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ABSTRACT: Uniform designs are widely used for experiments with mixtures. The uniformity of the design points is 

usually evaluated with a discrepancy criterion. In this paper, we propose a new criterion to measure the deviation 

between the design point distribution and a Dirichlet distribution. The support of the Dirichlet distribution, is 

defined by the set of d-dimensional vectors whose entries are real numbers in the interval [0,1] such that the 

sum of the coordinates is equal to 1. This support is suitable for mixture experiments. Depending on its 

parameters, the Dirichlet distribution allows symmetric or asymmetric, uniform or more concentrated point 

distribution. The difference between the empirical and the target distributions is evaluated with the Kullback-

Leibler divergence. We use two methods to estimate the divergence: the plug-in estimate and the nearest-

neighbor estimate. The resulting two criteria are used to build space-filling designs for mixture experiments. In 

the particular case of the flat Dirichlet distribution, both criteria lead to uniform designs. They are compared to 

an existing uniformity criterion. The advantage of the new criteria is that they allow other distributions than 

uniformity. 

Keywords: Space-filling design, mixture experiments, Kullback-leibler divergence, nearest neighbor density 

estimation, kernel density estimation. 

1. Introduction 

Mixture experiments consist in varying the proportions of some components involved in a physico-

chemical phenomenon, and observe the resulting change on the response. The proportions of the 

mixture components vary between 0 and 1 and they must sum to 1 for each run in the experiment. 

The experimental region is reduced to a (d-1)-dimensional simplex, ���� = ����, … , ���|�� + ⋯ + �� = 1, �� ≥ 0 �, 
where �� is the proportion of the kth component, � = 1, … , �.. 
The purpose of design for mixture experiments is to define a set of points in the simplex to catch as 

much information about the response as possible. Since Scheffé (1958) many authors have 

investigated designs for mixture experiments. The pioneers (Scheffé 1958, Kiefer 1961, Cornell 1981), 

defined optimal designs for linear and quadratic mixture models. An alternative approach of model-

free designs is proposed by Wang and Fang (1990) and Fang and Wang (1994).  The goal is to uniformly 

cover the experimental region. The main idea is to generate a uniform design on the (d-1) dimensional 

unit cube as explained in Hickernell (1998) or in Fang et al. (2005).  Then they apply a mapping function 

to put the points in the simplex ����. Following this principle, many articles suggested improvements 

specially to take into account complex constraints on the components, Fang and Yang (2000), Prescott 

(2008), Borkowski and Piepe (2009), Ning et al. (2011), Liu and Liu (2016). 

The former design in the unit cube is uniform in the sense that the points minimize a discrepancy 

criterion. The discrepancy measures the distance between uniform distribution and the empirical 

distribution of the design points. It is not guarantee to conserve the uniformity after the mapping 

function. Some authors defined criteria to assess the uniformity of design for mixture experiments. 

Fang and Wang (1994) proposed to use the mean square distance (MSD), Borkowski and Piepe (2009) 

suggested the root mean squared distance, the maximum distance and the average distance, Chuang 

and Hung (2010) defined the central composite discrepancy. All these criteria require to compute the 

distance between the design points and the points of a much larger uniform set of points. The 

computational cost limits their usefulness in practice. To avoid this problem, Ning et al. (2011) 
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generalized the star discrepancy and proposed a new discrepancy, DM2_Discrepancy, to measure the 

uniformity of designs for mixtures.  They also gave a computational formula of the DM2_discrepancy 

only based on the design points, which is useful in practice, specially to use it in an optimization 

algorithm to build a uniform design for mixture experiments.  

In the same way, we defined in this paper a new criterion to measure the distribution of the design 

points in the simplex ����. The purpose is to obtain uniform designs, and more generally designs with 

a Dirichlet distribution. Depending on its parameters, the Dirichlet distribution allows to obtain 

symmetric and asymmetric distributions, designs with points uniformly spread in the simplex or more 

concentrated in the center. We used the Kullback-leibler (KL) divergence to measure the difference 

between the design point distribution and the Dirichlet distribution. The resulting criterion is an 

estimator of the KL divergence computed with the design points. The KL divergence has already been 

used to define space-filling criteria but for a hypercube experimental domain (Jourdan and Franco 

2009, 2010). The target distribution was the uniform distribution on the unit hypercube and the 

criterion was reduced to the estimation of the Shannon entropy. In this paper, we adapt the criterion 

to the Dirichlet distribution. 

