Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ^{18}O-δ^{11}B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru

Matthieu Harlaux, Kalin Kouzmanov, Stefano Gialli, Katharina Marger, Anne-Sophie Bouvier, Lukas Baumgartner, Andrea Rielli, Andrea Dini, Alain Chauvet, Miroslav Kalinaj, et al.

To cite this version:

Matthieu Harlaux, Kalin Kouzmanov, Stefano Gialli, Katharina Marger, Anne-Sophie Bouvier, et al.. Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ^{18}O-δ^{11}B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru. Earth and Planetary Science Letters, Elsevier, 2021, 563, pp.116889. 10.1016/j.epsl.2021.116889. hal-03408159

HAL Id: hal-03408159
https://hal.archives-ouvertes.fr/hal-03408159
Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ¹⁸O–δ¹¹B analysis of tourmaline from the world-class San Rafael tin (−copper) deposit, Peru

Matthieu Harlaux a, b, *, Kalin Kouzmanov a, Stefano Gialli a, Katharina Marger c, Anne-Sophie Bouvier c, Lukas P. Baumgartner c, Andrea Rielli d, Andrea Dini d, Alain Chauvet c, Miroslav Kalinaj f, Llusí Fontboté a

a Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland
b Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557, USA
c Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
d Istituto di Geoscienze e Georisorse, CNR, 56124 Pisa, Italy
e Geosciences Montpellier, UMR 5243-CNRS, 34095 Montpellier, France
f Mines S.A., Jr. Lorenzo Bernini 149, San Borja, Lima 27, Peru

A R T I C L E I N F O

Article history:
Received 16 November 2020
Received in revised form 7 March 2021
Accepted 11 March 2021
Available online 24 March 2021
Editor: R. Hickey-Vargas

Keywords:
tourmaline
oxygen isotopes
boron isotopes
tin deposit
hydrothermal fluids
fluid mixing

A B S T R A C T

We present a high-resolution in situ study of oxygen and boron isotopes measured in tourmaline from the world-class San Rafael Sn (−Cu) deposit (Central Andean tin belt, Peru) aiming to trace major fluid processes at the magmatic-hydrothermal transition leading to the precipitation of cassiterite. Our results show that late-magmatic and pre-ore hydrothermal tourmaline has similar values of δ¹⁸O (from 10.6‰ to 14.1‰) and δ¹¹B (from −11.5‰ to −6.9‰). The observed δ¹⁸O and δ¹¹B variations are dominantly driven by Rayleigh fractionation, reflecting tourmaline crystallization in a continuously evolving magmatic-hydrothermal system. In contrast, syn-ore hydrothermal tourmaline intergrown with cassiterite has lower δ¹⁸O values (from 4.9‰ to 10.2‰) and in part higher δ¹¹B values (from −9.9‰ to −5.4‰) than late-magmatic and pre-ore hydrothermal tourmaline, indicating important contribution of meteoric groundwater to the hydrothermal system during ore deposition. Quantitative geochemical modeling demonstrates that the δ¹⁸O–δ¹¹B composition of syn-ore tourmaline records variable degrees of mixing of a hot Sn-rich magmatic brine with meteoric waters that partially exchanged with the host rocks. These results provide thus direct in situ isotopic evidence of fluid mixing as a major mechanism triggering cassiterite deposition. Further, this work shows that combined in situ δ¹⁸O and δ¹¹B analyses of tourmaline is a powerful approach for understanding fluid processes in dynamic magmatic-hydrothermal environments.

1. Introduction

Tin and W mineralization is spatially and genetically associated with reduced granitoids that were generated in orogenic belts by melting of tectonically thickened sedimentary sequences (Romer and Kroner, 2016). Cassiterite ± wolframite-bearing quartz vein systems are a specific type of Sn-W deposits that are emplaced in the upper parts of evolved granitic intrusions or extending into surrounding country rocks (Černý et al., 2005). While the mineralizing fluids and metals are generally interpreted to be of magmatic origin (Audétat et al., 2000a,b; Hulsbosch et al., 2016; Harlaux et al., 2018), the precipitation mechanism(s) of ore minerals remain(s) debated. Cooling, boiling, fluid-rock interaction, and mixing with external fluids have been proposed as major processes controlling cassiterite deposition (Heinrich, 1990). Among these processes, fluid mixing is considered as the most likely effective mechanism based on mineral geochemistry, fluid inclusion, and stable isotope data (Audétat et al., 2000a,b; Vallance et al., 2001; Fekete et al., 2016; Van Daele et al., 2018; Legros et al., 2019; Hong et al., 2020). Korges et al. (2018) challenged this model and suggested depressurization and boiling of magmatic fluid as major factors for Sn-W deposit formation.

