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Abstract.

Machine Learning (ML) is used increasingly in safety-critical systems to provide more complex autonomy
to make the system to do decisions by itself in uncertain environments. Using ML to learn system features
is fundamentally different from manually implementing them in conventional components written in source
code. In this paper, we make a first step towards exploring the architecture modeling of safety-critical
autonomous systems which are composed of conventional components and ML components, based on natural
language requirements. Firstly, Augmented Intelligence (Aul) for restricted natural language requirement
modeling is proposed. In that, several Al technologies such as natural language processing and clustering
are used to recommend candidate terms to the glossary, as well as machine learning is used to predict the
category of requirements. The glossary including data dictionary and domain glossary and the category of
requirements will be used in the restricted natural language requirement specification method RNLReq,
which is equipped with a set of restriction rules and templates to structure and restrict the way how users
document requirements. Secondly, automatic generation of SysML architecture models from the RNLReq
requirement specifications is presented. Thirdly, the prototype tool is implemented based on Papyrus. Finally,
it presents the evaluation of the proposed approach using an industrial Autonomous Guidance, Navigation
and Control (AGNC) case study.
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1. Introduction

Safety-critical systems (SCS) are systems whose failure could result in loss of life, significant property damage,
or damage to the environment. There are many well-known examples in different domains such as aircraft
flight control, space missions, and nuclear systems. The SCS has the characteristics of high reliability, high
safety, and strong real-time.

In the last decade, Artificial Intelligence (ATI) is used increasingly in safety-critical systems, especially the
aerospace engineering [JGMG19][TG18]. While a minimum level of autonomy is required for every aerospace
system, past experiences have shown that it requires more complex autonomy to make the system to do
decisions by itself in uncertain environments. For instance, deep space missions always need autonomous
operations to deal with long communication delays and resource-constrained environments. There have been
a number of examples of autonomous operations, such as vision-based sensing, attitude control [DIP19],
communication with Earth, docking, soft-landing, anomaly detection[JGMG19], fault detection isolation
and recovery (FDIR)[JGMG19], etc., which can be implemented as machine learning components (called as
ML components). Using ML to learn system features is fundamentally different from manually implementing
them in conventional components written in source code. Compared to human-readable source code, ML
components are intrinsically hard to interpret. Thus, there has been a growing concern on the risks of
using ML. Trustworthiness is becoming increasingly relevant as humans are progressively sidelined from
the decision/control loop of intelligent and learning-enabled machines [Sif19, ESA20]. There are several
categories for classifying and discussing AI/ML trustworthiness, such as modeling [Sif19], specification, formal
verification of Al systems [KHIT19, LAL"19, AAHR16], testing [HSNB20], runtime monitoring, process
assurance, and certification [ESA20], and so on. For instance, [LALT19] surveys the methods that have
emerged recently for formal verifying whether a particular deep neural network satisfies certain input-output
properties. More recently, European Union Aviation Safety Agency (EASA) gave an Al Roadmap [ESA20]
to discuss the implication of Al on aviation systems. They also proposed four aspects such as learning
assurance, Al explainability, Al safety risk mitigation, and trustworthiness analysis, to have an importance
in gaining confidence in the trustworthiness of an AT/ML application. [FGH"20] shows how the probabilistic
model checker PRISM is used for optimal strategy synthesis for a sequence of scenarios relevant to UAVs
(Unmanned Aerial Vehicle) and potentially other autonomous agent systems. Ryan Kirwan et al [KMP16]
proposed model checking learning agent systems using Promela with embedded C code and abstraction, to
help ensure the safety of autonomous systems.

In this paper, we make a first step towards exploring the architecture modeling of safety-critical au-
tonomous systems which are composed of conventional components and ML components, based on natural
language requirements.

1.1. Research Problems

Model-Driven Development (MDD) is generally accepted as a key enabler for the design of safety-critical
systems. For example, in the guidance of civil avionics software certification (DO-178C) [FF17], MDD (DO-
331), and formal methods (DO-333) were considered as vital technology supplements. There are several MDD
languages and approaches covering various modeling demands, such as UML for generic modeling, SysML !
for system-level modeling, AADL [FG13] for the architectural modeling and analysis of embedded systems,
SCADE ? and Simulink for functional modeling, and Modelica for multi-disciplines modeling. However, the
increasing amount of ML in safety-critical autonomous systems demands MDD engineers to adapt their work
[VB19]. One of the difficult activities is the architecture modeling of such systems, based on natural-language
requirements.

Systems Modeling Language (SysML) was designed by the International Council on Systems Engineering
(INCOSE) and the Object Management Group (OMG). As a profile of the UML 2.0, it was created specif-
ically for the systems engineering domain, in order to integrate multiple views of large complex systems
engineering consisting of hardware, software, requirements, data, people, and processes. Moreover, SysML
provides several extension mechanisms such as stereotypes, diagram extensions, and model libraries. Thus,
SysML is considered as the architecture modeling language in this paper.

L OMG. SysML. http://www.omgsysml.org
2 https://www.ansys.com/products/embedded-software/ansys-scade-suite
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However, when aligning to the principle of automation of MDD, automatically deriving architecture
models directly from requirements in the context of developing safety-critical autonomous systems is a very
challenge. One reason is that requirements are mostly written as free natural language text, which is often
ambiguous, and difficult to be processed automatically and generate meaningful downstream design artifacts
(e.g., models) from such requirements [YBL13].

Restricted natural language requirement templates serve as a simple and yet effective approach for increas-
ing the quality of requirements by avoiding complex structures, ambiguity, and inconsistency in requirements
[ASBZ15]. For instance, Tao Yue et al. proposed Restricted Use Case Modeling (RUCM)[YBL15][YBL13] to
reduce ambiguity and facilitate the automated analysis of use case models. EARS (Easy Approach to Re-
quirement Syntax) [MWHNO09] specifies requirements with several sentence templates to improve the quality
of requirements. Spacecraft Requirement Description Language (SPARDL) [WLZ110] describes requirements
with mode diagrams and interval temporal logic, for modeling and analyzing periodic control systems. In
our previous work, we proposed a restricted natural language requirement specification method for AADL
[WYHT20].

To promote the application of MDD in safety-critical autonomous systems and bridge the gap between
textual requirements and SysML models, we propose a requirements specification methodology, named as
RNLReq, which is equipped with a set of restriction rules and templates to structure and restrict the way how
users document requirements. To the best of our knowledge, it is the first contribution towards a restricted
natural language requirement modeling for SysML. Compared with the existing restricted natural language
requirement specification approaches such as [YBL15, MWHNO09, WLZ"10, WYH"20], this work mainly
focuses on the following two research questions:

o Are there any ML-specific requirements that need to be considered when ML is deployed in a safety-
critical system? There is not much work on Requirements Engineering (RE) for ML-based safety-critical
autonomous systems. [Hor19] states challenges and research directions for non-functional requirements
of ML systems such as fairness, transparency, privacy, security, and testability. Andreas Vogelsang et al.
[VB19] conclude that the development of ML systems demands requirements engineers to: (1) understand
ML performance measures to state good functional requirements, (2) be aware of new quality requirements
such as explainability, freedom from discrimination, or specific legal requirements, and (3) integrate
ML specifics in the RE process. However, the existing work hasn’t considered ML-specific requirements
when ML is deployed in a safety-critical context. For instance, the characterization of ML models must
encompass more than just accuracy, i.e., it should consider the resource constraints in terms of memory,
power, compute, and so on. Moreover, the system in a safety-critical application always consists of both
conventional components and ML components.

e How to use Al technologies to assist the restricted natural language requirement modeling? In the existing
restricted natural language requirement specification approaches such as [YBL15, MWHN09, WLZ*10,
WYHT20], it always needs to extract requirements glossary terms and to classify the requirements by
hand. Recently, the OMG AI-SECT (Augmented Intelligence for Systems Engineering challenge team) 3
introduced Al to model-driven system engineering in order to improve system model accuracy, content
exploration, team productivity, and so on. They claimed that Al is already beginning to impact various
system engineering aspects, such as system modeling, verification, process management, etc., and Al be-
comes a means to augment rather than replace human capability, that is “Augmented Intelligence (Aul)”
[Mad20]. AT can collaborate with human systems engineers to measurably improve the system engineer-
ing effort. Thus, we would like to explore Aul in restricted natural-language requirement specification
for safety-critical autonomous systems, which includes glossary terms recommendation and requirements
classifications.

In addition, we propose RNLReq2SysML to automatically derive SysML architecture models from re-
quirements specified with RNLReq. Besides, we implemented a tool for both RNLReq and RNLReq2SysML
in Papyrus . An industrial Autonomous Guidance, Navigation and Control (AGNC) as a case study for the
proposed approach has been carried out and it provides some positive feedback and lessons.

3 https://www.omgwiki.org/MBSE/doku.php?id=mbse:augmented
4 https://www.eclipse.org/papyrus/
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1.2. Main Contributions

The main contributions of this paper are presented as follows:

o Augmented Intelligence for restricted natural language requirement modeling of safety-critical autonomous
systems. Firstly, in order to assist the RNL requirement modeling method, the IRARNL (Intelligent Rec-
ommendation for RNL) method is proposed, including term recommendation and requirement classifi-
cation. Especially, the term recommendation method recommends data dictionary and domain glossary,
which are parts of RNLReq. The requirement classification method predicts the category of requirements.
Secondly, the RNLReq method is proposed, which is equipped with a set of restriction rules and templates
to structure and restrict the way how users document requirements.

e Automatic generation of SysML architecture models from the RNLReq requirement specifications. Firstly,
in order to support the description of the specific requirement types of safety-critical autonomous systems
(data quality, quality of resulting prediction, safety, reliability, resource consumption, etc.), an extension
of SysML is given. Secondly, based on the meta-model technology, we propose RNLReq2SysML to auto-
matically derive SysML architecture models from requirements specified with RNLReq.

e Prototype tool and industrial case study. The prototype tool for both RNLReq and RNLReq2SysML is
implemented in Papyrus. In addition, the case study, i.e., Autonomous Guidance, Navigation and Control
(AGNC), has been carried out.

1.3. Outline

The rest of this paper is organized as follows. Section 2 briefly introduces the concept of augmented intelli-
gence in system engineering and the SysML language. Section 3 gives the requirement analysis of the target
system of this paper, i.e., safety-critical autonomous systems. A global view of the approach is presented in
Section 4. Section 5 gives the details of augmented intelligence for natural language requirement modeling.
Section 6 presents the automatic generation of SysML architecture models. The prototype tool is presented
in Section 7. Section 8 gives a real-world aerospace industrial case study to show the effectiveness of the
proposed approach in this paper, and the threat to the validity of our approach is also presented. Section 9
discusses related work, and Section 10 provides concluding remarks and plans for future work.

2. Preliminaries

This section first briefly introduces the concept of Aul in model-driven system engineering. Then, the SysML
language is described.

2.1. Augmented Intelligence in Model-Driven System Engineering

As claimed by Azad M. Madini [Mad20], the underlying technologies powering Al and Aul are the same, but
the goals, usage, and application context are fundamentally different. Al creates systems operating without
the need for humans, whereas Aul uses Al to augment human performance, which for many activities will
be superior to the individual human or AI performance. It is also important to realize Aul is not a new
technology category; rather, it is a different way to think about AI technology’s purpose. While researchers
pursue Al to see how far it can go is an admirable goal to realize key technologies proving invaluable in the
future, the real world today is better served by Aul.

From the point of view of system engineering, Al is already beginning to impact various system engi-
neering aspects. These include systems modeling, verification, process management, search and information
retrieval, dynamic content management, and human-system integration. As shown in Figure 1, Aul systems
engineering encompasses the system, the infrastructure support facilities, and processes. However, compared
with [Mad20], we have added safety analysis and requirement specification as the system engineering activi-
ties which are vital for safety-critical autonomous systems. In each case, the Al is Aul. This paper will focus
on the Aul in natural language requirement modeling and the SysML architecture models generation from
such requirement specifications.
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Fig. 1. Aul in system engineering [Mad20]

The AI technologies which are used in our Aul consist of natural language processing, text similarity
calculation, clustering algorithm, and classification algorithm for machine learning. Especially, in our empir-
ical evaluation (Section 8), firstly, nine syntactic measures including Block distance[GF T 13], Cosine[GF13],
Dice’s coefficient|GF T 13], Levenshtein[MRS10], Euclidean[GF " 13], Jaccard[CRF 03], Jaro[CRF 03], Jaro-
Winkler [CRFT03] and SimHash-Hamming[SL11] are considered. Secondly, for semantic similarity, we con-
sider two strategies based on Hownet [Liu02] and CiLin[JW10], which can support the Chinese language.
Thirdly, for clustering, we considered K-means, EM, and hierarchical clustering. Finally, classical machine
learning algorithms including logistic regression, naive bayes, support vector machine, K-nearest neighbors,
and random forest are considered in the requirement classification.

