
HAL Id: hal-03411219
https://hal.science/hal-03411219

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

C2AADL_Reverse: A model-driven reverse engineering
approach to development and verification of

safety-critical software
Zhibin Yang, Zhikai Qiu, Yong Zhou, Zhiqiu Huang, Jean-Paul Bodeveix, M

Filali

To cite this version:
Zhibin Yang, Zhikai Qiu, Yong Zhou, Zhiqiu Huang, Jean-Paul Bodeveix, et al.. C2AADL_Reverse: A
model-driven reverse engineering approach to development and verification of safety-critical software.
Journal of Systems Architecture, 2021, 118, pp.102202. �10.1016/j.sysarc.2021.102202�. �hal-03411219�

https://hal.science/hal-03411219
https://hal.archives-ouvertes.fr

C2AADL Reverse: A Model-Driven Reverse
Engineering Approach for Development and Verification

of Safety-critical Software

Zhibin Yanga,∗, Zhikai Qiua, Yong Zhoua, Zhiqiu Huanga, Jean-Paul
Bodeveixb, Mamoun Filalib

aSchool of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing, China

bIRIT-Universit de Toulouse, Toulouse, France

Abstract

The safety-critical system communities have been struggling to manage and

maintain their legacy software systems because upgrading such systems has

been a complex challenge. To overcome or reduce this problem, reverse en-

gineering has been increasingly used in safety-critical systems. This paper

proposes C2AADL_Reverse, a model-driven reverse engineering approach for

safety-critical software development and verification. C2AADL_Reverse takes

multi-task C source code as input, and generates AADL (Architecture Analysis

and Design Language) model of the legacy software systems. Compared with

the existing works, this paper considers more reversed construction including

AADL component structure, behavior, and multi-threaded run-time informa-

tion. Moreover, two types of activities are proposed to ensure the correctness

of C2AADL_Reverse. First, it is necessary to validate the reverse engineering

process. Second, the generated AADL models should conform to desired crit-

ical properties. We propose the verification of the reverse-engineered AADL

model by using UPPAAL to establish component-level properties and the As-

sume Guarantee REasoning Environment (AGREE) to perform compositional

∗Corresponding author
Email addresses: yangzhibin168@163.com (Zhibin Yang), 2427153594@nuaa.edu.cn

(Zhikai Qiu), zhouyong@nuaa.edu.cn (Yong Zhou), zqhuang@nuaa.edu.cn (Zhiqiu Huang),
bodeveix@irit.fr (Jean-Paul Bodeveix), filali@irit.fr (Mamoun Filali)

Preprint submitted to Journal of Systems Architecture: Embedded Software Design May 25, 2021

verification of the architecture. This combination of verification tools allows us

to iteratively explore design and verification of detailed behavioral models, and

to scale formal analysis to large models. In addition, the prototype tool and

the evaluation of C2AADL_Reverse using a real-world aerospace case study are

presented.

Keywords: Safety-Critical Systems, Model-Driven Development,

Model-Driven Reverse Engineering, AADL, Compositional Verification

2020 MSC: 00-01, 99-00

1. Introduction

Safety-critical systems (SCS) are the systems whose failure could result in

loss of life, substantial economic loss, or damage to the environment [1]. There

are many well-known examples in different domains such as aircraft flight con-

trol, space missions, and nuclear systems. The SCS communities have been5

struggling to manage and maintain their legacy software systems because up-

grading such systems has been a complex challenge. As surveyed by FAA (Fed-

eral Aviation Administration), reverse engineering (RE) has been increasingly

used in many industries, including aircraft applications [2].

In contrast with forward engineering, reverse engineering can be defined as10

the process of examining an already implemented software system to create a

higher abstraction level representation in a different form. Reverse engineers

typically start with a low-level representation of a system (such as source code, or

execution traces), and try to build more abstract representations from these

(such as architectural models, or use cases, respectively)[3]. The main objective15

of RE is to provide a better understanding of the software systems current

state, which can be used to correct (e.g. fix bugs), update (e.g. alignment

with updated user requirements), upgrade (e.g. add new capabilities), or even

completely re-engineer the system under study [4].

Generally, reverse engineering a software system is a time-consuming and20

error-prone process. Its difficult to predict how much time RE will require

2

and there are no standards to evaluate the quality of the result of RE [4]. To

overcome these difficulties, model driven reverse engineering (MDRE) [4, 5, 6]

has been proposed to enhance the traditional reverse engineering processes.

MDRE is the application of model driven engineering (MDE) principles and25

techniques to RE in order to generate relevant model-based views on legacy

systems, thus facilitating their understanding and manipulation.

There have been several past works on MDRE which can be classified as

two categories: specific and general solutions. This is determined depending

on whether they aim to reverse engineer the system from a single technology30

and/or with a predefined scenario in mind (e.g., a concrete kind of analysis), or

to be the basis for any other type of manipulation in later steps of the reverse

engineering process [7]. Manev et al. [8] propose a tool, called ITACG (IoT

software Analysis and Code-Generation tool), for performing reverse engineer-

ing and extraction. This is accomplished by scanning the source code of the35

target system and extracting architectural information from it, which is stored

into a UML model. Umair Sabir et al. [9] present a MDRE framework named

Src2MoF to generate UML structural and behavioral diagrams from the Java

source code. In order to address several kinds of scenarios relying on different

legacy technologies, Hugo Bruneliere et al. [7] give an extensible and generic40

model driven reverse engineering: MoDisco. MoDisco has three layered archi-

tecture i.e. infrastructure, technologies and use case layers. It denes a basic

meta-model approach for MDRE based on Knowledge Discovery Meta-model

(KDM) specication to provide support for XML, JSP and Java. MoDisco only

deals with structural aspects and does not support the MDRE for behavioral45

aspects from source artifacts.

Most of the existing works of MDRE mainly consider general domains such

as desktop or business applications. In this paper, we consider MDRE in the

domain of complex embedded systems, especially the safety-critical systems.

50 Complex embedded software systems are typically special-purpose systems de-

veloped for control of a physical process with the help of sensors and actuators.

They are often the systems requiring a deep combination of software, runtime

3

operational system and hardware platform. Typical non-functional analysis of

the requirements in this domain, such as safety, schedulability, and so on,

55 needs the modeling of architecture, functional behaviors and runtime. These

characteristics already make it apparent that complex embedded systems d-iffer

from desktop and business applications. Compared with the modeling languages

used in the existing works of MDRE such as UML, AADL (Archi-tecture Analysis

and Design Language) [10] is a powerful modeling language

60 for complex embedded system, which provides a unified formalism for the mod-

eling of architecture, functional behaviors, and runtime. This paper proposes

C2AADL_Reverse, a MDRE approach for safety-critical software development

and verification. C2AADL_Reverse takes multi-task C source code as input, and

generates AADL model of the legacy software systems. Moreover, when MDRE

65 exists in the domain of safety-critical systems, validation of the MDRE process

and verification of the resulted models are highly desirable because such software

systems have to undergo development regulations and certification restrictions.

Therefore, the reverse-engineered AADL components become the basis for

applying MDD development in the same application domain, and should be

70 analyzed and verified.

1.1. Research Problems

Currently, there are several researches on AADL automatic code generation

(i.e. forward engineering). For instance, OCARINA [11] and RAMSES [12]

support automatic code generation from AADL to C, Ada and Java. Regarding

the reverse generation of AADL models, Wang et al. [13] propose an approach75

for extracting AADL models from existing embedded software in order to re-

duce maintenance costs. In an effort to bridge the semantic and syntactic gaps

between the two languages, they have defined a set of mapping rules from C

to AADL models. For Integrated Modular Avionics (IMA) systems, Lesovoy

et al. [14] present an approach to extract the AADL models from source code80

of ARINC 653-compatible application software. They apply the ideas of coun-

terexample and path feasibility check to the task of extracting the architectural

4

information from source code. As mentioned before, safety-critical software of-ten

run on various embedded platforms, reverse engineering needs to deal with

85 the information such as static structure, dynamic run-time, and functional be-

havior. However, the existing approaches mainly deal with structural aspects

instead of behavioral and run-time aspects of source artifacts. Safety-critical

software systems are large and intricate, often constituting hundreds of com-

ponents. Thus, the challenge is to be able to derive the information about

90 the functional behaviors and the runtime dynamics of a system. In particu-

lar, as multi-core processors are widely used in safety-critical software [15], the

reverse engineering of multi-task synchronization, mutex, communication, and

task scheduling has become an important problem.

Moreover, how to evaluate or measure a MDRE effort? On the one hand,

we can use the generated model of MDRE to produce another version of the95

original software and make the comparison between the two versions to validate

the MDRE process. On the other hand, automatic formal verification tech-

niques such as model-checking can be used to analyze the behaviours of the

generated model. Since the increasingly size of the source code, formal verifica-

100 tion of reverse-engineered AADL models often faces the so-called state-explosion

problem. An approach to deal with the state-explosion problem is the use of

compositional verification [16, 17, 18] which leverages the structure of the sys-

tem. The basic idea is to apply divide-and-conquer approaches to infer global

properties of complex systems from properties of their components.

To overcome the above-mentioned research problems, we have implement-105

ed a complete framework for the proposed approach, that is C2AADL_Reverse,

as shown in Fig.1. It includes five phases, (1) analysis of the original source

code, (2) extraction of an intermediate model, (3) generation of an AADL mod-

el, (4) validation of the C2AADL process, and (5) formal verification of the

generated AADL model. Compared with the existing AADL RE method, this110

paper considers more reverse constructions including AADL component struc-

ture, behavior, and multi-threaded run-time information. For the validation of

the reverse process, we generate a second version of the original software and

5

compare the two versions of code. Moreover, we propose the verification of the

generated AADL model by using UPPAAL to establish component-level prop-115

erties and the Assume Guarantee REasoning Environment (AGREE) [19, 20]

to perform the compositional verification of the architecture.

.c

1.Code analysis

2.Intermediate
model extraction

3.AADL model
generation

AADL model

.h

AST

CAInterMMulti-task code

5. Model
verification

AGREE

Transformation rules

UPPAAL

4. Model validation

.c .h

Generated code Compare

Figure 1: The framework of C2AADL Reverse

1.2. Main Contributions

The main contributions of the paper can be summarized as follows:

• A new MDRE approach named C2AADL Reverse: The transformation120

from multi-task C source code to AADL is divided into three parts:

– Structural aspect: the transformation from global variables, local

variables, data types, function definitions and multi-task structures

to AADL components;

– Behavioral aspect: the transformation from function and task exe-125

cution behavior to AADL behavior annex [21], which involve various

types of branch statements, assignment statements, and function call

statements;

– Run-time aspect: the transformation from multi-task communica-

tion, multi-task synchronization and mutex, and task scheduling to130

AADL execution-model properties.

