Effect of Eu3+ and Tb3+ ions concentration on the mechanical, structural, and photoluminescence properties of phosphate glass fibers
Rachid Mahiou, Oumaima Jamal Eddine, Damien Boyer, Mehdi El Bouchti, Aicha Boukhriss, Omar Cherkaoui, Hassan Hannache, Said Gmouh

To cite this version:

HAL Id: hal-03403653
https://hal.archives-ouvertes.fr/hal-03403653
Submitted on 27 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effect of Eu$^{3+}$ and Tb$^{3+}$ ions concentration on the mechanical, structural, and photoluminescence properties of phosphate glass fibers

Oumaima Jamal Eddine, Damien Boyer, Mehdi El Bouchti, Aicha Boukhriss, Omar Cherkaoui, Rachid Mahiou, Hassan Hannache, Said Gmouh

A Hassan II University of Casablanca, Faculty of Sciences Ben M'sik, Chemistry Department, Laboratory LIMAT, Avenue Driss El Harji, BP 7955, Casablanca, Morocco
b Université Clermont Auvergne, Clermont Auvergne UMR, CNRS, ICCF, F-63000, Clermont-Ferrand, France
c Higher School of Textile and Clothing Industries, Laboratory REMTEX, Km 8, Route d’El Jadida, BP 7771, Oulfa, Casablanca, Morocco
d Mohammed VI Polytechnic University, Materials Science and Nanoengineering Department, Lot 660, Hay Moulay Rachid, Benserguir, Morocco

A R T I C L E I N F O

Keywords:
- Phosphate glass fibers
- Eu$^{3+}$
- Tb$^{3+}$
- Mechanical properties
- Photoluminescence

Two series of phosphate glasses belonging to the (65-x) P$_2$O$_5$-35CaO-xRE$_2$O$_3$ system (RE = Eu or Tb; 0 ≤ x ≤ 6 mol%) were prepared by the melt-quenching technique. All compositions were successfully drawn as continuous monofilaments fibers. The effect of Eu$^{3+}$ and Tb$^{3+}$ ions concentration on their mechanical, structural, and photoluminescence properties was investigated. The results revealed that the highest tensile strength was 1031 ± 34 MPa for fibers doped with 6 mol% of Eu$_2$O$_3$ and 1014 ± 65 MPa for fibers doped with 6 mol% of Tb$_2$O$_3$. The addition of RE$_2$O$_3$ showed an increase in density and Tg. A structural investigation was carried out using FTIR spectroscopy. The photoluminescence properties in terms of excitation and emission spectra were investigated in detail. The most intense emission band at 611 nm corresponds to the $^5D_0 \rightarrow ^7F_2$ transition of Eu$^{3+}$ ions under 392 nm excitation was observed for fibers doped with 6 mol% of Eu$_2$O$_3$. The most intense emission band at 543 nm corresponds to the $^5D_4 \rightarrow ^7F_2$ transition of Tb$^{3+}$ ions under 374 nm excitation was observed for fibers doped with 6 mol% of Tb$_2$O$_3$. These two compositions exhibited the highest absolute quantum yield, reaching 20.25% and 4.81%, respectively.

1. Introduction

Phosphate glasses (PGs) are easy to produce and have great advantages due to their special properties that include high UV transparency, low infrared transparency, low melting point, high thermal expansion, low dispersion, and regarded as better hosts for lanthanide ions (Ln$^{3+}$) [1–3]. It is well known that the luminescence properties of rare-earth ions (RE ions) result from their electronic structure [Xe] 4fn5dm6sl. When these ions are inserted into a glassy network, the most stable and predominant oxidation state is trivalent and the 5d and 6s electronic layers are empty [4]. Among these different ions, Eu$^{3+}$ ([Xe] 4f6) and Tb$^{3+}$ ([Xe] 4f8) have been widely used as fluorescence-generating ions for the development of many luminescent materials, including PGs and phosphate glass fibers (PGFs) [5–7].