In the present paper, we report high-resolution in situ oxygen and boron isotope measurements by secondary ion mass spectromet-
tery (SIMS) in tourmaline from the San Rafael deposit (Peru), one of the world’s largest and richest vein-type Sn deposits. Due to its chemical stability and refractory nature, tourmaline is a robust isotopic monitor of ore-forming processes and fluid sources (Slack and Trumbull, 2011; Cedeño et al., 2019; Trumbull et al., 2020; Hong et al., 2020). The aim of this study is to use the isotopic composition of tourmaline to trace fluid processes occurring at the magmatic-hydrothermal transition leading to cassiterite deposition. Using quantitative geochemical modeling, we show that in situ δ18O-δ3B analyses on tourmaline are indicative of fluid exsolution in the early stages of the magmatic-hydrothermal system and, subsequently, mixing with modified meteoric waters triggering cassiterite deposition.

2. Geological background

The world-class San Rafael Sn (−Cu) deposit (>1 Mt Sn at average grade of 2%) is located in the northern part of the Central Andean tin belt extending from southeast Peru to Bolivia and northern Argentina. This classic metallogenic province hosts hundreds of Sn-W deposits, which contain widespread tourmaline alteration and high B contents (Lehmann et al., 2000). Mineralization at San Rafael consists of a northwest-trending cassiterite-quartz-chlorite-sulfide vein-breccia system hosted by a late Oligocene (ca. 25 Ma) peraluminous granitic complex and by Ordovician metasediments of the Sandia Formation (Fig. 1A; Kontak and Clark, 2002; Mlynarczyk et al., 2003). The San Rafael deposit is characterized by abundant tourmaline, both of magmatic and hydrothermal origin (Kontak and Clark, 2002; Mlynarczyk and Williams-Jones, 2006). Three major tourmaline (Tur) generations were identified at San Rafael (Harlaux et al., 2020): (i) Tur 1 is found in peraluminous granites as quartz-tourmaline nodules and disseminations (Fig. 1B–C) and is interpreted to be late-magmatic; it is texturally homogeneous and has dravitic composition, close to the schorl-dravite limit, with Fe/(Fe + Mg) ratios of 0.36–0.52; (ii) Tur 2 is preore hydrothermal tourmaline crossing the granites and host rocks and formed during post-magmatic alteration and veining (Fig. 1D–E); it shows oscillatory zoning at the microscopic scale and has intermediate compositions ranging from dravite to schorl, with Fe/(Fe + Mg) ratios between 0.01 and 0.83; (iii) Tur 3 is

Fig. 1. A: Longitudinal cross-section of the San Rafael Sn (−Cu) deposit, Peru. B to G: Petrographic features of the studied tourmaline samples (pictures from Harlaux et al., 2020). B: Late-magmatic quartz-tourmaline nodule (Tur 1) in microgranite. C: Late-magmatic tourmaline (Tur 1) disseminated in microgranite. D: Pre-ore hydrothermal tourmaline (Tur 2) partially replacing a K-feldspar phenocryst in megacrystic granite. E: Pre-ore quartz-tourmaline vein (Tur 2) surrounded by alteration halo crosscutting the megacrystic granite. F: Syn-ore tourmaline (Tur 3) veins and overgrowths overprinting a pre-ore quartz-tourmaline vein (Tur 2). G: Syn-ore tourmaline (Tur 3) intergrown with cassiterite. Abbreviations: Ab = albite, Bt = biotite, Cst = cassiterite, Kfs = K-feldspar, Plg = plagioclase, Qtz = quartz, Ser = sericite, Tur = tourmaline. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
syn-ore hydrothermal tourmaline forming widespread microscopic veinlets and overgrowths, partly crosscutting the previous tourmaline generations (Fig. 1F–G); it has schorl to foitite compositions, with Fe/(Fe + Mg) = 0.48–0.94, and is locally intergrown with cassiterite and chlorite of the main ore stage. In the present study, we selected representative samples covering the different generations of magmatic to hydrothermal tourmaline (Tur 1 to Tur 3). These samples were mostly collected from underground workings in the San Rafael mine (between 3,610 and 4,475 masl) and were texturally and chemically characterized by Harlaux et al. (2020).

