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THE EQUIVARIANT COMPLEXITY OF MULTIPLICATION IN FINITE FIELD
EXTENSIONS

JEAN-MARC COUVEIGNES AND TONY EZOME

ABSTRACT. We study the complexity of multiplication of two elements in a finite field extension
given by their coordinates in a normal basis. We show how to control this complexity using the
arithmetic and geometry of algebraic curves.
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1. INTRODUCTION

Let K be a finite field of cardinality q. Let L/K be a finite field extension of degree n. Given a
normal K-basis B of L we can represent elements in L by their coordinates in B. Exponentiation
by q then corresponds to a cyclic shift of coordinates and can be computed at almost no cost. It is
a natural concern in this context to bound the computational complexity of computing the product
of two elements of L given by their coordinates in B. There is a rich litterature about constructing
normal bases where the cost of multiplication is as small as possible. See [10] for a survey. In
this work we define and study the symmetric equivariant complexity νsymq (n) of multiplication
in the finite field extension L/K. This is the Galois equivariant counterpart to the symmetric
bilinear complexity µsymq (n). It is the size of the smallest decomposition of the multiplication
tensor as a sum of pure equivariant tensors. This is an invariant of the field extension L/K in the
sense that it only depends on q and n. While the symmetric bilinear complexity µsymq (n) partially
controls the cost of multiplication in L (it only accounts for bilinear operations), in contrast, the
symmetric equivariant complexity νsymq (n) provides an asymptotic estimate for the total cost
of multiplication in any normal basis: the linear part of the calculation consists of 3νsymq (n)
convolution products, each of them beeing computed at the expense ofO(n log(n)∣ log(log(n))∣)
operations in K. We are interested in proving upper bounds for νsymq (n). For example we
prove that νsymq (n) is bounded by a constant times ⌈logq n⌉ in full generality. This implies that
multiplication in any normal basis requires no more than n(logn)2+o(1) operations in K. We also
provide methods to bound νsymq (n) for given q and n.

Section 2 is a quick tour of various definitions of complexity in the context of multiplication in
finite field extensions. In Section 3 we recall the elementary properties of the algebraic complex-
ity of a bilinear map. We introduce in Section 4 the equivariant complexity of a C-equivariant
bilinear map, where C is a given finite group. We prove in Section 5 an inequality between the
equivariant complexity of a C-equivariant bilinear map and the bilinear complexity of its coor-
dinates. Sections 6 and 7 recall classical results about the bilinear complexity of multiplication
in finite field extensions and truncated power series algebras. The Galois equivariant complexity
of multiplication in finite field extensions is introduced in Section 8. A useful generalization to
semi-simple algebras is introduced in Section 9. The effect of extension and restriction of scalars
on (equivariant) complexities is studied in Sections 10 and 11. We present in Section 12, 13, and
14 a general geometric recipe to bound from above the Galois equivariant complexity of multi-
plication in a finite extension L/K of finite fields. We first construct a cyclic cover ρ ∶ Y → X
between two K-curves, then realise L/K as the residual algebra of the fiber of ρ above some
rational point on X . Evaluation and interpolation on Y naturally produce K[C]-linear maps. In
the special case when X and Y are elliptic curves our construction generalizes the one presented
in [8]. The Chudnovsky’s method [7, 17, 2, 6, 13] to bound µsymq (n) relies on the existence of
families of curves having an increasing number of rational points while the genus is bounded by
a constant times the number of points. Our construction requires Jacobians of smallest possible
dimension having a point of given order. In Sections 15 and 16 we enhance the specific case
when Y and X both have genus one. Although this special case is not optimal (because we lack
rational points on elliptic curves when q is small compared to n) we have enough control on the
group of points on an elliptic curve to prove a satisfactory asympotic statement, using the general
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properties of equivariant complexity established in Sections 5, 8, 11. In Section 17 we explain
how to better bound νsymq (n) for given q and n using the construction of Section 12. We exper-
iment with three examples in Sections 18, 19, 20. These examples illustrate how the knowledge
of special linear series on low genus curves helps bounding νsymq (n) at a minimal computational
cost. We conclude in Section 21 with remarks and questions.

This study has been carried out with financial support from the French State, managed by
CNRS in the frame of the Dispositif de Soutien aux Collaborations avec l’Afrique subsahari-
enne and by the French National Research Agency (ANR) in the frame of the Programmes
CIAO (ANR-19-CE48-0008), FLAIR (ANR-17-CE40-0012 ANR-10-IDEX-03-02) and CLap-
CLap (ANR-18-CE40-0026), and by the Simons foundation.

Experiments presented in this paper were carried out using the PlaFRIM experimental testbed,
supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Con-
seil Régional d’Aquitaine (see https://www.plafrim.fr/).

We thank the referee for his useful comments.

2. VARIOUS COMPLEXITIES

There are several notions of complexity in the context of multiplication in a degree n extension
L/K of finite fields. We assume that we are given a basis B and the coordinates of the two
operands in B. The output consists of the coordinates of the product in the basis B.

In the computational model of straight line programs, one may count all arithmetic operations
in K : additions, subtractions, multiplications. Another option is to omit additions, subtractions,
and multiplications by a constant in K. One then only counts multiplications of two registers.
This can be justified if the number of additions, subtractions and multiplications by a constant,
is of the same order of magnitude as the number of multiplications.

In a more algebraic setting one may count the non-zero coordinates of the multiplication tensor
in the basis B̂ ⊗ B̂ ⊗ B. When B is a normal basis, this number can be written n × CB where
CB is an integer often called the complexity of the normal basis B. It was shown by Mullin,
Onyszchuk, Vanstone and Wilson [12] that CB is at least 2n−1. This means that if we only allow
products between the coordinates of the inputs (no intermediate result) the number of arithmetic
operations is at least quadratic in n, and most of the time even cubic. This is a rather pessimistic
model that is well adapted to low capacity computing devices.

A more intrinsic algebraic approach is to define the bilinear complexity of multiplication in
L/K as the rank r of the multiplication tensor. The rank is independent of the basis. Given a
decomposition of the multiplication tensor as a sum of r pure tensors, we can compute products
at the expense of r multiplications between two registers, 3rn multiplications by a constant, and
3r(n − 1) additions. According to Chudnovsky and Chudnovsky, r is bounded by a constant
times n. But this says little about the cost of the linear part of the algorithm, since the bound 3rn
is quadratic in n.

We define in Sections 4 and 8 the equivariant algebraic complexity of multiplication in L/K.
The underlying idea is to stick to the intrinsic algebraic approach but restrict the linear part of
the algorithm to Galois equivariant linear forms : convolution products in the algebra of the

https://www.plafrim.fr/
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Galois group. Respecting the symmetries of the problem is a natural restriction in view of the
importance of convolution products in fast arithmetic. See [11, 19, 9].

3. ALGEBRAIC COMPLEXITY OF A BILINEAR MAP

We recall standard definitions about complexity of bilinear maps. A complete introduction
can be found in [4][Chapter 14]. Let K be a commutative field. Let V and W be two finite
dimensional K-vector spaces. Let

t ∶ V × V →W

be a K-bilinear map. We let V̂ be the dual of V . For φ1, φ2 in V̂ and w in W we define the
bilinear map

πw,φ1,φ2 ∶ V × V // W

(v1, v2) � // φ1(v1)φ2(v2)w
and we say that πw,φ1,φ2 is a pure bilinear map.