Generally, PGs doped with RE ions are well known for their high optical quality, as well as their higher doping concentration in comparison with that observed in silicate and borate glasses. In particular, PGs doped with Eu$^{3+}$ and Tb$^{3+}$ have been widely used in various optical devices such as optical fibers, amplifiers and lasers [7–9]. Their luminescence spectra are composed of many narrow lines as a consequence of 4f–4f transitions which are slightly sensitive to the environment of the RE$^{3+}$ ion due to the shielding effect of 4f electrons by 5s and 5p electrons in outer shells in the RE$^{3+}$ [4,10,11]. They also present a sharp and bright red (at around 600–620 nm) and green (at around 545 nm) emission, respectively, which are hypersensitive to the RE$^{3+}$ ion surroundings than normal f–f transitions [12,13].

In the past several decades, the optical properties and the mechanisms of various vitreous systems based on calcium phosphate P$_2$O$_5$-CaO doped with europium or terbium ions have been studied [14–19]. Attention has been drawn to understand the basic theoretical models and experimental studies of the energy level structure, decay times of the excited states, energy transfer mechanisms, site symmetry

* Corresponding author.

E-mail addresses: jamaleddine.ouaima@gmail.com (O. Jamal Eddine), damien.boyer@signa-clermont.fr (D. Boyer), melbouchti@gmail.com (M. El Bouchti), aicha.boukhriss@gmail.com (A. Boukhriss), omarcherkaoui61@gmail.com (O. Cherkaoui), rachid.mahiou@uca.fr (R. Mahiou), hassan.hannache@gmail.com (H. Hannache), s.gmouh1@gmail.com (S. Gmouh).

https://doi.org/10.1016/j.optmat.2021.111664
Received 15 August 2021; Accepted 4 October 2021
0925-3467/© 2021 Elsevier B.V. All rights reserved.
determination, anomalous spectral properties, etc. However, to the best of our knowledge, studies of the effect of the percentage of Eu2O3 and Tb2O3 in the P2O5-CaO system on the structural and photoluminescence properties were not mentioned. In this regard, new PGs with compositions based on the P2O5-CaO-RE2O3 system with RE = Eu or Tb were prepared. On the other hand, the elaborated PGs were stretched into PFGs to demonstrate the possibility of functionalizing small diameter non-woven PGFs (average diameter of a few micrometers) by doping with RE ions. It is expected that the introduction of the europium or terbium oxides into the studied glassy systems may affect the mechanical, structural and photoluminescence properties of the investigated fibers.

2. Experiment

Two series of PGs doped with RE ions were prepared by the conventional melt-quenching technique. Series 1 presents PGs doped with europium ions (see Table 1) and belongs to the (65-x) P2O5–35CaO–Eu2O3 system while series 2 presents PGs doped with terbium ions (see Table 2) and belongs to the (65-x) P2O5–35CaO–xTb2O3 system, where 0 ≤ x ≤ 6 mol%. The binary glass (OJ0) without the addition of RE2O3 was prepared in order to estimate the influence of the latter on the properties of PGFs. The starting materials used were high-purity commercial reagents (Sigma-Aldrich): tricalcium phosphate Ca3(PO4)2 (>96.0%), europium oxide Eu2O3 (>99.99%), and terbium oxide Tb2O3 (>99.99%). Afterward, the materials were mixed homogeneously and then heated to 600 °C for 2 h in a platinum crucible. Subsequently, it was melted at 900 °C for 1 h and cooled in air.

All PGs samples were successfully transformed into continuous monofilaments fibers by a melt-drawing spinning process. The spinning process reported here was carried out with the steps and precautions described in detail in our previous papers [20,21]. In this study, the winding speed was set at 538 rpm and the optimal spinning temperature was 750 °C (temperature at the top) and 550 °C (temperature at the bottom). The average diameter measured for several PGFs was 22.1 ± 0.8 μm. No correlation was noticed with the composition and diameters values obtained. All PGFs samples are colorless and transparent under daylight. Fig. 1 shows photographs of some PGs and PGFs samples of the compositions: OJ0 (under daylight), and OJ7, OJ11 and OJ14 (under UV-A light illumination; λexcitation = 365 nm). Under the UV-A lamp, Eu3+-doped samples show a strong red fluorescence, while Tb3+-doped samples show a bright green fluorescence, observed with the naked eye. However, under the same preparation conditions, the PGFs doped with more than 6 mol% of RE2O3 showed low fluorescence under the UV-A lamp compared to the other PGFs compositions.

