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Abstract

The plastic behavior of the insensitive energetic molecular crystal 1,3,5-triamino-

2,4,6-trinitrobenzene (TATB) is investigated through molecular dynamics simulations.

A recent method, built to follow any prescribed deformation path, is used to apply

directional shear and compressive deformations to a TATB single crystal, leading to

the tridimensional characterization of its nucleation von Mises stresses σv(θ, φ), where

θ and φ are the two angles (latitude and longitude, respectively) that define the load-

ing direction. Furthermore, the local computation of the deformation gradient tensor

helps to identify the mechanisms of the irreversible deformation. Two main types of

plasticity mechanisms have been identified for the TATB single crystal: first, molec-

ular dynamics simulations predict the existence of dislocations with an unusual local

through-plane dilatancy process. Various slip systems among four different non-basal

planes have been identified, namely (1̄01), (101), (01̄1) and (011) planes. Secondly,

every deformation containing a basal-plane compressive component involves buckling

deformation. A deformation path allowing a perfect twinning of the TATB triclinic cell

has been found. This structure has been verified through molecular dynamics (MD)

simulations. In order to understand the buckling mechanism, the TATB single crystal

behavior under compression along its basal plane is studied in detail.

1 INTRODUCTION

1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a well-known highly insensitive energetic molec-

ular crystal, is used in various explosive formulations. It crystallizes in a triclinic cell of space

group P11,2 and exhibits very anisotropic thermo-mechanical and chemical behavior3,4 due

to the arrangement in layers of the two C6H6N6O6 molecules (see Figure 1). Such anisotropic

properties are also the consequences of the directional interactions within the molecular crys-

tal, which give to the strength a high sensitivity toward the direction of loading (up to a

factor 20 for shear), as indicated by computations of the second order stiffness tensor C.5–7
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Figure 1: Crystal structure. TATB unit cell with lattice vectors a, b, c and cell angles α,
β and γ. (a) 3D representation. (b) x+ view. (c) z+ view. (d) y+ view.

Experiments have pointed out that TATB grown single crystals are noticeably defec-

tive,8–12 with the presence of porosities, twinned structures, etc. Until recently TATB single

crystals of size compatible with standardized mechanical experiments (e.g. tensile loading)

could not be obtained, mainly due to the complexity of the synthesis process. However,

Taw et al.13 managed to obtain quasihexagonal plate-like crystals of up to 1 mm width with

a minimal presence of impurities. They were able to perform nanoindentation experiments

on as-grown TATB single crystals with sizes varying between 200 μm and 600 μm which

represents a major step in the experimental area for this material, although the process used

differs from the typical manufacturing one.

Molecular Dynamics (MD) simulations of TATB single crystal is widely used and plays

a crucial part in predicting its macroscopic behavior. Kroonblawd et al.3,4,14 focused their

work on the thermal behavior of TATB and relaxation of idealized hot spots. Mathew et al.

computed the first generalized stacking fault surfaces of TATB6 and presented MD simu-

lations of its elastic-plastic response under displacement-controlled nanoindentation.15 The

latter results are shown to be in very good agreement with the recent experimental work

of Taw et al.13 Since plasticity in crystalline materials is known to be mainly controlled by

dislocations, Lafourcade et al.7 studied the structure of such defects in TATB basal plane.
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They computed the dislocation core structures as a function of pressure and temperature

and demonstrated that dislocations split into three or more partials that spread over approx-

imatively 50 to 100 unit cells. Thus, dislocations in TATB basal plane must be described as

large stacking fault ribbons rather than discrete dislocation lines.

The ability of High Energetic (HE) materials to remain stable during shock loading

defines their sensitivity, a critical property for the safety of such materials. This sensitivity

is highly dependent on complex mechanisms such as localizations of deformation16 which

are one aspect of hot-spots.15,17–19 Such hot spots are known to be triggered by local plastic

deformations, dislocation pile-up,15 void collapse20,21 or localized heating due to defects

nucleation.17 Irreversible deformation mechanisms thus need to be accurately described for

a predictive modeling of ignition.

In this paper, we present a simulation set-up dedicated to the analysis of the onset and

propagation of irreversible deformation mechanisms in TATB, for prescribed deformation

paths. Stress-strain curves are obtained for pure shear and uniaxial loadings, with direction

spanning all possible orientations. A detailed analysis of mechanisms of irreversible evolution

is proposed by a local estimate of the deformation gradient tensor, a Lagrangian objective

measure of deformation.