In section 2, we define the criterion from the Kullback-leibler divergence and the Dirichlet distribution. 

In section 3, we propose two methods to estimate the criterion. In section 4, we give some numerical 

examples. 

2. Design points with a Dirichlet distribution 

Suppose that the design points ��, … , ��, are � independent observations of the random vector � =���, … , ��� with absolutely continuous density function � concentrated on the simplex ����. The aim 

is to select the design points in such a way as to have the corresponding empirical distribution “close” 

to the Dirichlet distribution.  

Dirichlet distribution is a family of continuous multivariate probability distributions parameterized by 

a vector � of positive reals. The support of the Dirichlet distribution is the (d-1)-simplex ����. Its 

probability density function is 

 ��� = 1!��� "����#$���
�%� , 

 where � belongs to the (d-1)-simplex ����, � = �&�, … , &�� with &' > 0, and !��� is the normalizing 

constant, 

!��� = ∏ ��&����%�
��&*�  

with  &* = ∑ &���%�  and Γ the Gamma function. 

A common special case is the symmetric Dirichlet distribution, where all of the elements making up 

the parameter vector �  have the same value &, called the concentration parameter. When & = 1, the 

symmetric Dirichlet distribution is equivalent to a uniform distribution over the (d-1)-simplex ����. It 

is called the flat Dirichlet distribution. 

The aim is to generate � points in the simplex with a distribution as close as possible of a Dirichlet 

distribution. On Figures 2 and 3 (starting design), we can see that a simple random generation of the 

Dirichlet distribution is not efficient to obtain a good point distribution. Especially in the case of the 

flat Dirichlet distribution (Fig. 2a and 3d), the points do not uniformly cover the simplex: some points 

are very close to each other while some areas are empty. 

We defined a criterion to measure the “distance” between the point distribution and the Dirichlet 

distribution. The criterion is then used in an optimization algorithm to build a set of points with the 

expected distribution. 
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There are different ways to measure the difference between two distributions. In this paper, we use 

the Kullback-Leibler divergence to evaluate the deviation between two probability density functions � 

and  , 

,��,  � = - ����./ 0���� ���1 ��2345  

where   is the density function of the Dirichlet distribution and � is the density function of the design 

points. This integral can be written as the expected value of a random vector � with Dirichlet 

distribution, 

,��,  � = 6 7./ 0���� ���18. 
If we consider that the design points 9 = ���, … , ��� are � i.i.d. realizations of a Dirichlet distribution, 

the Monte Carlo method gives an unbiased and consistent estimator, 

,:��,  � = 1� ; log����?�� − log� ��?��.A
'%�  

By replacing g with the Dirichlet density function, we obtain, 

                     ,:��,  � = 1� ; Blog����?�� − log C"��'��#$���
�%� D + logE!���FG                                   �1�A

'%�  

with �'� ≠ 0, the kth component of the ith design point, i=1,…,n and k=1,…,d. 

If the Dirichlet distribution is symmetric, then 

                     ,:��,  � = 1� ; log����?��A
'%� − & − 1� ; ; log��'���

�%�
A

'%� + logE!���F                                    �2� 

This expression is not a computational formula since the density function � is unknown. There are two 

common ways to estimate integral ,��,  �: the plug-in estimate which consists in replacing the density 

function � by its kernel estimate, and the nearest-neighbor estimate. 

The two estimations are no more unbiased. However, having a bias is not a problem in our application, 

if the bias is fixed for a given � and �. The goal is not to obtain an accurate estimate of the integral but 

a criterion to compare two set of points in the optimization algorithm. We say that a design 9� is better 

than a design 9J if ,:���,  � ≤ ,:��J,  � 

with �� and �J the density functions associated to 9�  and 9J respectively.  

