D numerical application [2]. The boundary conditions used297

are presented in the Figure 5. The convective heat transfer coefficients are set to : h in “ 8.7W.m´2.K´1
298

and h out “ 23.2W.m´2.K´1.299

The numerical values of the dimensionless quantities are the following ones:

Bi in : “ 0.4971; Bi out : “ 1.3314; Fo : “ 1; t ref : “ 1.2571ˆ 104

4.1.2 Reference solution300

The reference solution y ref px, tq is computed using the Matlab toolbox Chebfun [24] for a time horizon of 3301

days, with a dimensionless time step of ∆t “ 10´3 and a space mesh made of 200 nodes. The evolution of the302

temperature for the reference solution is presented in Figure 6. Figure 6(a) describes the temporal evolution303

of the surface temperature on each side of the wall and figure 6(b) gives an overview of the temperature304

profiles within the wall. It represents the source term that needs to be parameterized with the several305

studied approximation basis.306
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Figure 5: Boundary conditions of the theoretical case study
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Figure 6: Temperature field for the reference solution
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4.1.3 Learning process307

As presented in the Section 2.6, the POD basis is built on an available data-set. The choice was made to308

use the complete reference solution data-set to built the POD basis. The POD basis is then used in identical309

conditions than the one used for the learning process. Thus, the condition of the learning process will not310

influence the accuracy of the basis.311

4.2 Evaluation of the approximation of the source term312

The ability of each basis to approximate the source term depends on two parameters : the number of modes313

in the approximation basis N and the discretization of the parameters. The influence of those two criteria is314

studied hereafter.315

4.2.1 Influence of the number of modes in the approximation basis316
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Figure 7: Evolution of the error µ as a function of the number of modes in the approximation basis

Figure 7 presents the evolution of the approximation error as a function of the number of modes N in the317

three approximation basis. In Figure 7(a), we can observe that the error decreases as the number of modes318

in the approximation basis increases. In the case of the POD basis, the error decreases until it gets constant319

around N “ 18. The results of the Chebyshev and the Legendre polynomial basis are very close. They320

both decrease with a large slope for the first ten modes and continue to decrease slowly. The polynomial321

basis cross the POD basis around N “ 38 modes. The polynomial basis are then more accurate than the322

POD one.323

The smoothness of the function can be linked to the number of times the function is differentiable. As324

explained by Trefethen (2013 [5]), the smoother a function, the faster its approximates converge. Figure 7(b)325

gives information on the smoothness of the function. In this specific case, the three approximation basis have326

similar trends. They converge at a rate of OpN´7q.327

The CPU calculation time is another criterion to compare the performance of the three basis. CPU328

time ratios are presented on Figure 8. The results are normalized by the maximum CPU time observed (for329
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Figure 8: Evolution of the CPU calculation time as a function of the number of modes in the three approxi-
mation basis with t0 “ 0.2341 sec

Legendre basis with N “ 50). The calculation time presented for the POD basis includes the learning330

process. We can observe that the CPU time increases linearly and that it is slightly higher for the POD basis331

than for the two polynomial basis. However, the results are of the same order of magnitude.332

4.2.2 Influence of the discretization333

As reported in the Section 2.5, each parameter of the model (the mesh, the boundary conditions, and the334

coefficients of the approximation basis) needs to be converted into vectors of parameters. For that purpose,335

their domain needs to be discretized, by converting the continuous functions into discrete values. The mesh336

of discretization of the parameter ζ has a direct impact on the accuracy of the approximation of the source337

term. The influence of the mesh of discretization ∆ζ is studied hereafter.338

Three dimensionless discretizations have been selected ∆ζ “ 10´2, 10´4, 10´6. For the three criteria,339

the error between the reference solution and the solution projected on the truncated basis is plotted as a340

function of the number of modes in the truncated basis. Figure 9 presents the results. For each curve, the341

same tendencies can be observed, the error drops and then stabilizes. Indeed as we increase the number342

of modes, the error of the approximation decreases. However, as the coefficients are rounded, part of the343

information is lost. As the error stabilizes, the addition of a supplementary mode does not improve the344

accuracy of the approximation. For a discretization ∆ζ “ 10´2, the threshold is reached for N “ 5 and 7345

and 12 modes for respectively: ∆ζ “ 10´4 and ∆ζ “ 10´6.346

4.2.3 Discussion347

From those two first influence analyses, the approximation basis can not be ranked, as their performances348

are close. For both the number of modes N and the discretization, the same tendencies can be observed for349

the three approximation basis.350

Moreover, the accuracy of the POD basis depends on the quality of the learning process (it should be351

representative of the conditions of future study cases). In the theoretical case study, the learning process has352
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Figure 9: Influence of the truncation of the approximation basis on the accuracy of the approximation for
various discretizations
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been made on the complete reference solution data-set. We are then in ideal conditions for the use of the353

