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ABSTRACT: Various protected b2-amino acids can be prepared by radical addition of b-phthalimido-a-xanthyl propionic acid, both as the 
free acid or as the ethyl ester. Successive radical additions provide access to more complex structures. In the case of the free acid, addition to 
certain heteroaromatics leads directly to b-heteroarylethylamines through spontaneous decarboxylation of the intermediate adduct. Forcing 
the decarboxylation in some cases generated a vinyl group by decarboxylative elimination of the phthalimido group. 
 

b-Amino acids and their derivatives are compounds of remarkable 
versatility.1 They are precursors of b-lactams,2 of metabolically stable 
peptidomimetics,3 of various biologically active substances, and of 
numerous ligands for transition metal based catalysts.4 The b-amino 
acid motif is present in a number of important natural products,5 the 
most prominent of which are perhaps the anticancer taxol, the b-
lactam family of antibiotic,2 and b-lysine (or isolysine),6 a mild 
antibiotic found in tears that causes lysis of many Gram-positive 
bacteria.  

Most of the synthetic efforts have concerned b-amino acids with 
substituents on the carbon bearing the amino group,1 the so called 
b3-amino acids according to the nomenclature introduced by 
Seebach.7 b2-Amino acids have attracted comparatively less 
attention, despite their potential utility for synthesis and for 
medicinal chemistry.8 They are also much less readily accessible than 
their b2 congeners. We describe now a convergent and flexible route 
to b2-amino acids that exploits the lack of b-elimination of b-imido 
radicals and the unique properties of the degenerative xanthate 
addition-transfer process.9,10 An offshoot of this study is a 
straightforward synthesis of b-heteroarylethylamines and an 
unexpected vinylation reaction. 

The conception underlying our synthetic approach is outlined in 
Scheme 1. It hinges on the expectation that radical 2 derived from 
xanthate 1 will not undergo a b-elimination of phthalimidyl radical 

5 before adding to the alkene. This is in contrast to the 
corresponding anion 6 which would readily eliminate phthalimidyl 
anion 7 (PhthN = phthalimido). A further non-negligible advantage 
of proceeding through radical intermediates generated from the 
corresponding xanthate is that non-activated, electronically 
unbiased alkenes bearing numerous functionalities, especially polar 
groups, can be used as traps.9    

Scheme 1. Radical Based Route to b2-Amino Acids 

 
The synthesis of the requisite xanthate from known bromide 911 

was straightforward (Scheme 2). We were pleased to find that, as 
anticipated, the addition to allyl cyanide took place without b-
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scission of the phthalimide (DLP = di-lauroyl peroxide, also sold 
under lauroyl peroxide, Laurox® or Luperox LP®). The reaction was 
conducted neat, without any solvent, and furnished adduct 4a in 
high yield. Other examples of addition are provided in the same 
Scheme. The yields are generally higher than typical xanthate 
additions and reflect presumably the increased electrophilic 
character of intermediate radical 2 caused by the presence of the 
adjacent phthalimide group. All the reactions were performed neat, 
except for the addition to vinyl MIDA boronate (example 4g), which 
was performed in ethyl acetate at a 1 M concentration. In this case 
the yield was almost quantitative, reflecting the matched polarity 
between electrophilic radical 2 and electron rich vinyl MIDA 
boronate. The boron substituent is negatively charged and releases 
electrons into the attached vinyl group.12  

Scheme 2. Synthesis of Protected b2-Amino Acids 

 
As can be seen upon inspection, many different functional groups 

are tolerated on the alkene. One interesting case is that of adduct 4d 
to vinyl pivalate (Piv = pivalate). The carbon bearing both the 
xanthate and the pivalate has the oxidation level of an aldehyde, and 
such compounds have a very rich chemistry.13 In all of these 
additions, a 1:1 mixture of diastereoisomers is produced. The 
xanthate group can be reductively removed, which simplifies the 
structures, or used to create another carbon-carbon bond, and thus 
increase further the complexity. Both of these possibilities are 
illustrated in the sequence in Scheme 3.  
Scheme 3. An Example of Successive Radical Additions 

 
    The addition of xanthate 1 to N-vinyl phthalimide was 

conducted in ethyl acetate at a 1 M concentration (Scheme 3). The 
resulting adduct 4h could, in turn, be made to add to methyl 10-
undecylenate to give a second adduct 10, also in high yield. We had 
found previously that xanthates geminal to imide groups were 

suitable partners for the radical addition and provide a very powerful 
route to functional amines.14 Indeed, this property was exploited to 
access b3-amino acids.15  Reductive elimination of the xanthate 
group using Barton’s reagent16 and deprotection of the phthalimide 
furnished aminomethyl substituted lactam 12, where the ring 
closure occurred spontaneously. The ability to accomplish 
successive intermolecular additions is a unique property of the 
xanthate addition-transfer and allows rapid access to complex 
structures that would be very tedious to obtain by more 
conventional ionic or organometallic methods. 