The paper is organized as follows. In the first section, we present the two main methods

used in our MD simulations for this work: the first depicts a way to prescribe the deformation

paths while the second describes the implementation of the local measure of the deformation

gradient tensor. The second section is dedicated to the investigation of the plasticity mech-

anisms and their dependence on the direction of loading. The two main mechanisms are

then presented in detail: the dislocation nucleation on non-basal slip systems for which an

inventory is proposed, and the onset of a microstructure analogous to twin bands in metals

that results from in-plane compression.
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2 METHODS

The STAMP code22 was used to perform all the MD simulations with the non-polarizable,

20% scaled-charges all-atoms force field for TATB developed by Bedrov et al.5 with planar,

symmetric rigid molecules. Long-range electrostatic interactions were computed using the

Reaction Field23–25 approximation with a 13 Å cutoff and 100.0 for the dielectric constant ε

instead of the Ewald summation. All other interactions were computed with a cut-off distance

of 13 Å. A Langevin thermostat was used with the damping constant set to 1.0 ps. The time

step for integrating the equations of motion was set to 1.0 fs for both isochoric-isoenergetic

(NVE) and isochoric-isothermal (NVT) simulations, a time step consistent with the choice

of using rigid molecules. Finally, the rigid body dynamics is computed by discretization of

the equations of motion following a Velocity-Verlet scheme.26 This force field has been used

in many studies to compute the dependence on temperature and pressure of TATB elastic

constants,5–7 thermal conductivity,3,4 γ-surfaces,6,7 nanoindentation,15 hot spots,27 within

DPDE shock loading on (001) planes14 and more recently dislocation core structures.7

2.1 Deformation Paths

Due to the high anisotropy of TATB, the mechanisms of irreversible deformation strongly

depend on the direction of loading. The understanding of plastic activity and mechanical

behavior of TATB single crystal is important at the atomistic scale if one wants to build a

constitutive law at larger time and space scales. To be able to detect all possible mechanisms,

we propose a methodology to perform large deformation 3D-periodic MD simulations.28 In

order to apply any type of deformation (pure shear, pure compression, compression with

lateral distension, etc.) along any direction of the 3D space, we prescribe a velocity gradient

L = Ḟ · F−1 defined by a deformation gradient tensor F (t) and its time derivative Ḟ . The

deformation gradient tensor F is constructed as follows:
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F = I + α(t)m⊗m + β(t)n⊗ n (1)

where α and β are time dependent functions, ⊗ is the dyadic product (a⊗b = aibj), (m,n)

are the vectors used for the construction of F as described in Figure 2 and I is the identity

tensor. Two types of loadings are used in the following: pure shear strain is obtained by

taking β = −α/(1 + α) (implying that detF = 1), and uniaxial loading compression with

β = 0.
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Figure 2: (a) Space configuration of the large strain context used in this work. (x,y, z) is the
reference orthonormal system. (m,n) leads to the construction of the gradient deformation
tensor F . (a, b, c) is the crystal unit cell system. (b) Definition of m and n in the reference
orthonormal system with respect to angles θ and φ.

For each MD simulations discussed in this paper, a 100 ps trajectory was calculated

in the NVT ensemble in order to reach equilibrium, using cell parameters obtained from a

Parrinello-Rahman isostress-isothermal (NσT) simulation (at the same temperature). The

final configuration is then used as initial conditions for subsequent MD simulations with

deformations (i.e. t = 0). Then, the MD supercell is dynamically strained, knowing its

average deformation through the application of F to the (a, b, c) system’s boundaries only

(see Figure 2). A velocity field is applied at initial time (i.e. after 100 ps of equilibration) and

is consistent with the velocity gradient tensor L deduced from F (i.e., 	v(t = 0) = L·	x(t = 0)).

6



No rescaling of the atomic positions are used in this method, which allows for a consistent

motion of molecules regarding the applied strain and avoids the generation of acoustic waves

in the material.

The aformentioned deformation, applied by dynamic modification of cell parameters, may

lead to an irreversible evolution of the system through the appearance of local defects. Two

different analyses were used to capture these processes.

When full dislocations (nucleation and motion) form, the original crystal structure is

recovered behind the moving dislocation but is strongly perturbed at the dislocation core.

Local detection of loss of crystalline structure (as the one proposed, e.g., in the DXA algo-

rithm29) highlights the dislocation line, but not the dislocation slip plane. For defects such as

twins, the local perturbation of crystal order only gives information on the location of twins’

mirror plane. Such analysis focuses on the instantaneous state of the crystal (dislocations

lines, twins boundaries, etc), without indicating the history of the deformation.

Frobenius norm of local Green-Lagrange tensor, on the other hand, provides a mea-

sure of the distance (in terms of deformation) between the initial state (no defect) and the

actual microstructure. A dislocation loop is highlighted through the formation of a penny-

shaped disregistry, representing the deformation induced by the dislocation motion. Local

Lagrangian deformation gradient tensor F̂ , when described as a composition of rotation R̂

and stretch Û tensors (polar decomposition F̂ = R̂ · Û ) provides a means to distinguish

zones that have undergone a reconstructive (i.e. irreversible and dissipative) deformation

from zones that have only rotated (i.e. reversible deformation with no dissipation).

