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ABSTRACT
The decision to adopt one or another of the sustainable land
management alternatives should not be based solely on their
respective benefits in terms of climate change mitigation but also
based on the performances of the productive systems used by
farm holdings, assessing their environmental impacts through
the cost of fertilizer resources used. This communication uses
the symbolic clustering tools in order to analyze the conditional
quantile estimates of the fertilizer costs of yearly crop productions
in agriculture, as a replacement proxy for internal soil erosion
costs. After recalling the conceptual framework of the estimation
of agricultural production costs, we present the empirical data
model, the quantile regression approach and the interval princi-
pal component analysis clustering tools used to obtain typologies
of European countries on the basis of the conditional quantile
distributions of fertilizer cost empirical estimates. The compar-
ative analysis of econometric results for yearly crops between
European countries illustrates the relevance of the typologies
obtained for international comparisons to assess land manage-
ment alternatives based on their impact on agricultural carbon
sequestration in soils.
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Applied economists increasingly want to know what is happening to an entire distribution,
to the relative winners and losers, as well as to averages.

— Angrist and Pischke (2009)

1. Economics of agricultural carbon sequestration in soils

Signatory States to the 2015 Paris Agreement have set a common goal of
achieving carbon neutrality. According to a logic of net emissions flow adopted
by several European countries, France has adopted a Climate Plan in July 2017

CONTACT Dominique Desbois dominique.desbois@inrae.fr UMR Economie publique, INRAE-AgroParisTech,
Université Paris-Saclay, 16 rue Claude Bernard, F-75231, Paris Cedex 05, France∗This text is the continuation of some of author’s works done preparing his PhD dissertation (Desbois 2015),
co-directed by Y. Surry and J.C. Bureau. It is, supported by the “impActs and feedbackS between climate and Soil affected
by EroSion: cost in terms of carbon Storage in Mediterranean regions” (ASSESS) project (ANR-16-NME1-0008) of the
OTE-Med Eranet.
This article has been corrected with minor changes. These changes do not impact the academic content of the article.
© 2021 INRAE. Published with license by Taylor & Francis Group, LLC.

https://doi.org/10.1080/23737484.2021.1972875
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23737484.2021.1972875&domain=pdf&date_stamp=2021-10-29
http://orcid.org/0000-0001-6198-454X
mailto:dominique.desbois@inrae.fr
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with a target of zero net emissions (ZEN) of greenhouse gases, at the 2050
horizon (Quinet 2019).

Carbon sequestration in soils is one of the means proposed to achieve com-
mon goals of reducing greenhouse gas emissions: the “4 per 1,000 Initiative: Soils
for food security and climate”1 was launched in 2015 to increase soil organic
carbon sequestration. In addition to their soil carbon storage capacity, some
sustainable land management technologies can benefit farmers by increasing
yields and reducing production costs.

For the European Union, a group of experts from the European Commission
on agricultural markets also proposes to encourage farmers to store carbon
on the basis of adapted agricultural practices. However, on one hand, the
evolution of the CAP’s regulatory frameworks by 2020 shows that the proposed
instruments alone cannot support large-scale projects on the agricultural soil
carbon storage in Europe: in fact, there is very little likely that the future CAP
budget is sufficient (Jevnaker and Wettestad 2017). Hence, the decision to adopt
one or another of the sustainable land management alternatives should not be
based solely on their respective benefits in terms of climate change mitigation
but also based on the consideration of the farmers, assessing comprehensively
productivity, resource utilization and environmental impact of the productive
system.

In the framework of the OTE-Med Eranet, the ASSES project proposes to
better assess the economic cost of erosion for farmers by estimating the costs of
restoring soil fertility, conceived as an ecosystem service for the benefit of agri-
culture. The economic evaluation of erosion distinguishes between two types
of costs: on-site and off-site costs: in this paper, we focus on the on-site costs
and in particular the costs induced by the resulting loss of nutrients. A review
of the literature shows that estimates of the soil erosion cost due to nutrient loss
are significant and vary greatly depending on the type of crops grown and the
production regions. In order to evaluate erosion costs due to nutrient losses, we
estimate the production costs of fertilizers using an input/output methodology.

The integration of agriculture in the 27 Member States of the European Union
(EU) have raised both in the context of competitive markets as markets subject
to regulation, recurring needs in estimating costs of production for major agri-
cultural products, all along the successive reforms of the Common Agricultural
Policy (CAP). The analysis of agricultural production costs is a tool for analyzing
economic results of farmers: it allows to assess the price competitiveness of
farmers, one of the major elements for development and sustainability of food
chains in the European regions. To meet the needs of simulations and impact
assessment in the various common market organizations, we must be able
to provide information on the entire distribution of production costs for the

1The “4 per 1,000” initiative aims to unite all public and private stakeholders in achieving a 4‰ annual growth
rate for the carbon stored in the first 30 cm of soil, in order to help limit the rise in temperature to +2◦C.
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assessment of public agricultural policy options. Based on the observation of
asymmetry and heterogeneity within the empirical distribution of agricultural
inputs, we propose a methodology adapted to the problem of estimating the
empirical distributions of fertilizer costs for the main agricultural products in a
European context where agricultural holdings remain mainly oriented toward
multiple productions (Desbois, Butault, and Surry 2017).