Scanning electron microscope (SEM) image of the OJ6 fiberglass sample was taken with ZEISS Supra 55VP scanning electron microscope. The mechanical properties of the PGFs were investigated by tensile tests using a tensile testing machine (model LUDWIC Mpk, made in Germany) [20,21], according to BS ISO 11566:1996 [22]. The values of the density (ρ) were measured by immersing the samples of PGFs according to the Archimedes technique (BS 101119) [21]. Then, the molar volume values (Vm) were calculated using the expression

\[V_m = M / \rho, \]

where M is the molecular weight of PGFs. Differential thermal analysis (DTA) was performed using a PerkinElmer DTA7 instrument under a flowing nitrogen atmosphere with a fixed heating rate of 10 °C/min up to a maximum temperature of 1000 °C. Errors in measurement are ±2 °C. The X-ray diffraction (XRD) measurements were carried out using a Siemens D501 diffractometer (λCu = 1.5406 Å) in the range of 10–80°. The Fourier transform infrared (FTIR) spectra were recorded at room temperature within the wavenumber range 400–4000 cm–1 using a Thermo Electron spectrometer (Nicolet 5700-FTIR model). Photoluminescence (PL) spectra of doped PGFs samples were recorded using an excitation source a xenon lamp monochromatized through a TRIAX 180 Jobin-Yvon/Horiba and TRIAX 550 Jobin-Yvon/Horiba monochromator equipped with R928 Hamamatsu photomultiplier as a detector. For the Eu3+-doped PGFs samples (λexc = 392 nm) and the Tb3+-doped PGFs samples (λexc = 374 nm), the PL data were recorded in the range 400–750 nm. Quantum yield (QY) efficiencies were measured using the Hamamatsu Photonics measurement system under the reference C9920-02G. The setup comprises a 150 W monochromatized Xe lamp, an integrating sphere (Spectrolon Coating, Ω = 3.3 in.), and a high sensitivity CCD spectrometer for detecting the whole spectral luminescence simultaneously. The absolute quantum yield (ϕabs) in percent was calculated using the expression

\[ϕ_{abs} = φ_{em} A_{abs} 100\%, \]

where φ_{em} is the internal quantum yield (the ratio between the emitted and the absorbed photons by the material upon external excitation) and A_{abs} is the Absorbance. The CIE (Commission Internationale de l’Eclairage, International Commission on Illumination) color coordinates (x,y) were measured in an integrating sphere with a diode array rapid analyzer system (GL Optic integrating sphere GLS 500). All luminescence experiments were performed at ambient air.

Table 1

<table>
<thead>
<tr>
<th>Series 1</th>
<th>Nominal composition (mol%), calculated (O/P) ratio, density (ρ), and molar volume (Vm) of Eu3+-doped PGFs.</th>
<th>P2O5</th>
<th>CaO</th>
<th>Eu2O3</th>
<th>O/P</th>
<th>ρ [g.cm⁻³]</th>
<th>Vm [cm³.mol⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OJ0</td>
<td>65</td>
<td>35</td>
<td>0</td>
<td>2.61</td>
<td>2.18</td>
<td>51.33</td>
<td></td>
</tr>
<tr>
<td>OJ6</td>
<td>64.5</td>
<td>35</td>
<td>0.5</td>
<td>2.64</td>
<td>2.42</td>
<td>46.67</td>
<td></td>
</tr>
<tr>
<td>OJ7</td>
<td>64</td>
<td>35</td>
<td>1</td>
<td>2.67</td>
<td>2.47</td>
<td>46.15</td>
<td></td>
</tr>
<tr>
<td>OJ8</td>
<td>63</td>
<td>35</td>
<td>2</td>
<td>2.73</td>
<td>2.56</td>
<td>45.35</td>
<td></td>
</tr>
<tr>
<td>OJ9</td>
<td>63</td>
<td>35</td>
<td>3</td>
<td>2.79</td>
<td>2.65</td>
<td>44.60</td>
<td></td>
</tr>
<tr>
<td>OJ10</td>
<td>61</td>
<td>35</td>
<td>4</td>
<td>2.81</td>
<td>2.74</td>
<td>43.27</td>
<td></td>
</tr>
<tr>
<td>OJ11</td>
<td>60</td>
<td>35</td>
<td>5</td>
<td>2.93</td>
<td>2.94</td>
<td>41.63</td>
<td></td>
</tr>
<tr>
<td>OJ12</td>
<td>59</td>
<td>35</td>
<td>6</td>
<td>3.00</td>
<td>3.04</td>
<td>40.95</td>
<td></td>
</tr>
</tbody>
</table>