For these reasons, the computation of the local Lagrangian deformation gradient tensor

F̂ with respect to a reference defect-free state is preferred in the following. This measure

has been proposed by several authors (Gullett et al.,30 Tucker et al.,31 Denoual et al.32) and

more recently by Kober et al.33 based on strain functionals. The computational details can

be found in the appendix.
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3 RESULTS

3.1 Nucleation Stress Surface Under Pure Shear

3.1.1 Simulation Setup

MD simulations were performed with a 3D-periodic 10a×10b×14c simulation cell containing

2800 molecules. Cell parameters at different temperatures and pressures were previously

obtained through Parrinello-Rahman simulations. At first, the system is equilibrated in the

NVT ensemble. Then, the large strain methodology presented in 2.1 to apply directional pure

shear to the simulation box is used. The plane defined by the two vectors m and n is chosen

to be perpendicular to the basal plane of TATB. Two conditions are applied concurrently for

these simulations: volume-preserving strains are applied at constant strain rate, in order to

construct the following expression for the deformation gradient tensor, depending on time t:

F = I + (eAt − 1)m⊗m + (e−At − 1)n⊗ n (2)

with A = ln(C)/ttot, where C is the final deformation ratio and ttot the total simulation

time. Vectors m and n represent the compression and expansion in orthogonal directions.

In Equation 2, the coefficients ahead of each dyadic product ensure that this deformation

corresponds exactly to a pure shear (i.e. the amount of compression along m equals the

amount of expansion along n).

3.1.2 Results at (300 K, 0 GPa)

The mechanisms of irreversible deformation were identified and characterized at 300 K and

0 GPa. Values of θ and φ were picked up every 30◦ in [0, 2π] and every 15◦ in [0, π/2],

respectively. By doing this, 84 different deformation paths (corresponding to 84 distinct

pairs of θ and φ) were examined through MD simulations, at a strain rate equal to 108 s−1.

The final deformation ratio was set to 0.9 for each deformation path, leading to a final
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Figure 3: 3D representation of TATB nucleation von Mises stress σv(θ, φ) at nucleation
under pure shear loading with identification of the three main mechanisms that occur. Color
coding is based on the value of σv(θ, φ).

equivalent deformation of 10%.

For each trajectory, a drop in the evolution of the stress with time is observed, which

we interpreted as signalling the onset of an irreversible deformation. Maximum von Mises

stress before the drop defines the time to nucleation and the stress to nucleation σv(θ, φ).

Taking into account the TATB single crystal centrosymmetry, a 3D surface representation

of σv(θ, φ) is shown in Figure 3. One can identify three distinct zones on this surface,

numbered 1 to 3.

In the zone labelled 1 in Figure 3, which corresponds to φ > 45◦, the gliding of the basal

plane is not (or weakly) activated and most of the deformation is accommodated by nucle-

ation of dislocations with non-basal Burgers vectors. The onset of these dislocations induces

a hydrogen-bond breaking phenomenon with an unusual local dilatancy (see Figure 4a),

investigated and explained in detail in Section 3.2.

The zone related to the lowest value of σv (label 2) corresponds to the deformation paths

where φ = 45◦ (number 2 in Figure 3). The deformation is equivalent to a pure shear (see

Equation 2) in the basal plane (001). Glide is activated for stress below computable accuracy,
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Figure 4: All-atom display with identification of basal (P1,P2) and transverse planes (01̄1)
of interest. (a) TATB single crystal non-basal gliding in the (01̄1) plane for a deformation
that consists in a pure shear along this plane. (b) Buckling mechanism of TATB single
crystal for a deformation that mainly contains a compressive component along the [100]
direction. The prime (′) symbol on the vector labels means that these vectors do not lie in
the plane of the figure.

owing to the weak van der Waals interactions between layers, which leads to the low energy

barriers observed in the γ-surfaces.6,7

Finally, in the zone 3 in Figure 3 that looks like a “donut”, the deformation is mainly

compressive in the basal plane, inducing an alternating disorientation of molecular layers

relative to their initial planar configuration (see Figure 4b). This mechanism has already

been observed in oriented block copolymers.34 An analysis of this phenomenon is provided

in Section 3.3.

It is important to note that non-basal plane dislocations and buckling deformation mech-

anism are triggered for similar values of the nucleation von Mises stress at standard ambient

conditions.

3.1.3 Evolution With Pressure

In the following, we study the evolution of the nucleation stress with pressure. The cell

parameters of TATB single crystal were obtained at 300 K and for different pressures (2,

5, 10 and 20 GPa) using Parrinello-Rahman simulations. To reduce the computation cost

we select trajectories with θ = 90◦ and values of φ picked up every 15◦ in [0, π/2]. Since
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at ambient conditions the TATB behavior is weakly dependent on θ, these measures give a

good insight of the behavior under pressure.
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Figure 5: Evolution with pressure of the nucleation von Mises stress σv(φ) (θ = 90◦). Gray
triangles correspond to the simulation data, curves are interpolation to guide the eye.