If φ1 = φ2 = φ we write πw,φ for πw,φ,φ and call πw,φ a pure symmetric bilinear map. For t
a K-bilinear map we define the bilinear complexity RK(t) of t to be the smallest integer such
that t is the sum of RK(t) pure bilinear maps. In case t is symmetric we define the symmetric
complexity SK(t) of t to be the smallest integer such that t is the sum of SK(t) pure symmetric
bilinear maps. Equivalently SK(t) is the smallest integer k such that there exist two K-linear
maps

⊺ ∶ V →Kk and � ∶ Kk →W

such that
t(l1, l2) = �(⊺(l1) ●k ⊺(l2))

where the ●k between ⊺(l1) and ⊺(l2) stands for the componentwise product in Kk.
The vector space of bilinear maps has a basis consisting of pure bilinear maps. So any bilinear

map t ∶ V × V →W has complexity

RK(t) ⩽ dimW × (dimV )2.

The vector space of symmetric bilinear maps has a basis consisting of dimV × dimW pure
symmetric bilinear maps and dimV × (dimV − 1)/2 × dimW maps of the form

πw,φ1,φ2 + πw,φ2,φ1 = πw,φ1+φ2 − πw,φ1 − πw,φ2 .

So any symmetric bilinear map t ∶ V × V →W has symmetric complexity

SK(t) ⩽ dimW × (dimV ) × (3 dimV − 1)/2.

If t1 ∶ V1 × V1 → W1 and t2 ∶ V2 × V2 → W2 are two symmetric K-bilinear map, we say that
t2 is a restriction of t1 if there exist two K-linear maps ⊺ ∶ V2 → V1 and � ∶W1 →W2 such that
t2 = � ○ t1 ○ (⊺ × ⊺). It follows that SK(t2) ⩽ SK(t1). In case the maps ⊺ and � are bijective we
say that t1 and t2 are isomorphic.
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4. EQUIVARIANT ALGEBRAIC COMPLEXITY

Let C be a finite group of order n. Let K be a commutative field. Let K[C] be the group
algebra. We denote

⋆ ∶ K[C] ×K[C] // K[C]

(∑
c∈C

ac.c,∑
c∈C

bc.c) � // ∑
c∈C

∑
c1,c2 ∈C
c1c2=c

(ac1bc2).c

the (convolution) product in K[C]. Considering the coefficients (ac)c∈C in ∑c∈C ac.c as a map
a ∶ C →K we obtain a natural isomorphism of K-vector spaces

K[C] // Hom(C,K)
∑c∈C ac.c � // (c↦ ac).

between the group algebra K[C] and the algebra Hom(C,K) of maps from C to K. Through
this identification the group algebra inherits a componentwise product

◇ ∶ K[C] ×K[C] // K[C]
(∑c∈C ac.c,∑c∈C bc.c) � // ∑c∈C(acbc).c

For any positive integer k we denote ◇k the map

◇k ∶ (K[C])k × (K[C])k // (K[C])k

((ai)1⩽i⩽k, (bi)1⩽i⩽k) � // (ai ◇ bi)1⩽i⩽k

If L and M are two finitely generated left K[C]-modules, we say that a K-bilinear map

t ∶ L ×L→M

is a C-equivariant bilinear map if

t(c ⋅ l1, c ⋅ l2) = c ⋅ t(l1, l2)
for any l1, l2 in L and c in C. If α1 and α2 are two K[C]-linear maps from L to K[C], and if m
is a vector in M , we define the C-equivariant K-bilinear map

γm,α1,α2 ∶ L ×L // M

(l1, l2) � // (α1(l1) ◇ α2(l2)).m

We say that γm,α1,α2 is a pure C-equivariant K-bilinear map. If α1 = α2 = α we write γm,α for
γm,α,α and call γm,α a pure symmetric C-equivariant K-bilinear map. For t a C-equivariant
K-bilinear map we define the equivariant complexity of t to be the smallest integer RK,C(t)
such that t is the sum of RK,C(t) pure C-equivariant maps. In case t is symmetric we define the
symmetric equivariant complexity of t to be the smallest integer SK,C(t) such that t is the sum
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of SK,C(t) pure symmetric C-equivariant K-bilinear maps. Equivalently SK,C(t) is the smallest
integer k such that there exist two K[C]-linear maps

⊺ ∶ L→ (K[C])k and � ∶ (K[C])k →M

such that
t(l1, l2) = �(⊺(l1) ◇k ⊺(l2)).

If t1 ∶ L1 × L1 → M1 and t2 ∶ L2 × L2 → M2 are two symmetric K-bilinear C-equivariant
maps, we say that t2 is a restriction of t1 if there exist two K[C]-linear maps ⊺ ∶ L2 → L1 and
� ∶M1 →M2 such that t2 = �○ t1 ○(⊺×⊺). It follows that SK,C(t2) ⩽ SK,C(t1). In case the maps
⊺ and � are bijective we say that t1 and t2 are isomorphic.

5. GENERAL UPPER BOUNDS

Let C be a finite group of order n. Let e be the identity element in C. Let M be a left
K[C]-module. We let

M̂ = HomK(M,K)
be the dual of M as a K-vector space. Let

M̌ = HomK[C](M,K[C])

be the dual of M as a K[C]-module. For any φ in M̌ and m in M we write

φ(m) = ∑
c∈C

φc(m).c

and thus define n coordinate forms (φc)c∈C in M̂ . We check that

φc(m) = φe(c−1.m)
so the K-linear map

M̌ // M̂

φ � // φe

is an isomorphism of K-vector spaces. For every ψ in M̂ we write ψC for the corresponding
element in M̌ . So

ψC(m) = ∑
c ∈C

ψ(c−1.m)c.

We now let L and M be two finitely generated K[C]-module. We assume that M is free. So
there exists a K-vector space W such that

M = ⊕
c ∈C

c.W

as a K-vector space. Let t ∶ L × L → M be a C-equivariant K-bilinear map. There are n maps
(tc)c ∈C such that tc ∶ L ×L→W is K-bilinear for every c in C and for x and y in L we have

t(x, y) = ∑
c ∈C

c.tc(x, y).
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We check that
tc(x, y) = te(c−1.x, c−1.y)

for every c ∈ C and x, y in L. The map

BilC(L,M) // BilK(L,W )
t � // te

is thus an isomorphism between the K-vector space BilC(L,M) of C-equivariant K-bilinear
maps from L × L to M , and the space BilK(L,W ) of K-bilinear maps from L × L to W . For
every u in BilK(L,W ) we write uC the corresponding map in BilC(L,M). So

uC(x, y) = ∑
c ∈C

c.u(c−1.x, c−1.y).

Let α1 and α2 in Ľ. Let (α1,c)c∈C be the n forms in L̂ such that

α1(l) = ∑
c ∈C

α1,c(l).c

for every l in L. We similarly define n forms (α2,c)c∈C in L̂. Let w ∈W and let t = γw,α1,α2 . Then
for l1 and l2 in L we have

t(l1, l2) = (α1(l1) ◇ α2(l2)) .w = ∑
c∈C

α1,c(l1)α2,c(l2)c.w.