3. Analytical methods

3.1. Oxygen isotope analysis

Oxygen isotope analyses of tourmaline and quartz were performed at the SwissSIMS ion probe national facility at the University of Lausanne (Switzerland) using a Cameca IMS 1280-HR instrument. A total of 180 18O/16O isotopic ratio analyses were performed on tourmaline and quartz chips placed in indium mounts together with grains of three tourmaline (UNIL-T2, UNIL-T6, and IAEA-B-4; Marger et al., 2019) and one quartz (UNIL-Q1; Seitz et al., 2017) reference materials. The complete SIMS dataset for O isotopes is reported in Supplementary Table S1. Prior to the SIMS session, the mounts were cleaned with dry ethanol and were dried in an oven at 60°C for 24 h, and then coated with a 35-40 nm-thick layer of gold. Oxygen isotope measurements were done with a 10 kV Cs+ primary beam and a ~2 nA current, resulting in a ~15 μm beam size. 18O and 16O secondary ions, accelerated at 10 kV, were measured at a mass resolving power M/ΔM of 2400 using an entrance slit open at 122 μm and the multicolon-exit slit 1, and were counted in multicollection mode on Faraday cups (L2 with 1013 Ω resistor for 18O and H2 with 1010 Ω resistor for 16O). The background of the Faraday cups was calibrated at the beginning of each day session, and a nuclear magnetic resonance was used to lock the magnetic field. Each calculated isotopic ratio 18O/16O corresponds to 5 measurement blocks of 4 cycles per block, resulting in 20 cycles of acquisition with counting times of 5 s per cycle on both masses simultaneously. Consequently, each analysis takes ~3.5 min, including pre-sputtering (30 s) and automated centering of secondary ions (60 s). All data have been obtained during the same SIMS session in March 2018. The reference materials were measured between every 5 to 8 unknowns for monitoring the instrument stability and analytical accuracy. The average reproducibility on the reference materials was better than 0.4‰ (2SD) and internal error for each analysis lower than 0.2‰ (2SD). After correction of the instrumental mass fractionation (IMF), the measured 18O/16O isotopic ratios were corrected for tourmaline matrix effect based on the Mg/(Mg + Fe) and Al(Y) contents determined independently by electron microprobe (Marger et al., 2019; Harlaux et al., 2020). The average IMF for all sessions of O isotope measurement was about 206 ± 0.7‰ for IAEA-B4 schorl and about 241 ± 0.9‰ for UNIL-T2 dravite. The IMF dependence on tourmaline chemistry (between schorl and dravite) is therefore 1.3‰ for O isotopes. Results are reported in δ18O = 1000 × [(18O/16O)sample/(18O/16O)SMOW] − 1)] in ‰ relative to the Vienna Standard Mean Ocean Water (V- SMOW).