2.2. SysML

As UML is insufficient in capturing all the concepts that are meaningful in systems engineering, Systems
Modeling Language (SysML) was designed by the International Council on Systems Engineering (INCOSE)
and the Object Management Group (OMG). In addition to reusing a subset of UML 2.0, SysML provides new
features towards system engineering including the ability to represent requirements and constraints of systems
and to support trade-off analysis. A SysML model is made up of several diagrams that can be specified into
three categories. Block definition diagrams(BDD) and internal block diagrams(IBD) capture the architecture
of the system, with parametric diagrams describe constraints on property values to support future analysis.
Requirement diagrams capture requirement, and requirement relationships. Activity diagrams, state machine
diagrams and use case diagrams describe the behavior of the system. By extending a metaclass or generalizing
an existing stereotype, SysML allows users to extend and adjust existing metamodels for different domains.

3. Requirement Analysis of Target Systems
Autonomous systems, such as deep space missions, autopilots, mobile robots, and autonomous vehicles

belong to the spectrum of safety-critical applications. In this paper, we mainly focus on the safety-critical
autonomous systems in the space domain. Observability and controllability of space systems are naturally
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limited due to several factors, such as communication delays, power budgets, and so on. Introducing more
complex autonomy can increase the efficiency of many on-board missions of the space systems. On-board
autonomy management addresses all aspects of on-board autonomous functions that provide the space system
with the capability to continue mission operations and to survive critical situations without relying on ground
system intervention. The implementation of on-board autonomy depends on the specific mission requirements
and constraints, and can therefore vary between a very low level of autonomy involving a high level of control
from the ground to a high level of autonomy, whereby most of the functions are performed on-board. For
instance, the European Cooperation for Space Standardization (ECSS) [ECS08] defines four levels of such
autonomous capabilities.

3.1. AGNC

The Guidance, Navigation, and Control (GNC) system is a core system supporting orbiting operations of
spacecraft, which undertakes the tasks of determining and controlling spacecraft attitude and orbit. GNC is
composed of navigation sensors (such as navigation cameras, star sensors, gyroscopes, and accelerometers),
actuators (such as reaction flywheels, nozzles, orbit-controlled engines), and control computers (such as
attitude and orbit control systems, AOCS) which process the guidance and control tasks of various sensors,
perform orbit determination, orbit control, attitude determination, and attitude control. In addition, a data
process unit (DPU) is added between navigation sensors and AOCS to preprocess the data sent by navigation
sensors. Generally, AOCS has more than 20 modes such as stable, maneuver, safe, autonomous, and so on.
The so-called mode is an operational state of a spacecraft, subsystem, or payload in which certain functions
can be performed.

Figure 2 shows a simplified GNC structure with stable and autonomous modes, which is named AGNC
(Autonomous Guidance, Navigation, and Control). In the stable mode, AOCS provides the missions by using
conventional components. In the autonomous mode, to achieve autonomy, it uses an architecture including
five complementary stages, i.e., perception, reflection, goal management, planning, and self-adaptation. Note
that, the first two stages deal with “understanding” the situation of the environment. The third and forth
aspects deal with the autonomy of decision. Self-adaptation ensures the adequacy of decisions with respect
to the environmental situation. For instance, one can use ML to implement perception and autonomous
decisions. Based on a data or knowledge base, a model is trained off-line on the ground and then can be
queried by an on-board mission. Although insufficient training data exists for many applications, significant
data from Earth, the Moon, and Mars is already available for machine learning applications. Moreover, data
for off-line training can be obtained either by simulation or experiment or the past experiences.

Machine learning, particularly deep learning, is being increasingly utilized in different space applications
[KLL20]. Here, we present three scenarios that can be implemented as ML components.

e Imagery transmissions. The images captured by the spacecraft need to be transmitted to the ground
station for aggregation and analysis. However, sending and receiving large volumes of imagery is power
consuming. In addition, the high-latency and low-bandwidth communication channels make this pro-
hibitive. Thus, a spacecraft can reduce the amount of imagery transmitted by employing neural networks:
on-board pre-processing can discard parts of the image of no interest. For instance, the images used as
inputs to the neural networks can be 224 x 224 or 256 x 256 RGB images. Transmission costs can be
further reduced by employing a neural network to compress image data.

e Rendezvous and docking. Autonomous rendezvous and docking are defined as one spacecraft approaching
another one autonomously, from close proximity, with hard constraints on the final position, the final
speed, and the final attitude of the spacecraft. For instance, the active spacecraft (usually referred to
as chaser) observes the passive spacecraft (farget) from almost lkm away and gather the spacecraft
trajectory data. The AGNC system of the chaser controls the state parameters required for entry into
the docking interfaces of the target vehicle. A simplified deep neural network structure is shown in Figure
3. The input layer receives the state information including the position of the chaser, the attitude and
angular velocity of the chaser, the speed of the chaser, the position of the target, the attitude and angular
velocity of the target, and the speed of the target. The hidden layers can be more than 20 layers. And
the output layer controls the thrusters with two possible actions: left and right.

e [ault detection, isolation, and recovery (FDIR). The spacecraft may suffer from faults physically and/or
by interfering with communications. In such situations, it is imperative that the spacecraft should have an
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Fig. 3. Spacecraft Rendezvous and Docking

autonomous ability to detect faults and other anomalies. Stottler et al [SRBM20] proposed an ML-based
fault detection approach, in which a two-layer artificial neural network (ANN) is introduced. Once trained
on normal system behavior, the ANN model is used at detecting behavior previously not encountered in
the training data (i.e., anomalies). Upon detecting anomalous behavior, it uses a supervised classification
approach to determine a subset of measurands that characterize the anomaly.

3.2. Requirement Categories of AGNC

In a recent survey, [Hor19] and [TY19] reported that requirement specification was listed as the most diffi-
cult activity for the development of ML-based systems. Andreas Vogelsang et al [VB19] provided the first
contribution towards a requirement engineering methodology for ML systems, that is, they concluded that
developing ML systems demands requirements engineers to: (1) understand ML performance measures to
state good functional requirements, (2) be aware of new quality requirements such as explainability, free-
dom from discrimination, or specific legal requirements, and (3) integrate ML specifics in the requirement
engineering process. However, they haven’t considered ML-specific requirements when ML is deployed in a
safety-critical context.

Based on the previous cooperation and the communication with our industrial partners, we conclude the
requirement categories of the AGNC system shown in Table 1. Here, we mainly explain the requirements of
ML components which are given as follows.
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Table 1. Requirement Categories of AGNC

Component Requirement Types Explanation
Types
Conventional Functional requirements A description of the service that the system must offer.
components
Interface requirements Various interface relations between system and environment.
Data requirements Describe the various data used by the system and the requirements
for data collection.
Non-functional requirements Including safety, reliability, real-time, performance, environmental
constraints, etc.
ML compo-  Goal requirements The goal given by the stakeholder.
nents

Al Functional requirements

Al Non-functional
ments

require-

Training/testing/operational
data requirements

Describe the learning process of machine learning, such as problem
type, algorithm (or model) description, etc.

Including safety/reliability, real-time, performance (such as the qual-
ity of the resulting prediction, such as accuracy, precision, recall, etc.),
resource consumption, environmental constraints, explainability, ro-
bustness, etc.

Including the quantity and quality of the training/testing/operational
data, such as consistency, completeness, correctness, diversity.

e From the point of view of stakeholders: it is hard to specify the detailed functional behaviors of an
ML component with explicit code. However, the decision of ML components should be based on the
stakeholder needs, that is the goal requirements. In addition, requirement engineers always give a basic
specification of the process of machine learning, such as the problem type, the used ML algorithms, etc.
We call it a functional requirement of the ML component. The ML components also need to satisfy
some non-functional attributes such as safety, reliability, real-time, explainability, robustness, and so on,
in that, ML components always interact with an uncertain environment, so sometimes it needs several
environmental constraints, for instance, temperature, wind speed, and so on. In addition, the safety-
critical autonomous system is always resource-constrained, thus the characterization of ML models must
encompass more than just accuracy, i.e., it should consider the resource constraints in terms of memory,
power, compute, and so on.

e From the point of view of ML implementation: Firstly, data is an integral part of ML components,
thus the requirements of training/testing/operational data quality play an important role for specifying
components than for conventional components. Secondly, based on a data or knowledge base, a model is
trained that can then be queried by an application. Therefore, the resulting prediction, such as prediction
precision, accuracy, and recall, that is, performance requirements, need to be well understood by system
engineers.

Please note that this paper explores the architecture modeling of safety-critical autonomous systems
based on natural language requirements, instead of directly specifying and verifying the characteristics of Al
components such as their safety and robustness.

4. Global View of the Approach

A global description of the approach proposed in this paper is shown in Figure 4. It mainly contains two
parts:

e Aul for restricted natural language requirement modeling. Firstly, we propose the IR4ARNL (Intelligent
Recommendation for RNL) method to assist the RNL requirement modeling. Especially, the term rec-
ommendation method recommends a glossary and the requirement classification method predicts the
category of requirements. Finally, the glossary and the category of requirements will be used in the re-
stricted natural language requirement template RNLReq, to specify the natural language requirements
in a controlled format.

e Automatic generation of SysML architecture models from the RNLReq requirement specifications. Firstly,
in order to support the description of the specific requirement types of safety-critical autonomous systems
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Fig. 4. Global view

(data quality, quality of resulting prediction, safety, reliability, resource consumption, etc.), an extension
of SysML is given. Secondly, based on the meta-model technology, we propose RNLReq2SysML to auto-
matically derive SysML architecture models from requirements specified with RNLReq.

In the following sections, we will present the two parts respectively. Please note that we mainly consider
Chinese natural language requirement text in the IRARNL (Intelligent Recommendation for RNL) method.
However, in the restricted natural language requirement template RNLReq, each term in glossary and data
dictionary contains both a Chinese name and an English name, thus the SysML model in English can be
generated and the user interface can be adapted to Chinese.

5. Augmented Intelligence for Natural Language Requirement Modeling

This section gives the details of augmented intelligence for natural language requirement modeling. First of
all, Section 5.1 presents the IRARNL (Intelligent Recommendation for RNL) approach, which including term
recommendation method and requirement classification method. Second, Section 5.2 presents the RNLReq
method. Finally, Section 5.3 introduces the meta-model of RNLReq.

5.1. IR4RNL: Intelligent Recommendation for RNL

This section presents the intelligent recommendation for restricted natural language (IR4RNL), as shown
in Figure 5. IRARNL mainly consists of two parts: term recommendation and requirement classification.
The data dictionary and the domain glossary, which are parts of RNLReq, can be recommended by the
terminology recommendation method. The requirement classification method can assist in the establishment
of the requirement template, which is also a part of RNLReq.

5.1.1. Terminology Recommendation Method

Given a natural language requirement, it first recommends candidate terms by interacting with engineers,
then computes a similarity matrix for the candidate terms, and finally clusters the candidate terms based
on their similarity.

Phase 1: Candidate term extraction. Candidate term extraction method includes text pre-processing,
candidate terms extraction based on part-of-speech rule, candidate terms extraction based on dependency
rule and domain filtering. Part-of-speech rule and dependency rule are used to extract candidate terms based
on POS (part-of-speech) tagger and dependency parsing respectively, resulted from text pre-processing.

e Text pre_processing. The process of text pre-processing contains sentence splitter, word segmentation,
POS tagger, and dependency parsing. Sentence splitter divides the natural language requirements into
sentences. Word segmentation determines the word boundaries in a sentence. Then, the POS tagger
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model to the initial bias elimination mode.

Fig. 6. The text pre-processing results of a requirement of AGNC in the normal modes

annotates each word with a part-of-speech tag. The final step is dependency parsing, where an attempt
is to recognize a sentence and assign a syntactic structure. In this paper, text pre-processing is achieved
through the existing natural language processing tool HanLP [Hel4] (Han Language Processing). Figure
6 and Figure 7 show the text pre-processing results of one of requirements of AGNC in normal modes
and in the autonomous mode respectively. In that, ATT, ADV, COO, SBV, RAD, POB, LAD and VOB
represent attribute relationship, adverbial relationship, coordinate relationship, subject-verb relationship,
right additional relationship, preposition-object relationship, left additional relationship and verb-object
relationship respectively. For instance, “autonomous”, “management” and “module” are tagged as “vn”,
“yn” and “n” respectively. The relation between “autonomous” and “module”, and the relation between
“management” and “module”, are ATT (attribute relation).

e Candidate terms extraction based on part-of-speech rule. Chinese domain terms have special linguistic
characteristics: 1) From the perspective of external associations, domain terms are mostly noun phrases
(NPs), which are often used as subjects, objects, and attributions in domain texts; 2) From the perspective
of their internal grammatical composition, their composition forms including nouns + nouns (for instance
“security agency”), adjectives + nouns (“combustible materials”), verbs + nouns (“launching devices”),
verbs (nouns) + single-word nouns (“airtight doors”), etc; 3) The length of Chinese domain term is
always two to six words.

In this step, we introduce engineer feedback loop which is described in our Aul approach. Firstly, it
formulates part-of-speech pattern matching rules based on the preliminary glossary extracted by the
engineers. Please note the preliminary glossary should comply with the Chinese linguistic characteristics
shown above. Secondly, candidate terms are extracted according to the part-of-speech pattern matching

ADV
T \ff “?.\ @/ @f—r T Y
% wEEEE THEE K 88 mﬁ Fﬁﬁ B, WMEEBE B ¥ #L sEE  AS

The autonomous management module of the system should be able to perform all operations in order
to perform autonomous tasks in autonomous mode

Fig. 7. The text pre-processing results of a requirement of AGNC in the autonomous mode
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rules. Thirdly, the engineers filter the candidate terms (addition, deletion, and modification), and then
update the part-of-speech pattern matching rules. Finally, it repeats the second and the third steps until
the engineers are satisfied. Regarding the requirement sentence given in Figure 7, for instance, engineers
give part-of-speech pattern matching rules such as “vn+vn+n” and “vn+4n” based on the preliminary
glossary, thus there are three candidate terms that meet the part-of-speech pattern matching rules, such
as “autonomous management module” , “autonomous task” and “autonomous mode”.