We deduce
te(l1, l2) = α1,e(l1)α2,e(l2)w so te = πw,α1,e,α2,e .

Equivalently, if β1 and β2 are in L̂ and w is in W we have

πCw,β1,β2
= γw,βC

1 ,β
C
2
.

We deduce that if L and M are K[C]-modules with M free, and if t ∶ L × L → M is a C-
equivariant bilinear map, then every decomposition of te as a sum of k pure K-bilinear maps
results in a decomposition of t as a sum of k pure C-equivariant K-bilinear maps. So

RK,C(t) ⩽ RK(te) ⩽ rank(M) × (dimK(L))2.

And in case t is symmetric

(1) SK,C(t) ⩽ SK(te) ⩽ rank(M) × dimK(L) × (3 dimK(L) − 1)/2.

6. THE COMPLEXITY OF MULTIPLICATION IN FINITE FIELDS

Let K be a finite field with q elements and let L be a degree n ⩾ 1 field extension of K. The
multiplication map ×L ∶ L×L→ L is K-bilinear and symmetric. Its bilinear complexity RK(×L)
is usually denoted µq(n) and its symmetric bilinear complexity SK(×L) is denoted µsymq (n). It
is known that µsymq (n) ⩾ 2n − 1. See [13, Lemma 1.9.] for example. Lagrange interpolation
shows that µsymq (n) = 2n − 1 when q ⩾ 2n − 2. Chudnovsky and Chudnovsky have proved [7]
linear upper bounds for these bilinear complexities using interpolation on algebraic curves. Their
method has been extensively studied and improved, notably by Shparlinski, Tsfasmann, Vladut
[17], Shokrollahi [16], Ballet and Rolland [2, 3], Chaumine [6], Randriambololona [13] and



8 JEAN-MARC COUVEIGNES AND TONY EZOME

others, achieving sharper and sharper upper bounds for the bilinear complexity of multiplication
in finite extensions of finite fields. See [1] for a recent survey. We will use the following theorem.

Theorem 1 (Chudnovsky (1987), Shparlinski, Tsfasmann and Vladut (1992), Ballet (1999)).
There exists an effective absolute constant Q such that µsymq (n) ⩽ Qn for all n ⩾ 1 and all prime
power q.

7. THE ALGEBRA K[x]/xn

Let K be a field with q elements. Let n ⩾ 1 be an integer. Let L be a degree 2n − 1 field
extension of K. Let K[x]n−1 be the K-vector space of polynomials with degree ⩽ n − 1. The
multiplication map K[x]n−1 × K[x]n−1 → K[x]2n−2 is a restriction of the multiplication map
L × L → L. And the multiplication map K[x]/xn × K[x]/xn → K[x]/xn is a restriction of
K[x]n−1 ×K[x]n−1 → K[x]2n−2. So the symmetric bilinear complexity of multiplication in the
quotient K[x]/xn is bounded from above by µsymq (2n − 1). So

(2) SK(× ∶ K[x]/xn ×K[x]/xn →K[x]/xn) ⩽ Qn
for some effective absolute constant Q.

In case q ⩾ 2n − 2, Lagrange interpolation shows that the symmetric bilinear complexity of
K[x]n−1 ×K[x]n−1 → K[x]2n−2 is ⩽ 2n − 1. So the symmetric bilinear complexity of multipli-
cation in K[x]/xn is ⩽ 2n − 1 in that case. In the other direction, Winograd has proved in [20]
that this complexity is always ⩾ 2n − 1. More precise, more general and stronger statements can
be found in [4, 2, 13] and [1, Section 2].

8. THE EQUIVARIANT COMPLEXITY OF MULTIPLICATION IN FINITE FIELDS

Let K be a finite field with q elements and let L be a degree n ⩾ 1 field extension of K. Let C
be the Galois group of L/K. Then L is a free K[C]-module of rank one. We denote

×K,n ∶ L ×L→ L
the multiplication map in L. This is a C-equivariant K-bilinear map. We define νq(n) to be the
C-equivariant complexity of ×K,n over K. We similarly define νsymq (n) to be the C-equivariant
symmetric complexity of ×K,n over K.

The equivariant complexity νsymq (n) controls the computational difficulty of multiplying two
elements in L given by their coordinates in a normal basis. Indeed assume that νsymq (n) = σ.
There exist two K[C]-linear maps

⊺ ∶ L→ (K[C])σ and � ∶ (K[C])σ → L
such that

(3) l1 × l2 = �(⊺(l1) ◇σ ⊺(l2))
for any l1, l2 in L. We note that ⊺ is a linear map between two free K[C]-modules of respective
ranks 1 and σ. Once chosen a basis of L we can describe ⊺ by a σ × 1 matrix with coefficients in
K[C]. Giving a basis of L as a K[C]-module boils down to choosing a normal basis of L/K.
Similarly � can be described by a 1 × σ matrix with coefficients in K[C]. So using Equation (3)
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we compute the product of two elements in L given by their coordinates in a given normal basis
in three steps:

1. Apply ⊺ to each element.
2. Multiply the two elements thus obtained in K[C]σ using the ◇σ law.
3. Apply � to the result.

The first step requires twice σ multiplications in K[C]. We note that multiplication in K[C]
is the standard convolution product. The second step is a ◇σ product between two vectors in
K[C]σ. The third step requires σ multiplications in K[C]. The only bilinear step is the second
one. All the multiplications in the first and third steps involve a variable and a constant. The total
cost (omitting additions) is 3σ convolution products between vectors of length n and σn multi-
plications in K. According to work by Schönhage and Strassen [14] and Cantor and Kaltofen
[5], convolution products of length n ⩾ 2 over an arbitrary commutative ring can be computed at
the expense of O(n log(n)∣ log(log(n))∣) operations in this ring. See also [19, Theorem 8.23].
Note in particular that it is not necessary to have n-th roots of unity in the base ring in order to
compute convolution products efficiently.

9. SEMI-SIMPLE ALGEBRAS OVER FINITE FIELDS

Let K be a finite field with q elements. Let n1 ⩾ 1 be an integer. Let L be a degree n1 extension
of K. Let Fq ∶ L → L be the Frobenius automorphism of L/K. Let n2 ⩾ 1 be an integer. Set
M = Ln2 . This is a semisimple K-algebra of degree n = n1n2. We define an automorphism of
M over K by sending (x0, x1, . . . , xn2−1) onto (x1, x2, . . . , xn2−1, Fq(x0)). We call C the group
generated by this automorphism. This is a cyclic group of order n. And M is a free K[C]-
module of rank 1. We let

×K,n1,n2 ∶ M ×M→M

be the multiplication map in M. This is a symmetric C-equivariant K-bilinear map. We denote
νsymq (n1, n2) its symmetric equivariant complexity.

10. EXTENSION OF SCALARS I

Let K be a commutative field. Let V and W be two finite dimensional K-vector spaces. Let
t ∶ V ×V →W be a symmetric K-bilinear map. Let SK(t) be the symmetric bilinear complexity
of t. Let L be a finite field extension of K. We set VL = V ⊗K L, WL = W ⊗K L, tL = t ⊗K L.
Let SL(tL) be the symmetric bilinear complexity of tL as an L-bilinear map. We have

(4) SL(tL) ⩽ SK(t).