The optimization algorithm is an adaptation of the exchange algorithm described in Jin et al. (2005) 

Exchange Algorithm  
1. Simulate n points from a Dirichlet distribution1 
2. Randomly select a new point in the simplex Sd-1 
3. For i in 1 to n 

Build a new design by replacing the ith point by the 
new point 
Compute the criterion value of the new design 
Replace the current design with the new one iff the 
exchange improves the criterion 

End for i 
4. Repeat steps 2 and 3 until terminating condition is met  

                                                 
1 Let y1,…,yd be i.i.d realizations of the Gamma distribution with yk ~ Γ(αk,1). The random vector x=y/S where S=y1+…+yd has a Dirichlet 

distribution with parameter α=(α1,…,αd). 
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3. Estimation of the criterion 

In this section we propose two methods to estimate the unknown density function f in (1) and (2). In 

each case we explain our choices (kernel, bandwidth, k in the k-nearest neighbor distance) and we give 

a computational formula for the criterion. 

3.1. Plug-in estimate 

The unknown density function f is estimated with the design points 9 = ���, … , ��� by a kernel 

method (Scott 1992) 

�:��� = 1�|L|�/J ; NEO��/J�� − �?�FA
'%� , 

where N is a multivariate kernel and O is the bandwidth matrix (symmetric and positive definite 

matrix). 

Choice of the bandwidth 

The choice of the bandwidth matrix has a great influence on the accuracy of the estimation.  Joe (1989) 

shows that in the case where � is estimated by a kernel method, the bias in the estimation of ,��,  � 

depends on the sample size �, the dimension �, and the bandwidth matrix O. When constructing an 

optimal design, the size � and the dimension � are fixed. The bandwidth still needs to be fixed so that 

the bias does not vary during the optimization algorithm.  

Usually the bandwidth matrix is chosen to be proportional to the covariance matrix of the data. This 

solution implies that O varies during the optimization algorithm. An idea to fix it, is to replace the 

covariance matrix of the data by the target covariance matrix, i.e the covariance matrix of the Dirichlet 

distribution. Unfortunately, this matrix is singular. Then, even if the variables are correlated, we 

simplify the bandwidth matrix into a diagonal matrix with the Scott’s rule (1992), O = �PQ Eℎ�J, … , ℎ�JF
 with ℎ� = ���/��ST�UV�.  As previously, the estimation of the standard deviation of the �th component, UV� changes at each iteration of the optimization algorithm. In order to fix the bias, we replace it with 

the standard deviation of the target distribution, 

           UV� = 1&* W&��&* − &���&* + 1� , � = 1, … , �. 
Choice of the kernel 

It is known that the shape of the kernel has a minor influence on the estimation (Silverman 1986). We 

have chosen to use a multidimensional Gaussian kernel, 

N�X� = �2Y���/JZ� �J‖X‖². 
A kernel of finite support (Epanechnikov, uniform) might have seemed more appropriate for the 

Dirichlet distribution. But, in our application, the kernel function has input values X in the interval ]0, �/ℎ�J^. This interval becomes very large when the size and the dimension increase, and the 

probability for X to be inside the kernel support then becomes very low. The estimation of � is then 

almost constant during the optimization process, and the criterion therefore does not allow to 

compare the designs. 

Finally,  

 ,:E�:,  F = 1� ; Blog _1� ; �2Y���/Jℎ� … ℎ�
A

`%� Z�a b− 12 ; 0�̀ � − �'�ℎ� 1J�
�%� cd − log b"��'��#$���

�%� c + logE!���FGA
'%�  
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where ℎ� = ���/��ST� �#e f#$�#e�#$��#eS�� , � = 1, … , �. 

By removing the terms independent of the design points, we obtain a simplified criterion, especially 

for the symmetric Dirichlet distribution, 

                             g�hiA�9� = ; B./ C; Z��Jj�k��?l jmA
`%� DGA

'%� − �& − 1� ; ; ./ � �'���
�%�

A
'%�                        �3� 

where ℎ = ���/��ST� �� f ����#S�. 

3.2. Nearest-neighbor estimate 

Wang et al. (2006) and Leonenko et al. (2008) proposed to estimate the Kullback-Leibler divergence 

with the k-nearest neighbor density estimation. 