Archimedes technique (BS ISO 11566:1996) [22]. According to BS ISO 11566:1996 [22], the density (ρ) of the reference PGFs (OJ0) sample belonging to the 60P2O5–35CaO–5Eu2O3 system. As it can be seen from this figure, the OJ6 PGF appears smooth and homogeneous.

3. Results and discussion

3.1. Morphology

SEM analysis was used to observe the appearance of PGFs surface. Fig. 2 shows a SEM image at 800 times magnification of OJ6 sample belonging to the 60P2O5–35CaO–5Eu2O3 system. As it can be seen from this figure, the OJ6 PGF appears smooth and homogeneous.

3.2. Mechanical properties

The results of the tensile tests on OJ0, OJ7, OJ11, and OJ14 samples are presented in Table 3. The values of tensile strength (σ), Young’s modulus (E) and breaking strain (ε) of the reference PGFs of 65P2O5–35CaO system were 724 ± 59 MPa, 63 ± 3 GPa, and 0.16 ± 0.10%, respectively. Svilva et al. [23] tested individual calcium PGFs of the 65P2O5–23CaO–8ZnO–3Fe2O3 system with a diameter of 25.5 μm. They found that the values obtained of tensile strength, Young’s modulus, and breaking strain were 513 MPa, 43 GPa, and 1.3%, respectively. The significant values of mechanical quantities found in
our study can be explained by the dependence of the diameter on the tensile strength, and therefore on the breaking strain and Young’s modulus. On the other hand, Ahmed et al. [24] tested individual calcium phosphate glass fibers of the 50P_2O_5–50CaO system with a diameter of 20 μm. They found that the values obtained of tensile strength and Young’s modulus were 475 MPa and 44 GPa, respectively. These values are significantly lower than the values obtained in our study. This result can be explained by the excessive amount of CaO compared to P_2O_5, which influenced the mechanical properties of PGFs. Besides the effect of diameter and composition, a number of studies have shown that the spinning temperature plays a key role in the mechanical performance of fiberglass [25].

A significant increase in tensile strength, Young’s modulus and thus breaking strain of fibers doped with RE_2O_3 compared to the reference PGFs (OJ_0) is observed. The tensile strength values obtained were 1031 ± 34 MPa for fibers doped with 6 mol% of Eu_2O_3, and 861 ± 71 MPa and 1014 ± 65 MPa for fibers doped with 3 and 6 mol% of Tb_2O_3, respectively. The Young’s modulus values obtained for these 3 compositions were 80 ± 6 GPa, 73 ± 4 GPa, and 79 ± 7 GPa, respectively. At last, the values of breaking strain for these compositions are 1.29 ± 0.23%, 1.18 ± 0.11%, and 1.28 ± 0.20%, respectively. The evolution of the mechanical properties of these fibers is due to the addition of RE_2O_3 with an appropriate amount in the PG composition. In addition, it has been suggested that fibers with a high modulus are more rigid.

3.3. Density and molar volume

Tables 1 and 2 present the O/P ratio values and the average values of

![Photographs of some PGs and PGFs; OJ_0 (under daylight); OJ_7, OJ_11, and OJ_14 (under UV-A light illumination; \(\lambda_{\text{excitation}} = 365 \text{ nm} \).](image)
density measurements and molar volume for all studied PGFs compositions. Fig. 3 shows the evolution of ρ and Vm as a function of each composition, from series 1 (see Fig. 3 (a)) and series 2 (see Fig. 3 (b)).