We denote by SK(×L) the symmetric K-bilinear complexity of ×L ∶ L × L → L, the multipli-
cation map in L seen as a K-bilinear map. According to [13, Lemma 1.10]

(5) SK(t) ⩽ SL(tL) × SK(×L).
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11. EXTENSION OF SCALARS II

We now study the effect of extension of scalars on equivariant bilinear maps. The main mo-
tivation for extending scalars is to increase the number of rational points in the context of the
geometric methods presented in Section 12. Let C be a finite group of order n. Let K be a
commutative field. Let L and M be two finitely generated K[C]-modules. Let t ∶ L × L → M
be a symmetric C-equivariant K-bilinear form. We denote SK,C(t) the symmetric equivariant
complexity of t.

Let L be a finite field extension of K. We set LL = L⊗K L, ML =M ⊗K L, tL = t⊗K L. We
call SL,C(tL) the symmetric equivariant complexity of tL. We have

(6) SL,C(tL) ⩽ SK,C(t).
Let SK(×L) be the symmetric bilinear complexity of ×L ∶ L × L → L, as a K-bilinear map.

Then

(7) SK,C(t) ⩽ SL,C(tL) × SK(×L).
Assume K is a finite field with q elements. Let L be a degree n field extension of K. Let C

be the Galois group of L/K. The multiplication ×K,n ∶ L × L → L is K-bilinear symmetric and
C-equivariant. Let K′ be a degree m field extension of K. We tensor product the multiplication
×K,n by K′ over K. The resulting C-equivariant K′-bilinear map is isomorphic to ×K′,n1,n2 as
defined in Section 9, with

n2 = gcd(n,m) and n1 = n/n2.

Equations 6 and 7 thus imply
νsymqm (n1, n2) ⩽ νsymq (n)

and

(8) νsymq (n) ⩽ νsymqm (n1, n2) × µsymq (m).

12. A GEOMETRIC CONSTRUCTION

Let K be a finite field with q elements. We call p the characteristic of K. Let Y be a smooth
absolutely integral projective curve over K. Let C be a cyclic group of K-automorphisms of Y .
We call n the cardinality of C. We assume that n ⩾ 2 and p does not divide n. We call X the
quotient Y /C. This is a smooth absolutely integral projective curve over K. We call ρ ∶ Y → X
the quotient map. Let r be an effective divisor on Y . We assume that r and c.r are disjoint for
every c in C. We set

R = ∑
c∈C

c.r

and call K[R] the residue ring at R. We identify the ring K[r] with the subring of K[R]
consisting of functions vanishing at c.r for every c in C different from e. As a K-vector space

K[R] =⊕
c∈C

c.K[r].

So K[R] is a free K[C]-module. The multiplication map K[r]×K[r] →K[r] is K-bilinear and
symmetric. We denote σ its symmetric bilinear complexity. According to Equation (1) this is an
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upper bound for the C-equivariant symmetric complexity of K[R] × K[R] → K[R]. So there
exist two K[C]-linear maps

⊺ ∶ K[R] →K[C]σ and � ∶ K[C]σ →K[R]
such that

l1 × l2 = �(⊺(l1) ◇σ ⊺(l2))
for l1, l2 ∈ K[R].

We denote X(K) the set of K-points on X . Let a ∈ X(K) such that ρ is not ramified above
a. Let n1 be the inertial degree of ρ at a. Let n2 = n/n1. The fiber B = ρ−1(a) is a reduced
K-scheme consisting of n2 irreducible components, each of degree n1 above a. We call M the
residue ring K[B] of B. This is a free K[C]-module of rank 1. As a K-bilinear symmetric
C-equivariant map, the multiplication map in M is isomorphic to the map ×K,n1,n2 introduced in
Section 9. Its symmetric equivariant complexity is thus νsymq (n1, n2).

Let D be a divisor on X/K. We call E = ρ−1(D) the pullback of D on Y . Let ε be a local
equation of D in a neighborhood of a and ρ(R). Seen as a function on Y this is a local equation
of E in a neighborhood of B and R. Let

eB ∶ H0(Y,OY (E)) // M
f � // (f × ε) mod B

be the evaluation map at B. We similarly define

e2
B ∶ H0(Y,OY (2E)) // M

f � // (f × ε2) mod B

These maps are morphisms of K[C]-modules. For f1 and f2 in H0(Y,OY (E)) we have

e2
B(f1 × f2) = eB(f1) × eB(f2).

We assume that eB is surjective. Since p does not divide n, the ring K[C] is semi-simple. So the
kernel of eB is a direct factor. We deduce that eB has a right inverse

e⋆B ∶ M→H0(Y,OY (E))
which is K[C]-linear. Let

eR ∶ H0(Y,OY (E)) // K[R]
f � // (f × ε) mod R

and
e2
R ∶ H0(Y,OY (2E)) // K[R]

f � // (f × ε2) mod R
be the evaluation maps at R. These are K[C]-linear maps. We assume that e2

R is injective.
Since the ring K[C] is semi-simple, the image of e2

R is a direct factor of K[R]. We deduce the
existence of a left inverse

e⋆R ∶ K[R] →H0(Y,OY (2E))
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to the evaluation map e2
R. Let s1 and s2 be two funtions in H0(Y,OY (E)), representing the two

elements
eB(s1) = (s1 × ε) mod B and eB(s2) = (s2 × ε) mod B

in M. The product s3 = s1s2 belongs to H0(Y,OY (2E)) and

e2
R(s3) = eR(s1) × eR(s2) ∈ K[R].

So
s3 = e⋆R(eR(s1) × eR(s2)) = e⋆R(�(⊺(eR(s1)) ◇σ ⊺(eR(s2))))

and the K-bilinear map

e2
B ○ e⋆R ○ � ○ ◇σ ○ (⊺ × ⊺) ○ (eR × eR) ○ (e⋆B × e⋆B) ∶ M ×M→M

is the multiplication map in M. We observe that

⊺ ○ eR ○ e⋆B ∶ M→K[C]σ

and
e2
B ○ e⋆R ○ � ∶ K[C]σ →M

are K[C]-linear maps. We deduce that

νsymq (n1, n2) ⩽ σ.

