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1. INTRODUCTION

For transport-dominated problems, the data-driven model
reduction using Proper Orthogonal Decomposition (POD)
suffers from a very low convergence rate, which renders the
method impractical for this important class of problems.
In Reiss et al. [2018], the shifted Proper Orthogonal De-
composition (sPOD) was introduced to speed up the con-
vergence, when decomposing fields of transport dominated
systems with the help of the POD. The method builds on
the idea that traveling waves or moving localized struc-
tures can be perfectly described by their wave profile and a
time-dependent transformation, usually a shift operation.
Therefore, the shifted POD decomposes transport fields by
shifting the data field in a so-called co-moving frame, in
which the wave is stationary and can be described by few
spatial basis functions determined by the POD. Multiple
gradient based optimization algorithms for the sPOD exist
already in the literature [Black et al., 2021, Reiss, 2021,
Schulze et al., 2019]. However, those formulations of the
sPOD have disadvantages, both in practice and theory,
which we address in this contribution.

2. ALGORITHMIC APPROACH

The sPOD seeks to decompose traveling wave-fields Qij =
q(xi, tj), Q ∈ RM,N ,M > N by solving the optimization
problem:

min
{Qk}k

F∑
k=1

‖Qk − bQkcrk‖2 s.t. Q =

F∑
k=1

T k(Qk) (1)

with pre-determined shift-transforms T ±k(Q)ij = q(xi ∓
∆k(t)i, tj) parametrizing the translation of the wave. Here,
F denotes the number of co-moving frames and ‖A‖2 =
〈A,A〉 with 〈A,B〉 = tr

(
AHB

)
. The resulting co-moving

frames Qk ∈ RM,N are therefore of low rank and can be
decomposed efficiently using a truncated singular value
decomposition (SVD), denoted by bQkcrk . However, the
co-moving ranks rk > 0 have to be chosen a priori. For
complicated systems, this choice is often critical for the
quality of the decomposition and the additional freedom
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Fig. 1. Given the transport-dominated data-matrix Q
with 12.5% noise, our algorithm decomposes it in co-
moving frames Q1, Q2 and noise E.

of co-moving ranks leads to the question whether the
decomposition into co-moving frames is globally optimal.

For this reason, we investigate the shifted POD, formu-
lated as a convex optimization problem, based on mini-
mizing the one-norm ‖Qk‖∗ =

∑
i σi(Q

k) over the set of
all singular values {σi(Qk)}k,i in the shifted frames.

Problem 1. For given shifts {∆k}, λ > 0 and Q ∈
RM,N ,M > N with Qij = q(xi, tj) find {Qk ∈ RM,N}

min
Qk

∑
k

‖Qk‖∗ s.t. Q =

F∑
k=1

T k(Qk) (2)

where T k(Q)ij = q(xi −∆(t)i, tj).

As stated in Reiss [2021], this optimization problem is con-
vex, but difficult to solve with a gradient based algorithm.
Therefore, in this work we use an alternative formulation
based on an augmented Lagrangian with multiplier Y
following Bertsekas [2014]:

L({Qk}k, Y ) =

F∑
k=1

‖Qk‖∗ +
µ

2
‖Q−

F∑
k=1

T k(Qk)‖2 (3)

+ 〈Y,Q−
F∑
k=1

T k(Qk)〉 (4)

With the new formulation we can employ the alternating
direction method (ADM, see for review Boyd et al. [2011]),
which allows a rapid minimization of the one-norm with
help of the singular value thresholding operator:



svt(A, τ) = USτ (Σ)V ∗ (5)

= argminÃ τ‖Ã‖∗ +
1

2
‖Ã−A‖2 (6)

Sτ (x) = sign(x) max(|x| − τ, 0), (7)

which technically boils down to a singular value decompo-
sition of the matrix A = UΣV ∗ with a soft thresholding
operator Sτ (threshold τ > 0) applied to the singular
values. For the data displayed in fig. 1 the algorithm con-
verges to the exact numerical ranks after approximately
25 iterations as shown in fig. 2. To further improve the
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Fig. 2. Convergence of the decomposition for the data
shown in figure 1 without the noise. On the left, the
numerical ranks of Q1 and Q2 at each iteration and
on the right the overall error of the data for different
stiffness coefficients (µ1, µ2, µ3) = (0.1, 1, 10)µ0.

decomposition we can make the algorithm robust against
outliers or noisy input data, by adding an additional
sparsity constraint, as done by Lin et al. [2010, 2011].

We therefore decompose Q = Q̃ + E in a low rank part
Q̃ =

∑
k T k(Qk) and the noise is captured in E ∈ RM,N .

The Lagrange function becomes:

LE({Qk}k, E, Y ) =
µ

2
‖Q−

F∑
k=1

T k(Qk)− E‖2 (8)

+ λ‖E‖1 +

F∑
k=1

‖Qk‖∗ + 〈Y,Q−
F∑
k=1

T k(Qk)− E〉 . (9)

The resulting algorithm 1 is therefore more robust against
interpolation noise of the shift-operators, corrupted mea-
surements or numerical artifacts. It can be interpreted as a
shifted version of the robust Principle Component Analysis
(srPCA). Its performance scales with the complexity of the
singular value decomposition, which can be further accel-
erated by randomized- or wavelet-techniques (see Halko
et al. [2011], Krah et al. [2020]).

3. RESULTS - 2D VORTEX SHEDDING OF A
MOVING CYLINDER AT RE = 200

To illustrate the applicability of the decomposition to
large data sets, we computed a 2D vortex shedding of
two cylinders using the artificial compressibility method
(ACM) to simulate incompressible Navier Stokes equations
on a highly resolved adaptive grid [Engels et al., 2021]. In
the simulation domain of size L×L, a stationary cylinder
is placed at (x1, y1) = (0.125, 0.5)L, followed by a moving
cylinder (x2, y2) = (0.5L, 0.5L+ ∆(t)), simulated over one
period T = 1/f . The mean flow going from left to right is
tuned such that the Reynolds number Re= 200 in reference
to the first cylinder is achieved. The shift of the second

Algorithm 1 ADM for shifted rPCA

Require: Q ∈ Rm×n, {T k}k, µ, λ > 0

1: init Qk = 0 ∀ k, Q̃ = E = Y = 0
2: while not converged do
3: for frame p = 1, . . . , N do

4: Q̃p = T −p(Q−
∑F
k=1,k 6=p T k(Qk)− E + 1

µY )

5: apply singular value tresholding
6: Q̃p ← svt(Q̃p, µ−1)
7: end for
8: for frame p = 1, . . . , N do
9: Update Qp = Q̃p

10: end for
11: update noise matrix:
12: E = Sλµ−1(Q−

∑
k T k(Qk) + 1

µY )

13: update multiplier: Y ← Y +µ(Q−
∑
k T k(Qk)−E)

14: end while
15: return {Qk}

cylinder ∆(t) = 0.25L sin(2πft) is compensated by our
algorithm and the data are decomposed in two co-moving
frames, which are illustrated in fig. 3. A clear separation

Fig. 3. sPOD: Results of the algorithm for the vorticity
field at t = T/4.

of the two cylinder shedding is achieved, with an overall
relative error of about 1%, when stopping the algorithm at
(r1, r2) = (37, 35). Comparing this results to the POD with
r = r1+r2 shown in fig. 4 (relative error 2%), we see typical
staircase effects of the POD located at the discontinuities
at the fluid-solid interfaces. In the conference talk we will

Fig. 4. Vorticity field (left) and its decomposition with the
POD (right) at t = T/4.

further address the ability to predict and optimize flows
using the low rank structure computed by our algorithm.
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