Candidate terms extraction based on dependency rule. It includes three sub-steps: generating depen-
dency tree, pruning, and generating candidate terms. Firstly, the requirement sentence is analyzed for
dependency parsing to obtain the dependency tree. Secondly, Chinese domain terms are generally NPs,
so we mainly consider four types of dependency relations such as the attribute relation (ATT), the co-
ordinate relation (COQ), the right additional relation (RAD), and the left additional relation (LAD).
With the four types of dependency relations, the dependency tree will be pruned as a set of dependency
sub-trees. The definition of the dependency sub-tree is given as Definition 1. Finally, according to the gen-
erated dependency sub-trees, we select |[V| > 1 and continuous strings as candidate terms. For example,
“system module” and “autonomous module” are discontinuous strings, and the remaining dependency
sub-trees are all continuous strings, so four candidate terms are generated, “autonomous management
module”, “management module”, “autonomous task” and “autonomous mode”.

Definition 1. Given a dependency tree T = (V, A), its dependency sub-tree 77 = (V’, A") satisfies the

following constraints:

V'CV, A CA.

There is a single designated root node that has no incoming arcs.

With the exception of the root node, each vertex has exactly one incoming arc.
There is a unique path from the root node to each vertex in V.

The root node is a noun or verb.

The candidate terms extraction algorithm based on dependency rules is shown in Algorithm 1. Firstly,

each requirement is analyzed for dependency parsing and a dependency tree is generated; Secondly, generate
dependency sub-trees that contains only four types of dependency relationships: ATT, COO, LAD, and
RAD; Finally, each string in each dependency sub-tree is analyzed, to extract continuous strings with length
greater than 1 as candidate terms.

Algorithm 1 Terminology extraction algorithm based on dependency rules

Input: Requirements
Output: CandidateTerms

1:
2:
3:

4
5
§
7
8
9:
10:

11:
12:

CandidateTerms = list()
for each Requirement in Requirements do
compute DepandencyTree of the Requirement;
compute DepandencySubtrees of only DepandencyTree of ATT, COO, LAD, RAD;
for each DepandencySubtree in DepandencySubtrees do
for String in DepandencySubtree do
if String is continuous and |String| > 1 then
CandidataTerms.add(String);
end if
end for
end for
end for

Domain filtering. The domain characteristics of a term mean that the term usually appears only in
one or a few domain-specific texts. It is determined by comparing the number of occurrences of term
candidates in our domain requirements with the occurrences in a non-domain-specific text corpus. For
example, we eliminate all candidate terms that occur less frequently in our requirement corpus than
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in a subset of the THUCNews® corpus. It ensures that all candidate terms have a minimum degree of
domain specificity. In addition, stop words refer to some very common words, and removing them will
not affect the semantics of the requirement. Thus we further filter candidate terms with stop words
and finally extract four candidate terms, including “autonomous management module”, “management
module”, “autonomous task” and “autonomous mode”.

Phase 2: Computing similarities between terms. In this step, it computes a similarity matrix to
capture the degree of relatedness between every pair of candidate terms extracted in the previous step. To
compute this matrix, we consider three alternative strategies|ASBZ16]:

(i) syntactic only, where a similarity, .7, (¢,t), is computed for every pair (¢,t") of terms using a syntactic
measure, e.g., Levenshtein;

(ii) semantic only, where a similarity, -Zsem (t,t'), is computed for every pair (¢,¢") of terms using a semantic
measure, e.g., Hownet;

(iii) combined syntactic and semantic, where, given a syntactic measure syn and a semantic measure sem,
we take, for every pair (t,t') of terms, max (Lsyn (t,t), Fsem (t,1')). Using max is motivated by the
complementary nature of syntactic and semantic similarity measures.

Phase 3: Clustering candidate terms. We cluster the candidate terms based on their degree of
relatedness. The inputs of this step are the similarity matrix, the choice of the clustering algorithm to use,
and the number of clusters, and K. As the result of clustering, the candidate terms are grouped into K
partitions|ASBZ16]. For example, “GNC” and “A0CS” are treated as the candidate terms in the same
cluster.

In the case study shown in Section 8, we use K-means, Expectation-Maximization (EM) and, Hierarchical
Clustering algorithms to cluster candidate terms to investigate the key questions related to tuning cluster-
ing for use in our application context. Specifically, identifying the most accurate clustering algorithm(s) is
addressed in RQ5, see Section 8.2.2.

5.1.2. Requirement Classification Method

The requirement classification method is composed of five phases:

Phase 1: Data-sets collection. Firstly, according to the national standard Software Requirements Anal-
ysis: requirement analysis documents are divided into eight types: functional, performance, interface, data,
environment, safety, modifiability, and assumptions and constraints. Secondly, according to the Aerospace
Product Reliability Assurance Requirement, the reliability metrics of aerospace products are required. We
select five typical requirement categories to collect data-sets, which are functional, performance, safety, reli-
ability, and interface. The scale of the data-sets is shown in Section 8.2.2.

Phase 2: Text pre-processing. We preprocess requirement by segment, POS tagging, and stop words
elimination.

Phase 3: Features extraction. Two feature extraction techniques BoW and TF-IDF are used to
extract textual features and calculate the wright of features. We use these textual features and the weight
of features to train classifiers.

Phase 4: Classifier. Five machine learning algorithms, including Naive Bayes, Logistic Regression,
Support Vector Machine, K-Nearest Neighbors, and Random Forest, are used to train classifiers. The re-
quirements are automatically classified by the trained classifiers.

Phase 5: Evaluation. We use precision, recall, and F-score to evaluate the performance of the classifiers
which are trained in Phase 4. The calculation formula is shown in Section 8.2.2.

5.2. RNLReq: Restricted Natural Language Requirement Template

This section presents the Restricted Natural Language Requirement Specification Method (RNLReq), which
can reduce ambiguities of natural language requirements without changing the requirements writing habits

5 http://thuctc.thunlp.org/
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of system engineers. A typical requirement document from industries consists of such as sections of function-
alities, tables of domain terms, and tables of data. Each functionality is organized as IPOC (Input-Process-
Output-Constraint) structure. Thus, RNLReq consists of three parts: Data Dictionary, Domain Glossary
and RNL templates with well-defined sentence patterns based on restriction rules.

5.2.1. Data Dictionary € Domain Glossary

In the domain of safety-critical systems, requirements engineers are always recommended to construct a data
dictionary and a domain glossary first. A well-organized domain glossary and structured data dictionary can
enhance the requirement engineering processes in a number of ways. For instance, they can help improve the
understanding of requirements and reduce the vagueness and ambiguity of requirements, which can promote
better communications among stakeholders and provide a stepping stone for further requirement elaboration.

Therefore, data dictionary and domain glossary are included in RNLReq, and they are organized as
follow:

e Data dictionary, refers to a dictionary covering the data and its attributes scattered in the requirements
documents. All the data should be specified with name, id, data structures (can be comprised of simple
data types, e.g. integer, character, etc., and complex structure, e.g. arrays, struct, union), unit, range,
rate, quality, quantity, and description. Table 2 shows the Backus-Naur Form grammar (BNF) of the
data dictionary. In order to present the continuous and discrete dynamic characteristics in SCS systems,
Rate is specified with a numerical value or a distribution. In order to express specific requirements of
ML components, we need to consider data quality and data quantity. Data quantity includes the size
and diversity of data. Data quality includes completeness, consistency, and correctness. Five restriction
rules D1-D5 constraining data quality are presented in Table 3. In order to ensure completeness, Rule D1
checks the sparsity of data within each characteristic. Rules D2, D3 are used to ensure the consistency
of data. Rule D4 emphasizes on data collection process which has a strong influence on the correctness
of data. Rule D5 reduces the discrimination and bias in data resulting from humans.

According to the actual needs of the industry, the data dictionary can include static data, input data,
output data and so on. Among them, static data refers to the constants in the system; input data refers to
the input of each component; and output data refers to the output of each component.

e Domain glossary, refers to a dictionary covering the domain terms scattered in the requirements docu-
ments, such as the names of systems, functions, interfaces, properties, modes, hardware, states, etc. All
terms documented should be specified with name, id, category, and description. Table 4 shows the BNF
grammar of the domain glossary.

Here, we give several examples to show how to build data dictionary and domain glossary from require-
ment sentences.

Example 1: Given a functional requirement “The Perception Function sends the data collected by the
sensor to the Decision Function every 10ms, and the data collected by the sensor includes angular velocity and
angular position.”, we first register the data in the data dictionary: [name: Sensor_angular_data, ID: d001,
struct: (angular velocity, angular position), unit: NA, range: NA, rate: 10ms, quality: NA, quantity:(size:
1), description: NA]. Here, NA means Not Applicable. It should be noted that the angular velocity and
angular position need to be registered in the same way. Then, we register two terms in the domain glossary:
[name: Perception Function, id: g001, category: function, description: NA], [name: Decision_Function, id:
g002, category: function, description: NA].

Example 2: In order to express safety and reliability requirements, we can register static data like
FailureSeverity and FailureProbability in the data dictionary. For instance, given a safety requirement “The
failure of rocket propulsion has four levels of severity: NoEffect, Minor, Major, Hazard” , we register the static
data: [name: FailureSeverity, ID: s001, struct: NA, unit: NA, range: (NoEffect, Minor, Major, Hazard), rate:
NA, quality: NA, quantity: NA, description: NA]. To describe probability distributions of failure, we register
the data FailureProbability: [name: FailureProbability, ID: s002, struct: NA, unit: NA, range: (Normal[mean,
stdDev], Uniform, Basic[min,max]), rate: NA, quality: NA, quantity: NA, description: NA].

Example 3: For an ML component, given the data quality requirement “The size of the data-set is 100k,
and 60% of the training data comes from Source A and the remaining is from Source B”, we register the
data: [name: TrainingSet, ID: d003, struct: NA, unit: NA, range: NA, rate: NA, quality: NA, quantity:(size:
100k), diversity: (SourceA=60%, SourceB=40%)].
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Table 2. BNF grammar of data dictionary

<data-dictionary> ::= (<data>)+

<data> ::= <name> <ID> <struct> <unit> <range> <rate> <quality> <quantity> <description>
<name> = (<letter> | <digit>)+

<rate> 1= <digit> | <distribution>

<distribution> ::= <uniform> | <normal>

<quality> ::= <completeness> <consistency> <correctness>

<quantity> 1= <size> <diversity>

Table 3. Rules of data quality

No. Description

D1  Data must cover the whole range of possible values.

D2  Additional data sources that satisfy hypotheses can be used to augment the original data to get a richer set of
training data.

D3  Each data in the data-set must be in the same format and representation.

D4  Data must be validated and cleaned before use.

D5  Don’t collect or label data by humans.

With the help of terminology recommendation methods in Section 5.1, we can get the recommendations
of data dictionary and domain glossary.

5.2.2. Requirement Templates

It is a common practice in industry to decompose requirements hierarchically, and each decomposed re-
quirement is organized as a typical IPOC structure. Therefore, we defined a set of requirement specification
templates in RNLReq, which can be organized hierarchically.

Requirement specification templates are organized as four levels according to the decomposition of re-
quirements in industry: System Requirement Template (SRT) presents the highest level requirement of
the system, and engineers can decompose it as several sub-system requirements which can be described in
Sub System Requirement Template (SubSRT). The decomposition of SubSRT can be iterative. Then, each
SubSRT can be decomposed as several Function Requirement Template (FRT), and FRT can also be de-
composed as Sub Function Requirement Template (SubFRT). The standard for the granularity of templates,
especially whether SubSRT should be decomposed as FRT instead of lower-level SubSRT, is the strategy of
implementations for each sub-system and function.

Besides, it is possible that some functions or sub-functions from different systems present the same
or similar functionality. To simplify the requirement specification for such a situation, we defined a Share
Function Block Template (SFBT), which only belongs to systems or sub-systems, and can be invoked from
any template in these systems or sub-systems.

Table 5 shows the basic requirement template which can support the requirements of both conven-
tional components and ML components. To be consistent with the requirement types presented in Table
1, in general, the template includes ID, Name, Input/Output (including Data and FEvent), Functional
Requirement, Non-Functional Requirement (including Safety/Reliability Requirement, Performance Re-
quirement, Environmental Requirement, etc.), AI Requirements (optional), and Description. When we use
the requirement template to specify the requirements of ML components, the Functional Requirement and
Non-Functional Requirement are noted as NA, and Al Requirements include the requirement types which
has been shown in Table 1, such as goal requirements, training data quality requirements, and so on. Each
category of the requirements, such as Functional Requirement, Non-Functional requirements and so on,
should follow their specific templates.