13. A GENERAL BOUND

Let K be a finite field with q elements. Let K̄ be an algebraic closure of K. Let n ⩾ 2 be a
prime to q integer. Let n1 and n2 be two positive integers such that n = n1n2. We would like
to instantiate the construction in Section 12 so as to obtain a sharp bound for the equivariant
symmetric complexity νsymq (n1, n2) of multiplication in the degree n algebra over K defined in
Section 9. Field extensions correspond to the case n2 = 1. We let X be a smooth absolutely
integral curve over K such that

(9) X(K) /= ∅.
Let µn be a primitive n-th root of unity in K̄. Let K(µn) be the field generated by µn over K.
We assume that the Jacobian JX has a point

(10) s ∈ JX(K(µn)) of order n, such that Fq(s) = qs
where Fq is the Frobenius of JX/K. A sufficient condition for such an s to exist is that the
characteristic polynomial χ(t) of Fq has a root in Z` congruent to q modulo n, for every prime `
dividing n. This is granted if n divides the cardinality χ(1) of JX(K), and 1 is a simple root of
χ modulo ` for every prime ` dividing n. That is

(11) χ(1) = 0 mod n and gcd(χ′(1), n) = 1
where χ′ is the derivative of the polynomial χ. We look for a curve X with smallest possible
genus satisfying these conditions. Condition (11) cannot hold if n > (1 + √

q)2g. On the other
hand we heuristically expect to find a curve X with genus gX equal to g and satisfying condition
(11) provided

g ≫ logq n.
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Conditions (9) and (10) and Kummer theory imply the existence of a curve Y over K and an
unramified Galois cover ρ ∶ Y → X with cyclic Galois group of order n. We can even force a
K-point on X to split completely in Y . We take a ∈ X(K), B = ρ−1(a), n1, n2, r, R = ∑c∈C c.r,
D, E = ρ−1(D), eB and eR as in Section 12. The condition

(12) eB is surjective and e2
R is injective

is granted if
deg(E −B) > 2gY − 2 and deg(2E −R) < 0

or equivalently
degD ⩾ 2gX and deg r ⩾ 2 degD + 1.

This last condition is easy to check but a bit restrictive. A more delicate sufficient condition
for (12) is

E −B is non-special and dimH0(Y,OY (2E −R)) = 0.
Remind that a divisor D on a curve X of genus gX is said to be non-special if the dimension

of H0(X,OX(D)) is degD − gX + 1. Otherwise D is said to be special. We summarize the
above discussion in the theorem bellow.

Theorem 2. Let K be a finite field with q elements. Let n ⩾ 2 be a prime to q integer. Let
ρ ∶ Y → X be an unramified Galois cover between two smooth absolutely integral curves over
K. We assume that the Galois group C of ρ is cyclic of order n. Let a ∈ X(K). Let n1 be the
inertial degree of ρ at a. Let B = ρ−1(a) be the fiber of ρ above a. Let n2 = n/n1. Let r be an
effective divisor on Y such that r and c.r are disjoint for every c in C. Let R = ∑c∈C c.r. Let D
be a divisor on X/K. Let E = ρ−1(D). We assume that

(13) degD ⩾ 2gX and deg r ⩾ 2 degD + 1.
or

(14) E −B is non-special and dimH0(Y,OY (2E −R)) = 0.
where gX is the genus of X . Then νsymq (n1, n2) ⩽ σ where

σ = SK(× ∶ K[r] ×K[r] →K[r])
is the symmetric bilinear complexity of multiplication in the residue ring of r.

If r is deg r times a point in Y (K), the symmetric bilinear complexity σ of K[r] ≃ K[x]/xdeg r

is linear in the degree of r according to Equation (2). If r is reduced and irreducible then σ is
linear in the degree of r according to Theorem 1. If r is a sum of deg r pairwise distinct K-rational
points then σ = deg r.

14. NON-SPECIAL DIVISORS

In order to verify Condition (14) in Theorem 2, we need a simple criterion for a divisor to be
non-special in this context. Let K be a field with characteristic p. Let n ⩾ 2 be a prime to p
integer. Let K̄ be an algebraic closure of K. Let µn be a primitive n-th root of unity in K̄. Let
X and Y be two smooth absolutely integral curves over K. We call gX the genus of X and gY
the genus of Y . Let ρ ∶ Y →X be a Galois unramified cover with cyclic Galois group C of order



14 JEAN-MARC COUVEIGNES AND TONY EZOME

n. Let ρ̂ ∶ JX → JY be the induced map on Jacobian varieties. The kernel of ρ̂ is a finite group
scheme of degree n. There is a pairing

eρ ∶ Ker ρ̂ ×C → µn

where µn is the group scheme of n-th roots of unity. If γ is a divisor class in the kernel of ρ̂ and
c ∈ C, we let Γ be a divisor in γ and G a function on Y with divisor ρ−1(Γ). We set

eρ(γ, c) =
G ○ c
G

.

This is a non-degenerate pairing. As a consequence Ker ρ̂ is isomorphic to µn.
Let D be a divisor on X with degree gX − 1. Let E be the pullback of D on Y . The degree of

E is n(gX −1) = gY −1. If E is special then the K[C]-moduleH0(Y,OY (E)) is non-zero. Since
p is prime to n, there exists an eigenvector ϕ for the action of C on H0(Y,OY (E)) ⊗ K(µn).
Let N be the effective divisor on Y ⊗K(µn) such that the principal divisor (ϕ) is N −E. Then
N is the pullback of an effective divisor M on X ⊗K(µn). And M −D is in the the kernel of ρ̂.

To summarize, if D is a divisor on X with degree gX − 1, then the pullback E = ρ−1(D) has
degree gY − 1. And E is special (its class is effective) if and only if there exists a degree gX − 1
effective divisor M on X ⊗K(µn) such that D −M is in the kernel of ρ̂.

15. ELLIPTIC CURVES

In this section we adapt the general method of Section 12 to the special case of elliptic curves.
The main reason for this restriction is that we have a good control on the group of rational points
on an elliptic curve. Restricting to elliptic curves is not optimal but it enables us to prove such
an asymptotic statement as Theorem 5.

Let K be a finite field with cardinality q and characteristic p. Let n ⩾ 2 be an integer. Let Y
be an elliptic curve over K. We assume that Y has a K-point t of order n. Let C be the group
generated by t. Let X be the quotient of Y by C. Let ρ ∶ Y → X be the quotient isogeny. Let a
in X(K). Let n1 be the inertial degree of ρ at a. Let n2 = n/n1. The fiber B = ρ−1(a) of ρ above
a has n2 irreducible components, each of degree n1 above a. We call M the residue ring K[B]
of B. Let v be a point in X(K). We assume that v − a is not in the kernel of the dual isogeny ρ̂.
We call D the degree 1 divisor on X consisting of the single point v with multiplicity 1. We call
E the divisor ρ−1(D). We let u be a non-zero point in ρ(Y (K)).We assume that u − 2v is not in
the kernel of ρ̂. We let r be the formal sum of one point in the fiber of ρ above u plus one point in
the kernel of ρ. Let R be the closure of r under the action of C. So R is the sum of the two split
fibers of ρ above the origin oX and u. We let ε be a local equation of D in a neighborhood of oX ,
a and u. In this setting the evaluation map eB ∶H0(Y,OY (E)) →M is an isomorphism between
two free K[C]-modules of rank 1. The evaluation map e2

R ∶ H0(Y,OY (2E)) → K[R] is an
isomorphism between two free K[C]-modules of rank 2. The symmetric bilinear complexity of
multiplication in K[r] ∼ K×K is 2. We deduce that νsymq (n1, n2) is bounded by 2. In the special
case when n1 = n ⩾ 2 the residue ring M is a field and νsymq (n1, n2) = νsymq (n). The latter cannot
be equal to 1 then because Kn is not a field. So νsymq (n) = 2 in that case.

Theorem 3. Let K be a field with cardinality q and characteristic p. Let n ⩾ 2 be an integer.
Let Y be an elliptic curve over K having a K-point t of order n. Let X be the quotient of Y
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by the group C generated by t. Let ρ ∶ Y → X be the quotient isogeny. Let a ∈ X(K). Let
n1 be the inertial degree of ρ at a. Let n2 = n/n1. Let u be a non-zero point in ρ(Y (K)). Let
v ∈X(K). We assume that neither v − a nor u − 2v are in the kernel of the dual isogeny ρ̂. Then
νsymq (n1, n2) ⩽ 2. In case n2 = 1 then νsymq (n) = 2.