6

• Validation and verification approach of C2AADL Reverse: Two types

of activities are proposed to ensure the correctness of C2AADL_Reverse.

First, it is necessary to validate the reverse engineering process. Second,

the generated AADL models should conform to desired critical properties.135

We propose the verification of the generated AADL model by using the

model checker UPPAAL to establish component-level properties and the

AGREE environment to perform the compositional verification of the ar-

chitecture. This combination of verification tools allows us to iteratively

explore design and verification of detailed behavioral models, and to scale140

formal analysis to large models.

• The prototype tool : The C2AADL_Reverse prototype tool adopts a mod-

ular architecture, which is implemented based on the AADL open source

environment OSATE [22], in which an intermediate model is proposed to

facilitate the transformation from C source code to AADL.145

• Case study : A real-world aerospace industrial case, the rocket launch

control subsystem, is used to show the feasibility of the method presented

in the paper.

1.3. Outline

The rest of this paper is organized as follows. Section 2 introduces the150

AADL language, the principle of compositional verification, and the AADL

compositional verification tool AGREE. Section 3 presents the details of the

transformation rules of the C2AADL_Reverse approach. Section 4 introduces

the formal verification method of the generated AADL models. In section 5, we

give the prototype tool. Section 6 illustrates a real-world aerospace industrial155

case study to show the eectiveness of the C2AADL_Reverse approach. Section 7

discusses related work and Section 8 provides concluding remarks and plans for

future work.

7

2. Preliminaries

In this section, we rst provide an overview of the AADL language, and then160

introduce the principle of compositional verification and the AADL composi-

tional verification tool AGREE.

2.1. AADL

The SAE Architecture Analysis and Design Language (AADL) is a textual

and graphical language used to design and analyze the software and hardware165

architecture of embedded real-time systems. AADL is used to describe the

structure of such systems as an assembly of software components mapped onto

an execution platform, as shown in Fig.2. Software components and their con-

nections are used for software architecture modeling, including Data, Thread,

Thread Group, Process, and Subprogram components. Hardware components170

(such as Processor, Virtual Processor, Memory, Device, Bus, and Virtual Bus)

and their connections are used to describe the hardware architecture of the sys-

tem. In addition, AADL describes the run-time state of the system through

properties such as Dispatch, Communication, Scheduling, Mode Change, etc.,

that is, the Execution model. Finally, software components, hardware compo-175

nents, and execution models are combined with System components to establish

a hierarchical system architecture model. Furthermore, it contains an extension

mechanism (called an annex, e.g. the Behavior annex [21][23]) that can be used

to extend the language to support additional features. The Behavior annex is

defined for the refinement of thread/subprogram behaviors including functional180

behaviors of thread/subprogram and dispatch behaviors of thread ports. The

behaviors of thread/subprogram can also be defined by the traditional program-

ming language such as C, Ada, etc.

8

Virtual
Processor 1

Virtual
Processor 2

Virtual
Processor n

Virtual
Processor 1

Virtual
Processor 2

Virtual
Processor n

AADL Bus

Memory Device 1 Device n

Scheduling, Communication, Dispatch, Mode Change ,etc.

System

Data

Process Process

Thread
group Thread

Subprogram

Thread

Subprogram
group

Thread

Initial Final/ReturnCondition
Action

Behavior annex

Hardware components

Execution model

Software component

Software component
functional behavior

Multi-core processor

C Ada

Multi-core processor

Figure 2: AADL basic modeling concepts

2.2. Compositional Verification and AGREE

Complex embedded systems are always hierarchically organized by using185

component-based architecture. Automatic formal verification techniques such

as model-checking can help to analyze the behaviours of such systems. For

instance, thanks to a model-checking tool, one can create a model and analyze

all of the behaviors of the components in the architecture model. Actually,

most of the time, the architecture model is flattened. Nevertheless, doing so,190

often faces the so-called state-explosion problem. An approach to deal with the

state-explosion problem is the use of compositional verification which leverages

the structure of the system. In these techniques, the verification of a composite

system is reduced to the verification of its parts.

195 A well-known compositional approach is based on assume/guarantee con-

tracts [16, 17, 18, 24] where each component is annotated with a contract con-

sisting of an assumption specifying how the component expects its environment

to behave, and a guarantee specifying the behaviour guaranteed by the com-

9

ponent if the assumptions hold. The component implementations can be ab-

stracted with contracts that specify the behavioral aspects that are relevant for200

the system-level properties. Fig.3 shows a toy example of compositional veri-

fication, in which component A is decomposed into sub-components B and C,

and B is decomposed into D and E. Each component is annotated with a con-

tract 〈Assume,Guarantee〉. Contracts are refined following the decomposition

of components. In general, to verify a system, it is necessary to prove that the205

implementation of the leaf components satisfy their component-level contracts

(either by model checking or through proof methods) and then reason about the

system-level contracts starting from the leaf components through all the layers

of the architecture.

A

B C

D E

Contract A

………

Refinement

Refinement

impl

210

Figure 3: An example of compositional verification

AADL is a good fit for our domain of interest, and provides sufficiently for-

mal notations for modeling and a component-based architecture basis for com-

positional verification. AGREE [19, 20] is a compositional verification tool for

AADL models, which has been integrated into the AADL open-source modeling

environment OSATE [22]. AGREE makes use of the AADL annex mechanism,

10

named AGREE annex 1, to annotate AADL models with contracts. A con-215

tract contains a set of assumptions about the component’s inputs and a set of

guarantees about the component’s outputs. The assumptions and guarantees

may also contain predicates that reason about how the state of a componen-

t evolves over time. When AGREE is proving a system correct, it takes the

specied behavior of the system along with its assumptions and the guarantees220

of any sub-components to verify the guarantees of the system being proven. In

addition, AGREE can perform a standard iterative unrolling of the transition

relation to find counter-examples, and if one is found, this counter example will

be provided to the user. Please note that, AGREE currently mainly handles

synchronous architectural models in which execution proceeds in a deterministic225

discrete sequence of steps [25]. Support for modeling components that execute

asynchronously (or quasi-synchronously) will be added to AGREE.

3. C2AADL Reverse: The MDRE Approach for Generating AADL

from C

C2AADL_Reverse takes multi-task C code as input, and generates an AADL230

model. It mainly contains two steps: code analysis and code-to-model transfor-

mation.

3.1. Code analysis

AADL is used to describe the model at the architecture level which is higher

than C code. In order to fill in the syntactic and semantics gaps between AADL235

and C, we first build a code structure model from the source code, based on

the parsing of the program. The simplified meta-model of the multi-task C

code structure is given in Fig.4. The top layer is Project. Each project can have

several tasks and their communications, i.e., the task layer. The communications

240 among tasks can be achieved by global variables, and synchronization modules

(i.e., APIs such as semaphore, mailbox, queue, and so on) provided by OS. In

1Available at: http://github.com/smaccm/smaccm

11

addition, functions which represent sequentially executed source text, can be

called by several tasks. Tasks and functions may contain local variables and

statements. The Statement is an abstract class and is inherited by Switchstmt,

245 Ifstmt, ForStmt, WhileStmt, and so on. Here, the Statement is duplicated for

readability.

Please note that a task is a schedulable unit that can execute concurrent-

ly with other tasks and a (shared) function represents sequentially executed

instructions that are called by tasks.

Project

Task Local_Var Function Global_Var

Statement

SwitchStmt IfStmt ForStmt WhileStmt APICall AssignStmt

Statement
Case

0…* 0…* 0…*

0…* 0…*

0…*

0…* Else
init

body
body

then

when
*{ordered}

Figure 4: Simplified meta-model of multi-task C code structure

250 Fig.5 shows the code structure model associated with a part of the source

code of the rocket launch control system case study (see Section 6.1). The func-

tions LCU CT ContOrd and LCU CT MainCont are treated as tasks because

the Task create API adds them to the task module, and the corresponding at-

tributes (such as priority, etc.) are assigned to the tasks through Task Params.

The functions FRAME LCU DT SingleOrder and LCU CT ContOrd are treat-255

ed as shared functions. Each of them represents a sequential execution and can

be called by multiple tasks. For instance, the task FRAME LCU DT NetDa-

ta calls the function FRAME LCU DT SingleOrder to send data to the task

LCU CT MainCont through mailbox.

12

void FRAME_LCU_DT_SingleOrder(int info){
UNION_Cont_Order msg;
msg.Info=1;
msg.STRUCT_Bits.MisNnum=1;
msg.STRUCT_Bits.ContType=0;
msg.STRUCT_Bits.ContOrder=1;
msg.STRUCT_Bits.ResChk=1;
Mailbox_post(MainCont,&msg,BIOS_WAIT_FOREVER);

}

void LCU_CT_MainCont(){
UNION_Cont_Order msg;
Semaphore_pend(Task_start,BIOS_WAIT_FOREVER);
while(1){

Mailbox_pend(MainCont,&msg,BIOS_WAIT_FOREVER);
if(msg.Info==1){

LCU_CT_ContOrd(msg);
}

}
}

void LCU_CT_ContOrd(UNION_Cont_Order msg){
 if(&msg!=NULL){
 if(msg.STRUCT_Bits.ContType==0){
 if(msg.STRUCT_Bits.ContOrder==1){
 FRAME_PC_MisReady1(msg.STRUCT_Bits.MisNnum);
 LCU_WD_PlatInfo(msg.STRUCT_Bits.MisNnum);
 if(msg.STRUCT_Bits.ResChk==1){
 LCU_WD_PowerOn1Chk(msg.STRUCT_Bits.MisNnum);
 }
 }
 }
 }
}

int Car_State;
int main()
{
 Task_Params task_NetDataAna;
 Task_Params_init(&task_NetDataAna);
 task_NetDataAna.priority = 5;

 Task_Params task_LCU_CT_MainCont;
 Task_Params_init(&task_LCU_CT_MainCont);
 task_LCU_CT_MainCont.priority = 7;

 Task_create(LCU_CT_MainCont, &task_LCU_CT_MainCont, NULL);
 Task_create(FRAME_LCU_DT_NetDataAna, &task_NetDataAna, NULL);
 MainCont = Mailbox_create(sizeof(UNION_Cont_Order),1,NULL,NULL);
 Car_State=0;
 BIOS_start(); /* does not return */
 return(0);
}

void FRAME_LCU_DT_NetDataAna(){
Semaphore_pend(Task_start,BIOS_WAIT_FOREVER);
int recvBuf=0;
while(1){

Mailbox_pend(NetRecv,&recvBuf,BIOS_WAIT_FOREVER);
if(recvBuf==0){

FRAME_LCU_DT_SingleOrder(recvBuf);
}

}
}

Project

Process:main

Task:NetDataAna Task:MainCont

Function:SingleOrder

Function:ContOrd

Global_var:Car_State

API:Mailbox_post API:Mailbox_pend API:Semaphore_pend

Local_Var:recvBuf whilestatement

ifstatement ifstatementwhilestatement

Mailbox

FuncCall

APIcall

APIcall

APIcall

FuncCall

Figure 5: An example of the construction of code structure model

3.2. Code-to-Model transformation260

The transformation from C to AADL consists of three parts: structure,

behavior, and run-time information.