POD basis. In the practical application (Section 5), the influence of the learning process will be investigated.354

This first step enables the comparison of the behavior of the three studied basis outside of the PGD355

framework. However, once implemented in the PGD framework, the tendencies observed before could be356

different. to verify the consistency, the influence of the parameters studied should be studied in the PGD357

framework.358

4.3 Evaluation of the PGD parametric model359

A PGD parametric model is built to solve the problem studied here. The boundary conditions and the source360

term are defined as parameters of the parametric model. The approximation basis are used to describe the361

initial condition in a few parameters (modes). The PGD model is then combined to an approximation basis.362

The accuracy of the combined model depends on three parameters:363

• the accuracy of the approximation basis for a given number of modes N ,364

• the discretization of each of the parameters vectors,365

• the number of PGD modes M.366

To study the influence of those three parameters on the accuracy of the model, several PGD basis have367

been generated, one for each: combination of the three approximation basis, number of modes in the basis368

N P r2, 5s and discretization ∆ζ P r10´5, 10´2s. In total 48 PGD combined models have been compared. For369

each model, both parameters of the alternating direction process and the enrichment process are fixed to370

ε̃ “ 10´6 and ε “ 10´8. The influence of each parameter ∆ζ, N , and M is studied hereafter, based on the371

results of those basis.372

4.3.1 Influence of the discretization of the approximation coefficient373
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Δζ
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ε
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Δhebyshev
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(a) ε8 error for N “ 5 (b) Online CPU calculation time ratio for N “ 5

Figure 10: Influence of the discretization of the approximation coefficients on the error and on the CPU time
ratio with t0 “ 23879 sec.
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The influence of the approximation coefficients is studied here. Figure 10 presents the results of the374

error and about the calculation time. The results are displayed for the most accurate basis used made of375

N “ 5 approximation modes. The accuracy of the model and the CPU time of each model increase, as376

the discretization gets finer. Those two results are in accordance with the previous ones. The discretization377

induces a loss of information. The continuous function is converted into discrete values as it is done for378

a spatial mesh for any numerical method. The finer the mesh, the closer the discrete representation to379

the continuous function. However, as we increase the discretization, we increase the number of elements in380

the vector. The online CPU time then increases. The same tendencies are observed for basis made of 3381

and 4 modes. For basis made of 2 modes, the same tendencies are observed for the POD. However for the382

Chebyshev and Legendre basis, the error remains high and constant as we decrease the discretization.383

For both polynomial basis, using 2 modes is not enough to approximate the source term accurately.384

4.3.2 Influence of the number of modes in the approximation basis385
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(a) For ∆ζ “ 10´5, evolution of the ε error
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(b) For ∆ζ “ 10´5, evolution of the CPU calculation time
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Figure 11: Influence of the number of modes in the approximation basis on the ε error and CPU time ratio
with t0 “ 23879 sec

The influence of the number of modes in the approximation basis is now studied. Figure 11(a) presents386

the evolution of the ε error as a function of this parameter. Results are presented for a fixed discretization387

of ∆ζ “ 10´5 for each approximation basis. In the case of the Chebyshev and Legendre combined388

parametric models, the error decreases with the number of modes. This phenomenon can be observed for389

fine discretizations (∆ζ “ 10´4 or ∆ζ “ 10´5). For coarser discretizations, the error remains constant as390

we increase the number of modes. Adding a supplementary mode is not useful if the discretization remains391

constant.392

In the case of the POD combined parametric model, for a fixed discretization, adding a supplementary393

mode will not decrease the error of the model. The discretization will only have an impact on the error of394

the model. Here, the model is trained and used on the same data-set. The results may have been different395

if only part of the data-set has been used to train the basis. This point will be illustrated in the practical396

application (Section 5).397
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For every model, a threshold around Op10´3) is reached after a few modes. The error of the final PGD398

model is then not mainly due to the approximation of the source term but also to other parameters: the399

discretization of the boundary condition on x “ L fixed at 10´3, the discretization of the boundary condition400

on x “ 0 fixed at 10´4, the spatial grid fixed at 10´2.401

4.3.3 Influence of the number of modes in the PGD basis402
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Figure 12: Influence of the number of PGD modes M on the ε error for δζ “ 10´4 and N “ 4.