3.2. Boron isotope analysis

Boron isotope analyses of tourmaline were performed at the SwissSIMS ion probe national facility at the University of Lausanne (Switzerland) using a Cameca IMS 1280-HR instrument. A total of 166 11B/10B isotopic ratio analyses were performed on the same tourmaline chips analyzed for O isotopes. Each indium mount included grains of three tourmaline reference materials (UNIL-T2, UNIL-T6, and IAEA-B-4; Marger et al., 2020). The complete SIMS dataset for B isotopes is reported in Supplementary Table S1. Sample preparation was the same as for O isotope analysis. Boron isotopic measurements were performed with a 13 kV O+ duoplasmatron primary beam and a ~6 nA current, resulting in a ~20 μm beam size. 11B and 10B secondary ions, accelerated at 10 kV, were measured at a mass resolving power M/ΔM of 2400 (entrance slit at 100 μm and exit slit 1 of the multicollection) and were counted in multicollection mode on Faraday cups (L2 for 11B and H2 for 10B, both set with 1011 Ω resistors). Typical count rate obtained on 11B was 2.5 × 106 cps (count per second) and 9 × 105 cps for 10B. The background of the Faraday cups was calibrated at the beginning of each day session, and a nuclear magnetic resonance was used to lock the magnetic field. Each calculated isotopic ratio 11B/10B corresponds to 3 measurement blocks of 10 cycles per block, resulting in 30 cycles of acquisition with counting times of 5 s per cycle on each mass. Each analysis takes ~4.5 min, including pre-sputtering (50 s) and automated centering of secondary ions (60 s). This setting allowed an average reproducibility on the reference materials better than 0.6‰ (2SD) and internal error for each analysis lower than 0.4‰ (2SD). All data have been obtained during the same SIMS session in November 2018. The reference materials were measured between every 2 to 4 unknowns for monitoring the instrument stability and analytical accuracy. After correction of the IMF, the measured 11B/10B isotopic ratios were corrected for tourmaline matrix effect based on the wt.% FeO + MnO content determined independently by electron microprobe (Marger et al., 2020; Harlaux et al., 2020). The average IMF for all sessions of B isotope measurement was about 20.6 ± 0.7% for IAEA-B4 schorl and about 24.1 ± 0.9% for UNIL-T2 dravite. The IMF dependence on tourmaline chemistry (between schorl and dravite) is therefore 3.5‰ for B isotopes. Results are reported in δ11B = 1000 × [(11B/10B)sample/(11B/10B)NIST SRM 951] − 1] in ‰ relative to the NIST SRM 951.

4. Results

4.1. Oxygen and boron isotopic compositions of tourmaline

The δ18O and δ11B compositions of tourmaline measured by SIMS are reported in Supplementary Table S1. Late-magmatic Tur 1 has a near-constant δ18O isotopic composition falling in a range between 10.6‰ and 11.6‰, whereas its δ11B composition is more variable ranging between −11.1‰ and −7.8‰ (Fig. 2A). No significant core-rim isotopic zoning is observed. Pre-ore hydrothermal Tur 2 has more variable values of δ18O of 10.7‰ to 14.1‰ and δ11B of −11.5‰ to −6.9‰, overlapping with those of Tur 1. In detail, metasediment-hosted Tur 2 shows higher δ18O values (13.6-14.1‰) than granite-hosted Tur 2 (10.7-11.9‰) while their δ11B compositions overlap. In a single oscillatory-zoned Tur 2 crystal, isotopic variations of 1.0‰ in δ18O and 3.5‰ in δ11B are reached overall from the base of the crystal to the tip (Fig. 3). These variations outline pseudo-periodic cycles at the microscopic scale suggesting a dynamic environment likely caused by repeated fluid pulses. Syn-ore hydrothermal Tur 3 has lighter δ18O values ranging from 4.9‰ to 10.2‰ and in part heavier δ11B values from −9.9‰ to −5.4‰. No relation between sample location in the deposit and isotopic composition of tourmaline was found.

4.2. Quartz-tourmaline oxygen isotope equilibrium temperatures

The δ18O compositions of magmatic and hydrothermal quartz showing equilibrium textures with tourmaline were also measured
by SIMS in order to determine crystallization temperatures. The analyzed quartz-tourmaline pairs show primary intergrowth textures and lack hydrothermal alteration features, as revealed by preliminary cathodoluminescence quartz imaging. Results of δ¹⁸O compositions of quartz and tourmaline are reported in the Supplementary Table S2 and in Fig. 4. Isotope equilibrium temperatures for quartz-tourmaline pairs were calculated using the equation of Matthews et al. (2003), which is the most appropriate for estimating temperatures in peraluminous granitic systems (Marger et al., 2019). Quartz-tourmaline δ¹⁸O compositions yield equilibrium temperatures of 615 ± 38°C for Tur 1 and 530 ± 25°C for Tur 2 (Fig. 4). This indicates temperatures of 500° to 600°C for the magmatic-hydrothermal transition, which is in agreement with the earliest recorded fluids at San Rafael as revealed by previous fluid inclusion studies on magmatic quartz phenocrysts and pre-ore quartz-tourmaline veins (Kontak and Clark, 2002; Wagner et al., 2009).