We first present the empirical model for estimating the fertilizer costs of
production, derived from an econometric cost allocation approach inspired
by Divay and Meunier (1980) using microeconomic data to build an input-
output matrix. Then, we introduce the estimation methodology according to the
conditional quantiles proposed by Koenker and Bassett (1978). Next, we present
the symbolic data analysis procedures used to explore the empirical estimates of
conditional quantile distribution intervals based on the concepts and methods
provided by the Billard and Diday symbolic approach (Billard and Diday 2006).
Then, we interpret the graphs of results from the analysis tools for symbolic data
applied to the estimation intervals of the conditional quantiles. Eventually, we
conclude on the relevance of this approach applied to yearly crops, suggesting
an extension of this type of analysis at the regional level.

2. Conceptual framework and methodological aspects

First, we present the methodology for estimating input costs (Desbois, Butault,
and Surry 2017), among which the fertilizer costs. Secondly, we introduce the
factorial analysis and the clustering procedure of the estimation intervals in the
formalism of the symbolic data.

2.1. The empirical model for estimating the fertilizer costs of production

Inspired by Divay and Meunier (1980), the allocation of the sum xi of the
input costs2 for farm holding i is made by linear decomposition along the gross
products Yj

i of farm holding i for each production j, where ui is a random vector
with a zero mathematical expectation:

xi =
p∑

j=1
βjY

j
i + ui (1)

As Cameron and Trivedi (2005), we assume that the data generator process is a
linear model with multiplicative heteroscedasticity characterized in matrix form
by:

x = Y
′
β + u with u = Y

′
α × ε and Y ′α > 0 (2)

where ε ∼ iid[0, σ ] is an identically and independently distributed random-
vector of zero mean and constant variance σ 2. Under this assumption,

2Throughout this text, we follow the classical convention in economics using the x symbol for inputs and the
Y symbol for outputs.
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μq(x|Y , β , α), the qth conditional quantile of the production cost x, conditioned
by Y and the α and β parameters, is derived analytically as follows:

μq(x|Y , β , α) = Y
′ [

β + α × F−1
ε (q)

] = Y
′
γ (3)

where Fε is the cumulative distribution function (CDF) of the errors.
The technical coefficient for the jth product of the qth quantile of the fertilizer

cost is defined by the jth component of the multivariate slope vector:

γ j(q) = [
β + α × F−1

ε (q)
]j (4)

Following D’Haultfoeuille and Givord (2014), three models can be derived:

i) x = Y ′
β + u with u = Kε, homoscedastic errors V(ε|Y) = σ 2, denoted

as the location-shift model, i.e. the linear model of conditional quantile with
homogeneous slopes; while Y ′

α = K is constant, the conditional quantiles
μq(x|Y , β , α) = Y ′

β + KF−1
e (q) get all the same β slope, but differ only by

a constant gap, growing as q, the quantile order, increases;
ii) x = Y ′

β + (Y ′α)ε and Y ′
α > 0 with heteroscedastic residuals, referred

as the location-scale shift model, i.e. the linear model of heterogeneous
conditional quantile slopes. The case where x′

α > 0 corresponds to
heterogeneous slopes as growing functions of q;

iii) X = Y ′
γξ with ξ random variable independent of Y following a uniform

distribution over the interval [0,1] such as ξ −→ Y ′γξ be strictly increasing
whatever Y , designated as the random coefficient model. ξ corresponds
to a random component determining the rank of the individual within
the distribution of X. Under the strong distributional hypothesis of rank
invariance, the random coefficient γq represents the effect of a marginal
change in Y for agricultural holdings located at the qth quantile of the ξ

distribution. This distributional assumption of rank invariance means that
median farms in terms of input productivity would maintain the q = 0.5
rank, regardless of the different levels of production Yi registered for the ith
farm holding.

2.2. The procedures for estimating and testing conditional quantiles

The quantile regression is defined for each quantile of order q as the solution of
a problem minimizing the sum of weighted absolute deviations (L1 norm):

β̂(q) = arg min
β∈�p

⎧⎨
⎩

∑
i∈{i/xi≥y′

iβ}
q
∣∣xi − y′

iβ
∣∣ + ∑

i∈{i/xi<y′
iβ}

(1 − q)
∣∣xi − y′

iβ
∣∣
⎫⎬
⎭

(5)
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can be written in matrix form:

β̂(q) = arg min
β∈�p

{
qe′(X − Y ′β ≥ 0)δ1[X − Y ′β] + (1 − q)e′(Y ′β − X ≥ 0)δ1[Y ′β − X]} (6)

with e(X − Y′
β ≥ 0), indicator vector of farms i such as xi−y′

iβ ≥ 0, and δ1,
vector of absolute deviations.

Then, the linear optimization problem solving methods developed for the
L1 regression easily extend to quantile regression (Koenker and d’Orey 1994).
Although the simplex method (Dantzig 1949) has an algorithmic complexity
in O(n6), the Karmarkar’s, method of the “interior-point” (Karmarkar 1984)
is in practice preferable as soon as the sample size becoming large, because of
its reduced algorithmic complexity to O(n3.5). For large samples, Portnoy and
Koenker (1977) have shown that a combination of the “interior-point” algorithm
and a smoothing algorithm for the objective function by Madsen and Nielsen
(1993) makes quantile regression calculations competitive with those of least
squares regression.