Let o��, p� denote the Euclidian distance between two points � and p of IRd. We note o�����, �� ≤o�J���, �� ≤ ⋯ ≤ o�q���, ��, the order distances between � ∈IRd and � = �p�, … , ps� a set of points 

of IRd such that ���. o�����, �� is the k-nearest-neighbor distance from � to points of �. The previous 

authors demonstrated that the following estimate of ,��,  � with the design points 9 = ���, … , ��� is 

asymptotically unbiased and consistent, 

,:E�:,  F = 1� ; B− log t�� − 1�Z�����u� vo�����?, 9�'�w�x − log C"��'��#$���
�%� D + logE!���FGA

'%�  

with � the digamma function, u� the volume of the unit ball in IRd and 9�' = 9\��?�. By removing the 

terms independent of the design points, we obtain the following criterion for a symmetric Dirichlet 

distribution, 

                         gAA�9� = − ; 7./ tvo�����?, 9�'�w�x8A
'%� − �& − 1� ; ; ./ � �'���

�%�
A

'%�                            �4� 

 

The choice of � is discussed in the next section with numerical examples. 

Remark: Note that criteria Ckern and Cnn are reduced to their first term for the flat Dirichlet (uniform) 

distribution (� = 1).  

Remark: The complexity of the two criteria is {��J�.  

4. Numerical tests 

In this section we built designs with the two criteria Ckern and Cnn and the optimization algorithm given 

in section 2 for different values of �, � and �. For each configuration, we built 30 designs to take into 

account the randomness of the algorithm.  

When the target is the uniform distribution, we use the uniform DM2 criterion defined by Ning et al. 

(2011) in order to give some conclusions about Ckern and Cnn criteria. 

4.1. Impact of the k value 

In order to study the impact of the � value on the resulting Cnn design, different values have been 

tested between 1 and 2�/3. Figure 1 represents the mean value of the Cnn criterion computed with 30 

designs with � = 5, � = 50, & = 1 and different values of �. We note that the criterion decreases with �. It is therefore important to use the same value of � to compare the designs in the optimization 

process. 
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Fig.1. Average the Cnn criteria values computed on 30 Cnn designs with � = 5 and � = 50 and the flat Dirichlet distribution. 

To determine the � value, we built 30 optimal designs with the Cnn criterion with & = 1 and different 

values ok �. Table 1 gives the squared correlation between the DM2 criterion and the � value used to 

build the 30 designs. The square correlation is very small. It seems that the choice of � has no impact 

on the resulting design. Hereafter, we fix it to � = 1.  

 

� = 3  � = 30 

� = 4 � = 40 

� = 5 � = 50 

� = 6 � = 60 

� = 7 � = 70 � −0,04 −0,34 −0,36 0,14 −0,02 

Tab.1. Squared correlation between the DM2 criterion and the k values used to build the 30 designs with the Cnn criterion 

with � = 1. 

4.2. Design comparison 

Figures 2 and 3 give some examples of designs obtained with Ckern and Cnn criteria from the same 

starting design and the same number of iterations in the optimization process. The criteria work well 

since the design points are more evenly spread in the simplex than the original ones. 
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(a) Starting design 

 

(b) Ckern design 

 

(c) Cnn design 
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(d) Simplex-lattice 

 
(e) Contacted design with a=5.8 

 
(f) Contracted design with a=3.9 

Fig.2. Uniform designs for mixture experiments with � = 3 and � = 10. The starting design points are � i.i.d random 

generation of the Dirichlet distribution (a). (b) and (c) are the resulting designs of the optimization algorithm with the same 

initialization (a). (e) and (f) are the contracted form of the simplex-lattice (d) ($4.2). 
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In the uniform distribution case & = 1 (Fig. 2b&c, Fig. 3b&c), the design points explore in a uniform 

fashion the experimental domain. The designs obtained with Cnn are not so far from a regular grid (Fig. 

2c and 3c). In the general case (Fig. 3), the point distributions of the resulting designs are better than 

those of the initial designs in the sense that there are no more points close to each other and no more 

empty area. In all cases, the Ckern criterion tends to put the points on the boundaries while the points 

obtained with Cnn are more concentrated in the middle. If we constraint the algorithm to put points 

near the boundaries, it degrades the Cnn criterion. Inversely, more points in the middle degrades the 

Ckern criterion. 