The setup for the deformation paths in pressure was the same as the one used at standard

ambient conditions. The results are presented in Figure 5. The angle φ = 45◦ (a pure shear

in the basal plane, corresponding to zone 2 in Figure 3) has a very low threshold stress (below

computable accuracy) for all pressures. The significant increase of the nucleation stress for

the onset of dislocations (zone 1 in Figure 3) with respect to the pressure is consistent with

the dilatancy of the dislocation core that could hinder the nucleation process as the pressure

increases.

3.1.4 Size and Strain Rate Effects

In the simulation described above, system size effects may have impacted the nucleation

stress threshold. This must be understood in order to be able to build a constitutive law at

higher time and space scales. The applied strain rate was very high compared to what one

would expect during experiments on an engineering scale but more appropriate compared
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to the local material strain rate in a shock rise. We have chosen to carry out additional

trajectories at a lower strain rate in order to investigate the effect of strain rate on the

threshold of the two main mechanisms described above.

First, we have performed three trajectories while increasing the system size. Taking the

cell parameters at 300 K and 0 GPa, MD simulations were performed with a 3D-periodic

40a× 40b× 60c simulation cell containing 179200 molecules. Deformation paths were per-

formed with θ = 90◦ and for three different values of φ: 15◦, 75◦ and 90◦. The strain rate

was the same as for the simulations at (300 K, 0 GPa).

Table 1: Size effect on the nucleation stress σv(θ, φ) for fixed θ = 90◦

10a× 10b× 14c 40a× 40b× 56c ratio

φ(◦) σv(GPa) σv(GPa) (%)

15 1.618 1.346 ≃ 20.2

75 2.448 2.097 ≃ 16.7

90 2.269 1.834 ≃ 23.7

The aim of these three simulations was to quantify the size effects on the nucleation

stresses. The different values of the von Mises stress at the nucleation of the first defect are

reported in Table 1. As anticipated, increasing the size of the system decreases the nucleation

stress threshold. By multiplying the system size by 4 in each direction, the von Mises stress

at nucleation has been lowered by approximately 20%, regardless of the loading direction.

In order to study the effect of the strain rate, additional trajectories were undertaken

with the same system size as before (i.e. 10a× 10b× 14c). Deformation paths were chosen

with θ = 0◦ and φ every 15◦ in [0, π/2], as for the computation of the nucleation stresses

surface in Figure 3. The results are shown in Table 2, where one can see that the lower strain

rate reduces the nucleation stress threshold by 14%.
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Table 2: Strain rate effect on the nucleation stress σv(θ, φ) for fixed θ = 0◦

108 s−1 107 s−1 ratio

φ(◦) σv(GPa) σv(GPa) (%)

0 1.612 1.407 ≃ 12.7

15 1.409 1.215 ≃ 13.8

30 1.249 1.082 ≃ 13.4

60 1.699 1.458 ≃ 14.2

75 1.781 1.537 ≃ 13.7

90 1.833 1.593 ≃ 13.1

3.2 Non-basal Dislocations

In this section, we propose a description of possible slip systems in the identified planes

during MD simulations, and we explain the local dilatancy process that comes with the

transverse gliding.

[1 0 1]

[1 0 1]

a

c

b

β

[0 1 1]

[0 1 1]

b

c

a

α

(a) (b)

Figure 6: Review of potential unit slip vectors in transverse planes of TATB single crystal.
(a) View along [100] direction. (b) View along [010] direction. Brown and orange shapes
represent TATB molecules. Orange molecules are in the figure plane whereas brown ones are
located behind it. Burgers vectors are represented as green continuous arrows and partial
slip vectors as black dashed arrows.

3.2.1 Potential Slip Systems

Based on the crystal structure and positions of molecular centers of mass, one can identify the

different potential unit slip vectors for dislocations in TATB single crystal. Figure 6 contains
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views along the normal of the two non-basal planes, namely (100) and (010), defined by b×c

and c×a, respectively. Green continuous arrows represent the Burgers vectors whereas black

dashed arrows identify partial slip vectors that interchange the planes P1 and P2.

The two slip systems in the (001) planes have already been studied, first by Mathew and

Sewell6 who computed the related γ-surfaces and then by Lafourcade et al.7 who reported

the first estimate of the dislocation core structure. Lafourcade et al. concluded that due

to the easy gliding in basal planes, dislocations can not be considered as discrete lines but

rather as large stacking fault ribbons.

The planes (100) and (010) are of similar nature and can be studied together. Among all

possible Burgers vectors for dislocation nucleation within (100) and (010) planes, [100], [010]

and [001] Burgers vectors were never observed and we think that this type of gliding can be

dismissed, due to the large steric hindrance present within the molecular layers. However,

the gliding with a [001] component (thus implying hydrogen-bond breaking) in transverse

planes has been observed in our simulations and occurs via formation of a complex stacking

fault structure that entangles the P1 and P2 planes. The different Burgers vectors are

represented as green arrows in Figure 6. This structure leads to a noticeable dilatancy, as

explained in the next section.

3.2.2 Local Dilatancy Process

In undeformed TATB crystal, the packing of molecules is hexagonal and is ruled by the facing

arrangement of NO2 and NH2 groups through strong in-plane hydrogen bonding. Combined

with the hexagonal molecular structure, these NO2 and NH2 stabilize the γ angle to 120◦

in the basal plane as shown by the yellow shape in Figure 7b.