The weighted conditional quantiles have been proposed by Koenker and Zhao
(1994) as L-estimates3 in linear heteroscedastic models. The W = {wi, i =
1, . . . , n} weighting of the observations leads to a quantile regression scheme
solving the following minimization problem:

β̂ω(q) = arg min
β∈�p

⎧⎨
⎩

∑
i∈{i/xi≥y′

iβ}
wiq

∣∣xi − y′
iβ
∣∣ + ∑

i∈{i/xi<y′
iβ}

wi(1 − q)
∣∣xi − y′

iβ
∣∣
⎫⎬
⎭

(7)
The weighted estimation procedure uses the “predictor–corrector” implemen-
tation of the primal–dual algorithm proposed by Lustig, Marsden and Shanno
(1992).

Given the size of the Farm Accounting Data Network (FADN) sam-
ple, its nonrandom selection and the existence a priori of distinct sub-
populations (e.g. specialized types of farming), we opted for the resampling
method, based on the Markov Chain Marginal Bootstrap (MCMB) tech-
nique. Without distributional assumption, this method yields robust empir-
ical confidence intervals in a reasonable computation time (He and Hu
2002).

For a given product j0 such as yield crops and the lth European country, the
estimation interval of technical coefficients for the qth conditional quantile of
the fertilizer costs

zq
l =

[
Inf _γ̂

j0
l (q); Sup_γ̂

j0
l (q)

]
=
[

zq
l ; zq

l

]
(8)

is obtained by MCMB.

3An L-estimate is an estimate defined by a linear combination of ordinal statistics.
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2.3. Symbolic PCA of the fertilizer cost distributions

The symbolic approach has been introduced by Diday (2006) in order to take
in account several values rather a single one attached to a variable into the
framework of exploratory methods of data analysis. Within this conceptual
framework of symbolic data analysis, the extension of principal component
analysis (PCA) to interval data was initially proposed by Cazes et al. (1997) and
later improved by Chouakria, Diday, and Cazes (1998) with the Vertex and the
Center methods using either the vertices or the center of the hyper-rectangle
defined by interval values as a multidimensional support for the initial PCA. In
this paper, we propose to assess different PCA variants around the Vertex or the
Center Methods, proposed by Garro and Rodriguez (2019) in order to maximize
the variance of the projections or to minimize the distance between the vertices
and the projections of the hyper-rectangle, on the basis of distributional data.

As symbolic objects, the L national distributions � = {ω1, · · · , ωl, · · · ωL} are
described by a set of Q = 5 descriptors4, which are the estimation intervals of{

z0.10, z0.25, z0.50, z0.75, z0.90}, coding for the D1 and D9 deciles combined with
the three quartiles Q1, Q2 and Q3.

Let define the set of L × Q “within interval”-value matrices,

M =
{

Z ∈ ML×Q | zq
l ∈

[
zq

l ; zq
l

]}
.

2.3.1. The center-PCA of the interval distribution for quantile estimates
Let us define U ∈ M, the center-interval matrix of Z, by:

U = [
U1, · · · , Uq, · · · , UQ] =

⎡
⎢⎣

u1
1 · · · uQ

1
... uq

l
...

u1
L . . . uQ

L

⎤
⎥⎦ with uq

l =
zq

l + zq
l

2
;

V =
⎡
⎢⎣

v1
1 · · · vQ

1
... vq

l
...

v1
L . . . vQ

L

⎤
⎥⎦ with vq

l =
[

zq
l − μ̂q

√
Lσ̂ q

;
zq

l − μ̂q
√

Lσ̂ q

]

where μ̂q and σ̂ q are, respectively, the mean and the standard deviation of the
qth column vector Uq of the matrix U.

According to Cazes et al. (1997), the interval principal components are
defined by the following equations:

4This choice of a small number of descriptors was made for comparative convenience with some more classical
graphic approaches (Desbois et al. 2017); however, like this earlier work, it could be extended without
disadvantage to sets of descriptors of cardinality Q = 9 (deciles), or even Q = 99 (percentiles) if the analysis
objectives required it.



COMMUNICATIONS IN STATISTICS: CASE STUDIES, DATA ANALYSIS AND APPLICATIONS 7

ϕ
q
l =

∑
k=1,K;ζ q

k <0

(
uk

l − μ̂k
)

ζ
q
k +

∑
k=1,K;ζ q

k ≥0

(
uk

l − μ̂k
)

ζ
q
k (9)

ϕ
q
l =

∑
k=1,K;ζ q

k <0

(
uk

l − μ̂k
)

ζ
q
k +

∑
k=1,K;ζ q

k ≥0

(
uk

l − μ̂k
)

ζ
q
k (10)

where ζ
q
k is the qth coordinate of the kth eigenvector of U ′U, the variance-

covariance matrix of U.
According to Rodriguez, Diday, and Winsberg (2000), the pattern of duality

in the center-PCA implies the following relationships:

ϕ
q
h = max

⎡
⎢⎣ ∑

k=1,...,Q;ζ q
k <0

vk
hζ́

q
k +

∑
k=1,K;ζ q

k ≥0

vk
hζ́

q
k ; −1

⎤
⎥⎦ (11)

ϕ
q
h = min

⎡
⎢⎣ ∑

k=1,...,Q;ζ q
k <0

vk
hζ́

q
k +

∑
k=1,K;ζ q

k ≥0

vk
hζ́

q
k ; 1

⎤
⎥⎦ (12)

where ζ́
q
k is the qth coordinate of the hth eigenvector of VV ′ the inertia matrix of

V , and vk
h = Sup

{
vk

lh

}
lh ∈ L

respectively vk
h = Inf

{
vk

lh

}
lh ∈ L

. This duality pattern

determines the infimum and the supremum of the hyper-rectangle defined
by the projection of the qth vector of V in the direction of the hth principal
component of VV’.