The last parameter studied is the influence of the number of PGD modes M. Figure 12 presents the403

evolution of the error as a function of the number of PGD modes M for N “ 4. The parametric models404

are built for ∆ζ “ 10´4 for each approximation basis. This Figure gives information on how fast the PGD405

strategy converges. There are not many differences between the three methods. Applied to non-symmetric406

differential operators, the PGD algorithm converges slowly as its optimality is not guaranteed [11]. The PGD407

could contain more terms than strictly needed.408
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Figure 13: Evolution of the total number of PGD modes as a function of the number of modes of the
approximation basis. Each curve of each basis corresponds to a different discretization ∆ζ P r10´5, 10´2s
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Each time a mode is added to the parametric model, a new variable is added to the problem. The409

computational domain becomes of higher dimension, it must cover not only the physical and boundary410

conditions coordinates but also the parametric domain [25]. Adding a parameter increases the complexity of411

the tensor subspace. In the case of the PGD, this complexity grows linearly with the number of dimensions412

[17, 22]. Figure 13 illustrates the impact of adding a new parameter to the PGD parametric model on the413

total number of PGD modes. As we increase the number of modes in the approximation basis, we increase the414

number of parameters in the parametric model. As soon in Figure 14 the convergence rate of the algorithm415

decreases. Thus, the number of necessary PGD modes increases to achieve the desired accuracy (ε̃ “ 10´6
416

and ε “ 10´8) as we increase the number of parameters involved.417
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Figure 14: Evolution of the ε error as a function of the number of modes for the Chebyshev basis

4.3.4 Discussion418

For the approximation coefficients discretization and the number of modes in the approximation basis, the419

same tendencies are observed than the one observed for the approximation of the source term. The comparison420

of the approximation basis on the approximation of the source term gives a good first overview of the behavior421

of the basis.422

However, two modes are not sufficient to approximate the source term with Chebyshev and Legendre423

combined parametric models. For the POD basis, the final accuracy of the PGD model is reached with two424

modes for a fixed discretization.425

Finally, Leon et al. (2018, [23]) have shown on the Poisson equation that the final accuracy of a PGD426

model depends on the discretization of the parameters and the number of termsM in the final sum. Indeed427

the finer the discretization of each parameter, the closer will be the discrete values to the continuous one.428

However, as they decrease the mesh, they increase the convergence rate of the PGD algorithm and the429

necessary number of PGD modes in the model. The same tendencies can be observed here in Figure 14(b).430

It presents the evolution of the ε error as a function of the number of modes for the Chebyshev basis with431

N “ 3. The error decreases and then reaches a threshold. Then adding a supplementary PGD mode to the432

parametric model is not sufficient to decrease the error of the model. The discretization should be decreased.433

21



5 Practical application434

In the previous parts, the POD basis, as most of the time, has shown its optimality. However, as mentioned435

above, the performance of the POD basis depends on the quality of the learning process. It should be436

representative of the boundary conditions applied to the case study.437

In the theoretical case study, the learning process has been made on the complete reference solution438

data-set. The POD basis is then used in identical conditions than the one used for the learning process. The439

influence of the learning process has not been studied yet.440

To obtain a POD basis, a training data-set is necessary. It can be obtained from measurements or from441

another numerical model. Both methods are expensive since a large range of data is needed. To give an442

example, if we want to use the parametric model to predict the temperature distribution in a wall during a443

year, the training data-set should be representative of all the boundary conditions encountered in practice.444

To illustrate this limit, the accuracy of various POD basis are compared to the polynomial basis. The445

same methodology as the one used for the theoretical case study is applied. The influence of the learning446

period is first studied on the approximation itself and then on the combination of the approximation basis447

with the PGD parametric model.448

Another major objective of this part is to evaluate the reliability of the model in a realistic case study.449

For that purpose, the results of the model are compared to laboratory measurements.450

5.1 Description of the case study451

Figure 15: Sensors position illustration and
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Figure 16: Evolution of the air temperature and
inside wall temperatures measurements

5.1.1 Experimental set-up452

The experimental set-up described hereafter was think up with the objective to obtain realistic boundary453

conditions and measurements on a common building wall. It consists of a multi-layer building wall, made454
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of traditional building materials: 1 cm of plasterboard, 10 cm of insulation (expanded polystyrene), 15 cm of455

structural material and approximately 1 cm of mineral coating. The wall is built between two rooms. One456

can be heated by an electric heater and the second one can be cooled by the evaporator of a heat pump.457

