2LI3A - Intelligence Artificielle et Apprentissage Automatique (Artificial Intelligence and Automatic Learning (LI3A)
91191 - Gif sur Yvette cedex
anciennement Laboratoire Analyse des Données et Intelligence des Systèmes (LADIS), Laboratoire Information Modèles et Apprentissage (LIMA), Laboratoire Intelligence Multi-capteurs et Apprentissage (LIMA) - France)
CentraleSupélec (3, rue Joliot Curie,
Plateau de Moulon,
91192 GIF-SUR-YVETTE Cedex - France)
Université Paris-Saclay (Bâtiment Bréguet, 3 Rue Joliot Curie 2e ét, 91190 Gif-sur-Yvette - France)
Abstract : In this paper, we explore the min-max inference mechanism of any rule-based system of n if-then possibilistic rules. We establish an additive formula for the output possibility distribution obtained by the inference. From this result, we deduce the corresponding possibility and necessity measures. Moreover, we give necessary and sufficient conditions for the normalization of the output possibility distribution. As application of our results, we tackle the case of a cascade of two if-then possibilistic rules sets and establish an input-output relation between the two min-max equation systems. Finally, we associate to the cascade construction an explicit min-max neural network.