3.2.1. Structure transformation

As shown in Table 1, the structure transformation rules include the trans-

265 formations from basic data types and composite data types to AADL data com-

ponents, from function definitions to AADL subprogram components, and from

task structures to AADL thread components. Since variables in C language

and data components in AADL describe similar data types, we map variables

13

to data components. In order to make the structure of AADL clearer, we encap-

sulate the data components into two types of packages: one package represents270

the basic data type named Base Types, and the other package represents the

extended data type (composite data type) named User Define. For basic data

types, they can be mapped into AADL data types straightforward, while the

pointer is represented as a data access feature of component. AADL can also

express signed and unsigned integers. For composite data types with internal275

implementations, the elements of the composite data are mapped to subcom-

ponents declared in the implementation of data component. In addition, the

function definitions and task structures are mapped to AADL subprogram and

thread components respectively.

Table 1: The transformation rules of structure information

C language AADL

int a; int *a

char a; char *a

bool a; bool *a

float a; float *a;

struct name a;

struct name *a;

Base Types::Integer;

requires data access Base Types::Integer

Base Types::Character

requires data access Base Types::Character

Base Types::Boolean

requires data access Base Types::Boolean

Base Types::Float

requires data access Base Types::Float

User Defined::struct name.impl;

requires data access User Defined::struct name.impl;

14

signed int a;

unsigned int b;

......

Base Types::Integer 32;

Base Types::Unsigned 32;

data Integer 32 extends Integer

properties

Data Model::Number Representation ⇒ Signed;

end Integer 32;

data Unsigned 32 extends Integer

properties

Data Model::Number Representation ⇒ Unsigned;

end Unsigned 32;

struct dataname{
type spec var name;

};

enum;

union;

......

data dataname

properties

Data Model::Data Representation⇒
(Struct/Union/Enum);

end dataname

data implementation dataname.impl

subcomponents

var name: data package name::type spec

end dataname.impl

function definition subprogram component

task structure thread component

280

3.2.2. Behavior transformation

The behavior of a function or a task is defined by the statements inside the

body of the function or task. The statements always include assignment, if,

switch-case, for, while, and function call.

To be more intuitive, we present the description of the AADL behavior annex285

as a graphic automaton. The upper label of the state transition line indicates

15

the guard condition, and the lower one indicates the execution action. The

transition defines transition from a source state (si) to a destination state

(sj), a transition out of a source state is initiated once the guard condition

is satisfied, and action represents the action performed when a transition is290

taken.

(a) assignment statement

lhs = exp

lhs := exp

(b) if statement

if(exp) stat

exp
stat

(c) switch statement

switch(exp)
 case const_exp1 : stat1;
 case const_exp2 : stat2;

exp:=const_exp1

exp:=const_exp2

stat1

stat2
(d) for statement (e) while statement (f) functioncall statement

for(exp1;exp2;exp3) stat

exp1

exp2
stat;exp3

while(exp) stat

exp
stat

function_call!(para1, ,var)

var = function_call(para1,...)

not(exp2 not(exp

not(exp

iS

iS

iS

iS

iS iS

jS
jS

jS

jS

jS

jS

kS

kS

Figure 6: The transformation rules of behavior

The transformation rules are shown in Fig. 6:

(a) shows that the assignment statement is transformed to the action of the

transition in the AADL behavior annex. Note that the assignment operator (=)

of C language is transformed to the assignment operator (:=) of AADL.295

(b) and (c) represent the transformation rules of branch statement. The

branching conditions (exp) of if statement and switch statement are transformed

to the guard of the transition. The execution statement (for instance stat, stat1,

stat2) is mapped to the action of the transition.

(d) and (e) represent the transformation rules of loop statements. A for300

statement always contains four parts: initialization expression (exp1), loop con-

dition (exp2), iteration expression (exp3), and loop content (stat).The initial-

ization expression is mapped into an action of state transition before the loop;

16

the loop condition is mapped into the guard of the loop state transition; the

loop content (stat) and the iterative expression (exp2) are transformed into the305

action of the loop state transition. The while statement is expressed by an

automaton with a loop state, on which its guard is exp and the action is stat.

(f) represents the transformation rule of function call statement. A function

call statement always includes three parts: the called function name (function -

call), the input parameter (for instance para1) and the variable that receives310

the return value (var). The called function name is transformed to AADL

subprogram name. Note that, in AADL behavior annex, the notation ! is used

to indicate a subprogram call.

The transformations will be more complex in presence of inner statements.

We recursively apply transformations for each kind of statements until complex315

statements have been eliminated.

3.2.3. Run-time information transformation

It needs to consider the use of the platform’s API in the transformation of

the run-time information. Without loss of generality, in this paper we consider

TI SYS/BIOS Real-time Operating System (SYS/BIOS) [26] which is broadly320

used in the aerospace domain. The transformation rules mainly include task

communication, task synchronization, and task scheduling. As shown in Fig.7,

to facilitate the presentation of the transformation rules, we use visual graphics

to represent AADL models.

17

process thread data
event port data port require data access

task1(...){
 Task_disable();
 Use data;
 Task_enable();
}

task2(...){
 Task_disable();
 Use data;
 Task_enable();
}

data

task1(...){
 Semaphore_post(signal);
}

task2(...){
 Semaphore_pend(signal);
}

thread1 thread2

task1(...){
 Mailbox_post(message);
}

task2(...){
 Mailbos_pend(message);
}

thread1 thread2

task1(...){
 Semaphore_pend(signal);
}

task2(...){
 Mailbos_pend(message);
}

On dispach signal

On dispach message

message?(var)

thread1

thread1

(a)

(b)

(c)

(d)

synchronization

data implementation dataName.impl
propert ies
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end target_position.impl;

com
m

unication

scheduling
BIOS_start();

processor

processor

processor implementation processorName
propert ies
Scheduling_Protocol =>RATE_MONOTONIC_PROTOCOL
Preemptive_Scheduler => true;
end leon2;

(e)

com
m

unication

task1(...){
 Queue_enqueue(myQ,..);
}

task2(...){
 rp=Queue_dequeue(myQ);
}

thread1 thread2

event data port

(f)

iS jS

iS jS

Figure 7: The transformation rules of run-time information

325 First, four communication mechanisms are considered: shared data, semaphore,

mailbox, and queue.

330

335

340

(a) represents the transformation rules for a shared data. The shared da-

ta is always a global variable, which is accessed by several tasks. The

corresponding generated AADL model contains threads and a data com-

ponent. The threads access the data component through a Data Access

feature. In addition, a Concurrency Control Protocol property associated

with the shared data component determines the particular concurrency

control mechanism to be used, such as Priority Inheritance, Priority Ceil-

ing, and so on.

(b) indicates the transformation rule for a semaphore. Semaphores can be

declared as either counting or binary semaphores. They can be used for

task synchronization and mutual exclusion. Thus, two tasks communicat-

ing by sending and receiving semaphores are transformed into two AADL

threads connected through Event ports.

(c) gives the transformation rule for a mailbox. Mailboxes can be used to pass

buffers from one task to another. The mailbox communication mechanism

is represented in AADL by connections through Data ports.

18

(d) indicates the transformation rule for a queue. Queue provides support for

creating lists of objects. The queue mechanism is mapped to AADL thread

connections through Event Data ports. Please note that, in SYS/BIOS,345

a queue can be implemented as a doubly-linked list. However, in order

to be compatible with the AADL semantics, we mainly consider the basic

FIFO queue.

Second, in (e), we represent the transformation rule for the synchronization

350 mechanism. SYS/BIOS provides a fundamental set of functions for intertask

synchronization (such as semaphore pend(), mailbox pend()). When count of

semaphore is less than 0 or the buffer of mailbox is unavailable, tasks will be blocked

when acquiring a message. As mentioned in Section 2.1, except for expressing the

functional behaviors of a thread/subprogram, the behavior

annex can also describe the dispatch behaviors of thread, which is a good way355

to refine the synchronization between different threads. Thus, the inter-task

synchronization is represented by the On Dispatch condition on the transition

of the AADL behavior annex (the dotted oval state in (e)).

At last, in (f), we represent the transformation rule for the scheduling mech-

360 anism. SYS/BIOS dynamically schedules and preempts tasks based on the

tasks priority level and the tasks current execution state. In AADL, proces-

sor components with properties such as Rate Monotonic Protocol and Preemp-

tive Scheduler⇒true describe the same semantics. So we map this scheduling

mechanism to processor components with scheduling properties.

4. Validation and Verification Approach of C2AADL Reverse365

Two types of activities are required to ensure the correctness of the reverse

engineering approach proposed in this paper. First, it is necessary to validate

the reverse engineering process. Second, the generated AADL models should

conform to desired critical properties.

The validation and verification approach of C2AADL_Reverse is shown in370

Fig.8. At first, the validation of the reverse engineering is performed by code

19

comparison. We use the AADL code generator OCARINA [11] to generate an-

other version of code from the generated AADL model. If the generated version of

code is close enough to the original one, the reverse-engineering effort was

adequate. Second, we consider a compositional verification method for the gen-375

erated AADL model, i.e., we assemble verification of system-level properties by

using UPPAAL to establish component-level properties and AGREE to perform

the compositional verification of the architecture.

Section 6.2 will give the validation of C2AADL Reverse through the use of

the rocket launch control system case study. Here, we mainly give the compo-380

sitional verification method for the generated AADL model.

source codes

B:process component

A:system component

Uppaal model
checking for leaf
component

AGREE compositional
verfivation for
architectureC:process component

thread
component

subprogram
component

thread
component

subprogram
component

...

reverse

inputOCARINA

generated codes
compare

Figure 8: Validation and Verification Approach of C2AADL Reverse

4.1. Model checking of leaf components

As the first step of compositional verification of a component-based sys-

tem, it is necessary to prove that the behaviors of the leaf components satisfy

their component-level contracts. Thus, in this paper, UPPAAL is used to verify385

AADL Behavior annex models. UPPAAL is a tool supporting the simulation

and the verification of models defined by a set of timed automata communicat-

ing through synchronous channels and shared variables. The state transition of

the Behavior annex is similar to the automata in the UPPAAL model. There-

fore, the transformation from AADL behavior annex into UPPAAL model is390

straightforward.