2.3.2. The “best point” PCA of the interval distribution for quantile estimates
In the bivariate case (q = 2) with the Q1 (Z0.25) and Q3 (Z0.75) quartiles, the
vertex submatrix Zl associated with the lth country, is defining the n = 2q = 4
vertices of a Q1 by Q3 rectangle Hl (cf. Figure 1):

Zl =

Z0.25 Z0.75⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z0.25
l z0.75

l
z0.25

l z0.75
l

z0.25
l z0.75

l

z0.25
l z0.75

l

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

Via a similar process for l = 1, . . . , L, let us define Z = (
Z1, . . . , Zl, . . . , ZL

)′
, the

vertex-interval matrix, by its submatrices Zl of the lth country ωl, represented by
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Figure 1. The symbolic coding of the estimation intervals for the technical coefficients of the lower
(Q1) and higher (Q3) quartiles of fertilizer costs.

Hl the hyper-rectangle build with nl = 2ql vertices of the ql non-trivial intervals.

Zl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
s1 · · · zq

s1 · · · zq′
s1 · · · zQ

s1

...
...

...
...

...
...

. . .

...

z1
sh

· · · zq
sh · · · zq′

sh · · · zQ
sh

...
...

...
...

...
...

. . .

...

z1
snl

· · · zq
snl

· · · zq′
snl

· · · zQ
snl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this way, the vertices of hyper-rectangles Hl are vectors of RQ, while the Q
estimates of the conditional quantiles are elements of RN , with N = ∑L

l=1 nl.
Let us apply PCA to Z ∈ M, a within-interval value matrix. The kth principal

component of the lth country is given by:

ψk
l =

Q∑
q=1

(
zq

l − μq
)

wk
q (14)

where μq = 1
L
∑L

l=1 zq
l is the average of the qth conditional quantile of cost

estimates and wk
q, the qth coordinate of the kth eigenvector of the variance-

covariance matrix of Z.
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Defining the supplementary normalized vertex Z̃ =
(

Z̃1, . . . , Z̃l, . . . , Z̃L
)′

by
its lth submatrix, where σq is the standard deviation of Zq

Z̃l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
l −μ1√

Lσ1
· · · zq

l −μq√
Lσq

· · · zQ
l −μQ√

LσQ
...

...
...

...
...

z1
l −μ1√

Lσ1
· · · zq

l −μq√
Lσq

· · · zQ
l −μQ√

LσQ
...

...
...

...
...

z1
l −μ1√

Lσ1
· · · zq

l −μq√
Lσq

· · · zQ
l −μQ√

LσQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Each sh vertex of hyper-rectangle of the lth national distribution of fertilizer cost
estimate Z̃l can be projected on the principal components of the Z-PCA, with
the following kth coordinates:

ck
sh

=
Q∑

q=1
z̃q

shwk
q (15)

According to Rodriguez (2000), the minimum and maximum of the kth coordi-
nate for each estimation interval for the lth country can be computed as follows:

ψk
l = Inf

{
ck

sh

}
sh = 1, . . . , nl

=
∑

{
q|wk

q<0
}
(

zq
l − μq

)
wk

q +
∑

{
q|wk

q≥0
}
(

zq
l − μq

)
wk

q (16)

ψ
k
l = Sup

{
ck

sh

}
sh = 1, . . . , nl

=
∑

{
q|wk

q<0
}
(

zq
l − μq

)
wk

q +
∑

{
q|wk

q≥0
}
(

zq
l − μq

)
wk

q (17)

Let us denote th the eigenvectors of Z̃Z̃′ for h = 1, . . . , H, the coordinate of the
qth quantile estimates on the hth principal component is given by

rq
h =

N∑
s=1

Z̃
′s
q th

s (18)

According to Garro and Rodriguez (2019), by projection of the qth quantile
estimate on the hth principal component in the direction of th, the infimum and
supremum values of the hyper-rectangle Hl are computed as follows:

χ
q
l = Inf

{
rq

sl

}
sl = 1, . . . , nl

=
∑

{
s|th

s <0
} z̃′ s

l t
h
s +

∑
{

s|th
s ≥0

} z̃
′ s
l t

h
s (19)
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χ
q
l = Sup

{
rq

sl

}
sl = 1, . . . , nl

=
∑

{
s|th

s <0
} z̃

′ s
l t

h
s +

∑
{

s|th
s ≥0

} z̃′ s
l t

h
s (20)

Thus, the Z-PCA provides a dual representation of the fertilizer empirical cost
distributions represented by their estimation intervals, which are the symbolic
objects, and conditional quantiles which are the descriptors of these symbolic
objects.

Let us define (Z) = {
wZ

1 , . . . wZ
s , . . . , wZ

S
}

, the orthonormal basis of eigenvec-
tors issued from the variance-covariance matrix of Z, and the function

�(Z) : M → R
+ ∪ {0} based on the Euclidean norm ‖.‖ ,

such as �(Z) =
L∑

l=1

∥∥∥Z̃l − Pr(Z)

(
Z̃l
)∥∥∥2

and where Pr(Z)

(
Z̃l
)

is the projection of the sub-matrix Z̃l, coding the vertices
of the hyper-rectangle Hl, on (Z), as an appropriate orthonormal basis.