5. Discussion

5.1. Origin and evolution of the boron-rich hydrothermal fluids

The upper values for the quartz-tourmaline isotope thermometer indicate crystallization temperatures of about 650°C for Tur 1 and 550°C for Tur 2. No quartz directly intergrown with Tur 3 was found, but previous works reported homogenization temperatures of about 350°C for primary fluid inclusions hosted in cassiterite (Wagner et al., 2009). Because Tur 3 co-precipitated with cassiterite, an average value of 350°C is assumed to be the best temperature proxy for its formation. Considering crystallization temperatures of 650°C for Tur 1, 550°C for Tur 2, and 350°C for Tur 3, we calculated the δ¹⁸O and δ¹¹B composition of water in equilibrium with tourmaline (Fig. 2B) using the O and B isotope fractionation factors of Zheng (1993) and Meyer et al. (2008), respectively. Changing the temperature of tourmaline formation by ± 50°C would shift the calculated range of water compositions by
a maximum of ±1.0‰ in δ18O and ±0.5‰ in δ11B. The isotopic compositions of water equilibrated with granite-hosted Tur 1 and Tur 2 overlap over a range of δ18O values from 10.9‰ to 12.1‰ and δ11B values from −10.0‰ to −5.3‰. These δ18O values are consistent with previous bulk δ18O analyses of quartz and tourmaline separates from the pre-ore stage equilibrated with water at 550°C (Supplementary Table S3), while the δ11B values fall in the δ11B range reported from melt inclusions in Bolivian Sn porphyries (Wittenbrink et al., 2009). The values of δ18O = 11.5‰ and δ11B = −10.0‰ allow defining a single fluid endmember ("fluid A" in Fig. 2B) that fits the typical isotopic compositional range of a magmatic fluid derived from a S-type granite (Harris et al., 1997; Trumbull and Slack, 2018). The magmatic origin of the fluid A is supported by the high-salinity (40-60 wt.% NaCl eq) and high-temperatures (350-550°C) of primary multiphase aqueous inclusions coexisting with low-salinity vapor inclusions in magmatic quartz phenocrysts and quartz-tourmaline veins at San Rafael, which are interpreted to be formed under lithostatic fluid pressure of 0.8 to 1.0 kbar (Kontak and Clark, 2002; Wagner et al., 2009).

Considering values of δ18O = 11.5‰ and δ11B = −10.0‰ for the magmatic brine and using liquid-vapor isotopic fractionation factors extrapolated to 550°C (Shmulovich et al., 1999; Liebscher et al., 2005), the coexisting vapor would have δ18O = 11.3‰ and δ11B = −8.1‰. Assuming a 20:80 proportion of liquid (45 wt.% NaCl) and vapor (1 wt.% NaCl), the single-phase magmatic fluid would have an initial salinity of ca. 10 wt.% NaCl and isotopic values of δ18O = 11.4‰ and δ11B = −8.5‰. The increasing trend in δ11B at near-constant δ18O values observed for granite-hosted Tur 1 and Tur 2 may therefore reflect the progressive degassing of the silicate melt and phase separation of the single-phase magmatic fluid, similar to what is traditionally observed for H isotope fractionation (Hedenquist and Lowenstern, 1994). The isotopic composition of water in equilibrium with metasediment-hosted Tur 2 differs from their granite-hosted equivalent by higher δ18O values between 13.7‰ and 14.3‰ while their δ11B values of −6.8‰ to −5.8‰ overlap. These δ18O-δ11B compositions are interpreted to represent a fluid endmember with δ18O = 14.0‰ and δ11B = −6.0‰ that possibly corresponds to B-rich magmatic vapor that ascended toward the top of the intrusion upon phase separation and interacted with the host metamorphic rocks, while the mag-
migmatic brine remained dominantly in the upper part of the granitic stock. The isotopic composition of water equilibrated with Tur 3 plots along an array ranging from δ18O = 8.4‰ and δ11B = −6.7‰ to δ18O = 3.2‰ and δ11B = −2.1‰ (Fig. 2B). This range of δ18O values covers the previous bulk δ18O compositions of ore-stage quartz, cassiterite, and chloride equilibrated with water at 350 °C (Supplementary Table S3). The observed δ18O-δ11B array suggests a mixing process between a magmatic fluid and another fluid endmember of external origin, having lighter δ18O and heavier δ11B composition.