 
(a) Starting design with α=1 

 
(b) Ckern design with α=1 

 
(c) Cnn design with α=1  

 
(d) Starting design with α=3 

 
(e) Ckern design with α=3  

(f) Cnn design with α=3  

 
(g) Starting design with α=5  

 
(h) Ckern design with α=5  

 
(i) Cnn design with α=5  

 
(j) Starting design α=(2,4,8) 

 
(k) Ckern design α=(2,4,8). 

 
(l) Cnn design α=(2,4,8). 

Fig.3. Designs with for � = 3 and � = 30 built with Ckern or Cnn criterion and different α values. The starting design points 

are � i.i.d random generation for the Dirichlet distribution (left column). The middle and right columns are the resulting 

designs of the optimization algorithm with the same initialization given in the left column. 
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Figure 4 represents the average of the DM2 criterion values for the sampling of 30 designs with � =3, � = 30 and & = 0.5, 1, 3 and 5. The DM2 criterion measures the uniformity of the designs. It should 

therefore reach its minimum value for  � = 1.  

Indeed, we see that the minimum value is reached for & = 1 for the designs built with criterion Cnn. 

On the other hand, for the designs built with criterion Ckern, the minimum value is reached for & = 3. 

This confirms the previous conclusions, namely that criterion Ckern tends to push the points towards 

the edges of the simplex and that criterion Cnn with & = 1 corresponds well to a uniformity criterion. 

 
Fig.4. Average of the DM2 criterion values for the sampling of 30 designs with � = 3 and � = 30 with � = 0.5, 1, 3 and 5.  

 

In order to compare the three criteria (Ckern, Cnn with & = 1 and DM2) in the case of the uniform 

distribution, we build 30 designs with � = 3 and � = 30 by optimizing criterion DM2 with the 

optimization process with the same starting designs and the same number of iterations. Figure 5 gives 

the boxplots of the three criteria calculated on the three type of designs. Of course, each type of design 

optimizes its own criteria. We notice that Cnn and DM2 designs have a behavior quite close. This 

reinforces the previous conclusion and allows us to conclude that criterion Cnn is more appropriate 

than criterion Ckern to construct uniform designs. 

The interest of this criterion compared to the DM2 criterion, is that it also allows to obtain designs with 

distributions other than the uniform distribution. In particular, it is possible to construct designs with 

points concentrated in the middle of the simplex or asymmetric and which have a better distribution 

than a simple random sampling following the corresponding Dirichlet distribution (Fig. 3e,f,h,I,k and l). 
 

 
Fig.5. Boxplot of the three criteria calculated on the three type of designs with α=1. 
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4.3. Concentrated design 

An alternative to build uniform design for mixture experiments is the contraction of a simplex-lattice 

(Scheffé 1958).  The points of a simplex-lattice seem to be uniformly distributed on ����but most of 

them lies on the boundaries (Fig. 2d). The mixture is then reduced to d-1 or d-2 ingredients and one or 

two ingredients are not in the mixture. Fang and Wang (1994) proposed to keep the simplex-lattice 

pattern while moving the points towards the centroid of the simplex. An example of a lattice-simplex 

and the contracted design is given in Table 2. The smaller the contraction constant a, the more the 

points are concentrated in the center (Fig. 2e and 2f). Ning et al. (2011) used DM2 criterion to find the 

best value of a. In the same way, we optimize the Ckern and Cnn criteria to determine a (Fig.6). 

The Ckern criterion is optimal for a high value of a (a=13.8). This confirms that criterion Ckern tends to 

push the points on the edges of the simplex. The Cnn and DM2 criteria have the same behavior and give 

nearly the same value (a=5.8 with Cnn and a=5.26 with DM2). 