The interval-valued matrix Z∗ that solves the optimization problem

Min �(Z)

Z ∈ M (21)

is estimated through Procedure (below), using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm (Broyden 1970; Fletcher 1970; Goldfarb
1970; Shanno 1970) in order to find the minimal distance to Z̃, the vertex
matrix.
Procedure 1. Minimizing the squared distance

Input:
Z ∈ M, a L × Q matrix with s principal components;
TOL, a numerical threshold of tolerance;
ITER, a maximum number of iterations.

i) Z ← U, the center matrix as the initial value;
ii) Z∗ ← lbfgs (Z, objective = �(Z), TOL, ITER) ;
iii) Compute the

[
ψ∗

L ; ψ∗
L

]
coordinates, applying (16) and (17) duality relation-

ships;
iv) Return

[
ψ∗

L ; ψ∗
L

]
Source: adapted from Garro and Rodriguez (2019).
Nota bene: lbfgs is a function implementing BFGS algorithm, from the nloptr package by Ypma
(2020).

Let us define the function �(Z, s) : M × N → R
+ such as �(Z, s) =∑s

h=1 λh, the variance of the first s components issued from the PCA of Z, where
λh is the hth eigenvalue associated to the hth eigenvector of (Z).
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The interval-valued matrix Zs that solves the optimization problem

Max �(Z, s)
Z ∈ M (22)

is estimated through Procedure 2 (below) using the BFGS algorithm, in order to
maximize the variance of the first s components.

Procedure 2. Maximizing the variance of the first components
Input: Z ∈ M, a L × Q matrix, with s principal components;
TOL, a numerical threshold of tolerance;
ITER, a maximum number of iterations.

i) Z ← U, the center matrix as an initial value;
ii) Zs ← lbfgs(Z, objective = �(Z, s), TOL, ITER);
iii) Compute the

[
χ∗

L ; χ∗
L

]
coordinates, applying (19) and (20) duality relation-

ships;
iv) Return

[
χ∗

L ; χ∗
L

]
.

Source: adapted from Garro and Rodriguez (2019).
Nota bene: lbfgs is a function implementing BFGS algorithm, from the nloptr package by Ypma
(2020).

2.4. Symbolic clustering analysis of the fertilizer cost distributions

The local dissimilarities between country l and country l′,associated with these
estimation intervals of technical coefficients for the qth conditional quantile, are
computed according to the Euclidean distance metric:

δM
(

zq
l , zq

l′
)

=
√(

Inf _γ̂
j0
l (q) − Inf _γ̂

j0
l′ (q)

)2 +
(

Sup_γ̂
j0
l (q) − Sup_γ̂

j0
l′ (q)

)2

(23)
For this metric M, a global dissimilarity between country l and country l′ based
on the differences over the national distributions of estimation intervals for the
technical coefficients is computed according to the following quadratic criterion:

d
(
ωl, ωl′

) =
⎛
⎝ Q∑

q=1
δ2

M

(
zq

l , zq
l′
)⎞⎠

1/2

. (24)

Given a matrix of dissimilarities between national empirical distributions of
fertilizer costs issued from the previous computations, we can use the methods
of unsupervised clustering. In a way similar to the Ward’s method, Chavent,
Lechevallier, and Briant (2007) proposed a divisive hierarchical clustering
algorithm on symbolic data (DIVCLUS-T), valid for both interval data and
categorical data. Subsequently, we detail for interval data the principles on which
the operations of this unsupervised clustering procedure are based.



12 D. DESBOIS

The divisive hierarchical clustering algorithm recursively splits each cluster
into two sub-clusters, starting from the whole set of countries as symbolic
objects

� = {ω1, · · · , ωl, · · · ωL} .
At each partition in k symbolic clusters PK = {C1, · · · , Ck · · · , CK}, a cluster

has to be divided in order to get a partition PK+1, with K+1 clusters, optimizing
the selected adequacy criterion based on the inertia.

The inertia of the kth cluster is defined by I (Ck) = ∑
l∈Ck

μld2
M
(
zl, g (Ck)

)
where μl is the weight of the lth country and g (Cl) is the cluster centroid defined
as:

g (Ck) = 1∑
l∈Ck

μl

∑
l∈Ck

μlzl (25)

The intra inertia is defined by the sum of the inertias of the clusters to their
centroids:

W (PK) =
∑

k=1,...,K
I (Ck) (26)

The inter inertia is defined by the inertia of the centroids with regards to the
g overall centroid of �, as follows:

B (PK) =
∑

k=1,...,K
μkd2

M
(
g (Ck) , g

)
where μk =

∑
l=1,...,k

μl (27)

For a partition PK , the total inertia sums the intra inertia with the inter inertia:
I(�) = W (PK) + B (PK) (28)

Hence, minimizing the heterogeneity (measured by W) is equivalent to
maximizing the homogeneity (measured by B).

Generated by the logical binary choice (yes/no) to a numerical binary ques-
tion � = [Is zq ≤ c?], let us denote

{
Ak, Ak

}
the induced bipartition of a cluster

Ck formed of nk objects. In order to choose among the nk−1 possible bipartitions
of the Ck cluster, a discriminating criterion can be defined by the following ratio:

D (�) = Bq (Ak, Ak
)

Ij (Ck)
= 1 − Wj (Ak, Ak

)
Iq (Ck)

(29)

where the inter inertia Bq (Ak, Ak
)

and the inertia Iq (Ck) are computed with
regard to the qth conditional quantile. Hence, minimizing the intra inertia
W
{

Ak, Ak
}

is equivalent to maximizing the inter inertia B
{

Ak, Ak
}

and, as a
result, to the D (�) discriminating criterion.