For this study, we will only focus on the insulation layer of the wall. Indeed, the insulation material expe-458

riences greater temperature gradients which makes it more interesting to observe. Moreover, the insulation459

material is a homogeneous material and the temperature is easier to measure in such a material, contrary460

to the structure material made of concrete cellular blocks for which the measured temperature is strongly461

dependent on the position of the sensor. Indeed, for such cellular materials, the measured temperature can462

be very different whether it is measured on a cavity or near the wall of this cavity that creates a thermal463

bridge. By the more, the thermal conductivity of the insulation material is well known, whereas only the464

macroscopic thermal resistance is known for the concrete cellular block, which makes it difficult to obtain a465

calculated temperature directly comparable to the measured temperature, although the heat flux is correct.466

This insulation layer is thus equipped with four type K thermocouples located at the surface and in the467

insulation layer.468

The global experimental uncertainty has been calculated with equation 22 [26].469

σ “

d

σ2
m `

ˆ

Bu

Bx
δx

˙2

(22)

The thermocouples have been calibrated by measuring the temperature of melting ice and boiling water470

before the measurement. The sensor measurement uncertainty is then σm “ ˘0.1˝ C. The sensor position471

uncertainty has been evaluated as the product of the temperature derivative (with second-order centered472

approximation) at the sensor position and δx “ ˘0.1 cm. The temporal mean global experimental uncertainty473

is noted hereafter σ.474

5.1.2 Experimental observations475

Data were recorded for 5 days, with a 30 sec time step. Several cycles were tested during this period, turning476

on and off the heater and/or the heat pump. The cycles are described in Table 1. A pattern made of three477

cycles with three different time periods (25min, 40min, and 60min) is repeated twice. The first three cycles478

are run with a temperature set-point of 50C in the cold room. For the last three cycles, the heat pump479

was turned off to modify the boundary conditions of the cold room. The boundary conditions are described480

through the evolution of the air temperature in the warm and cold room in Figure 16.481

5.1.3 Reference solution482

The reference solution y ref px, tq of this problem is computed using a Euler implicit finite difference model483

for a time horizon of 96 hours with a time step of 30sec (dimensionless time step of ∆ “ 10´2) and a spacial484

mesh made of 99 nodes. On each side, two Dirichlet boundary conditions are set using the temperature485

signal T01 and T04. Figure 16 gives an overview of the temperature evolution at the boundary conditions.486

The first temperature profile is initialized using the temperature profile measured in the wall at the begin-487

ning of the experiment. Linear interpolation is done between the measured points to obtain the temperature488

distribution at each point of the spatial mesh (Figure 17). The simulation is then run for the all period (5489
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Cycle number Heater Heat Pump Duration [min] Time
Initialization on on (50C) 5220 (87h) -

0 off on (50C) 40 00:00 to 00:40
1 on on (50C) 40 00:40 to 1:20
1 off on (50C) 40 1:20 to 2:00
2 on on (50C) 25 2:00 to 2:25
2 off on (50C) 25 2:25 to 2:50
3 on on (50C) 60 2:50 to 3:50
3 off on (50C) 60 3:50 to 4:50
4 on off 40 4:50 to 5:30
4 off off 40 5:30 to 6:10
5 on off 25 6:10 to 6:35
5 off off 25 6:35 to 7:00
6 on off 60 7:00 to 8:00
6 off off 60 8:00 to 9:00

Table 1: Description of the cycles
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days). The first 87h of the simulation are not used. They are left as initialization period of the model. It490

consists of turning on the heater and the heat pump until an equilibrium between the two rooms is reached.491

The boundary conditions of this initialization cycle are described in Table 1. The rest of the data-set is used492

to evaluate the model in different conditions. As the first 87h are not used to evaluate the model, they are493

not presented in the following figures. Thermal properties from the French regulations database [27] are used494

with: k “ 0.04W.m´1.K´1 and c “ 30.103 J.m´3.K´1 .495

5.1.4 Learning process496

Three training data-sets for the POD basis are compared:497

1. the full evaluation data-set (noted t P Ωτ “ r0 , τ s with τ “ 9h),498

2. half of the evaluation data-set, made of the cycles 0 to 3 (noted t P Ω τ
2
“ r0 , 4h50s),499