5.2. Quantitative modeling of fluid evolution

Based on the tourmaline O and B isotopic compositions, we tested different scenarios considering cooling, Rayleigh fractionation, fluid-rock interaction, and fluid mixing as major processes controlling cassiterite deposition. The calculations are detailed in the Supplementary Material and the results are reported in Supplementary Tables S4 to S9. The calculated δ18O and δ11B compositions of tourmaline for each scenario (Fig. 2C) were then compared with the ones measured by SIMS (Fig. 2A). The isotopic composition of Tur 2 was modeled assuming that the starting magmatic fluid is single-phase and has a temperature of 550 °C. a 10 wt.% NaCl salinity, and isotopic values of δ18O = 11.4‰ and δ11B = −8.5‰. Cooling of this magmatic fluid down to 250 °C results in a trend of increasing δ18O values and decreasing δ11B values, which does not reproduce the measured isotopic compositions of Tur 2. Rayleigh fractionation driven by tourmaline crystallization from a single-phase magmatic fluid or a magmatic brine ("Fluid A"), at decreasing temperatures from 550° to 500 °C, results in a trend of near-constant δ18O and increase in δ11B values. This reproduces closely the isotopic compositional range of granite-hosted Tur 2 for 10% to 90% fractionation of the initial magmatic fluid. Fluid-rock interaction between an ascending B-rich magmatic vapor and the host metasediments was modeled for different water/rock ratios (0.1 to 10) at 500 °C by assuming isotopic exchange with muscovite (Zheng, 1993; Wunder et al., 2005), which is the most abundant and the main B-carrier mineral in metasediments from the Sandia Formation. We assumed that the magmatic vapor has a temperature of 500 °C, a 1 wt.% NaCl salinity, and isotopic values of δ18O = 11.3‰ and δ11B = −8.1‰. A concentration of 3,000 ppm B was estimated for the magmatic vapor based on measurements of individual vapor inclusions from granite-related Sn-W deposits (Audétat et al., 2000a,b). For the metasediments, an initial δ18O = 14.0‰ was assumed based on the average O isotopic compositions of Early Paleozoic shales (Bindeman et al., 2016), and values of δ11B = −11.0‰ and B = 150 ppm were taken from average bulk analyses of representative metasediment samples of the Sandia Formation (Supplementary Table S10). Results of the fluid-rock interaction modeling reproduce the measured isotopic compositions of metasediment-hosted Tur 2 for moderate water/rock ratios of 0.1-0.3.

The isotopic composition of Tur 3 was modeled using a fluid mixing scenario between a magmatic brine and modified meteoric waters. For the magmatic brine, we assumed a temperature of 550 °C, δ18O = 11.5‰, and variable δ11B (−10.0, −8.5, and −7.0‰) in order to cover the range of 3‰ variation in δ11B observed for Tur 1 to Tur 2 (Fig. 2A). A concentration of 1,500 ppm B was assumed for the magmatic fluid based on measurements of individual brine inclusions from granite-related Sn-W deposits (Audétat et al., 2000a,b; Thomas et al., 2003). In contrast to the pre-ore hydrothermal stage yielding quartz-tourmaline veins and breccias, the salinity of the ore-forming magmatic brine is unknown. Therefore, we considered different initial fluid salinities (45, 35, and 30 wt.% NaCl) for the calculations. Stable isotope measurements of volcanic glasses in the Peruvian Eastern Cordillera yield estimates of δ18O = −8.0‰ and δD = −54‰ for ancient meteoric waters during the late Oligocene (ca. 25 Ma), i.e., coeval with the formation of the San Rafael deposit (Sundell et al., 2019).