First, the formal definitions of behavior annex and time automaton are stated

as follows:

Definition 1 Behavior annex BA = 〈S, S0, V,G,A, T 〉, where:

20

• S is a set of states, in which a state may be qualified as initial state,395

final state, or complete state, or combinations thereof. A state without

qualification will be referred to as execution state.

• S0 is the initial state, S0 ∈ S .

• V is a set of local variables.

• G (Guards) is a set of state transition conditions.400

• A (Actions) represents the actions that need to be performed during state

transitions.

• T is a set of state transitions, T ⊆ S × (G×A)× S.

Definition 2 A timed automaton [27] TA = 〈L, l0, V, C,A, I, E〉, where:

• L is a set of locations;405

• l0 is the initial state, l0 ∈ L;

• V is a set of variables;

• C is a set of clocks;

• A is a set of actions;

• I = L → B(C) assigns invariants to locations, B(C) is the set of conjunc-410

tions over simple conditions of the form x �� c or x − y �� c, where

x, y ∈ C, c ∈ N and �� ∈ {>,≤,=,≥, <};

• E ⊆ L × A × B(C) × 2C × L is a set of edges between locations with an

action, a guard and a set of clocks to be reset.

On the one hand, BA is transformed into TA. Globally, the state set of BA415

is transformed to the states of TA (BA.S → TA.L); the initial state of BA

corresponds to the initial state of TA (BA.S0 → TA.l0); the local variable of

BA is transformed to the variable in TA (BA.V → TA.V); the state transition

21

of BA is transformed to the state transition of TA (BA.T → TA.E); the op-

eration on time of BA such as computation() is converted into the invariant(I)420

of the state in TA, for instance computation(5ms) is represented by cl <= 5;

there are two clocks in the C of TA: cl and globalcl, cl records the time of the

operation performed by each state transition and globalcl records the time when

the automaton is executed.

On the other hand, the Assume of the contract (〈Assume,Guarantee〉) of425

the component is transformed into the initialization operation when the time

automaton starts to execute, and the Guarantee of the contract is transformed

into the property written in TCTL language that needs to be verified by UP-

PAAL. As mentioned in Section 2.2, AGREE makes use of the AGREE annex

to annotate AADL models with contracts. The underlying formalism of the A-430

GREE annex language is a subset of Past-Time Linear Temporal Logic (PLTL).

It would be highly desirable if the formalism of the contracts expressed with the

AGREE annex is consistent with the formalism of the properties used in UP-

PAAL. Now, we manually generate the required component-level properties for

verification in UPPAAL from the contracts. In the future, the translation be-435

tween the AGREE contracts and the UPPAAL properties will be automated.

Fig.9 shows an example of the transformation from BA to UPPAAL. It verifies

that the component meets the contract without deadlock and timeout.

22

thread implementation E00.impl
annex behavior_specification {**

variables
A0: Base_Types::Unsigned_16;
A1: Base_Types::Unsigned_16;
gA: Base_Types::Unsigned_16;
ilen : Base_Types::Integer;
flag: Base_Types::Boolean;
M0: info.impl;
M1: info.impl;

states
s0: initial complete state;
……;
s6: state;

transitions
T_0: s0-[on dispatch]->s1{A0:=gA;

computation(5ms)
};
T_1: s1-[on dispatch in_port]->s2{in_port?(ilen);

computation(20ms)
};
T_2: s2-[ilen>0]->s3{A1=data_info.A;

computation(5ms)
};
T_3: s2-[not(ilen>0)]->s3;
T_4: s3-[A1!=A0]->s4{flag:=true;M0:=M1;

computation(10ms)
};
T_5: s3-[not(A1!=A0)]->s4;
T_6: s4-[flag]->s5{out_port!(M0);

computation(20ms)
};
T_7: s4-[not(flag)]->s5;
T_8: s5-[ilen>0]->s6{M1=data_info;

computation(5ms)
};
T_9: s5-[not(ilen>0)]->s6;

**};

annex agree {**
assume "assume" : in_port>0;
guarantee "guarantee":out_port=data_info;

**};

Figure 9: The transformation of BA to UPPAAL

4.2. Compositional verification of AADL architecture model

To formally argue that the system satisfies its requirements, assume-guarantee440

contracts provide an appropriate mechanism for capturing the information from

requirements or source code to reason about system-level properties. A contract

specifies precisely the information that is needed to reason about the compo-

nent’s interaction with other parts of the system. Furthermore, the contract

mechanism supports a hierarchical decomposition of the verification process445

that follows the natural hierarchy in the system model.

In the AGREE framework, it uses the AADL AGREE annex to specify the

contracts of the component of each layer and the underlying formalism of the

AGREE annex is the past-time operator subset of PLTL. We thus establish

450 that the properties of the top-level system are proved given that the properties

of the lowest layer i.e. leaf-level components are true (by model checking with

UPPAAL shown in Section 4.1). As shown in Fig.10, we take the LCU CT -

ContOrd function of the rocket launch control system case study (Section 6.2) as

example. It is reversed into a component containing two sub-components, and

455 the sub-component contract is used to prove whether the upper-level component

23

meets the requirements.

C Code

AADL Model

Specification

Reverse
Engineering

Refactor

Req.1:After the LCU_CT_ContOrd function receives the power-on 1 command, the
output port outputs the processed data

Verification

LCU_WD_PowerOn1Chk

void LCU_CT_ContOrd(UNION_Cont_Order msg){
 if(&msg!=NULL){
 if(msg.STRUCT_Bits.ContType==0)
 if(msg.STRUCT_Bits.ContOrder==1)
 ...
 LCU_WD_PlatInfo(msg.STRUCT_Bits.MisNnum);
 if(msg.STRUCT_Bits.ResChk==1)
 LCU_WD_PowerOn1Chk(msg.STRUCT_Bits.MisNnum);
 ...

component LCU_CT_ContOrd

 LCU_WD_PlatInfo

guarantee:DT289ASend.STR
UCT_Bitd.MisNum=1=1

guarantee:ProAnaContOrder=1

assumption:msg.STRUCT_Bits.ContType=0
 && msg.STRUCT_Bits.ContOrder=1
 &&msg.STRUCT_Bits.ResChk=1
guarantee:DT289ASend.STRUCT_Bitd.MisNum=1
&&guarantee:ProAnaContOrder=1

Figure 10: The framework of compositional verification for architecture

5. Prototype Tool Support

As mentioned above, the C2AADL_Reverse prototype tool adopts a mod-

ular architecture, which is implemented with the Eclipse plug-in technology.

Moreover, an intermediate model is proposed to facilitate C code information460

extraction and AADL model generation.

5.1. Intermediate model

As shown in Section 3.1, the meta-model of the multi-task C code structure

represents the abstract concepts of source code, which is helpful for the descrip-

tion of the transformation rules. Here, we propose an intermediate model named465

CAInterM to facilitate the implementation of the C2AADL_Reverse tool. The

intermediate model contains the elements of the meta-model of the multi-task C

code structure, the file structures, and the connection information among tasks

or functions. The intermediate model CAInterM is shown in Fig.11.

24

CProjectModelCProjectModel

SingleCModelSingleCModel

FunctionModelFunctionModel

DataModelDataModel

StatementModelStatementModel VarModelVarModel
ConnectionModelConnectionModel

0..*

0..*

0..*

0..*0..*0..*

1..*

0..*

-name:String
-cModules:List<SingCModel>

-name:String
-globalVars:Set<VarModel>
-functions:List<FunctionModel>
-datas:List<DateModel>
-connections:List<ConnectionModel>
......

-name:String

-paras:Set<VarModel>
-localVars:Set<VarModel>

-returnVale:VarModel
-stateList:List<StatementModel>

......
-name:String
-type:String

-state:String
-condition:String

-name:String
-type:String -varname:String

-source:String
-destination:String

-vars:List<VarModel>
......

-headfile:String
-value:String

-start:String
-end:String

-isTask:Bool

Figure 11: Intermediate model: CAInterM

The CProjectModel records the content of the project in the meta-model of470

the multi-task C code structure, and is used to generate the system components

of the AADL model. SingleCModel represents a C file structure, which is used to

generate an AADL file. FunctionModel corresponds to Function or Task in the

meta-model. The isTask attribute in FunctionModel is used to mark whether

it is a Task. If isTask is true, a thread component is generated. Otherwise475

a subprogram component is generated. The Datamodel records the contents

of the Global Var in the meta-model, corresponding to the data components

of the generated AADL model. StatementModel stores the content of IfStmt,

WhileStmt, AssignStmt, ForStmt and SwitchStmt in the meta-model, which

is used to generate the states and transitions of the AADL Behavior annex.480

VarModel represents a Local Var in the meta-model, which is used to generate

variables in BA. ConnectionModel records the source tasks and destination tasks

or functions of communication-related APICall in the meta-model, which is used

to generate connections between components. Moreover, CAInterM represents

the multi-task C code as a hierarchical structure to facilitate the generation of485

AADL models.

25

5.2. Implementation of C2AADL Reverse tool

The C2AADL_Reverse tool is built on the open source AADL modeling en-

vironment OSATE. The framework of the tool is shown in Fig.12. The tool

adopts a modular architecture, including C2AST, AST2CAInterM and CAIn-490

terM2AADL. The C2AST and AST2CAInterM modules are mainly responsible

for extracting the structure, behavior, and runtime information from the source

code to the intermediate model, and the CAInterM2AADL module transforms

the information stored in the intermediate model to the AADL model.

AADL model extraction tool based on
Eclipse CDT

CDT DOM
Extraction

p

CAInterM

AADL Model
Generation

C Source Code

AADL model

AADL Components AADL Behavior
Annex(BA) AADL Property Set

Open Source AADL Toolkit Environment

Eclipse Platform

C/C++ Development Toolkit

Input Functional module Tool support Model element Platform support

Figure 12: The framework of C2AADL reverse tool

The tool is implemented as a plug-in of OSATE, which is shown in Fig.13.495

It mainly provides three functionalities, such as project management, reverse

engineering, code/model viewing and modification.

26

Project management

Code/model viewing
and modification

Reverse engineering

Figure 13: C2AADL Reverse tool

6. Evaluation

6.1. Industrial Case Studies

The Rocket Launch Control System (RLCS) is a critical subsystem of the500

rocket launcher system (RLS). The function of the RLCS is to control the rocket

to perform various operations and automatically execute rocket launch opera-

tion from launch command receipt to the the time when the rocket leaves the

launcher. RLCS running on the launch control unit (LCU) computer and the

LCU computer interacts with other modules of the RLS through a bus and/or a505

network. The RLCS can ensure the normal execution of the launch of the rock-

et through a series of hardwaresoftware interactions. A simplified architecture

of RLCS is shown in Fig.14, which mainly includes a management chassis, a

launcher module, a power supply chassis, a power-on control module, a launch

control unit detection board and a rocket control module. The power-on control510

module includes three sub-modules: power-on 1, power-on 2 and power-on 3.