3. the cycle 1 (noted t P Ωt1 “ r0 , 0h40s).500

The three basis are compared to the Chebyshev and Legendre polynomial basis. For those two last501

methods, no learning period is required to build the basis.502

5.2 Influence of the learning period503

As for the previous case study, the influence of the learning period is first evaluated on the approximation of504

the source term, then it is evaluated on the PGD parametric model. The same parameters and computation505

code than the one used for the previous sections are applied.506

5.2.1 Evaluation of the approximation of the source term507

The accuracy of the approximation of the source term is studied for various training data-sets. The results508

are presented on figure 18. The error is plotted for the various number of modes in the approximation basis:509

N P r2, 8s.510
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Figure 18: Approximation basis error as a function of the number of modes for several training periods
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As in the theoretical example, the POD basis is the most accurate one for N P r2, 8s, if the full data-set is511

used for the training period. However if only a part of the data is available, the Chebyshev and Legendre512

approximation basis are more efficient for N P r2, 3s. The POD basis trained with half of the cycles seems513

to be as efficient as the one built with the full training data-set for N P r4, 8s. Indeed the same pattern514

is repeated from cycle 1-2-3 to cycle 4-5-6. Building the POD basis with one pattern could be enough for515

N ą 3.516

This learning process has a numerical cost as it requires running a large original model and building517

the POD basis as described in Section 2.6. Table 2 compares the computation time needed to build the518

basis from the results of the finite difference model for the various learning periods. As large is the training519

data-set as large is the time needed. Building the basis with one cycle results in a saving of 35% of the offline520

computation cost.

Learning period ρCPU
t P Ωτ 1
t P Ω τ

2
0.89

t P Ωt1 0.65

Table 2: Offline calculation time t0 “ 0.003987 sec

521

Finally, a compromise should be found to minimize the training period and the computational cost needed522

to build the basis while keeping an accurate approximation basis. For that purpose, a methodology to select523

an efficient training period should be developed.524

5.2.2 Evaluation of the PGD parametric model525

The influence of the learning period is now studied for the combination of the PGD parametric model with526

the various approximation basis. Results for the most favourable (t P Ωτ ) and unfavourable (t P Ωt1) POD527

basis are compared to the Chebyshev and Legendre polynomial basis. Several PGD basis have been528

generated one for each: combination of the four approximation basis (the favourable POD, the unfavourable529

POD, the Chebyshev and Legendre polynomial basis), number of modes N P r2, 5s and discretization530

∆ζ P r10´5, 10´4s. In total 32 PGD basis have been compared for this application. As done before, both531

parameters of the alternating direction process and the enrichment process are fixed to ε̃ “ 10´6 and ε “ 10´8.532

The accuracy of the PGD parametric model is compared for various number of modes N P r2, 5s and for a533

fixed discretization ∆ζ “ 10´5. We use the same parameters than in section 4.3.2 to compare the results.534

Figure 19 presents the evolution of the error and CPU time for various numbers of modes N . For each535

combined parametric model, for N P r2, 4s the error decreases with the number of modes. The error for536

N “ 5 increases. This can also be observed in Figure 11. As previously explained, a threshold (around537

Op10´3q) is reached after a few modes. This phenomenon can be observed for both discretizations. One this538

threshold has been reached, the error of the final PGD model is then not mainly due to the approximation539

of the source term. This could explain the fact that the error slightly increases.540

In the theoretical case study, the error of the POD basis remained constant with the number of modes.541

Adding supplementary modes did not improve the total accuracy of the model. It is not the case here.542

For more complex boundary conditions (realistic signal), supplementary modes are necessary to accurately543

parametrize the previous temperature profile.544
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(b) For ∆ζ “ 10´5, evolution of the CPU time ratio

Figure 19: PGD parametric model ε error and CPU time ratio as a function of the number of modes for
several training periods ( t0 “ 51.31 sec)

For this practical example, the Chebyshev and Legendre polynomial basis are more accurate once545

combined with the PGD basis for a similar computational time. This could be due, once more, to the546

complexity of the boundary condition signal. It could be also due to the discretization ∆ζ. To encounter547

the same method ranking as the one presented in Figure 18, the POD coefficients may need to be discretized548

more finely.549

5.3 Comparison with experimental data550

Finally, the ability of the PGD parametric model to reproduce the dynamics on a realistic example is here551

studied. The results of the four models for N “ 3 and ∆ζ “ 10´5 are compared to the measurements.552

Figure 20 presents the time evolution at the position of sensors T02 and T03, respectively at 4 cm and553