Taking the system [011](011) as an example, we note that at half Burgers 1

2
[011], the

planes P1 and P2 line up, so that NO2 are facing NO2 and NH2 are facing NH2 groups,

as shown in Figure 7c and 7d. This induces an in-plane dilatancy in every second layer (see

Figure 7a, red annotation), that comes with a local strain that transforms the hexagonal
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Figure 7: Transverse dislocation process. (a) 100 view of three successive planes during the
midway configuration of a [011](011) dislocation that propagates into a TATB single crystal.
Blue and red shapes encircle stacking fault configurations SF1 and SF2 respectively. (b)
Molecular arrangement in a defect-free TATB basal plane. (c) and (d) In-plane molecular
stacking for the two successive stacking fault configurations in TATB basal plane SF1 and
SF2, respectively. Carbon is cyan, nitrogen is blue, oxygen is red and hydrogen is white.
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stacking (yellow annotation in Figure 7b) into a rectangular-like arrangement. For the plane

with the lower dilatancy, a strain is also visible, although less stronger (blue annotation in

Figure 7c).

3.2.3 Activated Slip Systems

The procedure described in Section 3.1 spans all the orientations that can lead to the nucle-

ation of non-basal plane dislocations. Table 3 gives a list of slip system (slip plane + Burgers

vector) activated during our MD simulations.

Table 3: Activated Slip Systems in TATB Single Crystal

slip system slip plane normal slip vector

[1̄ 0 1̄](1̄ 0 1) (1̄ 0 1) [1̄ 0 1̄]

[1 0 1̄](1 0 1) (1 0 1) [1 0 1̄]

[0 1̄ 1̄](0 1̄ 1) (0 1̄ 1) [0 1̄ 1̄]

[0 1 1̄](0 1 1) (0 1 1) [0 1 1̄]

3.3 Micro-Twinning Deformation

For deformation paths that contain a strong compressive component in the basal plane,

a buckled structure appears as shown in Figure 4b, involving a homogeneous shear of the

(001) plane. We first present the geometrical transformation for the twinning in Section 3.3.1.

Then, in Section 3.3.2, we propose the computation of an energy landscape that details the

energetics during any simple shear in TATB basal plane. Finally, a study of large TATB

single crystal plates (100a× 100b× 10c MD simulation cells) is undertaken in Section 3.3.3

to characterize the behavior under compression in terms of stability, size, and strain rate

dependence.
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3.3.1 Perfect Twinning

The triclinic TATB molecular crystal is centrosymmetric with space group P1,1 and consists

of alternating stacking (ABABAB) of molecular layers. The hexagonal-like basal plane

symmetry and stacking of the layers leads to a perfect twinning structure that can be obtained

(at constant volume and interplanar distance) by an inversion of the out-of-plane angles α

and β: α′ = 180 − α = 91.47◦, β′ = 180 − β = 76.64◦. This transformation changes the

orientation of the amino and nitro groups in the same layer and the relative coordinates of

molecules in the unit cell. A shift of 1

2
[001] (see Figure 8) restores both the molecules amino

and nitro groups orientations and the location of the molecule within the cell.

α
b

c

a

α′

b

c

a(a) (b)

Application of F
α′ = 180.0− α
β′ = 180.0− β

Figure 8: Detailed twinning process for TATB single crystal. (a) Three unstrained TATB
triclinic cells. (b) TATB cells after inversion of the two out-of-plane angles α and β. The
unit cell shifted about 1

2
c (highlighted in red) is the original one after a rotation of 180◦

around the z-axis. Only the process of the α angle inversion is shown here, which is similar
for the β angle. Carbon is cyan, nitrogen is blue, oxygen is red and hydrogen is white.

3.3.2 Homogeneous Shear Deformation

The energetics along the twinning path is investigated in this section, with a particular focus

on possible metastable phases (or twin structures) and the stress needed to nucleate these
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phases. The twinning deformation is a simple shear in the basal plane (001), so that a

comprehensive calculation of this energetics can be done by calculating the excess energy

after an instantaneous deformation given by:

F = I +
1

dint
f ⊗ n (3)

where f is the shear vector defined as f = f1 a[1 0 0] + f2 b[0 1 0] with f1 and f2 varying

from −0.5 to 0.5. n = z is the normal vector to the basal plane, dint the interplanar distance

between molecular layers, assumed constant here, and I is the identity tensor.