In addition, the launcher module controls several devices such as exhaust cover

and hatch, etc.

27

Management chassis

Launch control unit
detection board

Launcher module

Rocket control module

Power supply chassis

Power-on control module

Launch
control unit
computer

Command for opening
and closing the cover

Command for ignition or
power supply

Power-on command

Bus

communication

Bus

communication

Figure 14: The rocket launch control system

The structure of RLCS can be divided into four layers, namely driver layer,

driver management layer, process layer, and main control layer, among which:515

• Driver layer: Describes the lowest-level module, which is responsible for

the interaction of software and hardware, such as network communication,

bus communication, and sending and receiving operations. The driver

layer processes the received data and sends them to the tasks of the driver

management layer.520

• Driver management layer: The driver management layer analyzes and

assembles the data corresponding to the different communication methods

of the driver layer, and sends the assembled data to the process layer, such

as the receiving and sending of power-on command;

• Process layer: The process layer parses the assembled data sent by the525

driver management layer into various commands. The functions in the

main control layer are realized by the command processing in the process

layer, such as power control, control of hatch covers, cartridges, thermal

batteries, etc;

• Main control layer: The main control layer starts the task of the driver530

layer according to the command to perform corresponding function exe-

cution, such as sequence maintenance processing, electric blast tube in-

28

spection, data receiving processing, sending control parameter processing,

command execution processing, and so on.

6.2. Results and Analysis535

6.2.1. C2AADL transformation

We use the C2AADL_reverse tool to reverse a part of source code of the

RLCS to AADL model. This section takes power-on control as an example to

analyze the generated AADL model from three perspectives: structure, run-time

540 properties, and behaviors.

Fig.15(a) shows the top-level system structure of the generated AADL mod-

el. The AADL model is consistent with the RLCS system introduced in Section

6.1, several thread components (such as LCU DM NetRecv,FRAME LCU DT -

NetDataAna, etc) implement the power-on function of the system through port

545 communication. Fig.15(b) shows the communication between multiple compo-

nents, thread LCU DM NetRecv receives data from the network and sends it

to the thread FRAME LCU DT NetDataAna via the NetRecv. Fig.15(c) shows

an individual component, including input/output parameters, data access and

behavior annex.

29

(a) The system structure

thread LCU_DM_NetRecv
features

NetRecv : out data port Base_Types::Integer;
properties

Priority=>2;
end LCU_DM_NetRecv;

thread implementation LCU_DM_NetRecv.impl
annex behavior_specification {**

variables
recvBuf: Base_Types::Integer;

states
s0: initial complete state;
s1: state;

transitions
T_0: s0-[on dispatch Task_start]->s1{

recvBuf:=0;
NetRecv!(recvBuf);
recvBuf:=recvBuf + 1};

**};
end LCU_DM_NetRecv.impl;

thread FRAME_LCU_DT_NetDataAna
features

NetRecv : in data port Base_Types::Integer;
MainCont : out data port Globle_Define::UNION_Cont_Order.impl;

properties
Priority=>5;

end FRAME_LCU_DT_NetDataAna;

thread implementation FRAME_LCU_DT_NetDataAna.impl
annex behavior_specification {**

variables
recvBuf: Base_Types::Integer;

states
s0: initial complete state;
s1: state;
s2: complete state;
s3: state;

transitions
T_0: s0-[on dispatch Task_start]->s1{

recvBuf:=0};
T_1: s1-[true]->s2;
T_2: s2-[on dispatch NetRecv]->s3{

NetRecv?(recvBuf)};
**};

Out data port

In data port

Receive data form the port

(b) Multi-component communication

subprogram LCU_CT_ContOrd
features

msg: in parameter Globle_Define::UNION_Cont_Order.impl;
DT289ASend : out event data port Globle_Define::UNION_Data_Bind_Info.impl;
ProAnaContOrder : out event data port Base_Types::Integer[3];
Car_State:requires data access Globle_Define::Car_State.impl;

end LCU_CT_ContOrd;

subprogram implementation LCU_CT_ContOrd.impl
subcomponents

LCU_WD_PlatInfo: subprogram LCU_WD_PlatInfo::LCU_WD_PlatInfo.impl;
LCU_WD_PowerOn1Chk: subprogram LCU_WD_PowerOn1Chk::LCU_WD_PowerOn1Chk.impl;
FRAME_PC_MisReady1: subprogram FRAME_PC_MisReady1::FRAME_PC_MisReady1.impl;

connections
p0: port LCU_WD_PlatInfo.DT289ASend->DT289ASend;
p1: port LCU_WD_PowerOn1Chk.ProAnaContOrder->ProAnaContOrder;
p2: data access Car_State<->FRAME_PC_MisReady1.Car_State;

annex behavior_specification {**
states

s0: initial state;
s1: state;
s2: state;
s3: state;
s4: final state;

transitions
T_0: s0-[msg!="NULL"]->s1;
T_1: s1-[msg.STRUCT_Bits.ContType=0]->s2;
T_2: s2-[msg.STRUCT_Bits.ContOrder=1]->s3{

FRAME_PC_MisReady1!(msg.STRUCT_Bits.MisNnum,Car_State);
LCU_WD_PlatInfo!(msg.STRUCT_Bits.MisNnum)};

T_3: s3-[msg.STRUCT_Bits.ResChk=1]->s4{
LCU_WD_PowerOn1Chk!(msg.STRUCT_Bits.MisNnum)};

T_4: s3-[not(msg.STRUCT_Bits.ResChk=1)]->s4;
T_5: s2-[not(msg.STRUCT_Bits.ContOrder=1)]->s4;
T_6: s1-[not(msg.STRUCT_Bits.ContType=0)]->s4;
T_7: s0-[not(msg!="NULL")]->s4;

**};
end LCU_CT_ContOrd.impl;

parameter

function_name

Global
Variable

Behavior Annex

(c) An individual component

Figure 15: Generated AADL models of RLCS

Through the reverse construction of the rocket launch control system, the550

data statistics of the AADL model of the system are shown in Table 2.

Table 2: The statistics of the AADL model of the launch control

system

AADL mod-

el (line)

Threads Subps Coverage

Exhaust cover control 1800+ 4 14 93%

Rocket hatch control 1600+ 3 12 92%

Control of rocket launch prepa-

ration/cancellation

1600+ 4 11 94%

Rocket power-on control 4000+ 18 32 93%

Control of rocket hatch unlock-

/lock

2000+ 6 13 95%

30

Thermal battery activation con-

trol

1800+ 6 15 93%

Control of safety mechanism un-

lock/lock

1900+ 6 15 95%

Rocket ignition control 1700+ 4 13 93%

Rocket power-off control 1200+ 4 9 94%

Rocket launch control system 17600+ 55 134 94%

The reason why the coverage rate of the generated model does not reach

100% is that some codes cannot be expressed in the behavior annex, such as

bit operation and type mandatory conversion, etc. However, AADL supports to555

describe the behaviors of thread/subprogram with source code directly, through

properties such as Source Language, Source Name, Source Text, etc. Thus, it

is used as a complementary of the results of C2AADL_Reverse.

6.2.2. Validation and verification

1) Validation of C2AADL reverse560

We refined the generated AADL model by adding processors, virtual proces-

sors and scheduling mechanisms, and used the C code generator of OCARINA

[28] to produce an executable version from our model of RLCS. We can compare

the generated codes with the original ones by using code reviewing and execut-

ing. Fig.16(a) shows that the execution sequence of the tasks in the generated565

code is consistent with the original code. Fig.16(b) shows the comparison be-

tween a part of the original codes and the generated codes. OCARINA mainly

considers the POK operational system [29]. The pok buffer send and pok -

buffer receive used for inter-task communication in the POK OS are consistent

with the Mailbox post and Mailbox pend in SYS/BIOS. Thus, the C2AADL_-570

Reverse method can generate adequate models.

31

LCU_DM_289A_Recv

FRAME_LCU_DT_289ASend

LCU_DM_289A_Send

FRAME_LCU_DT_AnaOrder

LCU_CT_MainCont

FRAME_LCU_DT_NetDataAna

LCU_DM_NetRecv

start

Time
N

et
R

ec
v

M
ai

nC
on

t

D
T2

89
A

Se
nd

Pr
oA

na
C

on
tO

rd
er

D
28

9A
R

ec
v

D
28

9A
Se

nd

(a) The execution scenario of generated code

extern uint8_t netrecv_id;
void* lcu_dm_netrecv_job (void)
{
 pok_ret_t ret;
 while (1)
 {
 /* Send the OUT ports*/
 ret = pok_buffer_send (netrecv_id, &(netrecv_dvalue), sizeof (int), 0);
 ASSERT_RET(ret);
 ...
 }
}
/* Periodic task : FRAME_LCU_DT_NetDataAna*/
base_types__integer netrecv_dvalue;
extern uint8_t netrecv_id;
globle_define__union_cont_order maincont_dvalue;
extern uint8_t maincont_id;
void* frame_lcu_dt_netdataana_job (void)
{
 pok_ret_t ret;
 pok_port_size_t netrecv_length;
 while (1)
 {
 /* Get the IN ports values*/
 ret = pok_buffer_receive (netrecv_id, 0, &(netrecv_dvalue),&(netrecv_length));
 ASSERT_RET_WITH_EXCEPTION(ret, POK_ERRNO_EMPTY);
 /* Copy directly the data from IN ports to OUT ports*/
 /* Send the OUT ports*/
 ret = pok_buffer_send (maincont_id, &(maincont_dvalue), sizeof (int), 0);
 ASSERT_RET(ret);
 ...
 }
}

void FRAME_LCU_DT_NetDataAna(){
System_printf("enter FRAME_LCU_DT_NetDataAna()\n");
...
while(1){

Mailbox_pend(NetRecv,&recvBuf,BIOS_WAIT_FOREVER);
if(recvBuf==0){

System_printf("recvBuf is %d\n",recvBuf);
FRAME_LCU_DT_SingleOrder(recvBuf);

}
}

}

void LCU_DM_NetRecv(){
System_printf("enter LCU_DM_NetRecv()\n");
...
while(1){

System_printf("LCU_DM_NetRecv send %d message\n",recvBuf);
Mailbox_post(NetRecv,&recvBuf,BIOS_WAIT_FOREVER);
...