Table 4. BNF grammar of domain glossary

<domain glossary> ::= (<noun>)+

<noun> ::= <name> <ID> <category>

<name> ::= (<letter> | <digit>)+

<category> ::= ’'system’ | ’function’ | ’interface’ | 'property’ | ’hardware’ | 'mode’ | ’states’
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Table 5. RNLReq Requirement Template

Elements Explanations

1D The unique identifier of this template

Name The name of the module described in this template

Input The input data and event of this module

Output The output data and event of this module

Functional Requirement The dynamic behavior of this module, such as sending data

Non-functional Requirement  Performance such as period, deadline, Safety /Reliability such as failure mode, failure case,
Environmental Requirement such as transmission rates of ports (Not in FRT, SubFRT

& SFBT)
AT Requirement The description of ML components (Optional)
Description Extra description of this module. (No restriction rule here)

Table 6. General Restriction Rules of Sentence Patterns
No. General Restriction Rules

R1  The subject of a sentence must be the name of modules or “this module”.

R2  The sentence must be a declarative sentence.

R3  The sentence must be in the present tense.

R4 Do not use passive voice.

R5  Only complete sentences are allowed.

R6  Don’t use modal verbs, pronouns, adverbs and adjectives that express negative meanings.
R7  Same words should be used to represent the same object.

R8  Describe interactions between systems without dismissing subjects or objects.

5.2.3. General Restriction Rules

For each category of requirements shown in Table 5, a set of general restriction rules (R1-R8) in Table 6 are
designed to constrain the use of natural language. R1 is to ensure the feasibility of hierarchy modeling and
behavior modeling. R2-R5 are good practices for writing requirements and reduce the ambiguity. R6 can
help reduce the uncertainty in requirements. R7 ensures the same concept will be expressed in a consistent
way. R8 facilitates the automated generation of models.

We further refine the rules for specific requirements such as functional requirements, non-functional
requirements and Al requirements and illustrate with examples.

5.2.4. Functional requirement Restriction Rules

Functional requirements (FR) focus on what the system does and emphasizes the inputs, outputs, sequences,
and conditions for coordinating behaviors. For functional requirements, each sentence pattern represents a
complex sentence structure, which is composed of sequences of simple sentences connected with a set of
keywords (e.g., [IF THEN ELSE, AND, LOOP FOR, NOT). Five simple sentence patterns are designed
for functional requirements as shown in Table 7. For a better understanding, we also give an example for
each sentence pattern in the table.

SimpleBehavior Sentence is used to express basic functional behavior, while Simple BehaviorSentence

Table 7. Simple Behavior Sentences for Restricted NL

No. Sentence Pattern Explanation Examples

S1 SimpleBehaviorSentence A single sentence presenting See examples of S2-S5.
one action, including S2-S5.

S2 Send Send <Data> at <Port> DPU sends processed data to AOCS at Port-1573B.

S3 Assign Assign <Data-A> to <Data-  Orbit control subsystem assigns orbitMode to LOW-
B> EARTH.

S4 Call Call <System>  AOCS calls the orbit determination function.
<SharedFunction>

S5 Jump Jump <Function> AOCS jumps to orbit determination function each 15s

when in Stable state.
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Table 8. Compound Behavior Sentences for Restricted NL

No. Sentence Pattern

Description

Examples

S6 SimpleValueCondition

S7 ValueCondition

S8 EventCondition

S9 TimeCondition

S10  ConditionnalSentence
S11  LoopSentence
S12  ConcurrentSencence

IF  <P1> <Comparator>
<Value> <Unit>

More than one SimpleVal-
ueCondition connected with
AND/OR

IF receiving <Event>

DURING (T1, T2), IN D1

IF  Condition, THEN Sen-
tenceA, [ELSE SentenceB]|

LOOP SentenceA EACH T
UNTIL E

MEANWHILE  (SentenceA,
SentenceB, SentenceC, ..)

IF Attitude Deviation Angle is bigger than 26 degrees.

IF' conditionA AND conditionB.

IF receiving Handshake Success Information, THEN
AOCS sends GNCC Controlling Data to GNCC.

The Control Module sends Handshake Information to
GNCC in 5ms.

IF receiving Handshake Success Information, THEN
the Control Module sends GNCC Controlling Data to
GNCC, ELSE the Control Module sends Handshake
Information to GNCC.

LOOP (The Control Module sends data) UNTIL
POWER_OFF.

Meanwhile (The Control Module sends data, the Con-
trol Module counts times).

Optional )
Optional

| | |
| IF |—| <Event> |—|<Trigger>|

| IF H <Value-expression>+ H <Satisfy> I——| <System>

| WHEN |—{ <Time interval> ———
Ii

<Simple behavior>+ | <Simple behavior>+ |

| ELSE

<Compound behavior>+ <Compound behavior>+

| MEANWHILE

Symbol ""+" : Indicates that the amount is one or more

Fig. 8. Structure of Functional Requirement Template

with keywords (e.g., [F THEN ELSE, AND, LOOP FOR, NOT) are used to specify CompoundBehav-
torSentence which are shown in Table 8.

For example, for a requirement of the AGNC system, “IF Attitude Deviation Angle is bigger than 26
degrees in 30ms, THEN the Control Module sends Earth Capturing Success Information to AOCS every
5 ms until POWER_OFF”, firstly, Attitude-Deviation-Angle and FEarth-Capturing-Success-Information are
recommended into Data Dictionary. Secondly, Control Module and AOCS are recommended into the domain
Glossary with type “system”, and POWFER_OFF is recommended with type “state”. Thirdly, Rule S2, S6
and S9 are applied for the specification of the Send behavior, SimpleV alueCondition and TimeCondition
respectively. Finally, the requirement is rewritten with RNL templates as “[In 30ms, [IF Attitude-Deviation-
Angle >26, [ Loop [ Send : Earth-Capturing-Success-Information to Earth-Capturing-Success-Information-
Port] EACH 5ms UNTIL POWER_OFF]]]”. Furthermore, if Control Module needs to send data together
and count times at the same time, we can apply S12 to specify “MEANWHILE [ Send : Earth-Capturing-
Success-Information-Signal to FEarth-Capturing-Success-Information-Port , Call : CountFunction]”.

Therefore, with the combination of multi-level compound structures, RNL templates can represent com-
plex behaviors. The structure of functional requirements is shown in Figure 8: From the structure of the
template, we can see that the whole functional requirement template is a composite behavior. The behavior
slot in the figure can be filled with a list of simple behaviors or nested composite behaviors, making the
functional requirement template robust and scalable to express complex functional behavior.
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Table 9. Non-functional Requirement Sentences for Restricted NL

No.  Sentence Pattern Explanation Examples

S13  ConstraintSentence  <property> <comparator> <value> The period of SelfCheck function is 2ms. (Period-
<unit> <margin of error> icity)

The maximum allowed failure probability of Star
Sensor A is 5%. (Failure probability)
The main freq of CPU is less than 90% of the max-
imum. (Resource)
The mass of the device is 4kg, with a 1% margin
of error. (Resource)
The severity of Losing Power in Control Subsystem
is Level I. (Safety)

S14  RangeSentence <property> within [min,max] The normal temperature range of CPU is within
[45,70] ° C.

S15  PeriodicitySentence ~ LOOP SentenceA EACH T UNTIL E  In working state, the motor receives instructions
every 10ms. (Periodicity)

S16  TradeOffSentence <property> optimizedBy  The bandwidth of sending data optimizedBy the
<objl>,<obj2>,<obj3> with  power, performance and failure rate with Func-
<method> tionA. (Cost reduction)

5.2.5. Non-functional requirement Restriction Rules

Non-functional requirements (NFR) focus on how good the system does and the constraints it faces. Note
that NFRs do not exist independently, they are a supplement to functional requirements.

NFR encompasses the following attributes: performance, safety, reliability, environmental constraints
and so on. Among them, the NFR attributes that can be quantitatively described and analyzed includes
performance, reliability, and safety. The time performance of the system, namely real-time requirements,
include periodic/aperiodic execution, deadline, time-out, jitter, response time, schedulability, etc. Resource
performance of the system includes resource consumption (e.g. power consumption, CPU, storage, bus) and
constraints of the physical environment (e.g. temperature, quality, and pressure). Reliability requirements
include such as the probability of system failure.

For an on-board ML component which lives in resource-constrained environment, in order to obtain the
optimal solution, an NFR constraint on the property may vary over time and be influenced by objective cost,
performance and failure rate. Thus, the property value is constrained by the trade-off of several objectives.

As shown in Table 9, we present the restricted sentences applicable to NFRs. On the one hand, we can
give quantitative NFRs with ConstraintSentence, RangeSentence (a variation on ConstraintSentence).
On the other hand, we can collaborate qualitative NFRs with corresponding System/Functional Templates,
such as ConditionnalSentence for fault handling and PeriodicitySentence for periodicity, allowing system
engineers to take functional and non-functional aspects into consideration at the design stage. Besides, the
Trade-Off sentence describes the fact that the property has a relationship “optimizedBy” with the mentioned
objectives and can be calculated by a method/function.

5.2.6. Al requirement Restriction Rules

Compared with conventional components, ML components automatically obtain a machine learning model
by executing a training algorithm with training data-sets, and then evaluate trained models using testing
data-sets. However, ML techniques are not applicable for behavioral modeling and should be treated as
“black boxes”. A lack of requirements specification in ML components has a great impact on the whole
system. Thus, as shown in Table 10, new requirement types are introduced and Al requirements are divided
into six categories including training data, testing data, operational data, goal, Al functional requirements,
AT non-functional requirements. Each category is described and further decomposed as follows.

Training Data & Testing Data. ML approaches generate models based on a set of examples (training
data) and evaluate models on another set of examples (testing data). Both data are collected at development
time. This category is refined into quantity, completeness, consistency and correctness.

e Quantity. It is obvious that “We expect a better performance of the model if we have more data and more
diverse data”, thus, properties of data quantity like size, diversity are included in the data specifications.
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Due to the fact that training data and testing data originate from the same source, they should share
the same data specifications.

o Completeness. Completeness specifies the sparsity of data within each characteristic.

e Consistency. Consistency is guaranteed by the consistency between input data and test data (assuming
the same environment).

e (Correctness. Correctness is strongly influenced by the way how the data is cleaned, collected and stored.

Operational Data. Just like for conventional components, ML, components take data as input at opera-
tion time, namely input data, or operational data. Though training data and testing data are approximately
equally distributed, their relationship to the input data which tends to change with time or environment is
unclear. Thus, it is important to check for consistency between input data and training, testing data, that
is why we need to specify the distributions.

Goal. Goals are defined as well defined criteria for satisfaction such as evaluation metrics, an expected
state of a system, an expected range of predictions. When a model makes bad predictions (outlier), it is
natural to ask humans for information which may be unsuitable for time-critical tasks, so returning fallback
values is a potential option in that case.

AT Functional Requirement. ML encompasses over a dozen problem types (e.g., Binary or Multiclass
Classification, Regression, Clustering), with many more specific algorithm types (e.g., Logistic Regression,
Linear Regression, Naive Bayes, Nearest Neighbor, Deep Neural Networks). In order to get a global view
of ML solutions used, our specifications include problem types, algorithm types, layer information in Deep
Learning systems and characteristics of models when updating.

AI Non-functional Requirement. To ensure the robustness of ML components, several dimensions
of non-functional quality such as safety/reliability, real-time, performance and explainability are consid-
ered. Meanwhile, in respect that this article focuses on safety-critical systems, fairness which prevents the
phenomenon that ML bias stems from prejudicial training data are ruled out.

o Safety/Reliability. If the safety /reliability estimation of individual predictions reach the threshold, changes
such as retraining model or refining solutions should be made.

e Real-time & Performance. The accuracy (how correct the output is) and real-time (how fast the process
is) properties of ML components need to be guaranteed, and fallback plans need to be specified.

e Resource consumption. The on-board computation and communication are resource-constrained, such as
bandwidth for sending/receiving data, power consumption, memory and storage for data buffer.

o FExplainability. Although ML models are opaque constructs that are intrinsically hard to interpret, engi-
neers are able to give specifications to explain the behavior of the model around a given data point or
features.

For example, a requirement in AGNC system, “The Decision Subsystem needs to detect small celestial
body in large images provided by the navigation camera, while a model with precision of 80% is needed.”,
introduces a goal requirement “The Decision Subsystem need to detect small celestial body in large images”
and a performance requirement “Model satisfy a ConstraintSentence with precision >80%" to specify an Al
requirement of the Decision Subsystem.

5.3. The Meta-Model of RNLReq

The process of requirement specifications in RNLReq essentially contains three parts: data dictionary &
domain glossary, requirement templates and sentence patterns. Thus, we define the meta-model of RNLReq
as shown in Figure 9:

e Data Dictionary & Domain Glossary, used for specifying data and terminologies in requirements. Each
data refers to an instance of DataWord and each terminology refers to an instance of Term in the
meta-model.

e Templates, are organized as requirement templates for systems, sub-systems, functions, sub-functions and
shared function blocks. Each template inherits from a super class AbstractTemplate, and higher-level
templates can take lower-level ones as their composition.

e Sentence Patterns, each type of requirements in templates is organized as a list of sentences, which
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Table 10. AT Requirement Template

Elements SubElements

Explanations

1D

The unique identifier of AT template.

Name

The name of the module described in this template.