Using the B meteoric water line of Rose-Koga et al. (2006), we estimated a δ11B = 30.0‰ for the late Oligocene meteoric fluid in the Peruvian Eastern Cordillera, which falls in the typical values of continental rainwaters (Gaillardet and Lemarchand, 2018). Additionally, we assumed a zero salinity and a B concentration of 0.1 ppm for the meteoric fluid. The composition of late Oligocene meteoric waters (δ18O = −8.0‰, δ11B = 30.0‰, B = 0.1 ppm) after interaction with the Sandia metasediments (δ18O = 14.0‰, δ11B = −11.0‰, B = 150 ppm) was estimated using a model of sequential B extraction and addition to downwelling percolating water (Supplementary Material). At a depth of 4 km (corresponding to a lithostatic pressure of 1 kbar and a temperature of 120 °C), the modified meteoric water after exchange with the metasediments would contain 600 ppm B and would have isotopic values of δ18O = −3.3‰ and δ11B = 16.0‰ for a moderate water/rock ratio of 0.5. The calculated B concentrations and δ11B values are consistent with measurements of modern geothermal waters from meteoric-dominated hydrothermal systems, such as Larderello in Italy (Duchi et al., 1992; Pennisi et al., 2001). The fluid mixing modeling between a magmatic brine and modified meteoric waters results in a systematic trend of decreasing δ18O and increasing δ11B, which reproduces the full range of isotopic compositions of Tur 3 for degrees of mixing between 5% and 60% of modified meteoric water. While different initial salinities (45, 35, and 30 wt.% NaCl) of the magmatic brine yield similar mixing curves, the fluid salinity changes the fraction of meteoric water that is required to reproduce the measured δ18O and δ11B compositions of Tur 3 (Supplementary Material). Fluid mixing modeling combined with salinity estimates from primary fluid inclusions hosted in ore-stage minerals (12-22 wt.% NaCl eq; Kontak and Clark, 2002; Wagner et al., 2009) indicate that the magmatic brine involved in the precipitation of Tur 3 had a salinity of ca. 30 wt.% NaCl.

5.3. Genetic model and tin mineralization

Experimental work showed that high B contents (>1 wt.% B2O3) in peraluminous granitic melts lower solidus temperatures.

Fig. 4. Plot of δ18O values for quartz (Qtz) and tourmaline (Tur) pairs of magmatic and hydrothermal origin from the San Rafael deposit. Isotherms are plotted using the quartz-tourmaline oxygen isotope fractionation equation of Matthews et al. (2003).
to \(<680\) \(°C\) at 1 kbar, reduce melt viscosity, and increase water solubility (Dingwell et al., 1996). The San Rafael granite is characterized by a moderately fractionated peraluminous composition and whole-rock B content of 60 to 160 ppm (Kontak and Clark, 2002; Mlynarczyk et al., 2003; Harlaux et al., 2020). This implies that the San Rafael silicate melt had initially much higher B contents owing to elevated B fluid/melt partition coefficients in granitic systems (Herzig et al., 2002; Thomas et al., 2003; Schatz et al., 2004; Fiedrich et al., 2020). Crystallization of Tur 1 at ca. 650 \(°C\) is interpreted to have occurred during the late-magmatic stage of the San Rafael intrusion prior or concomitantly to the exsolution of a B-rich single-phase magmatic fluid (Fig. 5A). The magmatic-hydrothermal transition occurred between 500 and 600 \(°C\) as indicated by temperature estimates from quartz-tourmaline pairs, but the single-phase magmatic fluid likely exsolved at temperatures close to 600 \(°C\). During water exsolution, the immiscible volatile phase preferentially partitions B and becomes isotopically heavier relative to the granitic melt (Maner and London, 2018). This is possibly reflected by the increasing trend in \(δ^{11}\)B observed for granite-hosted Tur 1 and Tur 2. The overpressured single-phase magmatic fluid triggered hydrofracturing of the roof of the crystallizing magma chamber resulting in phase separation into vapor (ca. 1 wt.% NaCl) and brine (ca. 45 wt.% NaCl) and the formation of Tur 2 in veins and breccias (Fig. 5B). This likely occurred under dominant lithostatic pressure conditions as reported by previous fluid inclusion studies (Kontak and Clark, 2002; Wagner et al., 2009). Phase separation also resulted in geochemical decoupling, where Sn preferentially partitions into the brine whereas B partitions into the vapor (Heinrich et al., 1999; Audéat et al., 2000a,b; Schatz et al., 2004; Foustoukos and Seyfried, 2007; Fiedrich et al., 2020). Based on their similar \(δ^{18}\)O-\(δ^{11}\)B values, we interpret that Tur 1 and Tur 2 crystallized in a continuously evolving magmatic-hydrothermal system in which isotopic variations were dominantly driven by Rayleigh fractionation.