Simplex-lattice design Contracted design 

x1 x2 x3 x1 x2 x3 

1 0 0 1-1/a 1/(2a) 1/(2a) 

0 1 0 1/(2a) 1-1/a 1/(2a) 

0 0 1 1/(2a) 1/(2a) 1-1/a 

2/3 1/3 0 2/3-1/(2a) 1/3 1/(2a) 

1/3 2/3 0 1/3 2/3-1/(2a) 1/(2a) 

2/3 0 1/3 2/3-1/(2a) 1/(2a) 1/3 

1/3 0 2/3 1/3 1/(2a) 2/3-1/(2a) 

0 2/3 1/3 1/(2a) 2/3-1/(2a) 1/3 

0 1/3 2/3 1/(2a) 1/3 2/3-1/(2a) 

1/3 1/3 1/3 1/3 1/3 1/3 

Tab.2. {3,3}-simplex lattice design and its contracted design.  

 

Fig.6. Ckern, Cnn, DM2 criteria against the contraction constant a. Best values of a are 13.8 with Ckern, 5.8 with Cnn, 5.26 with 

DM2. 

 

4.4. Marginal distributions 

The marginal distributions of the Dirichlet distribution are Beta distributions, !Z�Q��' ,�' − �*�. In the 

special case of the uniform distribution (� = 1), the distributions are !Z�Q�1, � − 1�. The asymmetric 
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shape of the density function implies that the small values (proportions) of the components are over-

represented while the larger values are under-represented. The same behavior is observed with the 

contracted design (Fig.7). There is no reason to make more experiments with small values. We would 

also like to have a uniform distribution for each of the components. But the two objectives, uniform 

distribution on the simplex and uniform distribution for each component, are conflicting.  

Figure 7 illustrates the component distributions with the designs of Figure 2. Figures 7a and 7b show 

the three distributions of X1, X2 and X3 for the Ckern and Cnn designs. Figure 7c displays only X1 

distribution of the contracted design but for different values of the contraction constant a. We can see 

that the marginal distributions are more uniform with the design computed with the Ckern criterion 

since they are very asymmetric for Cnn and contacted designs. 

 

 
(a) Ckern design 

 
(b) Cnn design 

 
(c) Contracted design  

(X1 distribution) 

Fig.7. Component distributions for designs with � = 3 and � = 10 given in Fig.1. 

5. Conclusion 

In this paper we proposed a new class of designs for mixture experiments. The Dirichlet distribution 

allows to build design points with symmetric or asymmetric distribution, uniform or contracted 

distribution. The Kullback-Leibler divergence is used to measure the difference between the Dirichlet 

and design points distributions. We used the plugin estimate with a Gaussian kernel and the nearest 

neighbor estimate of the Kullbeck-Leibler divergence to define two criteria to assess the design point 

distribution. The two criteria are simplified to be used in an optimization process to build designs for 

mixture experiments with a target Dirichlet distribution. 

The numerical tests and the comparison with the existing criteria DM2 show that Cnn criterion performs 

better than Ckern criterion to build uniform designs. With the same α value, the Ckern criterion tends to 

push the points on the boundaries while the Cnn criterion concentrates the points in the middle of the 

simplex. The advantage of the criteria proposed in this article compare to the existing criteria, is that 

they allow the construction of designs with distributions other than uniform, symmetric or asymmetric.   

However, our method presents a shortcoming. The optimization algorithm converges very slowly and 

requires many iterations until terminating condition is met (the same inconvenient is observed for 

criterion DM2). An early stopping of the optimization process may produce poor quality designs. One 

idea to speed up convergence is to choose the new point in a large NT-net instead of choosing it 

randomly in the simplex (step 2 in the exchange algorithm).  

Another drawback of uniform design for mixture experiments (not only Ckern and Cnn designs) is the 

asymmetric distribution of each component. Having a uniform distribution on the simplex Sd-1 and a 

symmetric distribution on each axis seem to be two conflicting objectives. A multi-objective 

optimization algorithm (instead of the exchange algorithm) would allow to manage this problem. The 

first objective function would be one of the two criteria defined in this paper. The second objective 

function could be defined in order to measure the difference between the distribution of each 

component and a symmetric distribution with support [0,1] (e.g. symmetric triangular or truncated 
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normal distribution). As we did in this paper, the Kullback-Leibler divergence and its estimates could 

be used to define this second objective function.  
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