As shown in Tables 1 and 2, O/P = 2.61 for the reference PGFs (OJ0), which means that the ultraphosphate groups (5/2 < O/P < 3) of a long phosphate chain (Q3) are dominant. These groups are highly concentrated in P2O5 of which the arrangement of PO4 tetrahedra forms a three-dimensional network. When these fibers are doped with 6 mol% of Eu2O3 or Tb2O3, the molar ratio O/P becomes equal to 3, which characterizes the metaphosphate groups rich in PO33− (Q2). These groups present a network formed of long chains and rings. Indeed, when the Eu2O3 or Tb2O3 content increases, it can be noted that the content of Q3 structural entities decreases, and thus the content of Q2 structural entities increases. Therefore, the bond length and bond angle of P−O−P in the glassy network structure also change [5].

Fig. 3 shows a linear increase in density as the RE2O3 content increases in the studied glassy systems. They increased from 2.18 g cm−3 for the OJ0 PGFs to 3.04 g cm−3 for the OJ2 PGFs and to 3.09 g cm−3 for the OJ14 PGFs. This increase can be explained by the fact that the molecular weights of Eu2O3 and Tb2O3 are greater than that of P2O5 and CaO and that the Eu3+ and Tb3+ ions have a strong aggregation. Furthermore, the molar volume of PGFs decreases with the RE2O3 content. These results indicate that the glassy network becomes more compact.

3.4. Thermal analysis

Fig. 4 shows the DTA curves of OJ0, OJ7, OJ11, and OJ14 PGFs. The values of glass transition temperature (Tg) and melting temperature (Tm) are collected in Table 3. The results show an increase in Tg and Tm values with the increase of RE2O3 content for both series. This increase is explained by the occupation of Eu3+ and Tb3+ ions of the interstitial sites of the glassy network. Therefore, the latter becomes more compact.

3.5. Structural characterization

The amorphous behavior of Eu3+ and Tb3+-doped PGFs was confirmed for all compositions by XRD analysis. Fig. 5 shows 4 examples of XRD patterns of PGFs samples (OJ0, OJ7, OJ11, and OJ14). The broad hump characteristic in all XRD spectra indicates a non-crystalline structure in the glassy system.

Fig. 6 shows the infrared spectra of different samples from series 1 (Fig. 6a) and series 2 (Fig. 6b). As can be seen, the spectra of the fibers doped with RE2O3 show no significant changes. The FTIR spectrum of OJ0 fibers shows seven dominant bands observed at 1231, 1184, 1103, 996, 915, 741, and 514 cm−1 within the wavenumber range 400–4000 cm−1. The infrared band assignments of the PGFs are listed in Table 4.

The vibrational bands around 1231 and 1184 cm−1 are attributed to asymmetric υ3(PO2) and symmetric υ2(PO2) stretching, respectively [1, 26, 27]. In this case, the two non-bridging oxygen (NBO) atoms easily connect to a phosphorus atom in the chain metaphosphate (Q2). The absorption bands shown at 1103 and 996 cm−1 correspond to the asymmetric υ3(PO3) and symmetric υ2(PO3) stretching vibrations due to PO4 tetrahedra containing 2 and 3 NBO atoms, respectively [1,28,29].
bands are characteristic of intermediate entities (Q^5).

At last, the broadband around 541 cm\(^{-1}\) can be ascribed to the deformation mode \(\delta(PO_4)^3\) of the isolated tetrahedra groups characteristic of phosphate units (Q^5) [20,32,33].