Training Data Quantity

Specify sources of training data as a set like [A, B, C], and the corresponding
diversity index as a set like [30%, 40%, 30%).

Specify the size of data-set.

Specify the feature set.

Specify the distribution of running data.

Completeness

Specify the coverage of the data on the whole range of possible values in percent.

Consistency

Ensure that format and representation of data that should be the same in the
data-sets.

Correctness

Specify the data format standard that must be followed.
Specify the database technology to use.

Specify the augmenting rules for data.

Specify the purging rules for data.

Specify the mechanism to store meta-data.

Testing Data

Same structure as Training Data.

Operational Data

Specify the distribution of input data at operation time.

Goal

System should be in an acceptable state set S.
Specify the expected result range.
Specify the fallback values in cases of an outlier predicted value.

AT Functional

Specify the problem type, e.g. binary or multiclass classification, regression, clus-
tering.

Specify the algorithm name.

Specify the algorithm type, e.g. Logistic Regression, Linear Regression, Naive
Bayes.

Specify the set of layers, including [layer name, input shape, kernel size, padding
method, activation], e.g. Convolutional layer 1: The input dimension is (1, 32,
32); the size of the convolution kernel is (5, 5); the padding method is valid; the
number of convolution kernels is 6; the activation function is tanh.

Specify the frequency of model updating or creation.

Specify the strategy to make predictions when the model is being updated.
Specify whether the model supports making multiple predictions at the same
time.

AT Non-functional Safety /Reliability Specify reliability estimation of individual predictions in machine learning.

Performance

The evaluation metrics (like precision, recall) should be in an acceptable
range[min,max].

Real-time

The time spent should be in an acceptable range[min,max].
Specify the fallback plans.

Resource con-
sumption

The resource spent should be in an acceptable range[min, max].

Explainability

Specify the features that can derive the desired output or decisions.
Specify the features that have a negative effect on the result.
Give explanations on the behavior of the model around a given data point.

Description

Extra description of this module. (No restriction rule here)

satisfy predefined sentence patterns. Each sentence pattern inherits from a super class Sentence, and
their transformation rules are defined in the gen() operation of Sentence. FunctionalSentence is com-
posed of ConditionalSentence and CompoundBehaviorSentence. Non functional Sentence is composed
of ConstraintSentence and its variations. Most of the new Al requirement types reuse existing sentences,
and Goal requirements are fulfilled with GoalSentence.

6. Automatic Generation of SysML Architecture Models

As safety-critical autonomous systems feature a tight combination of the system’s computational, physical
and communication parts which are heterogeneous, we propose a multi-view approach based on SysML for
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Fig. 9. The Meta-Model of RNLReq

modeling of these systems, which allows designers from different views to focus on particular aspects of the
system. Firstly, we present the subset of SysML: SubSysML; then, the transformation from RNLReq to
SysML architecture models is given.

6.1. Subset of SysML

The meta-model of SubSysML is summarized in Figure 10. SubSysML consists of a block definition diagram
(BDD), internal block diagrams (IBD), activity diagrams (ActD) and stereotypes such as ConstraintRequire-
ment and MLComponent. This paper considers several complementary views of safety-critical autonomous
systems: hierarchy view, inter-communication view, functional view, non-functional view, and data view.
Each view highlights certain features of the system and are illustrated as follows.

e Hierarchy view. Due to the fact that most systems are built compositionally and made of sub-systems or
components which are connected in some way, hierarchy view reflects the compositionality of the systems.
Hierarchy view is represented by a BDD and its elements such as blocks and MLcomponents (nodes in
yellow color). Blocks are the key elements of BDDs and can represent basic structural decompositions
for modeling static structures of systems. Properties of blocks represent the states and attributes of
systems. MLComponent is a sub-stereotype of SysML block stereotype and has properties describing
characteristics of data and algorithms in AI Requirement Template. Given a system, SubSysML specifies
the system model as a BDD. Inside the BDD, it uses blocks or MLcomponents to express the hierarchical
structure of the system.

e Inter-communication view. Inter-communication view reflects the interactions of different sub-components
in the systems. Inter-communication view is represented by IBDs and its elements such as Port and
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Fig. 10. Meta Model of SysML Model

Property (nodes in green color). For instance, given a parent block, we use an IBD to present the
communication among its son blocks via ports. IBDs and BDDs provide complementary views of a block.

e Functional view. Functional view reflects the dynamic behavior of a system. Functional view is repre-
sented by an activity diagram and its elements (nodes in blue color). SubSysML contains several kinds of
Activity Nodes such as call behavior actions (represent a basic unit of functionality within the activity),
initial/final node (mark the start/end of an activity), fork/join nodes (mark the start/end of concurrent
sequences), decision/merge node (mark the start/end of alternative sequences), send signal actions (send
a signal instance to a target), accept event actions (wait for a signal to continue the activity). Activi-
tyPartition allocates activity nodes to blocks. ConstraintRequirement for an activity node can represent
some constraints such as timing that should be satisfied by a running component.

e Non-functional view. In non-functional view, we extend the existing SysML Constraint stereotype to
specify the non-functional properties, including safety, reliability, performance and so on. Figure 11 is
the definition of the ConstraintRequirement of the system. ConstraintRequirement can contain an OCL
expression that formally states an acceptance condition, threshold for a traditional component, or a data
requirement for an ML component. For example, Figure 12 shows the use of ConstraintRequirement to
describe the property of the working temperatures of a sensor.

e Data view. Data view captures the data structure of the system using objects, attributes, operations,
and relationships. We extend SysML’s ValueType stereotype to model the data structure of the system
which is specified by Data Dictionary. The BaseType package contains the predefined primitive value
types such as Integer_16, Float_64 and Boolean. The DataType package contains all data types defined
by system engineers.
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6.2. Transformation from RNLReq to SubSysML

As shown in Figure 13, the transformation from RNLReq to SubSysML is composed of five parts. The
first part is intended for identifying incorrect templates and preprocessing the RNLReq. For example, if a
SystemTemplate has an input port while the corresponding output port cannot be discovered, the RNLReq is
incorrect and needs to be repaired. Part 2-5 transform information in checked RNLReq to separate diagrams
with mapping rules. The process is achieved by the following algorithms.

As described in the Algorithm 2, it takes RNLReq meta-model (given in Section 5.3) as input. In Line
1-3, each data defined in the Data Dictionary will be transformed into the value types in SubSysML. In
Line 4-6, a block definition diagram is generated for the SystemTemplate at the top level. In Line 7-11,
each SubSystemTemplate considered as siblings of the SystemTemplate will be transformed into a block
and attached to the BDD, and the properties of blocks are generated. The hierarchy of SystemTemplates is
generated into a tree: SystemTemplate at the top level is the root block, and its sub-templates are modeled
as blocks in the next level. In Line 10, each block connects with the top system block via connectors using
a composition relationship.

The process of generating inter-communication view is defined by Algorithm 3. We first check whether
each SubSystemTemplate (son) contains interface requirements. If it contains I/O information, then an IBD
is generated and associated with the corresponding block of the SystemTemplate (parent) at the higher level.
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Algorithm 2 Generate hierarchy/data view

Input: RNLReq
Output: BDD, BaseTypes

for each Dataword DW in DataDictionary do
Generate a Datatype DT with DW’s name;
end for
Get top SystemTemplate topST in RNLReq;
Generate a SysML model Model with topST’s name;
Generate an block definition diagram BDD with topST’s name;
Generate a block with topST’s name and its corresponding attributes;
for each SubSystemTemplate subT" in topST with SYSTEM type do
Generate a block Block with subT’s name and its corresponding attributes;
Generate a composition connector named topST+subT and multiplicities of subT;
end for

— =
= O

Then, the block corresponding to each SubSystemTemplate will be added into the IBD, and ports will be
used to express the communication between them.

Algorithm 3 Generate inter-communication view

Input: RNLReq
Output: IBDs

1: for each SystemTemplate ST in RNLReq do

2 Generate a set S, add a block HostBlock named ST

3 for each SubSystemTemplate subT with SYSTEM type do
4 if subT contains Input/Output data then

5: Establish a connection ¢ and attach it to Set .S

6 Attach subT’s block to HostBlock as a property;

7 end if

8 end for

9 Generate an internal block diagram IBD with ST’s name;

10; Generate a block HostBlock with ST’s name;
11: Link IBD with its corresponding BDD;

12: for each connection ¢ in S do

13: Generate ports with its corresponding data types and attach them to subT property;
14: Generate connectors between ports;

15: end for

16: end for

All the functional requirements are translated into activity diagrams, which is shown in the Algorithm 4.
The structure of Functional Requirement Template in Figure 8 is considered as a tree. Each SimpleSentence
and ConditionSentence is considered as a leaf node (which is solvable and has a corresponding SysML
element). Line 9-12 and Line 21-27 show the rule mapping ConditionSentence and SimpleSentence into
corresponding Activity Nodes. Line 13-14 shows that ComplexSentence is a non-leaf node and contains
several leaf nodes inside. We search the tree recursively, until all the sub-trees are searched and solved,
which means the entire function requirements have been transformed into an activity diagram. Besides,
as using swimlanes to notate ActivityPartitions is usually complex and impractical, Line 22-23 allocates
nodes to partitions by placing the partition name in parenthesis above the ActivityNode name into the
ActivityNode symbol.

In addition, Algorithm 7 shows the process that non-functional/Al requirements is inserted into the
diagrams generated in the steps above. In Line 4-7, ConstraintSentence and RangeSentence described in
Section 5.2.5 are transformed into OCL expression and then added into ConstraintRequirement. In Line
8-12, behavior constraints such as deadline and WCET are added into activity diagrams as a constraint of
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Algorithm 4 Generate functional view

Input: SystemTemplates containing Functional Requirements
Output: ActDs

1: for each SystemTemplate ST in RNLReq do

2 Generate an activity diagram ActD with ST’s name;

3 Get behavior sentence BS in ST

4: ProcessComplexSentence(BS);

5: function PROCESSCOMPLEXSENTENCE(Sentence B.S)

6 Get sentence list SenList in BS;

7 for each sentence Sen in SenList do

8 if Sen is compound then

9: Extract ConditionSentence C'on, IfSentence Actionl, ElseSentence Action2 in Sen;
10: If SS is EventCondition, generate AcceptEventAction and Pin;

11: If SS is ValueCondition, generate DecisionNode and MergeNode;

12: If SS is ConcurrentSentence, generate ForkNode and JoinNode;

13: ProcessComplexSentence(Actionl);

14: ProcessComplexSentence( Action2);

15: Connect nodes generated in steps above;

16: else

17: ProcessSimpleSentence(B.S);

18: end if

19: end for

20: end function

21: function PROCESSSIMPLESENTENCE(SimpleSentence S5)

22: Let name of SystemTemplate S5 belongs to be partition name;

23: Append partition name to node name;

24: Generate CallBehaviorAction if S is Call, link it to the activity if S.S points to another Func-
tionTemplate;

25: Generate CallBehaviorAction and Pin if SIS is Assign;

26: Generate SendSignalAction and Pin if S5 is Send;

27: end function

28: end for

corresponding ActivityNode. In Line 13-23, each SystemTemplate containing AIRequirement is transformed
to blocks stereotyped with MLComponent in the BDD. The transformation of NFRs in AIRequirement (Line
17-21) is similar to the Line 4-7.

7. Prototype Tool

We have implemented our approach in a prototype tool named SCASAMTool (Safety-Critical Autonomous
Systems Architecture Modeling Tool). It mainly includes the intelligent recommendation tool TR4RNL,
the requirement specification tool based on restricted natural language RNLReq, and the SysML model
automatic generation tool RNLReq2SysML. Figure 14 shows the overall architecture of SCASAMTool. It is
developed on the Eclipse platform integrated with Papyrus plug-in. The open-source modeling tool Papyrus
6 provides complete modeling support for SysML. A brief description of each module is given below.

e /R/RNL. IR4RNL includes term recommendation and requirement classification methods. Especially,
terminology recommendation method takes natural language requirements as input, and recommends
candidate data dictionary and candidate domain glossary through interaction with requirement engineers.
The requirement classification method predicts the category of requirements by the trained model.

6 https://www.eclipse.org/papyrus/
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Algorithm 5 Transform NFRs/AT requirements of system templates into SysML extensions

Input: RNLReq
Output: Model

1: for each SystemTemplate ST in RNLReq do

2 if ST contains NFR quality then

3: Apply corresponding profile to Model;

4 if quality is attribute then

5 Translate ConstraintSentence and RangeSentence into OCL expressions with the attribute and
generate ConstraintBlock;

6: Apply corresponding constraints to Block;

7 end if

8: if quality is deadline or WCET then

9: Apply corresponding NFR stereotype to Model,

10: Apply corresponding constraints to ActivityN ode;

11: end if

12: end if

13: if ST contains AIRequirement Alreq then

14: Apply MLComponent stereotype to corresponding Block Alblock;

15: Generate properties in Alblock for AT Functional Requirement;

16: Generate properties in Alblock for input data, training data and testing data;

17: Process AI NFRs with ConstraintRequirement;

18: if Alreq contains goal then

19: Translate GoalSentence into OCL expressions with the attribute and generate GoalRequire-
ment gr;

20: If Alreq is called in a function, generate a postcondition with ¢gr to corresponding
ActivityN ode;

21: end if

22: end if

23: end for

Table 11. Statistics of functions of the prototype tool

Function/Module Description Java Code Lines
Intelligent Recommendation IR4RNL module 10004+
ReqTemplate Viewer Requirement view module, an external interface for user operations 2000+
ReqTemplate Controller Requirement model control module 2000+
RNLReq2SysML Mapper RNL to SysML element mapping 10004
SysML Element Generator Generate XML files corresponding to SysML model elements 1000+
SysML Layout Visualizer Generate the XML file corresponding to the SysML graphic layout 15004

e RNLReq. RNLReq further formulates the data dictionary, domain glossary, and category of requirements
from IR4RNL, and specifies the RNL structured requirements with the requirement templates.

o RNLReq2SysML. RNLReq2SysML takes RNLReq requirement specification as input, and generates
SysML models through transformation rules.