This landscape must be calculated at 300 K to be consistent with the MD simulations

done in this study. However, prescribing an overall deformation is not compatible with our

scheme to integrate the equation of motion since we want to evaluate the energy for each

fraction of the shear vector f . Assuming ergodicity for the system, we choose to sample the

system over the equilibrium state by considering a large simulation supercell of 20a× 20b ×

28c equilibrated in the NVT ensemble during 100 ps (with cell parameterers obtained with

the Parrinello-Rahman simulations at 300 K). Then, an instantaneous deformation through

F is applied in order to evaluate the energetics along the prescribed deformation. A similar

procedure has been proposed by Lafourcade et al.7 to estimate the TATB basal γ-surface at

300 K.

The deformation gradient tensor F corresponding to this homogeneous deformation has

only two non-trivial components F13 and F23, functions of f1 and f2. Considering the right

Cauchy-Green tensor C = F T · F so as to eliminate rigid body rotations, an energy map

can be obtained as a function of C components C13 and C23. This landscape is represented

in Figure 9a, where the global energy minimum at zero deformation is indicated by the label

α-TATB. By periodicity, when f equals [1 0 0], [0 1 0] or a composition of both, the initial

structure is restored.

In the vicinity of the initial energy well, only one stable state can be pointed out. The
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Figure 9: Homogeneous shear energy surfaces for TATB basal plane. (a) Shear energy as a
function of the right Cauchy-Green tensor C components: Eshear = g(C13, C23). (b) Shear
energy as a function of out-of-plane angles: Eshear = g(α, β).

twinning deformation path, described in the previous section, leads to a stable state, denoted

αT -TATB. One can see from in Figure 8b that this state corresponds to an inversion of the

lattice angles α and β.

An estimate of the stress needed to overcome the energy barrier between the stable an

twinning phases can be deduced from the potential E calculated above. By noting that the

stress power by unit volume w is w = P : Ḟ with P the first Piola-Kirchhoff tensor, defined

by P = ∂E/∂F , the only two components of the stress active during the transformation

are P13 and P23, by construction of the deformation gradient tensor F . We denote this

stress τ = [P13, P23] and its norm τ . Due to the pure shear nature of the transformation,

P13 = σ13 and P23 = σ23 with σ = F · P T (the Cauchy stress tensor). Therefore, τ has

the meaning of a resolved stress. The minimum energy paths (MEPs) link strain-free and

twinned configurations such as the force derived from the potential is tangent to the MEP.

They are calculated with the string method,35 a method based on the energy landscape

gradient computation. An evaluation of the stress along these MEPs gives a maximum shear

stress of ≈ 150 MPa.
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3.3.3 Behavior Under Pure Compression

When the global deformation contains a prevailing compressive component, we observe an

alternating disorientation of the TATB molecular layers from their original position, resulting

in a structure buckling in which interfaces are nearly perpendicular to the loading direction.

The deformations prescribed in this section are simple-compressive in the basal plane, and

therefore different to the isochoric deformation used in Section 3.1 (where it was applied to

the study of the onset of plasticity under shear loading). Thus, we apply pure compression

to the molecular layers with φ = 0◦ and the deformation gradient tensor is constructed from

the vector m only.

We define an orthonormal basis (x,y, z) with x parallel to [100] and z parallel to the basal

plane normal and the direction of compression by m = (cos θ, sin θ, 0) with θ ∈ [0 : 2π].

Two system sizes were studied (40a × 40b × 10c and 100a × 100b × 10c). No noticeable

effects on the observed mechanisms were observed.

Two types of simulations were undertaken: the first consisted in applying an instanta-

neous compression ratio R followed by an equilibration of the system energy in the NVT

ensemble, which allows to observe the arrangement of the molecular layers and its depen-

dence on the compression ratio R and direction m. The second type of simulation involved

a first step of equilibration in the NVT ensemble for 50 ps followed by a constant strain rate

deformation up to a chosen compression ratio R = 5% which permits to study the strain

rate dependence of the system.

Effect of Strain Rate

We consider the case of prescribed deformation for several constant strain rates, correspond-

ing to a final strain of 5% with trajectory lengths between 50 ps and 500 ps. In Figure 10

are presented the stress-strain curves for a loading along m with θ = 30◦ and strain rates in

[1× 108 s−1, 1× 1010 s−1] showing a decrease of the stress to nucleation for decreasing strain

rate. No effect of the compression angle θ was observed for the nucleation stress.
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Figure 10: Effect of strain rate on the nucleation stresses. (left) Strain-rate curves for a
compression along direction m with θ = 30◦. (right) Different values of the nucleation von
Mises stress at nucleation as a function of strain rate, for different directions of compression.