3.6. Photoluminescence properties

Fig. 7 shows the excitation spectra (PLE) recorded at room temperature for Eu\(^{3+}\)-doped fibers (Fig. 7 (a)) and Tb\(^{3+}\)-doped fibers (Fig. 7 (b)). The characteristic excitation transitions of Eu\(^{3+}\)-doped PGFs are \(\gamma F_0 \rightarrow \gamma H_3, \gamma S_2, \gamma D_4 \) (323 nm), \(\gamma F_0 \rightarrow \gamma D_4 \) (364 nm), \(\gamma F_0 \rightarrow \gamma G_3 \) (373 nm), \(\gamma F_0 \rightarrow \gamma G_2 \) (385 nm), \(\gamma F_0 \rightarrow \gamma E_6 \) (392 nm), \(\gamma F_0 \rightarrow \gamma D_5 \) (415 nm), and \(\gamma F_0 \rightarrow \gamma D_2 \) (486 nm). The most significant excitation transitions characteristic of Tb\(^{3+}\)-doped PGFs are \(\gamma F_6 \rightarrow \gamma H_3 \) (301 nm), \(\gamma F_6 \rightarrow \gamma H_2 \) (318 nm), \(\gamma F_6 \rightarrow \gamma G_2, \gamma L_s \) (345 and 349 nm), \(\gamma F_6 \rightarrow \gamma G_4, \gamma L_s \) (351 nm), \(\gamma F_6 \rightarrow \gamma G_5 \) (358 nm), \(\gamma F_6 \rightarrow \gamma L_{15} \) (366 nm), \(\gamma F_6 \rightarrow \gamma G_{06}, \gamma D_3 \) (374 nm), and \(\gamma F_6 \rightarrow \gamma D_4 \) (384 nm). From the PLE spectra, the maximum excitation wavelengths obtained are 392 nm and 374 nm for Eu\(^{3+}\)-doped fibers and Tb\(^{3+}\)-doped fibers, respectively, which are therefore chosen to record the emission spectra (PL). Figs. 8 and 9 show the PL spectra recorded at room temperature for some Eu\(^{3+}\)-doped and Tb\(^{3+}\)-doped PGFs compositions, respectively, with different dopant concentrations. The inhomogeneous broadening of the lines in the excitation and emission spectra is due to differences in the local environments around the RE ions in the disordered glassy system that arise from variations in both the RE–O distances and in the coordination numbers of these elements [16,34,35].

Excitation energy is transferred nonradiatively to the \(^5D_0\) state due to the relatively small energy gaps between the \(^5D_1, ^5D_2, ^5D_3\) states from which radiative transitions occur [36]. Therefore, all emission bands recorded under excitation at 392 nm are associated with \(^5D_0 \rightarrow \gamma F_j\) (J = 0–4) transitions appearing in the range between 570 and 750 nm. These intense bands belonging to the internal 4f–4f transitions of Eu\(^{3+}\) ions appear in each spectrum. The characteristic emission bands of Eu\(^{3+}\)-doped PGFs located around 578, 592, 611, 651, and 697 nm correspond to the emission transitions \(^5D_0 \rightarrow \gamma F_0, ^5D_0 \rightarrow \gamma F_1, ^5D_0 \rightarrow \gamma F_2, ^5D_0 \rightarrow \gamma F_3, \) and \(^5D_0 \rightarrow \gamma F_4\), respectively.

In this study, we examine in detail the spectral distribution for each emission transition of Eu\(^{3+}\) ions in the (65-x) P\(_2\)O\(_5\)-35CaO-xEu\(_2\)O\(_3\) system (with x = 2, 3, 5, and 6 mol%). Although the \(^5D_0 \rightarrow \gamma F_0\) transition is often observed in emission spectra, it is strictly forbidden according to the standard Judd-Oelft (JO) theory [12,37]. Previous studies indicate that the appearance of this transition can be attributed to J-mixing effects [38,39] or the mixing of low charge-transfer states in the wave functions of the 4\(^f\) configuration [12,40]. This very weak transition is identified as an electric dipole (ED). The \(^5D_0 \rightarrow \gamma F_1\) transition is an allowed magnetic dipole (MD) and its intensity is generally independent of the local symmetry [41-43]. The most intense band with red emission at 611 nm corresponds to the \(^5D_0 \rightarrow \gamma F_2\) transition and is an allowed magnetic dipole (MD) and its intensity is generally independent of the local symmetry [41-43].