As in Ward method, the “upper hierarchy” (Mirkin 2005) of partition PK is
indexed by the height h of a cluster CK , defined by its inter inertia as follows:

h (Ck) = B
(
Ak, Ak

) = μ (Ak) μ
(
Ak
)

μ (Ak) + μ
(
Ak
)d2 (g (Ak) , g

(
Ak
))

(30)



COMMUNICATIONS IN STATISTICS: CASE STUDIES, DATA ANALYSIS AND APPLICATIONS 13

The DIVCLUS-T algorithm splits the cluster C∗
K that maximizes h (CK),

ensuring that the next partition PK+1 = PK
⋃{

AK , AK
}−C∗

K has the minimum
intra inertia value, with respect to the rule

W (PK+1) = W (PK) − h
(
C∗

K
)

(31)

In order to determine an optimal clustering, we use as the internal quality
index for each partition PK , the log of the determinant ratio computed as follows:

�K = N log

(
det(T)

det
(
WG(K)

)
)

(32)

where T = Z′Z is the total scatter matrix (N times the total variance-covariance
matrix) and WG(K) = ∑K

k=1 W(k) the sum of the within-group scatter matrices,
W(k) for each group Ck of the partition PK in K groups.

The optimal score for the quality index is given by the min_diff decision rule:

K∗ = arg minK {∂K − ∂K−1}
with ∂K = �K+1 − �K , using procedure ClusterCrit proposed by Desgraupes
(2017) for needed computations.

3. Results

Based on the gross product, the estimation according to the quantiles provides
a conditional allocation of the fertilizer costs by main products, within the
framework of a multi-product exploitation. In the framework of the Farm
Accountancy Cost Estimation and Policy Analysis project (FACEPA) research
project, the managers in charge of the Knowledge Based Bio-Economy project
of the 7th EU Framework Program of Research has chosen to focus on the
main agricultural commodities produced at a level sufficiently broad at the
European level to allow meaningful cross-country comparisons for the twelve
European Member States which are the main producers (EU12), choosing 2006
as a baseline for comparison convenience.

We analyze the results obtained in particular for the yield crops about fertil-
izer inputs. The figures are estimated from a quantile regression of the fertilizer
inputs on a decomposition of the gross product into five product aggregates
(yearly crops, permanent crops, pasture livestock, off-ground livestock, others)
for the set of twelve European countries (UE12) selected on 2006.

Table 1 presents for yield crops the estimation intervals of conditional quan-
tiles (lower decile D1, lower quartile Q1, median Q2, upper quartile Q3, upper
decile D9) of the fertilizer inputs of agricultural production.

The pre-visualization of the fertilizer cost estimates is done according to the
graph in Figure 2, showing the conditional quantile point estimates in ascending
order for each country. This graph of point estimates of conditional quantiles
of fertilizer costs for yield crop by country highlights some distributional facts.
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Table 1. Yield Crops, estimation intervals for technical coefficients of quantile fertilizer costs for AC1
of gross product, EU12.

C1 C2 C3 C4 C5

Contr. Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar
(%)

Bel 7 11 9 3 1 3 0 0 0 2 3 0 2 2 0
Dan 1 1 1 5 4 1 16 8 5 0 9 58 0 0 1
Deu 0 0 0 10 7 4 16 1 6 1 15 10 1 1 0
Esp 1 1 1 0 0 0 12 3 25 5 17 28 45 31 0
Fra 18 17 20 1 1 3 5 2 6 21 13 0 23 31 46
Hun 11 13 8 11 11 1 0 0 16 0 3 0 15 17 48
Ita 8 7 7 0 0 0 1 0 3 2 3 0 1 0 0
Ned 41 35 40 0 1 0 2 1 11 6 9 0 2 4 4
Ost 0 0 1 1 0 15 26 77 3 48 7 0 0 2 0
Pol 9 10 8 5 2 1 13 2 12 3 17 0 3 3 0
Sve 4 3 3 64 69 70 7 2 2 0 0 3 7 6 0
Uki 1 2 1 0 3 0 3 5 11 11 4 0 2 3 0

Source: Author’s processing, from EU-FADN 2006.

Below 3%, the overall level of the Netherlands distribution curbs (iNED and
sNED on Figure 1) is the lowest of the twelve European countries studied, with
the exception of the lower bound (i) of the first decile (D1) in Sweden (SVE)
which is negative. The Netherlands distribution is also the flattest of the twelve
European distributions analyzed, followed by the distributions for Italy and
Belgium, which have fairly moderate slopes and overall estimation levels below
13%. The Netherlands distribution illustrates the location shift linear model of
conditional quantile with homogeneous slopes.

Conversely, the maximum and minimum curves of the Swedish distribution
(iSVE and sSVE) are the steepest (from 1.6% to near 30%), immediately followed
by those of France (iFRA and sFRA) and Poland (iPOL and sPOL). These three
countries illustrate the location-scale shift linear model of conditional quantile
with heterogeneous slopes.

Next, Hungary (iHUN and sHUN), Germany (iDEU and sDEU), Austria
(iOST and sOST), the United Kingdom (iUKI and sUKI) and Spain (iESP
and sESP) form an intermediate group where, on the basis of this first graph,
it becomes difficult to distinguish clear differences between these national
distributions.