The SCASAMTool adopts a modular architecture, in which it includes 6 modules such as Terminology
Recommendation, ReqTemplate Viewer, ReqTemplate Controller, RNLReq2SysML Mapper, SysML Ele-
ment Generator and SysML Layout Visualizer. Table 11 shows the main function code statistics of the
SCASAMTool.



26 Zhibin Yang, Yang Bao, Yongqgiang Yang, Zhiqiu Huang, Jean-Paul Bodeveix, Filali Mamoun and Zonghua Gu

| User — Natural ~ ! | T RNL | - — 7/ 7
Re ulrements Language |—> Structured RNLReq Model
q LRe uirements [@ |_Requirements | — — — —
1equ1rement requirement
engineer engineer
¥ v
IR4RNL Tool RNLReq Tool RNLReq2SysML Tool
Candidate Data Data Domain
Dictionary Recrilremont Dictionary Glossary TransIt;ci]rlr:ation EMF Model
Candidate Ely Requirement Restriction

Domain Glossary Templates Rules
r—- ——————————— Y e ===
| r r r |

| BDD | I IBD | I ACT | | safety/Alprofile |
I e I SRR S — g e e e . e e e e 1 :
|
e e T e e P I
Pupyrus
Eclipse Platform
—— — Process Functional Tool [— — — 7 Model Platform
—— — Element |:| Module :] Support — — — — | Element :l Support
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8. Evaluation
8.1. Industrial Case Studies

The requirement document of AGNC is obtained from the industrial partner. The document extends to
more than 200 pages, written in Chinese and contains nine sections (such as Attitude Determination, Orbit
calculation, Attitude Control, Orbit Control, etc.). For the sake of confidentiality, just a small portion of the
requirement is allowed to present in this paper.

First, we recommend data dictionary, domain glossary, and requirement category based on the original
requirement document with the prototype tool. Then, we specify the RNLReq modeling for AGNC system
in Figure 15. The left side is the hierarchical structure of the requirements. The right side is the requirement
template editor, the engineer can add and edit different categories of requirements through the restriction
rules of the requirement template. After the entire RNL template has been completed, a SysML model of
the AGNC system can be generated automatically.

Next, the generated SysML system architecture model is presented in Figure 16, in which the yellow
blocks represent dewvice stereotype and the blue ones represent the ML components in the autonomous mode.
The architecture of AGNC system is a hierarchical control structure: 1) According to the working process
of the system, the whole system is divided into several parts: data sampling sub-system, control function
sub-system, action sub-system, etc. 2) For instance, control function sub-system can be further divided into
attitude control sub-system, attitude check sub-system, orbit calculate sub-system, orbit control sub-system
and output pre-processing sub-system. 3) Attitude control sub-system is further divided into Local Terminal
Unit, perception sub-system, decision sub-system, self-adaption sub-system, and action sub-system. 4) The
devices include sensor components (such as navigation cameras, star sensors, gyroscopes, and accelerometers)
which collects signals from environment and data process unit which process the data and command.

Then, Figure 17 shows the system inter-communication model of the Attitude Control sub-system, which
has a stable mode (filled with orange color) and an autonomous mode (filled with blue color). On the
left side, interactions of the autonomous mode are illustrated, local terminal unit first collects data (such
as navigation images and physical parameters) and sends them to the perception sub-system. Then the
perception sub-system integrates the environment information and sends them to the decision sub-system.
Decision sub-system delivers plans to the action sub-system which controls the actual executive agents, and
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Fig. 15. Structure of RNLReq requirements of AGNC system

the feedback of executive agents will help improve the ability of self-adaption sub-system. On the right side,
interactions of the stable mode are simpler: control components receive data from local terminal unit and
send commands to executive agents directly. Compared to the process of autonomous mode, process of stable
mode lacks the ability of self-adaption and a central decision module.

Besides, Figure 18 shows the activity diagram of a sub-system for eliminating the initial deviation in
AGNC system. Eliminate Initial Deviation(EID) of Attitude Control sub-system eliminates the angular rate
of attitude generated by the separation of satellites from launch vehicles by calling some three-axis attitude
control algorithms of spacecraft. First, it sends the angular velocity of X, Y, Z axis gyros to the control
sub-system. Depending on the values, it calculates the state of orbit. Then, it sends signals to executive
agents and keeps a backup of data. If getting into orbit, it will send a signal for the success of first catch of
the earth.

Finally, Figure 19 shows a safety requirement about losing control of the control function sub-system,
“Control function sub-system may occur a current short-circuit fault, a memory fault, and an over-temperature
fault. The probability of a current over-temperature fault is 1.0E-7”. According to the Failure entry defined
in the data dictionary, the corresponding user-defined stereotype Failure is generated. Failure level, failure
type, failure probability, etc., in its internal structure are converted into the attributes such as FailureEf-
fect, Severity, Likelihood, and Probability Value in the Failure stereotype. For the block ControlFunction-init
having the safety requirement, Failure stereotype is used as the type of the attributes CurrentFault, Mem-
oryFault, and CurrentThermal in the block, and values of these attributes are acquired from the safety
sentences in RNL templates, for example, the Probability Value of CurrentThermal is 1.0E-7.

Statistics data of the case study is given in Table 12. It shows that the case study, 1) covers all the
RNL templates mentioned in Section 5.2; 2) has a considerable number of RNL elements; 3) shows the
correspondences between RNL elements and SysML model elements.
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Fig. 16. System architecture model of AGNC system

Table 12. Statistics of Modeling elements

RNL elements

RNL counts

SysML Model Elements

SysML counts

System Template

Subsystem Template

Data Dictionary

Input/Output Data/Event between
systems

Simple Behavior (Call, Assign, Send)
Value Condition

Static NFR attributes (e.g. deadline,
WCET, performance)

Runtime NFR attributes (e.g. WCET)

Goal Requirement

1

112
172
104

172
32
102
15

10

Block
Block
DataType
Port

CallBehaviorAction,SendSignal Action
DecisionNode,MergeNode
properties of NFRBlock

ConstraintRequirement in Activity Di-
agram
ConstraintRequirement

1

112
179
104

172
64
102
15

10
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Fig. 17. Framework of Attitude Control Subsystem

8.2. Analysis Results
8.2.1. Analysis of RNLReq2SysML

e Research Questions

The major objective of this subsection is to evaluate the effectiveness of our approach. This objective is
decomposed into the following research questions:

RQ1. Can we use our approach to cover the requirements from the aerospace domain?

As a model generation approach, the RNL templates proposed in this paper should be able to cover various
kinds of requirements. In order to answer the question, we have applied our approach to requirements from
different aerospace sub-systems.

Table 13 provides the name, the short description, the domain and the number and coverage of the re-
quirements from three industry cases. For the description of Case-A, see section 3.1. For Case-B, the rocket
control system refers to a system that uses sensors, on-board computers, and communication equipment to
control the launch of a rocket, and provide stability for the rocket. Case-C is the aircraft air pressurization
system (AAPS), which is one of sub-systems to ensure the normal operation of the aircraft. Its core com-
ponent is the air pressurization controller, which is used to drive the motor to operate, thereby driving the
air compressor to work. The coverage of RNL templates is nearly 91 percent and we believe the samples
are enough for evaluation. Requirement statements that cannot be covered include one or more complex
mathematical expressions. The predefined sentence patterns show good ability in expressing requirements,
and if one wants to apply RNL to other domains, the predefined sentence patterns are designed with high
flexibility and expansibility.

RQ2. Are our transformation rules from RNLReq to generated SysML models complete?

We use the following procedure to check the completeness of our approach: 1) Take the same requirements
specifications (AGNC system) as input; 2) Generate the SysML models with RNLReq2SysML tool; 3) Check
whether each template have been transformed into SysML elements; 4) Check whether Data Dictionary has
been transformed as data types; 5) Check whether each SysML diagram is well-organized and shows up in
the Papyrus environment.
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Table 13. Description of Case Studies

Case Description Domain Number of Requirements  Coverage
Case-A  Autonomous Guidance, Navigation and Control (AGNC)  Space 280 257/280
Case-B Rocket control system Space 146 141/146
Case-C  Aircraft Air Pressurization System (AAPS) Aviation 169 155/169

Table 14. Comparison with other existing Tools
Modeling Concepts CM-Builder DC-Builder UMLG aToucan ABCD  RNLReq2SysML

Class Y Y Y Y Y Y
Composition N Y N Y Y Y
Attributes Y Y Y Y Y Y
Methods N N N Y Y Y
Multiplicity Y N N N Y Y
InterCommunication N N N N N Y
Activity N N N Y N Y
NFR N N N N N Y

Following the above procedure and engineers’ feedback from industry, for all RNLreq requirements of
the case study AGNC, we achieved 100% completeness of transformation with RNLReq2SysML. Statistics
of RNL elements and SysML elements keeps consistent with each other as presented in Table 12, note that
the number of entries in Data Dictionary and the predefined 8 primitive types constitutes the number of
DataType. Besides, the generated SysML diagrams conforms to the SysML 1.6 standard.

RQ3. How many SysML modeling concepts can our approach cover when compared with
other approaches?

We compare the proposed RNLReq2SysML tool with the international tools: CM-Builder[HG03], DC-
Builder[HH12], UMLG[ISBM09], aToucan[YBL13], ABCD[WAD16]. Please note that, in the RNLReq2SysMLtool,
Chinese natural language requirement text is mainly considered, and subsequently remarked that each term
in glossary and data dictionary contains both Chinese and English names, therefore English SysML models
can be generated. By conducting a survey on the modeling ability of these tools, we evaluate their coverage
of the modeling concepts such as of SysML/UML. As shown in Table 14, compared to other tools, 1) with
the help of SysML BDDs, RNLReq2SysML tool can capture more structure information such as multiplicity,
compositions from NL requirements; 2) with the help of SysML IBDs, RNLReq2SysML can generate dia-
grams describing intercommunication and activity; 3) RNLReq2SysML supports the description of NFRs.
By using RNL and SysML together, SysML’s advantages in graphical modeling are enforced with RNL’s
efficiency in capturing requirements.

8.2.2. Analysis of IR4RNL

e Research Questions

IR4RNL method evaluation aims to answer the following research questions (RQs):

RQ4. How effective is the candidate term extraction method combined with engineer feed-
back loop? In the term recommendation method, we add engineer feedback loop to the candidate term
extraction. The aim of RQ4 is to evaluate whether the engineer feedback loop can give better term recom-
mendation.

RQ5. Which similarity measure(s) and clustering algorithms(s) yield the most accurate
cluster? The choice of similarity measures and clustering algorithms can have a major impact on the quality
of the generated clusters. The aim of RQ5 is to examine alternative combinations of similarity measures and
clustering algorithms, and identify the best alternatives in terms of accuracy.

RQ6. Which feature extraction method(s) and classifiers(s) yield the most accurate results
in requirement classification method? The choice of feature extraction methods and classification al-
gorithms can have a major impact on the quality of the requirement classification method. The aim of RQ6
is to examine alternative combinations of feature extraction methods and classifiers, and identify the best
alternatives in classification accuracy.

e Evaluation Procedure
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Our case study is based on three evaluation procedures: the first is to evaluate the accuracy of candidate
terms extraction, the second is to evaluate the accuracy of term clustering, and the third is to evaluate the
accuracy of requirement classification.

RQ4. Accuracy of Candidate Terms. We use standard classification accuracy metrics, precision and
recall, to evaluate the accuracy of candidate terms. The task at hand is to determine which candidate terms
belong to the glossary and which ones do not. The candidate terms that belong to the glossary are True
Positives (TP), and the ones that do not belong are False Positives (FP). The glossary terms that are not
extracted by our tool are False Negatives (FN). Precision accounts for the quality of results, i.e., smaller
number of FPs, and is computed as TP/(T'P + FP). Recall accounts for the coverage, i.e., smaller number
of FNs, and is computed as TP/(TP + FN) . We use F-measure to combine precision and recall into one
metric. F-measure is computed as: 2 X Precision X Recall/(Precision + Recall).

RQ5. Accuracy of Clustering. In this paper, meaningful handling of overlaps is essential: while our
clustering approach (Section 5.1.1) produces partitions, i.e., non-overlapping clusters, our ideal clusters are
overlapping. To evaluate the accuracy of clustering, we use a simple set of accuracy metrics i.e., a standard
generalization of precision, recall and F-measure for clusters which is straightforward to interpret in the
presence of overlaps. The algorithm of calculating these accuracy metrics for clustering is shown in Algorithm
6[ASBZ16].