}
System_printf("exit LCU_DM_NetRecv()\n");

}

(b) The comparison between OCARINA generated code and the original program

Figure 16: Validation of reverse process

2) Verification of the generated AADL model

• Requirements Formalization

The requirement document of RLCS is got from our industrial partner. It

has more than 300 pages and has ten sections, such as a Launch control system575

32

(LCS), Exhaust cover control (ECC), Rocket hatch control (RHC), and Rocket

power-on control (RPC), etc. These requirements were developed hierarchically

following the system architecture. A simplified requirements hierarchy is shown

in Fig.17.

Launch control system
(LCS)

Power-on control
(SR4)

 Exhaust cover control
(SR1)

Hatch control
(SR2)

SR4C1 SR4C2 SR4C3

SR4C1H1 SR4C1H2 SR4C1H3

WD1 PF1 CPO1 SSPO1

SR1C1 SR1C2

WDSR2 SSR2

SR2C1 SR2C2

……

Figure 17: A simplified LCS requirements hierarchy

580 In order to illustrate the relationship between the requirement decomposi-

tion and the system structure decomposition of the RLCS, this paper takes the

rocket power-on control (SR4) as an example to illustrate the further detailed

decomposition of the requirement. Rocket power-on control consists of three

sub-components: rocket power-on 1 control (SR4C1), rocket power-on 2 control

585 (SR4C2) and rocket power-on 3 control (SR4C3), and each power-on control is

used to control different battery components. For instance, power-on 1 can be

decomposed into rocket self-check result query function (SRC1H1), rocket power-on

1 function (SR4C1H2), and rocket type identification code query func-tion

(SRC1H3). Furthermore, SR4C1H2 can be divided into watchdog function

590 1 (WD1), power-off 1 (PF1), continuous power-on 1 (CPO1), and single-step

power-on 1 (SSPO1). AGREE currently mainly handles synchronous architec-tural

models in which execution proceeds in a deterministic discrete sequence

33

of steps, so we consider the model which execute synchronously. Based on the

requirement decomposition, the requirements of each component are formalized 595

as contracts. Several contracts are shown in the following paragraphs.

Requirement 1: When the task FRAME LCU DT NetDataAna of the

driver management layer receives the data sent by the task LCU DM NetRecv

of the driver layer, it sends the encapsulated data to the main control task

(contType=0 means single-step power-on, MisNnum=1 means power-on 1). It

is formalized in AGREE annex (R1G) shown as follows:600

thread FRAME_LCU_DT_NetDataAna
features

NetRecv : in data port Base_Types::Integer;
MainCont : out data port Globle_Define::UNION_Cont_Order.impl;

properties
Priority=>5;

annex agree {**
property judge_MainCont=
MainCont.Info=1 and MainCont.STRUCT_Bits.MisNnum=1 and MainCont.STRUCT_Bits.ContType=0;

assume "A:FRAME_LCU_DT_NetDataAna receive data from NetRecv" : NetRecv = 0;
guarantee "G:FRAME_LCU_DT_NetDataAna send data to MainCont" : judge_MainCont;

**};
end FRAME_LCU_DT_NetDataAna;

Requirement 2: The task LCU CT MainCont of the main control layer,

after receiving the data of single-step power-on 1, calls related functions to

process the data, sends an order to the task FRAME LCU DT 289ASend of

the driver management layer, and sends a data with the same MisnNum to

the task FRAME LCU DT AnaOrder of the driver management layer. It is605

formalized as the contract R2G:

thread LCU_CT_MainCont
features

MainCont : in data port Globle_Define::UNION_Cont_Order.impl;
DT289ASend : out data port Globle_Define::UNION_Data_Bind_Info.impl;
ProAnaContOrder : out data port Base_Types::Integer;
Car_State:requires data access Globle_Define::Car_State.impl;

properties
Priority=>7;

annex agree {**
property judge_MainCont=

MainCont.Info=1 and MainCont.STRUCT_Bits.MisNnum=1 and MainCont.STRUCT_Bits.ContType=0;

property judge_DT289ASend=
DT289ASend.STRUCT_Bits.MisNnum=1 ;

assume "A:LCU_CT_MainCont receive cont from NetDataAna" : judge_MainCont;
guarantee "G:LCU_CT_MainCont send order to FRAME_LCU_DT_289ASend" : ProAnaContOrder=1;
guarantee "G:LCU_CT_MainCont send data to FRAME_LCU_DT_AnaOrder" : judge_DT289ASend;

**};
end LCU_CT_MainCont;

34

610

Requirement 3: After the task FRAME LCU DT AnaOrder of the driver

management layer receives the data from the main control layer, it processes the

data and sends the processed data to the corresponding task at driver layer for

specific execution operations. It is formalized as the contract R3G shown as

follows:

thread FRAME_LCU_DT_AnaOrder
features

ProAnaContOrder : in data port Base_Types::Integer;
D289ARecv : out data port Base_Types::Integer;

properties
Priority=>4;

annex agree {**
assume "A:FRAME_LCU_DT_AnaOrder receive data from LCU_CT_MainCont":ProAnaContOrder=1;
guarantee "G:FRAME_LCU_DT_AnaOrder send data to LCU_DM_289A_Recv":D289ARecv=1;

**};
end FRAME_LCU_DT_AnaOrder;

• Compositional verification based on AGREE

AGREE is used to perform compositional reasoning on the rocket power-on

control subsystem. The results are shown in Fig.18, in which 70 contracts are 615

verified.

Figure 18: The compositional verification results of the rocket power-on control subsystem

model

Following the same way, we give the results of the compositional verification

35

of the exhaust cover control subsystem. The system-level requirement of the

exhaust cover control subsystem is SR1, which can be decomposed into exhaust

cover switch cover processing (SR1C1) and exhaust cover switch cover control

(SR1C2). SR1C2 can be divided into exhaust cover self-inspection watchdog620

(WDSR2) and exhaust cover self-inspection function (SSR2). The compositional

reasoning result is shown in Fig.19. According to the results of compositional

verification, it can be known that the compositional verification of the exhaust

cover control subsystem involves 13 contracts, among which the system-level

contract SR1G is satisfied.625

Figure 19: The compositional verification results of the exhaust cover control subsystem model

Under the cooperation with the industrial partners, we verify numbers of

desired properties of the rocket launch control system. The verification results

of the rocket launch control system are shown in Table 3. All data gathering

was performed on a MacBookPro running MacOS Catalina 10.15.7 with an Inter

Core i7-8750H CPU running at 2.2GHz and 16 GB of RAM. For each slot in630

the table, we ran the verification three times and recorded the mean time.

Table 3: The statistics of verification results of launch control sys-

tem

Contract Verification

time

Correctness

Exhaust cover control (SR1) 13 5s 13/13

36

Rocket hatch control (SR2) 10 4s 10/10

Control of rocket launch prepa-

ration/cancellation (SR3)

12 4s 12/12

Rocket power-on control (SR4) 70 29s 70/70

Control of rocket hatch unlock-

/lock (SR5)

15 6s 15/15

Thermal battery activation con-

trol (SR6)

14 5s 14/14

Control of safety mechanism un-

lock/lock (SR7)

14 5s 14/14

Rocket ignition control (SR8) 10 4s 10/10

Rocket power-off control (SR9) 7 2s 7/7

Launch control system 165 64s 165/165

• Individual component verification with UPPAAL

This section takes the control function (LCU CT ContOrd) as an example

635 to illustrate the verification of AADL leaf components based on UPPAAL.

As shown in Fig.20, the left side is the AADL model, and the corresponding

UPPAALmodel is given on the right side. We create the initial function (start())

of the time automata according to the Assume in the AADL contract, and write

the verification formula of UPPAAL according to the Guarantee in Fig.10. The

verification results are shown in Table 4.640

37

subprogram LCU_CT_ContOrd
features

msg: in parameter Globle_Define::UNION_Cont_Order.impl;
DT289ASend : out event data port Globle_Define::UNION_Data_Bind_Info.impl;
ProAnaContOrder : out event data port Base_Types::Integer;
Car_State:requires data access Globle_Define::Car_State.impl;

annex agree {**
guarantee "G:LCU_CT_ContOrd:ProAnaContOrder" : ProAnaContOrder=1;
guarantee "G:LCU_CT_ContOrd:DT289ASend" : DT289ASend.STRUCT_Bits.MisNnum=1;

**};
end LCU_CT_ContOrd;

subprogram implementation LCU_CT_ContOrd.impl
subcomponents

LCU_WD_PlatInfo: subprogram LCU_WD_PlatInfo::LCU_WD_PlatInfo.impl;
LCU_WD_PowerOn1Chk: subprogram LCU_WD_PowerOn1Chk::LCU_WD_PowerOn1Chk.impl;
FRAME_PC_MisReady1: subprogram FRAME_PC_MisReady1::FRAME_PC_MisReady1.impl;

connections
p0: port LCU_WD_PlatInfo.DT289ASend->DT289ASend;
p1: port LCU_WD_PowerOn1Chk.ProAnaContOrder->ProAnaContOrder;
p2: data access Car_State<->FRAME_PC_MisReady1.Car_State;

annex behavior_specification {**
states

s0: initial state;
s1: state;
s2: state;
s3: state;
s4: final state;

transitions
T_0: s0-[msg!="NULL"]->s1;
T_1: s1-[msg.STRUCT_Bits.ContType=0]->s2;
T_2: s2-[msg.STRUCT_Bits.ContOrder=1]->s3{

FRAME_PC_MisReady1!(msg.STRUCT_Bits.MisNnum,Car_State);
LCU_WD_PlatInfo!(msg.STRUCT_Bits.MisNnum)};

T_3: s3-[msg.STRUCT_Bits.ResChk=1]->s4{
LCU_WD_PowerOn1Chk!(msg.STRUCT_Bits.MisNnum)};

T_4: s3-[not(msg.STRUCT_Bits.ResChk=1)]->s4;
T_5: s2-[not(msg.STRUCT_Bits.ContOrder=1)]->s4;
T_6: s1-[not(msg.STRUCT_Bits.ContType=0)]->s4;
T_7: s0-[not(msg!="NULL")]->s4;

**};
end LCU_CT_ContOrd.impl;

Figure 20: Verification of leaf component based on UPPAAL

Table 4: The verification results of the LCU CT ContOrd function

TCTL Description T/F

A[]!deadlock No deadlock T

E <> Process.T ime out Reachability, automata

will eventually go to the

Time out state

F

A[] Process.s4 imply

(ProAnaContOrder==1 and

DT289ASend.STRUCT Bit-

s.MisNnum==1)

Functional correctness, af-

ter the LCU CT ContOrd

is executed, two data are

sent through the port

T

6.2.3. Analysis

• Research Questions

The major objective of this subsection is to evaluate the eectiveness of our

approach. This objective is decomposed into the following research questions:645

RQ1: Can we use our approach to obtain AADL models for dier-

ent case studies from the aerospace domain?

38

Rationale: As a model generation approach, C2AADL_Reverse should be able

to generate various kinds of legacy systems that implemented in C language.