3.1. The interval PCAs of fertilizer cost estimates

Applying Equations (9) and (10), the “centers” option of the interval PCA shows
a correlation circle displaying the estimate quantile coordinates on the first two
principal components with the highest negatives correlation for D1, Q1 and
Q2 quantiles (Figure 3). The larger fans which indicate the greater infimum-
supremum intervals of estimation are found for D1 and Q1 quantiles meanwhile
Q2, Q3 and D9 quantiles displays the smallest which indicate the lower interval
ranges of estimates.
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Figure 2. Yield Crops, interval estimation for fertilizer coefficients of conditional quantiles for 12 EU
member States; iOST stands for Austria infimum, respectively, sOST for Austria supremum.
Source: author’s processing, from EU-FADN 2006.

In the factorial plane of the first two components C1 × C2 (Figure 4), the
Netherlands are plotted with Belgium and Italy in the first quadrant (C1C2 > 0),
indicating a lower general level of fertilizer estimates. In the opposed half-plan
(C1 < 0), France, Hungary, and Poland are plotted with Sweden, indicating
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Figure 3. Symbolic PCA (“centers” option) for Quantile Estimates, factorial plane F1xF2 of EU12
countries. Source: author’s processing, from EU-FADN 2006.

Figure 4. Symbolic PCA (“centers” option) for Quantile Estimates, factorial plane C1xC2 of EU12
countries. Source: author’s processing, from EU-FADN 2006.

much higher general levels of fertilizer estimates. Along the C1 component
negative side, Austria and the United Kingdom are nearer from Sweden while
Germany (Deu), Denmark (Dan) and Spain (Esp) along the positive side of C1
component are plotted nearer Belgium.

Along the C2 component, Sweden is clearly opposed to the other countries,
taking in account its extreme D9 estimates.

Countries symbolized by a larger rectangle are Austria, Sweden, Hungary,
the United Kingdom, Belgium, and Poland, which correspond to those with
greater interval range. Conversely, countries symbolized by a smaller rectangle
are Denmark, Italy, the Netherlands, Spain, Germany, and France, which are
characterized by a narrower range of estimate intervals.

For individuals, alternate projections are provided by the “best point” PCA
options, the optimized distance option on one hand, and on the other hand the
optimized variance option.
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Table 2. Comparison of the percentage of cumulative variance between the principal components of
the three following PCA options: classical PCA (Classic), optimized distance (Optdist), and optimized
variance (Optvar).
l%_cum_var Classic Optdist Optvar

C1 75.2 69.5 65.4
C2 97.4 94.9 98.7
C3 99.3 99.2 100.0
C4 99.9 99.9 100.0
C5 100.0 100.0 100.0

Source: author’s processing, from EU-FADN 2006.

Table 3. Comparison of the mean absolute deviation (MAD) between the principal components
of three PCA options: centers PCA (Centers), optimized distance (Optdist), and optimized variance
(Optvar). Source: author’s processing, from EU-FADN 2006.
Method MAD_C1 MAD_C2 MAD_C3 MAD_C4 MAD_C5

Centers 0.93 1.27 1.21 0.89 0.33
Optdist 0.61 0.83 0.88 0.32 0.27
Optvar 0.67 1.17 0.73 0.39 1.06

As shown in Table 2, the optimized variance option of the PCA maximizes the
variance of the first components since the cumulative percentage of variance of
the first factorial plan is the highest (98.7%) compared to the optimal distance
option (94.9%) and to the classical PCA (97.4%). So, the optimized variance
option provides a more complete summary in two dimensions.

Except for the third principal component (C3), the optimized distance option
of the interval PCA displays the minimum absolute deviation (MAD) between
supremum and infimum vertices over the principal components, compared
to the centers option and the optimized variance options (Table 3). So the
optimized distance option provides a narrower display of interval estimates for
quantile.

In the first factorial plane, the optimized distance and the optimized variance
options display a pattern of correlations between quantile estimates and princi-
pal components very similar to those of the classic PCA on the two first principal
components. As shown by their contributions to inertia (Table 4), the first two
principal components have roughly the same definition in terms of quantile.
The correlations between quantile estimates and the other principal components
(C3, C4 and C5) are different from the classical PCA for the optimized variance
option, however without few practical implications due to the very small level
of inertia (below 5%) expressed by this these components.

The contributions to inertia for the national distributions of fertilizer esti-
mates (Table 5) show similar patterns on the two first components between the
optimized options and the classic PCA, with the exception of Poland opposed
to Sweden in the optimized variance option, instead of Hungary in classic and
optimized distance options for the C2 component.
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Table 4. Comparison of the relative contribution to inertia (Contr.) between the principal compo-
nents of the three PCA options: classic PCA (Classic), optimized distance (Optdist), and optimized
variance (Optvar). Source: author’s processing, from EU-FADN 2006.

C1 C2 C3 C4 C5

Contr. Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar
(%)

D1 13 11 5 43 41 49 35 48 16 9 0 3 0 0 27
Q1 19 15 16 22 29 28 26 49 5 30 5 0 3 2 50
Q2 25 28 30 2 1 1 20 1 29 31 45 23 22 25 18
Q3 22 24 25 16 12 11 0 1 1 3 2 63 58 60 0
D9 21 22 24 17 17 11 19 1 49 26 47 12 17 13 4

Table 5. Comparison of the relative contribution to inertia (Contr.) between the principal compo-
nents of the three PCA options: classic PCA (Classic), optimized distance (Optdist), and optimized
variance (Optvar). Source: author’s processing, from EU-FADN 2006.