16. AN ASYMPTOTIC BOUND

Let n ⩾ 2 be an integer. Using Theorem 3 we now prove an asymptotic bound on the equivari-
ant complexity νsymq (n) without any restriction on q or n. We let K be a field with cardinality q
and characteristic p. Let n ⩾ 2 be an integer. We first assume that

(15) n2 ⩽ 2√q
and

(16) q ⩾ 37.
There are two consecutive multiples of n2 in the Hasse interval [q+1−2√q, q+1+2√q]. At least
one of them is not congruent to 1 modulo p. So there exists an elliptic curve Y over K such that
Y (K) is divisible by n2. We deduce that Y has a K-point of order n. Indeed the group Y (K)
is isomorphic to (Z/m1Z) × (Z/m1m2Z) where m1 and m2 are positive integer. And n2 divides
#Y (K) = m2

1m2. So n2 divides (m1m2)2. So n divides m1m2. So Y (K), beeing isomorphic
to (Z/m1Z) × (Z/m1m2Z), has an element t of order n. Let C be the group generated by t.
We call X the quotient of Y by C. Let ρ ∶ Y → X be the quotient isogeny. Let P be a point in
X(K). Let K̄ be an algebraic closure of K. Let Q be any point in Y (K̄) such that ρ(Q) = P .
We set κ(P ) = Fq(Q) −Q where Fq is the Frobenius endomorphism of Y /K. We thus define a
morphism

κ ∶ X(K)/ρ(Y (K)) // Kerρ = C
P � // Fq(Q) −Q

which is easily seen to be a bijection. Let n1 and n2 be two positive integers such that n = n1n2.
There exists at least one point a in X(K) such that κ(a) = n2t. The inertial degree of ρ above
a is n1. We call B = ρ−1(a) the fiber of ρ above a. It has n2 irreducible components, each of
degree n1 above a. We call M the residue ring K[B] of B.

We need a point v inX(K)such that v−a is not in the kernel of ρ̂. There are at least ∣X(K)∣−n
such points. So the existence of v is granted provided

∣X(K)∣ − n ⩾ 1.
The latter inequality follows from Conditions (15) and (16). We also need a non-zero point u in
ρ(Y (K)) such that u − 2v is not in the kernel of ρ̂. There are at least

∣X(K)∣
n

− n − 1

such points. So the existence of u is granted provided

∣X(K)∣
n

− n ⩾ 2.
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The later inequality follows again from Conditions (15) and (16). Applying Theorem 3 we
deduce the following.

Theorem 4. Let q be a prime power and n ⩾ 2 an integer. Let n1 and n2 be two positive integers
such that n = n1n2. If q ⩾ 37 and n ⩽

√
2√q then νsymq (n1, n2) ⩽ 2.

We now can bound νq(n) without any restriction on n and q. We let m be the smallest integer
such that m ⩾ 4 logq n and m ⩾ 6. We set q′ = qm and check that (q′, n) satisfy Conditions
(15) and (16). Using Theorem 4 in conjunction with Equation (8) and Theorem 1 we deduce the
following theorems.

Theorem 5. Let q be a prime power and n ⩾ 2 an integer. Let m be the smallest integer such
that m ⩾ 4 logq n and m ⩾ 6. Then νsymq (n) ⩽ 2 × µsymq (m).

Theorem 6. There exists an absolute constantQ such that the following is true. Let q be a prime
power and n ⩾ 2 an integer. Then νsymq (n) ⩽ Q × ⌈logq n⌉.

The next theorem now follows from Theorem 6 and the existence of an algorithm to compute
products in K[x]/(xn − 1) at the expense of O(n log(n)∣ log(log(n))∣) operations in K. See
[14, 5].

Theorem 7. Let K be a finite field of cardinality q. Let L/K be an extension of degree n ⩾ 2. Let
B be a normal basis of L/K. There exists a straight line program that computes the coordinates
in B of the product of two elements in L given by their coordinates in B at the expense of

⩽ Q × n × ⌈logq(n)⌉ × log(n) × ∣ log(log(n))∣
operations in K where Q is an absolute constant.

Compared to [8, Theorem 4] we save a logn factor on both the running time and the size of
the model. Theorem 7 is also more general since it applies to any normal basis and does not rely
on any ad hoc redundant representation as in [8].

17. BOUNDING νsymq (n)
We explain how to use Theorems 3 and 2 to bound νsymq (n) for given q and n. If we plan to

use an elliptic curve, we look for the smallest integer m such that the Hasse interval

[⌈qm + 1 − 2qm/2⌉, ⌊qm + 1 + 2qm/2⌋]
contains a multiple of n. We then look for an elliptic curve over a field with qm elements satis-
fying the hypotheses of Theorem 3. We pick random curves and compute their cardinality using
Schoof’s algorithm and its variants [15], until we find a curve with order divisible by n. We then
check for the existence of a point of order n.

If we want to use the general method of Section 12, we look for the smallest integer g such
that (√q + 1)2g is reasonably larger than n. We then pick random curves of genus g over a
field with q elements, until we find one whose Jacobian has order divisible by n. We then check
the hypotheses of Theorem 2. We illustrate this method with a few examples in the following
sections. We will see how to verify the hypotheses of Theorem 2 at the least computational cost.
The knowledge of the zeta function suffices in many cases.
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18. THE CASE q = 7 AND n = 5

Since 10 belongs to the Hasse interval

[⌈7 + 1 − 2
√

7⌉, ⌊7 + 1 + 2
√

7⌋] = [3,13]

there is an elliptic curve E such that E(K) ≃ Z/10Z. We can take Y to be the smooth projective
model of

y2 = x3 + x + 4.
The point t = (6,4) ∈ Y has order 5. The quotient of Y by the group C generated by t is the
elliptic curve X with affine equation

y2 = x3 + 3x + 4.

Since the kernel of the quotient by C isogeny ρ ∶ Y → X is split, the kernel of the dual isogeny
ρ̂ is isomorphic to µ5. The only rational point in it is the origin oX because n is prime to q − 1.
The image ρ(Y (K)) has order 2. The point

a = (0,2) ∈X(K)

has order 5. So it does not belong to ρ(Y (K)). The fiber B = ρ−1(a) contains no K-point. So it
is irreducible. We set

u = (6,0) ∈X(K)
the unique K-rational point of order 2 on X . So u belongs to ρ(Y (K)). We take

v = (0,5) ∈X(K).

Since 2v has order 5, it must be different from u. Since the only K-point in the kernel of ρ̂ is oX
we easily check that v − a and u − 2v are not in this kernel. Applying Theorem 3 we deduce that

νsym7 (5) = 2.