To answer the question, we apply our approach to several case studies from650

the aerospace domain. Table 5 provides the name, the short description, and

the number of AADL models from three industry cases. For the description

of Case-A, see Section 6.1. Case-B is is a core system supporting the orbiting

operations of spacecraft, which undertakes the tasks of determining and control-

ling spacecraft attitude and orbit. For Case-C, the radar information processing655

subsystem refers to a system that uses modulated wave forms and directional

antennas to transmit electromagnetic waves to a specic airspace in space, and

extract guidance information from the received echoes. Moreover, since C and

AADL are broadly used, the approach proposed in this paper can be also applied

660 into other safety-critical domains such as automotive system.

Table 5: Application in different case studies

Case Description Number of Require-

ments

Case-A Rocket Launch Control Subsys-

tem (RLCS)

17600+

Case-B Autonomous Guidance, Naviga-

tion and Control (AGNC)

13400+

Case-C Radar Information Processing 11700+

RQ2: Can our approach generates high quality models when com-

pared with other approaches?

This RQ checks how much information our approach can model. To answer

665 the question, we compare the C2AADL_reverse tool with several existing tool-s:

MoDisco[7], fREX[30], RE-CMS[31], Src2MoF[9], srcYUML [32], and Wang

39

[13]. In Table 6, we delimit six parameters to compare the most renowned re-

searches. In 1) Source Artefact and 2) Target Model, as we seen, most

of the existing works of MDRE mainly consider general domains, thus sever-

670 al tools support the reverse engineering from object-oriented source code into

UML. This paper focuses on the domain of complex embedded systems, espe-

cially the safety-critical systems. 3) Structural indicates whether the MDRE

methods can generate structural models. 4) Behavioral indicates whether the

MDRE methods can generate behavioral models. fREX and Src2MoF mainly

consider UML activity diagram, while we consider AADL Behavior annex. 5)675

Runtime indicates whether the MDRE methods can generate execution mod-

els, which are important for the embedded software systems. 6) V&V indicates

validation and verification.

Table 6: Comparisons with a part of MDRE tools

Tools

Parameters
Source

Artefact

Target

Model

Structural Behavioral Runtime V&V

MoDisco Java,JSP UML Y N N N

fREX Java UML N Y N N

RE-CMS PHP AST of

PHP

Y N N N

Src2MoF Java UML Y Y N N

srcYUML C++ UML Y N N N

Wang [13] C AADL Y N N N

C2AADL re-

verse

C AADL Y Y Y Y

40

7. Related Work680

7.1. Model-driven reverse engineering

We distinguish the exiting work on MDRE into two main families: specic

vs. general purpose solutions.

7.1.1. General Frameworks of MDRE

685 Fleurey et al. [33] propose a semi-automatic round-trip model-driven migra-

tion and modernization process for the migration of large industrial software.

This migration solution includes the automatic analysis of the source code, the

generation of abstract models into target platform models, and generation of

code for the target system.

690 The approach proposed by Favre et al. [34] is placed within the context of

obtaining models from object-oriented code and formal techniques at the meta-

model level to maintain consistency in reverse engineering process, according

to the MDA standard. This approach exploits static and dynamic analysis

to generate PSMs and PIMs from code and to analyze the consistence of the

695 performed transformations from code to models and between models.

A semi-automatic approach for MDRE to extract business rules from Java

applications is presented in [35]. The authors address issues concerning the

extraction of knowledge from software artifacts and the representation of the

extracted knowledge into the KDM metamodel with the objective to abstract

700 the business logic implemented in a system.

MoDisco [36] is an extensible and generic Eclipse plug-in for model driven

reverse engineering proposed and implemented by Bruneliere et al., based on

model discovery and model understanding. MoDisco has three layered archi-

tecture i.e. infrastructure, technologies and use case layers. It denes a basic

705 metamodel approach for MDRE based on Knowledge Discovery Meta-model

(KDM) specication to provide support for XML, JSP and Java.

41

7.1.2. Specific MDRE Solutions

Several past works have already described how to migrate from a particular

technology to another one using dedicated components.

710 In the automotive industry, General Motors (GM) has been using a custom-

built, domain specic modeling language, implemented as an internal proprietary

metamodel, to meet the modeling needs in its control software development. Se-

lim et al. [37] explores applying model transformations to address the challenges

in migrating GM-specic, legacy models to AUTOSAR (AUTomotive Open Sys-

715 tem ARchitecture) equivalents. They have built and validated a model trans-

formation using the MDWorkbench tool, the Atlas Transformation Language,

and the Metamodel Coverage Checker tool.

In the field of IoT, Manev et al. [8] proposes a tool, called ITACG (IoT software

Analysis and Code-Generation tool), for performing reverse engineering

720 and extraction. This is accomplished by scanning the source code of the target

system and extracting architectural information from it, which is stored into a

UML model.

Regarding the reverse generation of AADL models, Wang et al. [13] proposes

an approach for AADL models extraction from existing embedded software and

725 reduce maintenance costs. In an effort to bridge the semantic and syntactic gaps

between the two languages, they have defined a set of mapping rules from C to

AADL models. However, this method does not consider behavior and runtime

information, and does not validate the reverse process. In Integrated Modular

Avionics (IMA) systems, Lesovoy et al. [14] proposes an approach to extract the

730 AADL models from source code of ARINC 653-compatible application software.

This approach applies the ideas of counterexample and path feasibility check to

the task of extracting the architectural information from source code.

However, since safety-critical software often run on various embedded plat-forms,

reverse engineering needs to deal with the information such as static

735 structure, dynamic run-time, and functional behavior. In particular, as

multi-core processors are widely used in safety-critical software, the reverse

engineering

42

740

of multi-task synchronization, mutex, communication, and task scheduling has

become an important problem. Moreover, when MDRE exists in the domain of

safety-critical systems, validation of the MDRE process and verification of the

resulted models are highly desirable because such software systems have to un-

dergo development regulations and certification restrictions. To the best of our

knowledge, this paper presents a first effort on the validation and verification of

the reverse process from C to AADL.

7.2. Verification of AADL models

A number of works have been proposed respect to formal analysis of AADL745

models. However, they always consider a subset of AADL because that the

AADL language is very rich. In [38], a methodology for translating AADL

to UPPAAL has been proposed. This work is primarily focused on flow and

deadlock analysis rather than behaviorial specification. Chkouri et al., in [39],

proposed a method for translating AADL models into BIP, which makes it possi-750

ble to make use of the BIP toolset for verification. Bodeveix et al. [40] proposed a

verification tool chain for AADL models through its transformation to the Fi-

acre language, and prove the correctness of the transformation from AADL into

Fiacre. Yang et al. [41, 42] proposed a methodology for translating AADL to

TASM, through which the properties of AADL can be analyzed by the toolset de-755

veloped for TASM. Yu et al. [43] proposed to apply the POLYCHRONY toolset,

based on the synchronous language SIGNAL, for timing modeling, analysis and

validation of AADL. Hugues et al. [44, 45] proposed the formal verification of

real-time systems modelled with the AADL language and its behaviour annex,

and defines a formal semantics of an AADL behavioural subset using the LNT760

(Lotos NT) language.

Compositional verification has attracted significant research attention be-

cause of its viability as a scalable technique for reasoning about complex sys-tems.

Backes et al. [25] applied a compositional verification approach to a

765 realistic avionics system and demonstrated the effectiveness of the AGREE tool in

performing this analysis. Murugesan et al. [46] assembled proofs of system

43

level properties by using the Simulink Design Verifier to establish component-

level properties and AGREE to perform the compositional verification of the

architecture, and verifies a realistic medical cyber-physical system. Cofer et al.

[18] described the compositional reasoning framework for proving the correctness770

of a system design, and provide a proof of the soundness of their compositional

reasoning approach. An aircraft flight control system is provided to illustrate

the method. Posse [16] proposed an AADL annex sub-language for annotating

components with assume/guarantee contracts and a prototype verier that per-

forms compositional analysis. They also provide a prototype plug-in for OSATE775

supporting an annex language which is called AGCL.

Compared with existing works, this paper focuses on the verification of the

resulted models of the reverse process from C to AADL. Because of the broad-

ly use of UPPAAL in the verification of functional behaviors of components,

we assemble verification of system-level properties by using UPPAAL to estab-780

lish component-level properties and the AGREE environment to perform the

compositional verification of the architecture. In [47], the authors consider a

hierarchical multi-formalism proofs of cyber-physical systems by using AGREE

and UPPAAL. However, they focus on multiple abstraction layers. AGREE is

used in the high-level analysis, while UPPAAL is applied in the low-level one.785

Therefore they propose a translation from AGREE contracts to timed automata.

In this paper, we combine AGREE with UPPAAL in the same abstraction layer,

in which the model checker UPPAAL establishes the behaviors of leaf compo-

nents and the AGREE environment performs the compositional verification of

the architecture.790

8. Conclusion and Future Work

This paper has presented a model-driven reverse engineering approach for

safety-critical software development and verification, namely C2AADL_Reverse.

Compared with the existing works, C2AADL_Reverse considers more reversed

construction including AADL component structure, behavior, and multi-threaded795

44

run-time information. Moreover, when MDRE exists in the domain of safety-

critical systems, validation of the MDRE process and verification of the result-

ed models are highly desirable because such software systems have to undergo

development regulations and certification restrictions. We use reverse reverse

engineering to validate the reverse engineering process, and verify the generated800

AADL models by using the model checker UPPAAL to establish component-

level properties and the AGREE environment to perform the compositional

verication of the architecture. To the best of our knowledge, this paper presents

a first effort on the validation and verification of the reverse process from C to

AADL. Finally, the effectiveness of C2AADL_Reverse is demonstrated using a805

real-world aerospace case study.

We will further carry out the following future work:

• The source code cannot explicitly express non-functional properties of the

software system (such as period, execution time, resource consumption,

and so on). At present, we apply third-party dynamic tools (such as810

WCET analysis tools) to measure timing properties and add them to the

corresponding AADL model.

• Inspired by the restricted natural language approach proposed in our pre-

vious work [48], the automatic transformation from natural language re-

quirements into AGREE contracts is currently being developed. As well,815

the translation from AGREE contracts to TCTL properties in UPPAAL

will be also automated.

• We are considering the extension of AGREE to support for modeling

components that execute asynchronously (or quasi-synchronously), and

formalizing the reasoning rules in the theorem prover Coq [49].820

Acknowledgements

This work is supported by National Natural Science Foundation of China

(62072233) and Aviation Science Fund of China (201919052002).

45

References

[1] N. G. Leveson, Engineering a safer world: Systems thinking applied to825

safety, The MIT Press, 2016.