We further found that the radical additions could be 
accomplished from the free carboxylic acid 15 (Scheme 4). This 
compound was prepared from bromide 14, itself obtained from 2-
phthalimidopropionic acid 13 by the classical Hell-Volhard-
Zelinsky reaction.11,17 The substitution leading to xanthate 15 was 
surprisingly only modestly efficient and more work is still needed to 
improve the yield. Nevertheless, the precursors are readily available 
and sufficient quantities could be easily secured to complete the 
present preliminary study. The radical addition proceeded normally, 
even if the yields of adducts 16a-d were generally slightly lower than 
with the corresponding ester 1 (Scheme 4). The xanthate was 
reductively removed in the first three products to give the simpler 
derivatives 17a-c. The possibility of creating carbon-carbon bonds 
starting with a free carboxylic acid is remarkable, and a hallmark of 
radical processes, even if it has been seldom used hitherto. Only a 
handful of intermolecular additions to un-activated alkenes have 
been reported starting with iodoacetic and 2-iodopropionic acids.18 
In view of the numerous a-xanthyl carboxylic acids that can in 
principle be made by exploiting the Hell-Volhard-Zelinsky reaction 
and other processes, such as the radical addition of a xanthate to 
acrylic acid, this addition acquires a significant synthetic relevance. 

Scheme 4. Synthesis of N-Protected b2-Amino Acids 

 
Another interesting application of xanthate 15 is the direct 

introduction of an ethylamine moiety into heteroaromatics. b-
(Hetero)arylethylamines represent perhaps the most important 
class of substances interacting with central nervous system (CNS).19  
A few of these compounds are pictured in Figure 1. These can be 
endogenous neurotransmitters, such as dopamine 18 and serotonin 
19, or natural products with psychedelic and hallucinogenic activity, 
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or even synthetic drugs such as the antidepressant venlafaxine and 
the anti-obesity lorcaserine. The ethylamine motif highlighted in 
blue can be a simple pendant, substituted on the carbon chain or on 
the nitrogen, or even part of a ring.   

 
Figure 1. Examples of biologically active b-
(hetero)arylethylamines. 

The addition of xanthate 15 to a number of heteroaromatic 
structures could be accomplished by using stoichiometric amounts 
of peroxide.20 The initial adduct 26 underwent spontaneous 
decarboxylation in some cases to furnish the corresponding 
phthalimide protected b-aminoethyl derivative (Scheme 5). This 
transformation is illustrated by the formation of compounds 27a-g. 
in moderate yield. Interestingly, the reaction with pyrrole gave rise 
to both the monoadduct 27e and bis-adduct 27f, the latter being the 
major product.  
Scheme 5. Synthesis of N-Protected Heteroarylethylamines 

 
In contrast to the case of 3-methylindole (adduct 27g), the 

reaction with ethyl 2-indolecarboxylate did not result in 
spontaneous decarboxylation, and carboxylic acid 26h was isolated 
in 60% yield. Addition to 6-phenyl imidazo[2,1-b]thiazole also did 
not result in decarboxylation and furnished efficiently compound 
26i. Not only was the yield significantly higher than average, but the 
product crystallized directly from the reaction mixture and was 
isolated by simple filtration. This reaction was easily scaled up 
(1.2g), albeit the yield was somewhat lower (60%). Interestingly, 
when we attempted to decarboxylate both 26h and 26i by briefly 
heating a solution in N-methylpyrrolidone (NMP) in a microwave 

oven at 220-230 °C,21  the reaction furnished cleanly vinyl derivatives 
28 and 29 respectively.  

A possible explanation for the vinyl formation is provided in 
Scheme 6. At the high temperature required to decarboxylate 
adducts 26 which do not spontaneously extrude carbon dioxide, the 
retro-ene reaction leads to intermediate 30 which then eliminates 
phthalimide in a step that restores at the same time the aromaticity 
of the heteroaromatic ring. An attempt to accomplish just the 
decarboxylation step without concomitant elimination of the 
phthalimide by heating compound 26i gradually was unsuccessful. 
Only vinyl derivative was observed forming at 170 °C. Indeed, the 
decarboxylation process is necessary for the elimination of the 
phthalimide. Prolonged microwave heating of caffeine derivative 
27a at the higher temperature of 250 °C did not result in any 
reaction. Furthermore, we found that under these harsher 
conditions, aliphatic acid 17e, which cannot undergo a retro-ene loss 
of CO2, was converted in poor yield into acrylic acid product 32. 
Scheme 6. Possible Pathway for Vinyl Formation 

 

The present expedient route to (hetero)arylmines complements 
the approach recently described by Jui and co-workers, where 
(hetero)arylmines were prepared by (hetero)aryl radical addition to 
enamides.22 
It is further noteworthy that radical reactions have almost never been 
used for the synthesis of b2-amino acids. Indeed, a literature search 
revealed reports by only two research groups, where a radical in 
position-2 of a b-amino acid or ester was generated and captured. In 
both cases, an intramolecular reaction is involved (34 g 35 and 37 
g 38 in Scheme 6).23 Xanthates provide an opportunity for 
intermolecular additions, even to unactivated alkenes. This results in 
a versatile, modular and flexible route to a broad variety of b2-amino 
acids, thus considerably expanding the range of attainable structures. 
As stated in the introduction, b2-amino acids are much less 
accessible than the more common b3-amino acids. Furthermore, the 
same xanthate 15 serves to prepare b2-amino acids and 
b-heteroarylethylamines, both of which are valuable for medicinal 
chemists. The cheapness and ready availability of the reagents, the 
mildness of the experimental conditions and the compatibility with 
many functionalities, especially polar groups, are significant practical 
advantages.  

Scheme 7. Literature Examples of b3-Amino Acid Esters 
Obtained by Radical Cyclization  
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