RQ6. Accuracy of Requirement Classification. For the multi-class classification problem, this paper
uses macro metrics to meausure the performance of classification results. Precision, Recall, and F1 are defined
as:

p 1 'f: TP, Y P
TG & TR+ FR (G

R _ b IZG: e YR
TG & TR+ FNy |G
macro ‘Gl — Pl +Rl - |G|

Algorithm 6 Accuracy metrics algorithm for clustering

Input: Let I,...,I; denote the set of ideal clusters, and let G, ..., G, denote the set of generated clusters.
Output: Precision,Recall,F-measure

: For every pair (I;,G;)1<i<t;1<j<u

: Let n;; be the number of common data points between I; and Gj.

: Precision(I;, G;) :vaG;\'

: Recall (I;,G;) = ‘"If‘".
__ 2xPrecision(I;,G ;) xRecall(I;,G;)

F -measure (I“GJ) - Precision(Ii,Gj)J+Reca11(l,;,Gj)J

. For every ideal cluster I;1 < i < t:

: Let G, be the best match for I; among generated

. clusters, i.e.,F-measure (I;,G,) > F-measure(I;,G;) for any 1 < j < u. Let Ppesi_maten (i) denote
Precision (I;, Gy) and let Rpest_maten (i) denote Recall (I;, Gy).

9: Let n=>1_, |I|.

10: Compute overall precision and recall as weighted-averages of the precisions and recalls of the ideal

clusters: L]
11: Precision = X!_ 55 X Phest _maten (7).

I .
12: Recall = 21_ 55 Ryt maten (4)

N R

e Results and Discussion
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Table 15. Description of Experimental data-set

Case Description Domain  Number of Requirements Number of standard terms
(golden standard)

Case-A  Autonomous Guidance, Navigation Space 220 237
and Control (AGNC)

70 Precision(%)
—— Recall(%)

65 1 —— F-measure(%)

60 3

Precent(%)

1 2 3 4 5 6 7 8 9 10
Engineer feedback (Number of times)

Fig. 20. Evaluation results of candidate term extraction methods combined with engineer feedback

RQ4. Candidate term extraction method. We take Case-A as the example, the experimental data-
set is shown in Table 15. We manually identified 237 standard terms (golden standard) for 220 requirements.
In order to get better recommendations, we set engineer feedback times to 10. Please note that we also count
short terms that are included as parts of longer terms of the other set. The experimental results are shown
in Figure 20. The experimental results show that as the number of engineer feedback increases, the accuracy,
recall, and F-measure of the candidate term extraction method are all improving. Finally, the precision, recall
and F-measure are 41.5%, 70.5%, 52.2% respectively, that is, candidate term extraction method extracts 455
candidate terms and 137 as standard terms.

The preliminary part-of-speech rules and the final part-of-speech rules are shown in Table 16. It can
be seen that compared with the preliminary part-of-speech rules, the final part-of-speech rules are more
abundant, which can better express the engineer’s ideas.

For candidate term extraction, recall is a more important factor than precision. A low recall (i.e., a high

Table 16. Comparison of preliminary and final part-of-speech rules

Length  Preliminary Part-of-speech Rules Final Part-of-speech Rules

Two n+n, n+v, v+n n-+n, n+v, v+n, a+n, b+n, d+n

Three n-+n-+n, v+n-+n, n+v-+n, v+v-+n n+n+n, v4n+n, n+v+n, v+v+n, b+v+4n, n+m-+n, vo+vn+n

Four n-+n-+n-+n, n+n-+v-+n n+n+n-+n, n+n+v-+n, v-+n-+n-+n, v+n+v-+n, n+v-+v-+n,
v+v4n+n, v+n+b+4n

Five v+v+n+n+n, d+v4+n+n+n, n+n+v+n+n v+v+4+n+n+n, d+v+n+n+n, m+v+m—+n+n, b4+v+n+v+n,
n-+n-+v-+n-+n, a+n-+v-+n-+n

Six n+n+c+vn+n+n n+n+c+vn+n+n, n4n+vn+c+vn+n, n+n+u+b+vn+n,

vn+n+vn+c+vn+n, l+vn+k+n+vn+n, n+vn+u+n+vn+n
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Table 17. Top-10 cluster computation alternatives

Grammatical Similarity Strategy = Semantic Similarity Strategy Clustering Algorithm Normalized F-measure
Jaro-Winkler None Hierarchical Clustering 0.4149
SimHash-Hamming Distance Hownet Hierarchical Clustering 0.4132
Jaro None Hierarchical Clustering 0.4119
SimHash-Hamming Distance CiLin Hierarchical Clustering 0.4105
SimHash-Hamming Distance None Hierarchical Clustering 0.4104
Block Distance None Hierarchical Clustering 0.4088
Euclidean None Hierarchical Clustering 0.4081
Jaro-Winkler None K-means 0.4004
Levenshtein None Hierarchical Clustering 0.3998
Jaro None K-means 0.3989

number of false negatives) means that the engineers will miss many of the terms that should be included
in the glossary. Low precision is comparatively easier to address, as it entails only the removal of undesired
items (false positives) from a list of extracted candidate terms.

For low accuracy, we consider it is caused by the by-produces of part-of-speech rules and dependency rules.
For example, as shown in Figure 7 above, when the candidate term “autonomous management module” was
extracted, “management module” was also extracted, which is not the standard term. For the standard terms
that have not been extracted, this paper believes that most of the reasons are caused by word segmentation
errors. For example: “tube bomb”, which is a part of the rocket control system, should be segmented as
“tube bomb/n”, but the wrong segmentation is “tube/n, bomb/v”.

RQ5. Candidate term clustering method. As suggested by the discussion in RQ4, the number of
candidate terms is more than the number of standard terms, that is, there are some non-standard terms.
We note that outside an evaluation setting, one cannot distinguish terms that are relevant to the glossary
from those that are not. To preserve the realistic behavior of clustering, it is thus paramount to compute
the generated clusters for all the candidate terms first and then prune the results for evaluation.

To answer RQ5, we considered pairwise combinations of the nine syntactic similarity measures and
two semantic similarity measures, which are introduced in Section 2.1. The total number of remaining
combinations is (94 1) x (2+ 1) — 1 = 29. These combinations include configurations where an individual
syntactic or semantic measure is applied on its own. For clustering, we considered K-means, Hierarchical
and EM. We evaluated each clustering algorithm in conjunction with all the 29 possible combinations of
similarity measures, i.e., a total of 3 x 29 = 87 alternative cluster computations.

When the number of candidate terms is n and the selected number of clusters is K, increasing the value
of K beyond n/2 will would have little practical meaning, as the average size of clusters would fall below 2
terms per cluster. Therefore, this paper restrict the upper range for K to a maximum of n/2 (upper bound).
Specifically, firstly, for each alternative, this paper selects 10 points uniformly from 1 to n/2 as the value of
K; Secondly, we compute the normalized F-Measure for each alternative.

In Table 17, it shows the top-10 alternatives that yield the best average accuracy, i.e., normalized F-
measure. As shown in the table, the Jaro-Winkler similarity strategy in the best alternative does not produce
stable results.

To provide a general recommendation, we need to further consider the effect of individual syntactic
measures, semantic measures and clustering algorithms on accuracy across all the alternatives. More precisely,
we would like to find similarity measures and clustering algorithms that yield good (but not necessarily the
absolute-best) results, and at the same time, cause little variation. A standard way for performing such
analysis is by building a regression tree [BFSO84]. Figure 21 shows the regression trees for the case study.
The regression tree identifies at any level in the tree the most influential factor that explains the variation
between the data points. In our context, there are three factors: (1) the syntactic measure, (2) the semantic
measure, and (3) the clustering algorithm. Once the most influential factor is identified, the regression tree
partitions the data points into two sets in a way as to minimize variations within the resulting sets.

In each node of the tree, it presents the count (number of alternatives), the mean and the mean-square
error(MSE) for Normalized F-measure. By convention, sibling nodes in the tree are ordered from left to right
based on their mean values. For every expanded (i.e., non-leaf) node, the node shows the difference between
the mean values of its right and left children.

According to the regression tree results, we get the following observations: The first layer shows that for
the mean of Normalized F-measure, the hierarchical clustering algorithm is 3.700 higher than the K-means
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Fig. 21. Regression tree results

Table 18. Good choices of the similarity measures and the clustering algorithm

Strategy/Algorithm Good Choices
Grammatical Similarity Strategy Jaro, Jaro-Winkler, SimHash-Hamming
Semantic Similarity Strategy Semantic measures do not have a significant impact on clustering accuracy.
Clustering Algorithm Hierarchical Clustering

algorithm and the EM algorithm, thus ruling out the K-means algorithm and the EM algorithm. For the
second layer, the experimental results without the semantic similarity strategy are overall higher than using
semantic similarity algorithm. The third layer shows that the experimental results of Jaro, Jaro-Winkler
and SimHash-Hamming distance are higher than other grammatical similarity algorithms, thus we narrow
the choices of syntactic measures to Jaro, Jaro-Winkler and SimHash-Hamming distance. To summarize our
discussion of RQ5, we conclude that good choices of the similarity measures and the clustering algorithm,
in Table 18.

We note that despite semantic measures not being influential in improving clustering accuracy, we do
not discourage the use of these measures. A potential reason why we did not find semantic measures useful
is that semantic synonyms are not prevalent in our case studies. Semantic measures, when combined with
syntactic ones, may be useful if the likelihood of (semantic) synonyms being present is high.

RQ6. Requirement classification method. We collect 250 requirements for each types of safety-
critical autonomous software, including functional, performance, safety, reliability, and interface. a total of
1,250 requirement are collected. The data-sets covers national standard documents in most safety-critical
areas, including software design requirements, aerospace software design requirements, and safety-critical
software analysis and guidelines, etc.

Different feature extraction methods and classification algorithms are combined for comparative experi-
ments. Specifically, we consider two feature extraction methods and five classification algorithms, a total of
ten combination strategies. The experiment is based on the Scikit-learn machine learning library and five-
fold cross-validation method. The experimental results of the combination method of the Bow-based feature
extraction method and multiple classification models are shown in Table 19. The experimental results of
the combination of the feature extraction method based on TF-IDF and the multiple classification models
are shown in Table 20. The experimental results show that the combination of TF-IDF feature extraction
method and SVM classification algorithm has achieved the highest evaluation result.
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Table 19. Bow-based feature extraction method requirement classification experiment results

Experimental Results
Expl Exp2 Exp3 Exp4 Expb5 Average

Precision(%) 94.52 94.44 96.09 93.24 94.85 94.63
Bow + LR Recall(%) 94.40 94.40 96.00 93.20 94.80 94.56
F-measure(%)  94.41 94.36 96.02 93.20 94.81 94.56

Precision(%) 94.27 96.93 97.28 94.75 96.60 95.96
Bow + NB Recall(%) 94.00 96.80 97.20 94.40 96.40 95.76
F-measure(%)  93.98 96.80 97.19 94.34 96.39 95.74

Precision(%) 94.44 93.66 96.53 93.73 94.50 94.57
Bow + SVM Recall(%) 94.40 93.60 96.40 93.60 94.40 94.48
F-measure(%)  94.41 9355  96.41  93.62  94.41 94.48

Precision(%) 79.88 77.30 80.09 77.71 78.08 78.61
Bow + KNN Recall(%) 78.00 76.40 75.60 75.60 73.20 75.76
F-measure(%)  77.63 75.99 74.86 75.44 72.98 75.38

Precision(%) 87.39 90.62 92.88 88.88 93.06 90.56
Bow + RF Recall(%) 87.20 90.40 92.80 88.40 92.80 90.32
F-measure(%)  87.17 90.38 92.80 88.46 92.81 90.32

Combination Strategy

Table 20. TF-IDF-based feature extraction method requirement classification experiment results

Experimental Results
Expl Exp2 Exp3 Exp4 Expb Average

Precision(%) 97.28  96.81 9842  97.65  96.02 97.24
TF-IDF + LR Recall(%) 97.20 96.80 98.40 97.60 96.00 97.20
F-measure(%)  97.21 96.79 98.40 97.60 96.00 97.20

Precision(%) 95.01 96.12 97.65 95.43 95.86 96.01
TF-IDF + NB Recall(%) 94.80 96.00 97.60 95.20 95.60 95.84
F-measure(%)  94.78 95.97 97.60 95.14 95.58 95.81

Precision(%) 96.46 96.46 99.22 97.62 98.45 97.64
TF-IDF + SVM Recall(%) 96.40 96.40 99.20 97.60 98.40 97.60
F-measure(%) 96.40 96.36 99.20 97.60 98.40 97.59

Precision(%) 93.67 94.13 94.45 92.60 92.69 93.51
TF-IDF + KNN Recall(%) 93.60 94.00 94.40 92.40 92.40 93.36
F-measure(%)  93.55 93.96 94.41 92.42 92.37 93.34

Precision(%) 88.11 90.61 90.46 88.13 93.35 90.13
TF-IDF + RF Recall(%) 88.00 90.40 90.40 87.60 93.20 89.92
F-measure(%)  87.98 90.31 90.40 87.63 93.20 89.91

Combination Strategy

Since experimental data-sets basically covers the requirements of safety-critical autonomous areas, and
the division process of the data-sets adopts a random extraction method, the experimental results have a
certain degree of versatility. The single experiments listed in Table 19 and Table 20 can also reflect the
stability of different combination strategies. In summary, for the requirements of safety-critical autonomous
software, the above combination strategies have achieved relatively good results.