C1 C2 C3 C4 C5

Contr. Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar Classic Optdist Optvar
(%)

Bel 7 11 9 3 1 3 0 0 0 2 3 0 2 2 0
Dan 1 1 1 5 4 1 16 8 5 0 9 58 0 0 1
Deu 0 0 0 10 7 4 16 1 6 1 15 10 1 1 0
Esp 1 1 1 0 0 0 12 3 25 5 17 28 45 31 0
Fra 18 17 20 1 1 3 5 2 6 21 13 0 23 31 46
Hun 11 13 8 11 11 1 0 0 16 0 3 0 15 17 48
Ita 8 7 7 0 0 0 1 0 3 2 3 0 1 0 0
Ned 41 35 40 0 1 0 2 1 11 6 9 0 2 4 4
Ost 0 0 1 1 0 15 26 77 3 48 7 0 0 2 0
Pol 9 10 8 5 2 1 13 2 12 3 17 0 3 3 0
Sve 4 3 3 64 69 70 7 2 2 0 0 3 7 6 0
Uki 1 2 1 0 3 0 3 5 11 11 4 0 2 3 0

As summarized by the mean absolute deviation in Table 3, the display of all
country rectangle projections is the largest into the centers option (Figure 4)
and the smallest into the optimized distance option (Figure 6) while the display
of the optimized variance option (Figure 5) is of medium range between the
two previous options, both in the lengths (dimension 1 of the first principal
component) and the widths (dimension 2 of the second principal component).

By the relative sizes and locations of their hyper-rectangle projections, these
three factorial representations (Figures 4–6) distinguish clearly Netherlands on
the first principal component, as the archetype of the location shift model, and
Sweden, on the second principal component, as the archetype of the location
scale shift model.

3.2. The divisive hierarchy of fertilizer cost estimates

Showned by Figure 7, the divisive hierarchy obtained with Euclidean distance
option shows that the set of D1, Q1, Q2 and Q3 quantile estimates is used by
the discriminant values, which implies keeping these parameters to describe the
distribution, and possibly extending it by a finer quantile scale allowing some of
the national distributions to be better distinguished.
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Figure 5. Symbolic PCA (“optimized.distance”option) for Quantile Estimates, factorial plane F1xF2 of
EU12 countries. Source: author’s processing, from EU-FADN 2006.

Figure 6. Symbolic PCA (“optimized.variance”option) for Quantile Estimates, factorial plane F1xF2 of
EU12 countries. Source: author’s processing, from EU-FADN 2006.

Figure 7. Symbolic Divisive Clustering (“Euclidean distance” option) for Quantile Estimates, EU12
countries. Source: author’s processing, from EU-FADN 2006.

The first partition in two clusters corresponds to the supremum level of the
median estimate (Q2S).

At the top of the divisive hierarchy, the clustering procedure allows to identify
two contrasted models for empirical distributions of the fertilizers technical
coefficients for yearly crops production costs used to AC1,000 of gross product.

As the first cluster, the Netherlands (Ned) and the group of Italy (Ita),
Belgium, (Bel), Denmark (Dan) and Spain (Esp) grouped by their supremum
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Figure 8. Symbolic Divisive Clustering (C4 optimal partition for Determinant Ratio Criterion) for
Quantile Estimates, factorial plane F1xF2 of EU12 countries. Source: author’s processing, from EU-
FADN 2006.

median (Q2S) levels which are lower than AC7, are split in the following divisive
step by the supremum higher quartile (Q3S) level of AC5 which identifies the
Netherlands as the less intensive in fertilizer input. The Netherlands is the
archetype of the location-shift model formalizing the assumption of homoge-
neous producers in their fertilizer costs.

As the second cluster, for which their supremum median (Q2S) of fertilizer
cost is greater than 7AC, is split into two groups: first, the group for which
the fertilizer first decile input is greater than AC1, i.e. the subgroup formed
by Poland (Pol), and Hungary (Hun) aggregated with France (Fra); second,
the group formed by Sweden (Sve) aggregated with the subgroup formed by
Germany (Deu), Austria (Ost) and the United Kingdom (Uki), on the basis of
their fertilizer first decile lesser than AC1 input level. This latter group illustrates
the location-scale shift model, formalizing the assumption of heterogeneous
producers in their fertilizer costs.

The partition into four groups displays by Figure 8 is the optimal partition for
the minimum difference in the logarithm of the ratio of determinants (package
ClusterCrit), which is a consistent rule with the criterion of the DIVCLUS-T
algorithm.

4. Conclusions

Based on quantile regression and symbolic data analysis, this paper presents
a global methodology which aims to keep as much as possible relevant infor-
mation for the policy design, all along the econometric process of estimating
and analyzing agricultural fertilizer costs for yearly crops production. The
different properties of three options of interval PCA (centers, optimized distance
and optimized variance) are described allowing to identify different models of
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distributional scale, notably that of the location shift model opposite that of the
location-scale shift one. Differences and similarities between interval estimates
are exploited using divisive hierarchical clustering to produce two country clus-
ters identifying through quantile cost thresholds the archetypes of the location
shift model and the location-scale shift one. The differences between four groups
of countries are delimited by optimal thresholds expressed according to the
conditional quantiles in unitary terms of the gross product. These thresholds can
be used for segmenting farm populations to later analyze the differential impacts
of agricultural policy measures. We will apply this methodology at the second
level of the European Nomenclature of Territorial Units for Statistics (NUTS 2,
281 regions).
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