The following computer session implements this calculation in SageMath (Version 9.4) [18].

sage: q=7;K=GF(q);n=5
....: Y=EllipticCurve([K(1),K(4)]);Y.order()
10
sage: t=Y(6,4);n*t
(0 : 1 : 0)
sage: rho = Y.isogeny(t);X = rho.codomain()
Elliptic Curve defined by y^2 = x^3 + 3*x + 4
over Finite Field of size 7
sage: a=X(0,2);5*a
(0 : 1 : 0)
sage: u=X(6,0);v=X(0,5);u-2*v
(2 : 5 : 1)
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19. THE CASE q = 11 AND n = 239

We try the general method first. We then see what can be achieved using elliptic curves and
extension of scalars.

19.1. Using a genus 2 curve. Let X be the smooth projective model of the hyperelliptic curve
with equation

y2 = x5 + x3 + 2x2 + 3.
This is a genus 2 curve. The characteristic equation of the Frobenius Fq of X is

χ(t) = t4 + 7t3 + 33t2 + 77t + 121.

So X has q + 1 + 7 = 19 points over K. Its Jacobian has χ(1) = 239 = n points. This is a prime
integer. The factorization of χ(t) modulo n is

χ(t) = (t − 11)(t − 1)(t2 + 19t + 11).

So there is a point s in JX[n] such that Fq(s) = qs. Let w0 ∈ X(K) be the unique place at
infinity. The class of 2w0 is the unique divisor class of degree 2 on X having positive projective
dimension. There exists a curve Y over K and a Galois cover ρ ∶ Y →X with cyclic Galois group
of order n such that the fiber of ρ above w0 splits completely over K. The kernel of ρ̂ ∶ JX → JY
is the subgroup generated by the class s. We observe that the class of q generates a subgroup
of index 2 in the multiplicative group (Z/nZ)∗. So Galois action on the non-zero classes in the
kernel of ρ̂ has two orbits.

Let w1 and w2 be two points in X(K) having distinct x-coordinates. The linear pencil of the
divisor w1 +w2 has projective dimension zero, that is

H0(X,OX(w1 +w2)) = K.

Let v1, v2, v3, v4, v5 be five points in X(K). We assume that v1, v2, v3, v4, v5, w1, and w2
are pairwise distinct. Since the cardinality of JX(K) is odd, the multiplication by two map is
a bijection of it. We deduce the existence of five effective degree two divisors D1, D2, D3, D4,
D5 such that 2(Di − 2w0) is linearly equivalent to w1 + w2 − vi − w0 for 1 ⩽ i ⩽ 5. The divisor
2Di − 3w0 is linearly equivalent to w1 +w2 − vi. It is a non-special divisor.

Let ξ be any non-zero divisor class in the kernel of ρ̂. For each 1 ⩽ i ⩽ 5, the divisor class
2Di − 3w0 − ξ is the class w1 + w2 − vi − ξ. At most two among these five classes are effective.
Otherwise the class w1 + w2 − ξ would have positive projective dimension. So it would be the
class of 2w0. Then ξ = w1 +w2 − 2w0 would be K-rational. A contradiction.

Since there are only two Galois orbits on the non-zero classes in Kerρ we deduce that there
exists a v among v1, v2, v3, v4, v5 such that w1 + w2 − v − ξ is ineffective for all ξ in this
kernel. We call D the effective degree two divisor such that 2(D − 2w0) is linearly equivalent to
w1 +w2 − v −w0.

Because n is a prime integer, every fiber of ρ above a rational point of X is either irreducible
or completely split. Since de genus of Y is

gY = 1 + n(gX − 1) = 1 + n = 240,
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the number of K-rational points on it is bounded from above by q + 1 + 2gY
√
q < 1604. So the

number of split fibers is ⩽ 1603/239 < 7. So there are at least 13 points (ai)1⩽i⩽13 in X(K) with
an irreducible fiber above them.

At most two among the (ai)1⩽i⩽13 make the class of D−ai effective. Otherwise D would have
positive projective dimension. So it would be linearly equivalent to 2w0. Then w1 +w2 − v −w0
would be principal. But w1 +w2 has projective dimension 0 and v is distinct from w1 and w2. A
contradiction.

Let ξ be any non-zero class in the kernel of ρ̂. At most two among the (ai)1⩽i⩽13 makeD−ai−ξ
effective. Otherwise D − ξ would have positive projective dimension. So it would be linearly
equivalent to 2w0. Then ξ would be the class of D − 2w0 and it would therefore be K-rational.
A contradiction.

Since Galois action has two orbits on the non-zero classes in the kernel of ρ̂, we deduce that at
least 13− 2− 2× 2 = 7 rational points ai on X have irreducible fiber ρ−1(ai) and make D − ai + ξ
non-special for every ξ in Ker ρ̂. We let a be any of them.

We let r be the three times any point on Y above w0. The ring K[r] is isomorphic to K[x]/x3.
Since K has q ⩾ 4 elements the symmetric bilinear complexity of multiplication in K[r] is 5.
Applying Theorem 2 we deduce

νsym11 (239) ⩽ 5.

The following computer session implements this calculation in SageMath (Version 9.4) [18].

sage: q=11;K=GF(q);Kx.<x>=FunctionField(K);Kxy.<y>=Kx[];
KX.<y> = Kx.extension(y^2-x^5-x^3-K(2)*x^2-K(3))
g = KX.genus();LP=KX.L_polynomial();t=LP.parent().gen()
sage: chi=LP(1/t)*t^(2*g)
t^4 + 7*t^3 + 33*t^2 + 77*t + 121
sage: n=numerator(chi(1))
239
sage: Fnt.<t> = PolynomialRing(GF(n));factor(Fnt(chi))
(t + 228)*(t + 238)*(t^2 + 19*t + 11)

19.2. Using an elliptic curve and extension of scalars. We now try to bound νsym11 (239) using
the method in Section 15. We let m be the smallest integer such that the Hasse interval

[⌈qm + 1 − 2qm/2⌉, ⌊qm + 1 + 2qm/2⌋]

contains a multiple of n. For m = 1 we find the interval [9,15]. For m = 2 we find the interval
[111,133]. For m = 3 we find the interval [1296,1368]. None of these three intervals contain a
multiple of 239. So we must take m ⩾ 4. The best we can hope with this method is to prove that

νsym11 (239) ⩽ 2µsymq (4).

Since q ⩾ 6 we have µsymq (4) = 7. So νsym11 (239) ⩽ 14. This is not as good as the bound already
obtained in Section 19.1.
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20. THE CASE q = 13 AND n = 4639

Let X be the smooth projective plane quartic with homogeneous equation

y3z + x3y + 2xyz2 + yz3 + 11x3z + 9x2z2 + 10xz3.

This is a genus 3 curve. The characteristic equation of the Frobenius Fq of X is

χ(t) = t6 + 9t5 + 51t4 + 197t3 + 663t2 + 1521t + 2197.
So X has q + 1 + 9 = 23 points over K. Its Jacobian has χ(1) = 4639 = n points. This is a prime
integer. The factorization of χ(t) modulo n is

χ(t) = (t − 13)(t − 1)(t + 2195)(t + 3726)(t2 + 3380t + 13).
So there is a point s in JX[n] such that Fq(s) = qs. Let w0 ∈ X(K) be the point (0 ∶ 0 ∶ 1).
There exists a curve Y over K and a Galois cover ρ ∶ Y → X with cyclic Galois group of order
n such that the fiber of ρ above w0 splits completely over K. The kernel of ρ̂ ∶ JX → JY is the
subgroup generated by the class s. We observe that the class of q generates the multiplicative
group (Z/nZ)∗. So Galois action is transitive on the non-zero classes in the kernel of ρ̂.