8 cm from the inner surface. All four models follow the dynamics of the measured curve. In figure 20(a), we554

can observe that the unfavorable POD basis matches the favorable POD basis for the first cycles, then the555

two curves depart from each other. It denotes the fact that the POD basis will be accurate as it encounters556

its training boundary conditions but will deviate as it encounters different boundary conditions.557

Figure 21 presents the error to the measurement data at both depth 4 cm and 8 cm from the inner558

boundary condition for the various numbers of modes N . The same tendencies are observed as the ones559

described for figure 19. The error decreases and stabilizes after a few modes for each model. Depending on560

the reference data, 4 cm and 8 cm, the method ranking is not the same. Results for 4 cm are similar to the561

one observed comparing the PGD solution to the reference solution (finite difference model). In the results562

for 8 cm, we can see that the training period of the POD basis has less influence. Indeed at this location, the563

signal amplitude is eased. It fluctuates less. It could be easier to parameterize this part of the temperature564

profile.565

This last study confirms the ability of the PGD parametric model with the approximation basis to566

reproduce the dynamics of the signal. At 4 cm, for N ą 2, all four models reach the mean experimental567
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(a) Temperature at 4cm from the inner boundary condition
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(b) Temperature at 8cm from the inner boundary condition

Figure 20: Time evolution of the temperature measured and calculated by the models at various depths. The
grey zone corresponds to ˘σ, the global experimental uncertainty.
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Figure 21: PGD parametric model ε error to the measurement data (σ correspond to the mean experimental
uncertainty)

uncertainty. At 8 cm, for N ą 2, the Legendre combined models is getting closer to σ, while the other568

models errors are under the threshold of the mean experimental uncertainty.569

Finally, the accuracy of the models is of the same order of magnitude than the reference solution. Indeed,570

if we quantify the error between the reference solution and the measurements, we obtain an error of 0.180C571

at 4 cm from the left boundary condition and 0.130C at 8 cm from the inner boundary condition. Those572

values are close to the one presented in Figure 21.573

6 Conclusions574

The POD, the Chebyshev and Legendre polynomial approximation basis have been compared first on a575

theoretical example. This case study was an opportunity to quantify the influence of three main parameters:576

1. the number of modes N in the approximation basis,577

2. the discretization coefficient,578

3. the number of modes M in the PGD basis.579

The different basis were then compared on a practical example based on measurements. This second case580

study intended to highlight the influence of the learning process on the accuracy of the POD basis. It also581

enables the comparison of the three combined PGD parametric models with measurements.582

The approximation basis have been first applied to the approximation of the source term. This first step583

has shown that the discretization should be selected in accordance with the number of modes N . Indeed,584

increasing the number of modes with an insufficient discretization will not increase the accuracy of the585

approximation.586
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The different approximation basis were then integrated into the PGD parametric model. The first study587

on the influence of the discretization of the approximation coefficient revealed that the accuracy and the588

computation time are proportional to the discretization. The finer the mesh, the closer the discrete rep-589

resentation to the continuous function. However, as we increase the discretization, we increase the online590

calculation time.591

The study on the influence of the number of modes N has shown that the error decreases as we increase592

the number of modes in the approximation basis. This is not the case when the final accuracy is reached593

with a few modes as it was the case for the POD basis in the theoretical part. Finally, as the number of594

modes is increased, the computational time increases.595

A relation has also been highlighted between the number of approximation modes N and the convergence596

rate of the fixed-point algorithm. As the number of modes increases, the number of parameters in the PGD597

model increases, decreasing the convergence rate of the algorithm. More modes M are then necessary for598

the PGD basis to achieve the same accuracy.599

The efficiency of the PGD parametric model depends on the three basis on the three previous parameters600

studied. A compromise should be found between the number of modes N andM, the discretization and the601

computation time needed to compute and use the PGD combined model.602

The POD approximation basis has the main drawback to require a learning process. The benefit from a603

PGD parametric model as an a priori method is then canceled out by the use of an a posteriori method. The604

combined POD and PGD parametric model becomes then an a posteriori model. Its performance depends605

on the training data-set used.606

The influence of this last parameter has been studied in the practical study case. Depending on the607

data-set used to train the POD basis, it could be the most or the less accurate method to parameterize the608

source term.609

Finally, a compromise should be found to minimize the training period and the computational cost needed610

to build the basis while keeping an accurate approximation basis. For that purpose, a methodology to select611

an efficient training period should be developed. This is a point of current work. Some leads have been612

explored on how to improve the necessary training period by Berger et al. (2018, [2]). A methodology has613

been proposed in [28] to select a short and representative training period for a building wall.614