In Figure 11 are shown the map of ‖ E ‖ for the final microstructures (system size is

100a× 100b× 10c) for different values of the strain rate, ‖ E ‖ being a strain measure with

E = 1

2
(F TF − I) the Green-Lagrange strain tensor computed from the local deformation

gradient tensor. The increase of strain rate leads to higher nucleation stresses before stress

relaxation due to a large number of nucleation sites, compared to what is observed at lower

strain rates. This is consistent with a hypothesis of a nucleation rate driven by thermal

activation, with the activation energy decreasing with increasing local stress. Each nucleation

site produces a chevron that will relax the stress in a zone increasing with time. Such

a competition between nucleation and screening is usually well described by the Avrami

model36 that predicts a decrease of the characteristic length for an increasing nucleation

rate, as observed in Figure 11. In the same way, the size of the large deformation bands

(denoted in the following as “chevrons”) in the microstructure is also related to the strain

rate, with larger chevrons at lower strain rates. For the lowest strain rate, we observed a very

progressive growth of few chevrons toward a typical converged length of about 50−60 TATB

lattices. However, this length is certainly a finite-size effect since the remaining chevrons are

disconnected and their merging stops when the entire interface between chevrons becomes
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Figure 11: Microstructure evolution with respect to the strain rate. The final microstructure
for 4 different molecular dynamics simulations are shown. Each snapshot corresponds to a
compression along m with θ = 30◦. Color code corresponds to the value of ||E||.
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perpendicular to the loading direction. Thus, a larger system size would lead to larger

chevrons.

Dependence on Loading Direction

Multiple directions of compression were investigated for this study at the same strain rate of

2× 108 s−1. The TATB supercell was compressed along the direction m = (cos θ, sin θ, 0)

for θ = 30, 75 and 90◦.

Chevrons are nucleated with interfaces perpendicular to the compression direction as

shown in Figure 12. Snapshots of three molecular dynamics simulations (different rows) are

represented, corresponding to different compression angle θ (30, 75 and 90◦), and interme-

diate strains (3, 4 and 5%). Starting from an equilibrated and defect-free single crystal, the

trigger of the first disorientations happens around 2% strain, with a homogeneous nucleation

of tiny chevrons. As the deformation progresses, a hierarchical evolution is observed with

the merging of chevrons to form larger structure. In our case, the TATB sample size was

100 × 100 × 10 lattices. Once the structures were equilibrated, interfaces were constrained

by the 3D periodic cell and the growth could not continue.

Microstructure Evolution

The buckling involves significant shear of the basal plane. In this section, we assess the

role of the energy landscape calculated for simple shear in Sections 3.3.1 and 3.3.2 on the

formation of the microstructure. As a first step, we estimate the buckling threshold as the

highest deformation for which no microstructure appears. This threshold is estimated by

instantaneously imposing a deformation, run NVT-MD for 500 ps, and observe a possible

onset of microstructure. For a deformation angle of θ = 0◦, the buckling strain threshold is

TB = 2.75% ± 0.25, other angles leading to roughly the same value.

For the results presented in the following, we focus on the evolution of the microstructure

during a progressive deformation, at different strain rates. During each simulation, the
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Figure 12: Microstructure evolution with respect to the compression direction. (rows)
Snapshots for three different values of the angle θ. (columns) Snapshots for three different
values of the strain along the prescribed deformation path simulation. Color code corresponds
to the value of ||E||.
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computation of the local deformation gradient tensor F was carried out, as long as the

right Cauchy-Green tensor satisfied by C = F TF . For simple shear the only non-trivial

components of C are C13 and C23. The couple (C13, C23) is computed for every molecule

to define a density map d(C13, C23), so that the number of molecules with deformation of

(C13 ±
∆

2
, C23 ±

∆

2
) is given by d(C13, C23)×∆2.

This density map is then simplified by extracting the maxima and lumping the remaining

density to the nearest maximum. This procedure produces a simplified histogram as a list of

maxima, each one being associated with a representative fraction of molecules affected by the

neighboring strain. By reporting these several pairs of the Cauchy-Green tensor components

onto this energy map, we can evaluate whether the deformation signatures correspond to

remarkable locations on the energy landscape, e.g., minima. Since the buckling deformation

mechanism mainly involves basal plane shear, the analysis of the couple (C13, C23) is im-

portant if one wants to link the buckled microstructure with the twinning energy landscape

presented above (Section 3.3.2). For the simulations presented in Figure 13, the plotted sets

of the simplified histogram represents more than 92% of the system.

In Figure 13, we have reported the simplified histogram calculated at the end of the MD

simulations, for compressions with θ = 30 , 75 and 90◦ and a final strain equal to 5%. The

histograms are represented by filled circles whose area is proportional to the fraction of the

molecules in this state. For direction with θ = 30◦, the deformation is mostly in C13 and the

sets are aligned with the direction of loading. In a similar way, when θ = 90◦, the two sets are

also aligned with the direction of loading but most of the deformation is in C23. Concerning

the case when θ = 75◦, the furthest set from the strain-free minimum is split into two subsets

with one falling near in the direction of 90◦. These observations show that when the direction

of compression is aligned with the two minima (i.e. θ = 90◦), the microstructure is driven by

Twinning, with a strong influence of the underlying energy landscape. Conversely, the more

the direction of compression is aligned perpendicularly to the two minima (i.e. θ = 0◦), the

more the microstructure will be dominated by pure elasticity. We termed this “in-between”
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Figure 13: Link between the homogeneous shear energy surface and the deformation sig-
natures obtained during directional deformations. The gray color bar represents the shear
energy (similar to Figure 9) while the filled circles represents the deformation signatures,
each color corresponding to a different direction of compression.
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mechanism Twinning-Buckling.