Let w1, w2 and w3 be three non-colinear points in X(K). The linear pencil of the divisor
w1 +w2 +w3 has projective dimension zero, that is

H0(X,OX(w1 +w2 +w3)) = K.

Let v1, . . . , v7 be seven points in X(K). We assume that v1, v2, v3, v4, v5, v6, v7, w1, w2 and
w3 are pairwise distinct. Since the cardinality of JX(K) is odd, the multiplication by two map
is a bijection of it. We deduce the existence of seven effective degree three divisors D1, . . . , D7
such that 2(Di − 3w0) is linearly equivalent to w1 +w2 +w3 − vi − 2w0 for 1 ⩽ i ⩽ 7. The divisor
2Di − 4w0 is linearly equivalent to w1 +w2 +w3 − vi. It is non-special.

Let ξ be any non-zero divisor class in the kernel of ρ̂. For each 1 ⩽ i ⩽ 7, the divisor class
2Di − 4w0 − ξ is the class w1 + w2 + w3 − vi − ξ. At most three among these seven classes are
effective. Otherwise the class w1 + w2 + w3 − ξ would have positive projective dimension. So
it would be the class K − Pξ where K is the canonical class and Pξ is a point on X . Because
Galois action is transitive on the non-zero classes in the kernel of ρ̂, there would exist for every
such class ξ a point Pξ such that w1 +w2 +w3 − ξ is the class K −Pξ. We consider the points Ps,
P2s, P3s, P4s associated with s, 2s, 3s, 4s, where s is a generator of the kernel of ρ̂. These are
four pairwise distinct points and P2s − Ps is linearly equivalent to P4s − P3s. So the linear series
of Ps + P4s has positive projective dimension. A contradiction because X is not hyperelliptic.

So we can assume that w1 +w2 +w3 − vi − ξ is ineffective for 1 ⩽ i ⩽ 4. Since the Galois group
of K acts transitively on the non-zero classes in the kernel of ρ̂ we deduce that 2Di − 4w0 − ξ is
ineffective for any ξ in Ker ρ̂ and any 1 ⩽ i ⩽ 4.

At least one among D1, D2, D3, D4 has projective dimension zero. Otherwise there would
exist four points P1, P2, P3, P4 such that Di is linearly equivalent to K − Pi for 1 ⩽ i ⩽ 4. So
2(K−Pi) is linearly equivalent to w1+w2+w3+4w0−vi. We deduce that 2P2+v1 ∼ 2P1+v2 and
2P3 + v1 ∼ 2P1 + v3 and 2P4 + v1 ∼ 2P1 + v4. So these classes have positive projective dimension.
There exist three points Q2, Q3, and Q4 such that 2P1 + v2 ∼ K −Q2, 2P1 + v3 ∼ K −Q3, and
2P1+v4 ∼K−Q4. So v2+Q2 ∼ v3+Q3 ∼ v4+Q4. A contradiction becauseX is not hyperelliptic.
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We call D one among D1, D2, D3, D4 having projective dimension zero. And let v be the
point such that 2(D − 3w0) is linearly equivalent to w1 +w2 +w3 − v − 2w0.

Because n is a prime integer, every fiber of ρ above a rational point of X is either irreducible
or completely split. Since de genus of Y is

gY = 1 + n(gX − 1) = 1 + 2n = 9279,
the number of K-rational points on it is bounded from above by q + 1 + 2gY

√
q < 66926. So the

number of split fibers is ⩽ 66925/9279 < 15. So there are at least 9 points (aj)1⩽j⩽9 in X(K)
with an irreducible fiber above them.

Let ξ be any non-zero class in the kernel of ρ̂. At most three among the (ai)1⩽i⩽9 makeD−ai−ξ
effective. Otherwise D − ξ would have positive projective dimension. So it would be linearly
equivalent to K −Pξ for some point Pξ on X . Because Galois action is transitive on the non-zero
classes in the kernel of ρ̂, there would exist for every such class ξ a point Pξ such that D − ξ is
the class K − Pξ. We consider the points Ps, P2s, P3s, P4s associated with s, 2s, 3s, 4s, where s
is a generator of the kernel of ρ̂. These are four pairwise distinct points and P2s − Ps is linearly
equivalent to P4s − P3s. So the linear series of Ps + P4s has positive projective dimension. A
contradiction because X is not hyperelliptic. So at least six among the (ai)1⩽i⩽9 make D − ai − ξ
ineffective for the chosen non-zero ξ and thus for all its conjugates. So we can assume that
D − ai − ξ is ineffective for any 1 ≤ i ≤ 6 and any non-zero ξ in the kernel of ρ̂.

At most three among the (ai)1⩽i⩽6 make D − ai special. Otherwise D would have positive
projective dimension. A contradiction.

We let a be one among (ai)1≤i≤6 such that D − a is non-special. We let r be the divisor
consisting of four times any point on Y above w0. The ring K[r] is isomorphic to K[x]/x4.
Since K has q ⩾ 6 elements the symmetric bilinear complexity of multiplication in K[r] is 7.
Applying Theorem 2 we deduce

νsym13 (4639) ⩽ 7.
The following computer session implements this calculation in SageMath (Version 9.4) [18].

sage: q=13;K=GF(q);Kx.<x>=FunctionField(K);Kxy.<y>=Kx[];
KX.<y> = Kx.extension(y^3+y*(K(1)+K(2)*x+x^3)+K(10)*x
+K(9)*x^2+K(11)*x^3)
g=KX.genus();LP=KX.L_polynomial();t=LP.parent().gen();
sage: chi=LP(1/t)*t^(2*g)
t^6 + 9*t^5 + 51*t^4 + 197*t^3 + 663*t^2 + 1521*t + 2197
sage: n=numerator(chi(1))
4639
Fnt.<t> = PolynomialRing(GF(n));factor(Fnt(chi))
(t+2195)*(t+3726)*(t+4626)*(t+4638)*(t^2+3380*t+13)

21. REMARKS AND QUESTIONS

The symmetric equivariant complexity νsymq (n) provides a good control on the computational
difficulty of multiplying two elements in a degree n extension of a field K with q-elements, given
by their coordinates in any normal basis. We have shown how to bound νsymq (n) using points
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of order n in Jacobians over K. We need a Jacobian with smallest possible dimension having
a point of order n. A natural question is : given q and n, which is the smallest possible g such
that there exists a Jacobian of dimension g over a field with q elements, having a rational point of
order n ? Are there asymptotic families that are good with this respect ? Modular towers produce
curves with many points but they have too much ramification to be useful here.

In practice, we pick random curves of genus g over a field with q elements, until we find
some whose Jacobian has order divisible by n. A difficulty is that for large g we do not have a
convenient model for a universal curve of genus g. We could restrict to hyperelliptic curves but
their Jacobians tend to be smaller, so this restriction affects the efficiency of the method.

We may wonder if Theorem 6 is optimal, even roughly. Given q and some bound C, are there
only finitely many n such that νsymq (n) ⩽ C ? such that νsymq (n) ⩽ C ∣ log(log(n))∣ for example ?
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