The characteristic PL bands of PGFs in the (65-x) P\(_2\)O\(_5\)-35CaO-xTb\(_2\)O\(_3\) system (with x = 3, 5, and 6 mol%) recorded under 374 nm excitation are attributed to Tb\(^{3+}\) ions. Several emission bands are observed from the \(^5D_0\) and \(^5D_4\) excited states in the blue and green/red spectral zone.
The bands from the 5D_3 level are located around 412 and 418, 433, 460, and 476 correspond to the emission transitions $^5D_3 \rightarrow ^7F_5$, $^5D_3 \rightarrow ^7F_4$, $^5D_3 \rightarrow ^7F_3$, and $^5D_3 \rightarrow ^7F_2$, respectively. The bands from the 5D_4 level are located around 490, 543, 582, 619, 654, 668, and 679 nm correspond to the emission transitions $^5D_4 \rightarrow ^7F_5$, $^5D_4 \rightarrow ^7F_4$, $^5D_4 \rightarrow ^7F_3$, $^5D_4 \rightarrow ^7F_2$, $^5D_4 \rightarrow ^7F_1$, and $^5D_4 \rightarrow ^7F_0$ respectively. The most intense band with green emission is at 543 nm, arises from the Laporte-forbidden $^5D_4 \rightarrow ^7F_5$ (ED) transition [30,53]. This transition is hypersensitive to the Tb$^{3+}$ environment [13]. Additionally, in the PL spectrum of PGFs doped with 6 mol % of Tb$_2$O$_3$, this band is divided into two components due to the Stark division of energy levels [7]. The $^5D_4 \rightarrow ^7F_6$ transition obeys the (MD) transition selection rule of $\Delta J = \pm 1$ [53, 54]. Besides, this transition is almost independent of the environment [13]. The PL spectra show gradual increases in the intensity of the 5D_4 level bands with the increment of Tb$^{3+}$, while the peaks are at the same energy positions. The bands observed in the PL spectra of the 5D_3 level are due to a low rate of non-radiative processes from 5D_3 level to 5D_4 level [55]. These transitions are quenched at a high Tb$^{3+}$ content when

![FTIR spectra for the studied PGFs samples.](image)

Table 4

Infrared band positions (cm$^{-1}$) and assignments of the PGFs samples.

<table>
<thead>
<tr>
<th>Position (cm$^{-1}$)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1231</td>
<td>Asymmetric stretching vibration $\nu_{as}(PO_2)$ (NBO* atoms; Q^2 species)</td>
</tr>
<tr>
<td>~1184</td>
<td>Symmetric stretching vibration $\nu_s(PO_2)$ (NBO* atoms; Q^2 species)</td>
</tr>
<tr>
<td>~1103</td>
<td>Asymmetric stretching vibration $\nu_{as}(PO_3)$ (NBO* atoms; Q^1 species)</td>
</tr>
<tr>
<td>~996</td>
<td>Symmetric stretching vibration $\nu_s(PO_3)$ (NBO* atoms; Q^1 species)</td>
</tr>
<tr>
<td>~741</td>
<td>Asymmetric stretching vibration $\nu_{as}(P-O-P)$ (BO* atoms; Q^2 species)</td>
</tr>
<tr>
<td>~514</td>
<td>Symmetric stretching vibration $\nu_s(P-O-P)$ (BO* atoms; Q^2 species)</td>
</tr>
</tbody>
</table>

*BO: bridging oxygen; *NBO: non bridging oxygen.

![Excitation spectra at 300K of (a) Eu$^{3+}$-doped PGFs for emission at 611 nm and (b) Tb$^{3+}$-doped PGFs for emission at 543 nm.](image)
the Tb$_2$O$_3$ content increased by 6 mol %. Previous works have indicated that the concentration of Tb$^{3+}$ affects 5D_3 emission via the cross-relaxation (CR) process due to the reduction in distances [56–58]. Therefore, the band corresponding to the $^5D_3 \rightarrow ^7F_3$ transition becomes too weak for the OJ$_{14}$ sample.