[2] M. D. George Romanski, Reverse engineering for software and digital sys-

tems, Tech. rep. (2016).

[3] A. van Deursen, E. Burd, Software reverse engineering, Journal of Systems

and Software 77 (3) (2005) 209 – 211, software reverse engineering.830

[4] S. Rugaber, K. Stirewalt, Model-driven reverse engineering, IEEE software

21 (4) (2004) 45–53.

[5] C. Raibulet, F. A. Fontana, M. Zanoni, Model-driven reverse engineering

approaches: A systematic literature review, IEEE Access 5 (2017) 14516–

14542.835

[6] H. Bruneliere, Generic model-based approaches for software reverse engi-

neering and comprehension, Ph.D. thesis, Nantes (2018).

[7] H. Bruneliere, J. Cabot, G. Dupé, F. Madiot, Modisco: A model driven

reverse engineering framework, Information and Software Technology 56 (8)

(2014) 1012–1032.840

[8] D. Manev, A. Dimov, Facilitation of IoT software maintenance via code

analysis and generation, in: 2017 2nd International Multidisciplinary Con-

ference on Computer and Energy Science (SpliTech), IEEE, 2017, pp. 1–6.

[9] U. Sabir, F. Azam, S. U. Haq, M. W. Anwar, W. H. Butt, A. Amjad, A

model driven reverse engineering framework for generating high level UML845

models from java source code, IEEE Access 7 (2019) 158931–158950.

[10] SAE, Architecture Analysis & Design Language (AADL), AS5506C, 2017.

[11] J. Hugues, B. Zalila, L. Pautet, F. Kordon, From the prototype to the final

embedded system using the ocarina aadl tool suite, ACM Transactions on

Embedded Computing Systems (TECS) 7 (4) (2008) 1–25.850

46

[12] S. Rahmoun, E. Borde, L. Pautet, Multi-objectives refinement of AADL

models for the synthesis embedded systems (mu-RAMSES), in: 2015 20th

International Conference on Engineering of Complex Computer Systems

(ICECCS), IEEE, 2015, pp. 21–30.

[13] G. Wang, X. Zhou, Y. Dong, H. Zhao, Studying on AADL-based architec-855

ture abstraction of embedded software, in: 2009 International Conference

on Scalable Computing and Communications; Eighth International Con-

ference on Embedded Computing, IEEE, 2009, pp. 14–19.

[14] S. L. Lesovoy, Extracting architectural information from source code of AR-

INC 653-compatible application software using CEGAR-based approach,860

Trudy ISP RAN/Proc 30 (3).

[15] S. M. Salman, A. V. Papadopoulos, S. Mubeen, T. Nolte, A systematic

methodology to migrate complex real-time software systems to multi-core

platforms, Journal of Systems Architecture 117 (2021) 102087.

[16] E. Posse, J. Dingel, Contract-based specification and analysis of aadl mod-865

els, in: ACVI 2014–Architecture Centric Virtual IntegrationWorkshop Pro-

ceedings, Citeseer, 2014, p. 4.

[17] S. Bensalem, M. Bozga, J. Sifakis, T.-H. Nguyen, Compositional verifica-

tion for component-based systems and application, in: International Sym-

posium on Automated Technology for Verification and Analysis, Springer,870

2008, pp. 64–79.

[18] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, L. Sha, Com-

positional verification of architectural models, in: NASA Formal Methods

Symposium, Springer, 2012, pp. 126–140.

[19] E. Ghassabani, A. Gacek, M. W. Whalen, M. P. Heimdahl, L. Wagn-875

er, Proof-based coverage metrics for formal verification, in: 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering

(ASE), IEEE, 2017, pp. 194–199.

47

[20] A. Gacek, J. Backes, M. Whalen, L. Wagner, E. Ghassabani, The JKind

model checker, in: International Conference on Computer Aided Verifica-880

tion, Springer, 2018, pp. 20–27.

[21] SAE, Architecture Analysis and Design Language (AADL) Annex D: Be-

havior Model Annex, 2017.

[22] OSATE: Plug-ins for front-end processing of AADL models, Tech. rep., The

Software Engineering Institute (2013).885

[23] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland, D. Chemouil,

D. Thomas, The AADL behaviour annex–experiments and roadmap, in:

12th IEEE International Conference on Engineering Complex Computer

Systems (ICECCS 2007), IEEE, 2007, pp. 377–382.

[24] I. ljivo, G. J. Uriagereka, S. Puri, B. Gallina, Guiding assurance of archi-890

tectural design patterns for critical applications, Journal of Systems Archi-

tecture 110 (2020) 101765.

[25] J. Backes, D. Cofer, S. Miller, M. W. Whalen, Requirements analysis of a

quad-redundant flight control system, in: NASA Formal Methods Sympo-

sium, Springer, 2015, pp. 82–96.895

[26] T. Instrument, TI SYS/BIOS v6. 33 real-time operating system users guide,

Tech. rep., SPRUEX3K (2011).

[27] G. Behrmann, A. David, K. G. Larsen, A tutorial on uppaal, Formal meth-

ods for the design of real-time systems (2004) 200–236.

[28] H. Mkaouar, B. Zalila, J. Hugues, M. Jmaiel, An ocarina extension for900

AADL formal semantics generation, in: Proceedings of the 33rd Annual

ACM Symposium on Applied Computing, 2018, pp. 1402–1409.

[29] J. Delange, L. Lec, POK, an ARINC653-compliant operating system re-

leased under the BSD license, in: 13th Real-Time Linux Workshop, Vol. 10,

2011, pp. 181–192.905

48

[30] A. Bergmayr, H. Bruneliere, J. Cabot, J. Garćıa, T. Mayerhofer, M. Wim-

mer, fREX: fUML-based reverse engineering of executable behavior for soft-

ware dynamic analysis, in: 2016 IEEE/ACM 8th International Workshop

on Modeling in Software Engineering (MiSE), IEEE, 2016, pp. 20–26.

[31] F. Trias, V. de Castro, M. López-Sanz, E. Marcos, RE-CMS: a reverse910

engineering toolkit for the migration to CMS-based web applications, in:

Proceedings of the 30th Annual ACM Symposium on Applied Computing,

2015, pp. 810–812.

[32] M. J. Decker, K. Swartz, M. L. Collard, J. I. Maletic, A tool for efficiently

reverse engineering accurate uml class diagrams, in: 2016 IEEE Interna-915

tional Conference on Software Maintenance and Evolution (ICSME), IEEE,

2016, pp. 607–609.

[33] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, J.-M. Jézéquel, Model-driven

engineering for software migration in a large industrial context, in: Inter-

national Conference on Model Driven Engineering Languages and Systems,920

Springer, 2007, pp. 482–497.

[34] L. Favre, Formalizing mda-based reverse engineering processes, in: 2008

sixth international conference on software engineering research, manage-

ment and applications, IEEE, 2008, pp. 153–160.

[35] K. Normantas, O. Vasilecas, Extracting business rules from existing en-925

terprise software system, in: International Conference on Information and

Software Technologies, Springer, 2012, pp. 482–496.

[36] H. Bruneliere, J. Cabot, F. Jouault, F. Madiot, Modisco: a generic and

extensible framework for model driven reverse engineering, in: Proceed-

ings of the IEEE/ACM international conference on Automated software930

engineering, 2010, pp. 173–174.

[37] G. M. Selim, S. Wang, J. R. Cordy, J. Dingel, Model transformations for

49

migrating legacy deployment models in the automotive industry, Software

& Systems Modeling 14 (1) (2015) 365–381.

[38] A. Johnsen, K. Lundqvist, P. Pettersson, O. Jaradat, Automated verifica-935

tion of AADL-specifications using UPPAAL, in: 2012 IEEE 14th Interna-

tional Symposium on High-Assurance Systems Engineering, IEEE, 2012,

pp. 130–138.

[39] M. Y. Chkouri, A. Robert, M. Bozga, J. Sifakis, Translating AADL in-

to BIP - application to the verification of real-time systems, in: M. R. V.940

Chaudron (Ed.), Models in Software Engineering, Workshops and Symposi-

a at MODELS 2008, Toulouse, France, September 28 - October 3, 2008.

Reports and Revised Selected Papers, Vol. 5421 of Lecture Notes in Com-

puter Science, Springer, 2008, pp. 5–19.

[40] J.-P. Bodeveix, M. Filali, M. Garnacho, R. Spadotti, Z. Yang, Towards a945

verified transformation from AADL to the formal component-based lan-

guage FIACRE, Science of Computer Programming 106 (2015) 30–53.

[41] Z. Yang, K. Hu, D. Ma, J.-P. Bodeveix, L. Pi, J.-P. Talpin, From AADL to

timed abstract state machines: A verified model transformation, Journal

of Systems and Software 93 (2014) 42–68.950

[42] K. Hu, T. Zhang, Z. Yang, W.-T. Tsai, Exploring AADL verification tool

through model transformation, Journal of Systems Architecture 61 (3-4)

(2015) 141–156.

[43] H. Yu, Y. Ma, T. Gautier, L. Besnard, P. Le Guernic, J.-P. Talpin, Poly-

chronous modeling, analysis, verification and simulation for timed software955

architectures, Journal of Systems Architecture 59 (10) (2013) 1157–1170.

[44] H. Mkaouar, B. Zalila, J. Hugues, M. Jmaiel, Towards a formal specification

for an AADL behavioural subset using the LNT language, International

Journal of Business and Systems Research 14 (2) (2020) 162–190.

50

[45] H. Mkaouar, B. Zalila, J. Hugues, M. Jmaiel, A formal approach to AADL960

model-based software engineering, International Journal on Software Tools

for Technology Transfer 22 (2) (2020) 219–247.

[46] A. Murugesan, M. W. Whalen, S. Rayadurgam, M. P. Heimdahl, Compo-

sitional verification of a medical device system, in: Proceedings of the 2013

ACM SIGAda annual conference on High integrity language technology,965

2013, pp. 51–64.

[47] M. W. Whalen, S. Rayadurgam, E. Ghassabani, A. Murugesan, O. Sokol-

sky, M. P. Heimdahl, I. Lee, Hierarchical multi-formalism proofs of cyber-

physical systems, in: 2015 ACM/IEEE International Conference on Formal

Methods and Models for Codesign (MEMOCODE), IEEE, 2015, pp. 90–95.970

[48] F. Wang, Z. Yang, Z. Huang, C. Liu, Y. Zhou, J. Bodeveix, M. Filali, An

approach to generate the traceability between restricted natural language

requirements and AADL models, IEEE Trans. Reliab. 69 (1) (2020) 154–

173.

[49] A. Chlipala, Certified Programming with Dependent Types: A Pragmatic975

Introduction to the Coq Proof Assistant, The MIT Press, 2013.

51