The sets fall in the vicinity of the deepest energy well, confirming the role of the under-

lying energy landscape on the structure. This can be understood by comparing the excess

energy for the minimum energy paths (MEPs) between two minima (see Section 3.3.2), es-

timated at 25.4 MJ m−3, and the elastic energy available prior to the onset of buckling.

This latter quantity is the elastic energy to be released by the buckling by considering the

elastic energy stored by a deformation of 2.75% (the buckling threshold TB) applied under

uniaxial compression: EB = 1

2
C11T

2

B = 18.9 MJ m−3. The two energies are therefore similar,

demonstrating that even a small compression of a few percent is sufficient to overcome the

energy barrier leading to the twinned configuration. Furthermore, if only one minimum had

been present on the energy landscape (with a classical quadratic elastic well), two sets with

deformations of opposite signs and exactly same amplitude would have been observed, which

is not the case here. This implies the necessity to consider the Twinning energy landscape

during the construction of a constitutive law that would aim to model the Twinning-buckling

mechanism. Relevant inputs include the energy maximum and the energies along the MEP

that link the α and αT structures.

4 CONCLUSIONS

The computation of the directional nucleation stress surface under pure shear for TATB

single crystal through MD simulations allowed us to identify three distinct behaviors of the

material. Gliding in the basal plane under pure shear is very easy to activate and is re-

lated to the very low energies on the γ-surface in these directions. This is consistent with

a previous study of dislocation core structures for this plane.7 Non-basal plane dislocations

nucleation is a new plasticity mechanism for the TATB single crystal. It is shown to in-

volve hydrogen-bond breaking and complex dislocation core structures with modification of

the hexagonal in-plane molecular packing (for partial dislocations), and a noticeable core
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dilatation. Finally, when the strain consists mainly of compression of the molecular layers,

a Twinning-buckling phenomena is inescapably involved, leading to a modification of the

microstructure in a succession of chevrons of opposite deformations, with interfaces always

normal to the compression direction.

The calculation of a Twinning energy landscape has also been performed. It revealed

an energy minimum corresponding to a perfect twinning of the TATB single crystal. The

transition between buckling and twinning is dependent on this energy landscape and the

direction of loading.

We have shown that TATB single crystal behavior under large strains is very depen-

dent on the loading direction: out-of-plane loading leads to dislocations nucleation, in-plane

loadings systematically produce Twinning-buckling whereas basal plane pure shear leads to

simple homogeneous gliding. All these elements are the necessary ingredients to build a rep-

resentative constitutive law for the TATB single crystal behavior under large strains, which

ideally could take in account dislocations nucleation, perfect lattice twinning, and buckling

mechanism.
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APPENDIX: LOCAL COMPUTATION OF THE DEFOR-

MATION GRADIENT TENSOR

In continuum mechanics, the position at time t in the strained state refers to the position

in a reference state through the deformation gradient tensor F (t) with x(t) = F (t) · X,
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where x and X are the current and initial positions, respectively. We approximate the

deformation gradient tensor F (t) by a tensor F̂ i defined for each molecule by using the

relative displacement of its neighboring molecules.

A pair of particles i and j initially separated by a vector ∆X ij from each other, are

currently distant by ∆xij with ∆xij ≈ F̂ i ·∆X ij. The corresponding error function noted

χ2
ij reads:

χ2

ij = (∆xij − F̂ i ·∆X ij)
T(∆xij − F̂ i ·∆X ij) (4)
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Figure 14: Weight function wj(r) used for the computation of the local deformation gradient
tensor with r normalized by the cutoff radius rcut used for the measure. In this work,
rcut = 26 Å.

Thus, for a number N of neighbors in a sphere of radius rcut around the particle i, the

total weighted least squares error is:

χ2

i =
N
∑

j=1

χ2

ijwj (5)

where wj is a weight coefficient associated to the jth neighbor varying from 1 to 0 for

‖∆xij‖ = 0 to rcut using a cubic spline function. This function is represented in Figure 14
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with abscissa r = ‖∆xij‖/rcut. Here, rcut is the cutoff radius used for the local measure of

the deformation and equals two times the cutoff radius of the potential so that a sufficient

number of neighbors are taken into account to perform the measure. The minimization of

χi with respect to the F̂ components leads to the following relation:

F̂ i =
N
∑

j=1

∆xij∆XT

ijwj

(

N
∑

j=1

∆X ij∆XT

ijwj

)

−1

= AiD
−1

i (6)

where Ai and Di are second order tensors. Di refers to the initial state, and Ai links both

current and reference states. From there, through a simple polar decomposition, one can

compute the local rotation tensor R̂i and the local stretch tensor Û i. This decomposition

allows to identify rigid body rotations during MD simulations through R̂i and also the

computation of the local lattice parameters and angles by tensorial operation on Û i. Since

we used rigid molecules in this work, i and j in the precedent equations stand for the

molecular centers of mass. These objects are used and analyzed in Section 3.
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