As a final conclusion, we should keep in memory that the POD basis provides an optimum basis if the615

learning process is complete (the full data-set is used to build the basis). An efficient training data-set is616

then needed. However, when those data are not available, polynomial basis are a good alternative. They617

have the main benefit to provide an a priori combined PGD parametric model.618

However for both methods, the POD or the polynomial approximation, this work should be continued.619

For the POD method, the learning process remains the main barrier. For polynomial approximation, the620

parameterization of multi-material wall brings to light new questions. With a multi-layer wall, the source621

term may not be a smooth function. The efficiency of the polynomial basis to parameterize the temperature622

profile should then be tested.623
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Finally, the PGD model combined with each basis as shown its abilities to represent a realistic case study.624

Those models are ready to be aggregated with other sub-models through a co-simulation process to replace625

a large original model.626

A Details on the model error due to the inside radiative heat flux627

As mentioned in Section 2.1, the net radiative heat flux have been neglected on the inside part of the wall.628

This heat flux is composed of the short and long-wave radiative heat flux. The short-wave radiative heat flux629

transmitted through the building windows is generally taken into account and distributed to the building630

interior surfaces (by solar tracking or with a weighted method) [29]. For the long-wave radiative heat flux,631

it calculation requires the introduction of non-linear terms, most building simulation tools proposed then632

simplifications. This heat flux is either neglected, either linearised, and integrated into the convective heat633

transfer coefficient.634

A.1 Model error for the hypothesis neglecting the inside radiation effects635

To evaluate the impact of neglecting the inside net radiative heat flux, it is possible to propose a model

error for this hypothesis. To obtain this model, the solution of the heat transfer equation considering inside

radiation effects is denoted by ru. Then, the boundary condition on the inside part of the wall is:

k
Bru

Bx
“ ´h in

`

ru´ u in

˘

` q in , x “ L ,

where q in is the incident radiation flux arising from the boundary surfaces facing the studied wall. The error

between the solutions is defined by:

e
def
:“ u´ ru . (23)

Recalling that u is the solution of equation 1, which neglect the inside net radiative heat flux. Since the

problem is linear, the model error verifies the following governing equation:

c
Be

Bt
“
B

Bx

ˆ

k
Be

Bx

˙

, (24)

with the following boundary conditions:

´k
Be

Bx
“ ´h out e , x “ 0 , (25a)

k
Be

Bx
“ ´h in e´ q in , x “ L , (25b)

and the initial condition:

e “ 0 , t “ 0 . (26)

The model error equations (24)–(26) can be computed using any of the numerical method presented in636

Section 2.4 and Section 2.5. This is facilitated by working with dimensionless equations enabling to reuse637

the same numerical model for different problems.638
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A.2 Results for the theoretical case study639

The use of the model error is illustrated for the case study defined in Section 4. The inside radiative heat

flux is defined through long-wave radiation exchanges with surrounding surfaces:

q in “ fw εw σ 4
`

T 4 ´ u 4
w

˘

` f g εg σ
`

T 4 ´ u 4
g

˘

,

where σ is the Boltzmann constant and εw{g the emissivity of the material. uw and u g are the surrounding640

walls and ground surface temperatures, respectively. The corresponding shape factor are fw and f g . The641

first part of the formula corresponds to the radiative balance with the three walls and the ceiling, while the642

second part corresponds to the balance with the floor.643

For the numerical applications, the following values are considered:

fw “ f g “ 0.2 , εw “ εg “ 0.9 , σ “ 5.67 ¨ 10´8W .m´2 .K´4 , uw “ u in , u g “ 23 ˝C .

To obtain the previous numerical values, the followings hypothesis have been made: - the room studied has644

no windows, - the room is perfectly cubic (all the shape factors are equal to 0.2), - the surface temperatures645

of the walls and ceiling are equal to the air temperature (an equilibrium has been reached with neighboring646

rooms), - the floor surface temperature equal to 230C (underfloor heating).647

The flux q in is computed using a posteriori results of the wall. The time variation of the flux is shown in648

Figure 22(a). It can be remarked that the radiation flux scales between ´25 and 30 W .m´2 . It has a very649

low magnitude compared to the outside flux, illustrated in Figure 5(b). Using the time variation of q in , the650

model error is computed based on a finite-difference model. The time variation of the model error is given in651

Figure 22(b). The error reaches a maximum of 1.0 ˝C located, as expected, on the inside boundary (x “ L).652