The absolute quantum yield is described as the efficiency at which a material re-emits by fluorescence a certain number of photons absorbed at a given wavelength. Tables 5 and 6 show the calculated values of absolute quantum yield (Φ_a) for all PGFs samples in both series. It can be seen that Φ_a gradually increases with increasing Eu$^{3+}$ or Tb$^{3+}$ ions concentration. They vary from 3.61 to 20.25% for Eu$^{3+}$-doped fibers upon excitation at 392 nm, while for Tb$^{3+}$-doped fibers the Φ_a does not exceed 5% upon excitation at 374 nm. On the other hand, the internal quantum yield (Φ_i) varies by 62.80 ± 10.10% for OJ$_7$ PGFs and by 16.21 ± 4.85% for OJ$_{14}$ PGFs, with Abs values increasing with RE$^{3+}$ ions concentration. To the best of our knowledge, there are no internal or absolute quantum yield data available for glassy systems comparable to those studied in this paper. Therefore, the results reported in this work provide original reference data to compare various Eu$^{3+}$ and Tb$^{3+}$ doped luminescent glass materials.

At last, the CIE color coordinates emitted by the two PGFs samples OJ$_7$ and OJ$_{14}$ are presented in the CIE 1931 chromaticity diagram in Fig. 10. OJ$_7$ fibers give average color coordinates ($x = 0.648, y = 0.344$) under 392 nm excitation and are found in the red light region. OJ$_{14}$ fibers give average color coordinates ($x = 0.295, y = 0.477$) under 374 nm excitation and are situated in the green light region.

4. Conclusion

In this study, fifteen phosphate glasses (PGs) formulations were developed by the melt-quenching technique and divided into two glass systems (65-x) P$_2$O$_5$–35CaO–xEu$_2$O$_3$ and (65-x) P$_2$O$_5$–35CaO–xTb$_2$O$_3$, with 0 ≤ x ≤ 6 mol%. All compositions were successfully drawn as continuous monofilaments phosphate glass fibers (PGFs). The average diameter was 22.1 ± 0.8 μm with a fixed spinning speed. Morphological analysis performed by SEM showed that the elaborated fibers have a homogeneous and smooth surface. Their amorphous nature was confirmed by XRD and DTA. The mechanical properties of undoped PGFs were higher than those of PGFs in the literature. A significant increase in mechanical quantities was noticed with the addition of 6 mol% of RE$_2$O$_3$ (RE = Eu or Tb). The values of tensile strength, Young’s modulus, and breaking strain were 1031 ± 34 MPa, 80 ± 6 GPa, and 1.29 ± 0.23%, respectively, for fibers doped with 6 mol% of Eu$_2$O$_3$ (OJ$_7$), and 1014 ± 65 MPa, 79 ± 7 GPa, and 1.28 ± 0.20%, respectively.
for fibers doped with 6 mol% of Tb$_2$O$_3$ (OJ14). The strong aggregation of Eu$^{3+}$ and Tb$^{3+}$ ions that occupy the interstitial sites of the glassy network increased the density with a simultaneous decrease of the molar volume, making the glassy network more compact. Thus, the Tg was also found to increase with a maximum absolute quantum yield equal to about 5% for the OJ1 sample. The CIE color coordinates for these two compositions were (x = 0.648, y = 0.344) and (x = 0.295, y = 0.477) lying in the red and green regions, respectively.

Given all that, we have therefore demonstrated that it is possible to synthesize PGFs with excellent luminescent properties and that the doping of Eu$^{3+}$ and Tb$^{3+}$ ions in the studied glass systems improves the mechanical performance and influences the structural properties of the investigated PGFs.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledges

This work was supported financially by grants from the PHC-Toubkal under the project TKB/15/16, Campus France: 32506VM. We also thank the Higher School of Textiles and Clothing Industries (ESITH) and the Faculty of Sciences Ben M’sic (FBSM) for their continued support of this work.

References

[19] I.A.M. Ibrahim, et al., Electronic structure and energy level schemes of RE$^{3+}$: Li$_2$Si$_2$N$_2$ and RE$^{3+}$: Li$_2$Si$_2$N$_2$O$_x$ phosphors (RE= Ce, Pr, Nd, Pm, Sm, Eu) from first principles, J. Lumin. 164 (2015) 131-137, https://doi.org/10.1016/j.jlumin.2015.03.035.