8.2.8. Threats to Validity

We discuss threats to validity of our empirical results and the steps we have taken to mitigate these threats.

Internal validity. First, both the standard terms (golden standard) and standard term cluster (golden
standard) are subjective processes. In order to reduce this threat, we request two researchers to mark the
benchmark data and then review by domain experts to determine the benchmark data. Second, the review
of domain experts may contribute to the experimental results of our method. In order to reduce this threat,
domain experts are not informed of our method before and after the review process.

External validity. First, the data-sets in this paper covers most of the requirements of AGNC, and
terminology recommendation method successfully generates a reasonable list of candidates terms. However,
further case studies are necessary to improve external effectiveness. Second, the analysis results of our
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candidate term extraction method need to be improved. One feasible way is to use existing term extraction
tools to process the cases in this paper, and systematically compare the results with our method.

9. Related Work

Section 9.1 presents several surveys on the Al-based safety-critical autonomous systems in the domains of
such as space application and autonomous vehicles, and surveys on the challenges of developing of these
systems, such as modeling, verification, and so on. This paper mainly focuses on the architecture modeling
of safety-critical autonomous systems, based on natural language requirements, thus we present the related
work on the requirement modeling of such systems in section 9.2. In section 9.3, it describes the existing
work on Aul for natural language requirement modeling.

9.1. Al-based Safety-Critical Autonomous Systems and its Challenges

[JGMG19] shows a survey of the techniques of Al for space applications, in which it mainly focuses on the
application of artificial intelligence in autonomous planning and scheduling of operations, self-awareness,
anomaly detection and Fault Detection Isolation and Recovery (FDIR), on-board data analysis as well as
on-board operations and processing of earth-observation data.

Dario Izzo et al. [DIP19] give a survey on Al trends in spacecraft guidance dynamics and control systems.
They mainly focus on evolutionary optimisation, tree searches and machine learning, including deep learning
and reinforcement learning, as the key technologies and drivers for current and future research in the field
of spacecraft guidance and control.

Autonomous Vehicles (AV) are expected to bring considerable benefits to society, such as traffic opti-
mization and accidents reduction. They rely heavily on advances in many Al approaches and techniques.
[NVM™19] presents a systematic literature review about the impact of AT on autonomous vehicle safety.

Joseph Sifakis et al.[DHS20] propose that developing trustworthy autonomous systems requires address-
ing fundamental issues that have not been dealt with adequately by present research or industrial experience.
Three main challenges are presented: 1) how to specify autonomous system behavior in the face of unpre-
dictability, and behavioral specification is needed in virtually all stages and activities of the development
process: requirements, design, simulation, testing, verification, and validation; 2) how to carry out faithful
analysis of system behavior with respect to rich environments that include humans, physical artifacts, and
other systems, it includes simulation, testing, formal verification, and system validation against the tacit
needs of the stakeholders; and 3) how to build such systems by combining executable modeling techniques
from software engineering with artificial intelligence and machine learning, for instance, combining “model-
based” and “data-driven” approaches.

There is a growing body of research on the verification and testing of Al-based safety-critical autonomous
systems. For instance, [AAHRI16] presents the formal verification of safety-critical autonomous systems in
dynamic environments. The authors adopt a two phase process which combines static verification methods
(with UPPAAL), used at design time, with dynamic ones, used at run time (using monitors). Lionel Briand
et al. [HSNB20] compare offline and online testing of deep neural networks used in an autonomous car.
Offline testing where DNNs are tested as individual units based on test data-sets obtained independently
from the DNNs under test, and online testing where DNNs are embedded into a specific application and
tested in a close-loop mode in interaction with the application environment.

Compared with the existing work, this paper mainly focuses on the architecture modeling of safety-critical
autonomous systems with SysML, based on the natural language requirements.

9.2. Requirements Engineering for Al-based Systems

There is not much work on Requirements Engineering (RE) for Al-based systems.

[[Y19] shows how practitioners currently perceive the difficulties and their causes in the engineering of
ML-based systems. The authors report that RE was listed as the most difficult activity for the development
of machine learning systems.
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[Hor19] states that much recent attention has been paid to certain qualities of machine learning solutions,
particularly the non-functional requirements such as fairness, transparency, privacy, security, and testability.

Andreas Vogelsang et al. [VB19] describe the characteristics and challenges unique to RE for ML-based
systems. They conclude that development of ML systems demands requirements engineers to: (1) understand
ML performance measures to state good functional requirements, (2) be aware of new quality requirements
such as explainability, freedom from discrimination, or specific legal requirements, and (3) integrate ML
specifics in the RE process.

[LFCL16] explores the steps that healthcare organizations may take to elicit data analytics requirements,
to specify functional requirements for using data to improve business and clinical outcomes, to improve
service quality while reducing costs.

However, the existing works have not considered ML-specific requirements when ML is deployed in a
safety-critical context. Moreover, we envision that systems in safety-critical application are unlikely to be
pure ML systems. Therefore, it needs to consider the requirements of both conventional components and
ML components.

9.3. Aul for Natural Language Requirement Modeling
9.8.1. Al for Requirement Engineering

There are several work on how to use AI/ML to improve RE tasks such as requirement prioritization,
categorization, domain models extraction, etc.

[PSA13] presents a machine learning approach to software requirements prioritization. Deciding which,
among a set of requirements, are to be considered first and in which order is a strategic process in software
development. This task is commonly referred to as requirements prioritization. The authors describe a re-
quirements prioritization method called Case-Based Ranking (CBRank), which combines project’s stakehold-
ers preferences with requirements ordering approximations computed through machine learning techniques,
bringing promising advantages.

[WV16] proposes an approach for automatic classification of requirements based on convolutional neural
networks. Besides the actual requirements, these documents contain additional content such as explanations,
summaries, and figures. It is important to be able to differentiate between legally relevant requirements
and other auxiliary content. The authors present an approach to automatically classify content elements of
a natural language requirements specification as “requirement” or “information (auxiliary content)”. They
also do evaluation on a real-world automotive requirements specification.

Lionel Briand et al [ASNB19] proposed an active learning approach for improving the accuracy of auto-
mated domain model extraction. The objective of this article is to develop automated assistance for filtering
the superfluous information extracted by NLP during domain model extraction. The authors devise an
active-learning-based approach that iteratively learns from analysts’ feedback over the relevance and super-
fluousness of the extracted domain model elements and uses the feedback to provide recommendations for
filtering superfluous elements.

9.3.2. Restricted Natural Language Requirement Modeling

Restricted natural language requirement templates serve as a simple and yet effective approach for increasing
the quality of requirements by avoiding complex structures, ambiguity, and inconsistency in requirements
[ASBZ15].

Tao Yue et al. proposed Restricted Use Case Modeling (RUCM)[YBL15][YBL13] to reduce ambiguity and
facilitate the automated analysis of use case models. RUCM is composed of a set of well-defined restriction
rules and a modified use case template. The goal is two-fold: (1) restrict the way users can document use
case models in order to reduce ambiguity and (2) facilitate the manual derivation of initial analysis models
which, when using the Unified Modeling Language (UML), are typically composed of class diagrams, sequence
diagrams, and possibly other types of diagrams.

EARS (Easy Approach to Requirement Syntax) [MWHNOQ9] specifies requirements with five sentence
templates to improve the quality of requirements. A small set of structural rules was developed to address
eight common requirement problems including ambiguity, complexity and vagueness. The ruleset allows all
natural language requirements to be expressed in one of five simple templates. Moreover, the ruleset was
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applied whilst extracting aerospace engine control system requirements from an airworthiness regulation
document.

[WLZ*10] presents a formal modeling approach SPARDL(Spacecraft Requirement Description Language)
as a concise and precise way to specify embedded systems, which can improve the quality of embedded systems
in aerospace.

Compared with existing work, this paper provides a first contribution towards a restricted natural lan-
guage requirement modeling for SysML, augmented with AI, that is Aul for restricted natural language
requirement modeling approach.

10. Conclusion and Future Work

This paper made a first step towards exploring the architecture modeling of Al-based safety-critical au-
tonomous systems, based on natural language requirements. Firstly, Augmented Intelligence for restricted
natural language requirement modeling is proposed. In that, several Al technologies such as natural language
processing and clustering are used to recommend candidate terms to the glossary. The glossary (including
data dictionary and domain glossary) is used in the restricted natural language requirement template RNL-
Req, which is equipped with a set of restriction rules and templates to structure and restrict the way how
users document requirements. Secondly, in order to support the description of the specific requirement types
of safety-critical autonomous systems, an extension of SysML is given, and then automatic generation SysML
architecture models from requirements specified with RNLReq is presented. Thirdly, the prototype tools for
both RNLReq and RNLReq2SysML are implemented based on Papyrus. Finally, an industrial Autonomous
Guidance, Navigation and Control (AGNC) as case study for the proposed approach has been carried out
and it provides some positive feedback and lessons.

In the future, we would like to consider more new Al technologies such DNN in our Aul method. In
addition, as mentioned before, Al is already beginning to impact various system engineering aspects. These
include safety analysis, requirement engineering, systems modeling, verification, process management, search
and information retrieval, dynamic context management, and human-system integration. Therefore, we would
like to explore Aul in other phases of system engineering, such as RNL template recommendation, safety
analysis, formal verification, and so on. As safety-critical autonomous systems are often resource-constrained,
we are currently working on the compositional verification on the SysML models to evaluate the trade-off
between objectives such as performance, resource consumption, failure tolerance rate so as to determine the
optimal solutions.
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A. PLAIN-TEXT INSTRUCTIONS FOR AUTO-GENERATED SYSML
MODELS

The following is the plain-text instructions which have the same process and effect as the automated tool
implementation. A system engineer can read these low-level, detailed instructions and build the model
manually.
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Algorithm 7 Plain-Text Instructions for Auto-generated SysML Model

Input: SystemTemplate AO, SubSystemTemplate Aiin A, i=1,2,3...
Output: BDD

W=

=~

Add a Block BA named AO.

Add a Block Bi named Ai.

Add a part property PPi named Ai to the Block BA.
: Apply the Bi classifier to the part property PPi.

Input Nonfunctional Requirement sentences in Ai in Table 14

5:

Query DataWord DW in DataDictionary with <property> in Ai’s sentences, i=0,1,2,3..

6: Add a value type VT named DW.

10:
11:
12:
13:
14:

Add a part property named DW'’s struct.

Add a value type VT2 for DW’s struct.

Apply the unit named DW’s unit to the value type VT.

Repeat Step 5 for all structs in DW.

Add a value property VPi named <property> to Block Bi

Apply a value type VT to VPi.

If Ai contains NFR requirement, generate OCL expressions, add the ConstraintRequirement CBi.
Link the ConstraintRequirement CBi to Block Bi.

Input: SystemTemplate/SubSystemTemplate Ai in A, i=0,1,2,3...
Output: IBDs

15:
16:
17:
18:

19:

Traverse Ai and find input/output with corresponding output/input, and add the pair into the port-
PairList.

For each Ai, add an IBD ibd and link ibd to Bi

For each pair PR in portPairList, find the part property ppA and ppB in block Bi.

Add a flow port portA on ppA with input data info, add a flow port portB on ppB with output data
info.

Add a connector started with portA and ended with portB

Input: FunctionRequirement FRi in Aiin A, i=0,1,2,3..
Output: ACTs

20:
21:
22:
23:
24:
25:

26:

27:
28:
29:
30:
31:
32:
33:

34:

35:

36:
37:

Add a activity ACi named Ai.

Get sentenceList STList in FunctionRequirement FRi.

Add a InitialNode inode and FinalNode fnode into ACi,

Record inode and fnode as the entry point enNode and exit point exNode

Traverse STList in DFS, for each sentence ST

If ST is simple, add Node tNode with corresponding type into ACi, put tNode between enNode and
exNode

If ST is Call, tNode is typed by CallBehaviorAction. IF ST call shared function SF, apply the classifier
of SF’s activity to tNode.

If ST is Send, tNode is typed by SendSignalAction

If ST is Receive, tNode is typed by AcceptEventAction

If ST has deadline,wcet, add the ConstraintRequirement to tNode.

If ST has rate, apply Rate stereotype to edge of tNode.

If ST has probability constraint, apply Probability stereotype to edge of tNode.

If ST is complex, record the new entry point enNode and exit point exNode before processing ST

If ST isMadeUpOf EventCondition+SentenceB, add AcceptEventAction acaNode after enNode into ACi,
assign aeaNode to enNode

If ST isMadeUpOf ValueCondition+SentenceB, add DecisionNode dNode after enNode into ACi, and
MergeNode mNode before exNode into ACi, assign dNode to enNode, assign mNode to exNode

If ST isMadeUpOf ConcurrentSentence+SentenceB, add ForkNode fkNode after enNode into ACi, and
jnNode mNode before exNode into ACi, assign fkNode to enNode, assign jnNode to exNode

assign SentenceB to ST, repeat Step 10-12d

Make ACi be owner of all nodes in 10-14