The impact of the hypothesis neglecting the inside flux can be evaluated on the temperature flux. For this,653

the solution ru is reconstructed using Eq. (23). The temperature variation are illustrated in Figures 23(a)654

and 23(b). On the outside surface, the two solutions are almost overlapped. Thus, the influence of the inside655

radiation is negligible on this part. Indeed, as remarked in Figure 22(b), the model error scales with 0.2 ˝C .656

On the inside surface, the discrepancy between the solution is higher, around 0.5 ˝C .657

As a synthesis, a model error is proposed to evaluate the influence of the hypothesis neglecting the inside658

net radiative heat flux. It can be computed using any of the numerical models proposed in the manuscript,659

due to the benefits of working with dimensionless equations. In terms of physical results, the inside radiation660

effects induce discrepancies on the inside surface of the wall. However, the overall dynamics of heat transfer661

is not altered. Note that the numerical investigations carried in Sections 4 can be straightforwardly extended662

to a model considering inside radiation flux.663

B Details on the approximation basis construction664

B.1 Chebyshev polynomials665

The Chebyshev polynomials are part of the family of orthogonal polynomials. The first kind Chebyshev666

polynomial denoted Tn are the following ones:667

T 0

`

x
˘

“ 1, T 1

`

x
˘

“ x, T 2 “
`

2x2 ´ 1
˘

, T 3 “
`

4x3 ´ 3x
˘

. (27)
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Figure 22: Time evolution of the inside boundary flux due to long-wave radiation (a) and of the model error
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Figure 23: Time evolution of the temperature with or without neglecting the inside radiation flux on the
outside (a) and inside (b) surfaces.

They are constructed according to the following relation of recurrence [5, 19]:668

T j ` 1 “ 2x T j ´ T j ´ 1 for j ą 1 with T0 “ 1, and, T1 “ x (28)

The Chebyshev approximation basis is made of the Chebyshev polynomials.669

Ψ j ” T j (29)

The Chebyshev polynomials are calculated at the Chebyshev points defined by the equation (30),670

where n is a positive integer. In the literature several names can be found to describe this set of points as671
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Chebyshev–Lobatto points, Chebyshev extreme points, or Chebyshev points of the second kind. All672

those expressions refer to the same set of points according to Trefethen (2013, [5]).673

x j “ cos

ˆ

j π

n

˙

, 0 ă j ă n, (30)

Special attention must be given to the spatial domain of the problem. The Chebyshev points define a674

non-uniform mesh for a space interval r´1, 1s. Thus, a change of variable must be performed to transform675

the dimensionless spatial domain r0, 1s to x P r´1, 1s.676

B.2 Legendre polynomials677

The Legendre polynomials are also part of the family of orthogonal polynomials. The first Legendre678

polynomials are the following ones:679

P 0

`

x
˘

“ 1, P 1

`

x
˘

“ x, P 2 “

ˆ

3

2
x2 ´

1

2

˙

. (31)

The next polynomials are constructed according to the following relation of recurrence [5]:680

p j ` 1 q P j ` 1 “ p 2 j ` 1 qxP j ´ j P j ´ 1 for j ě 1, and P 0

`

x
˘

“ 1 , P 1

`

x
˘

“ x (32)

The Legendre approximation basis is made of the Legendre polynomials calculated at the Legendre681

points.682

Ψ j ” P j (33)

As for Chebyshev, special attention must be given to the spatial domain. The spatial mesh will not be683

uniform and a change of variable must be performed to transform the dimensionless spatial domain from684

r0, 1s to x P r´1, 1s.685

B.3 POD reduced basis686

The POD method extracts the relevant information from a set of snapshots by means of its projection onto687

a smaller subspace. As a result, from a data-set, the POD builds a deterministic representation, from the688

basis Φ. The ultimate goal is to retain a detailed representation of the data-set with a minimum or optimal689

number of modes in Φ. For these properties, the POD method could be used to parameterize the temperature690

profile (source term in our problem).691

Ψ j ” Φ j (34)

To build the POD basis, a learning process is needed. It has an impact on the accuracy of the reduced-order692

basis. For this reason, the data-set used must be representative of the problem (boundary values, initial693

conditions, materials used). More details on the POD methods can be found in [30, 31].694

Contrary to the two previous basis, no special attention needs to be paid to the definition of the spatial695

domain. To standardize the spatial domain used, the same change of variable is performed (x P r´1, 1s) and696

the spatial mesh is set uniform.697
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