The \(δ^{18}\)O-\(δ^{11}\)B array observed for Tur 3 reflects infiltration of modified meteoric waters into the hydrothermal system during the main ore stage. Most likely, this occurred during a transition from lithostatic to hydrostatic pressure conditions caused by the opening of dilatational fault jogs during sinistral-normal strike-slip faulting (Mlynarczyk et al., 2003; Wagner et al., 2009). This process caused the mixing and the cooling of a hot Sn-rich magmatic brine (ca. 30 wt.% NaCl) with modified meteoric waters (Fig. 5C), resulting in destabilization of Sn-chloride complexes and the consecutive precipitation of cassiterite (Schmidt, 2018). This interpretation is consistent with the evolution of the San Rafael magmatic-hydrothermal system from reducing toward relatively more oxidizing conditions as deduced from the changing textural and compositional features of Tur 1 to Tur 3 (Harlaux et al., 2020). The Sn-rich magmatic brine was produced during a new hydrothermal activity in the magma reservoir. We propose that this occurred either during the fluid exsolution from an underlying residual granitic magma, or during the mixing of a residual brine from the pre-ore stage, temporarily stored at depth, with a new pulse of low-salinity magmatic fluid, as proposed for other ore deposits (Kouzmanov et al., 2010; Rottier et al., 2018).

6. Conclusions

High-resolution in situ \(δ^{18}\)O-\(δ^{11}\)B analysis of tourmaline has allowed tracing the fluid evolution of the San Rafael magmatic-hydrothermal system. Our results show that late-magmatic Tur 1 and pre-ore hydrothermal Tur 2 formed in a continuously evolving magmatic-hydrothermal system, whereas syn-ore hydrothermal Tur 3 records variable degrees of mixing between Sn-rich magmatic brine and modified meteoric waters. Fluid mixing related to lithostatic-hydrostatic pressure transition and infiltration of meteoric waters into the hydrothermal system was the key mechanism triggering cassiterite deposition in the San Rafael Sn (–Cu) deposit. Furthermore, this study demonstrates that the combination of in situ \(δ^{18}\)O and \(δ^{11}\)B analyses of tourmaline is a powerful approach for understanding fluid processes in dynamic magmatic-hydrothermal environments.

CRediT authorship contribution statement

Mathieu Harlaux: Writing - original draft preparation, Review and editing, Data acquisition and treatment, Data analysis and interpretation. Kalin Kouzmanov: Review and editing, Data analysis and interpretation, Supervision, Conceptualization. Stefano Gialli: Review and editing. Katharina Marger: Review and editing, Data
acquisition and treatment. Anne-Sophie Bouvier: Review and editing, Data acquisition and treatment. Lukas Baumgartner: Review and editing, Data acquisition and treatment. Andrea Rielli: Review and editing, Data acquisition and treatment. Andrea Dini: Review and editing, Data acquisition and treatment, Data analysis and interpretation. Alain Chauvet: Review and editing. Miroslav Kalina: Review and editing, Conceptualization. Lluis Fontboté: Review and editing, Data analysis and interpretation, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Swiss National Science Foundation (grant SNSF 159053_169901) and the company MinSur S.A. The authors thank Drs. Michel Pichavant and David Dolejsi for fruitful discussions during this project. We are also grateful to Drs. Robert Trumbull and Fernando Tournon for their constructive and thorough reviews, which helped to improve the original manuscript. Dr. Rosemary Hickey-Vargas is thanked for the editorial handling.

Appendix A. Supplementary material

References

