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Abstract

Variational methods are extremely popular in the analysis of network data. Statistical guarantees
obtained for these methods typically provide asymptotic normality for the problem of estimation of global
model parameters under the stochastic block model. In the present work, we consider the case of networks
with missing links that is important in application and show that the variational approximation to the
maximum likelihood estimator converges at the minimax rate. This provides the first minimax optimal
and tractable estimator for the problem of parameter estimation for the stochastic block model with
missing links. We complement our results with numerical studies of simulated and real networks, which
confirm the advantages of this estimator over current methods.

1 Introduction

The analysis of network data poses both computational and theoretical challenges. Most results obtained in
the literature concentrate on the stochastic block model (SBM) which is known to be a good proxy for more
general models, such as the inhomogeneous random graph model, [34]. Recently, variational methods ([27, 47])
have attracted considerable attention as they offer computationally tractable algorithms often combined with
theoretical guarantees. Theoretical results that one can find for such variational methods provide asymptotic
normality rates for parameter estimates of stochastic block data. For example, consistency has been shown for
profile likelihood maximization [7] and variational approximation to the maximum likelihood estimator [12],
[6]. These results have been extended to the case of dynamic stochastic block model [33] and sampled data
[46]. These work focus on parameter estimation, as in [42] and [51], who establish the minimax optimality of
variational methods in a large class of models (which does however not include the stochastic block model).
Variational inference has also been successfully applied to the problem of community detection, see, e.g.,
[3, 52, 25, 43]. In particular, the authors of [52] show that an iterative Batch Coordinate Ascent Variational
Inference algorithm designed for the two-parameters, assortative stochastic block model achieves statistical
optimality for community detection problem. Note that this algorithm cannot be extended to the more
general stochastic block model considered here.

In parallel with this line of work, the problem of statistical estimation of model parameters, in particular,
the question of minimax optimal convergence rates, has been actively studied in the statistical community.
In the case of dense graphs, a pioneering paper [16] shows that, for the problem of estimating the matrix
of connection probabilities, the least square estimator is minimax optimal and [17] provides optimal rate
for Bayes estimation. For the more challenging case of sparse graphs, the minimax optimal rates have
been first obtained in [28] building on the restricted least square estimator. In [15], the authors consider
the least square estimator in the setting when observations about the presence or absence of an edge are
missing independently at random with the same probability p. Unfortunately, least square estimation is too
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computationally expensive to be used in practice. Many other approaches have been proposed, for example,
spectral clustering [38, 21, 44], modularity maximization [40, 7], belief propagation [13], neighbourhood
smoothing [53], convex relaxation of k-means clustering [19] and of likelihood maximization [4], and universal
singular value thresholding [10, 29, 49]. These approaches are computationally tractable but show sub-optimal
statistical performances. So the question of possible computational gap when no polynomial time algorithm
can achieve minimax optimal rate of convergence has been raised.

The present work goes in these two directions. We study the statistical properties of the mean field
variational Bayes method and show that it achieves the optimal statistical accuracy. In particular, these
results close the open question on the possible existence of a computational gap for the problem of global
parameter estimation. We built our analysis on the approach developed in [12], [6] and [46] using the closeness
of maximum likelihood and maximum variational likelihood and on the results that show the minimax
optimality of the maximum likelihood estimator [18].

In the present paper, we deal with settings where the network is not fully observed, a common problem
when studying real life networks. In many applications the network has missing data as detecting interactions
can require significant experimental effort, see, [31, 50, 23, 20]. For example, in biology graphs are used to
model interactions between proteins. Discovery of these interactions can be costly and time-consuming [8].
On the other hand, the size of some networks from social media or genome sequencing may be so large that
only subsamples of the data are considered [5]. It has been observed that incomplete observation of the
network structure may considerably affect the accuracy of inference methods [30] and missing data must be
taken into account while analyzing networks data. A popular approach consists in considering the edges with
uncertain status as non-existing. In the present paper, we use a different framework by considering such edges
as missing and introducing a separated data missing mechanism. A natural application of our method is
link prediction [35, 54], the task of predicting whether two nodes in a network are connected. Our approach
allows to deduce the pairs of nodes that are most likely to interact based on the known interactions in the
network. Behind inference of the networks structure, our algorithms can be used to predict the links that may
appear in the future if we consider networks evolving over the time. For example, in a social network, two
users that are not yet connected but are likely to be connected can be recommended as promising friends.

1.1 Contribution and outline

The paper is organized as follows. After summarizing notations, we introduce our model and the maximum
likelihood estimator for the stochastic block model with missing observations in Section 2. In Section 3, we
introduce the mean field variational Bayes method and present a new estimator which combines the labels
obtained using the variational method and the empirical mean for estimation of connection probabilities. In
Section 3.2, we show that our estimator is minimax optimal for dense stochastic block models with missing
observations as well as for sparse stochastic block models. Finally, in Section 4 we provide an extensive
numerical study both on synthetic and real-life data which shows clear advantages of our estimator over
current methods.

1.2 Notations

We provide here a summary of the notations used throughout the paper. For all d ∈ N∗, we denote
by [d] the set {1, ..., d}. For z : [k] → [n] and all (a, b) ∈ [d] × [d], we abuse notations and denote
z−1(a, b) = {(i, j) : z(i) = a, z(j) = b, i ̸= j}. For any two label functions z, z′, we write z ∼ z′ if there
exists a permutation σ of {1, ..., k} such that (z(σ(a)))a≤k = (z(a))a≤k. For any set S, we denote by |S| its
cardinality. For any matrix A, we denote by Aij its entry on row i and column j. If A ∈ [0, 1]n×n and A
is symmetric, we write A ∈ [0, 1]n×n

sym . We denote by A⊙B the Hadamard product of two matrices A and

B. The Frobenius norm of a matrix A is denoted by ∥A∥2 =
√∑

i,j A
2
ij . We denote by C and C ′ positive

constants that can vary from line to line. These are absolute constants unless otherwise mentioned. For any
two positive sequences (an)n∈N, (bn)n∈N, we write an = ω(bn) if an/bn → ∞.
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2 Maximum likelihood estimation in the stochastic block model
with missing links

2.1 Network model and missing data scheme

In the simplest situation, a network can be represented as undirected, unweighted graph with n nodes indexed
from 1 to n. Then, the network can be encoded by its adjacency matrix A = (Aij). The adjacency matrix is
a n× n symmetric matrix such that for any i < j, Aij = 1 if there exists an edge between node i and node j,
Aij = 0 otherwise. We consider that there is no edge linking a node to itself, so Aii = 0 for any i. A common
approach in network data analysis is to assume that the observations are random variables drawn from a
probability distribution over the space of adjacency matrices. More precisely, for i < j the variables Aij are
assumed to be independent Bernoulli random variables of parameter Θ∗

ij , where Θ∗ = (Θ∗
ij)1≤i<j≤n is a

n× n symmetric matrix with zero diagonal entries. The matrix Θ∗ corresponds to the matrix of probabilities
of observing an edge between nodes i and j. This model is known as the inhomogeneous random graph model:

∀1 ≤ i < j ≤ n, Aij |Θ∗
ij

ind.∼ Bernoulli
(
Θ∗

ij

)
. (1)

Our focus is on the problem of estimation of the generative matrix Θ∗ which determines the overall structure
of the network. This question is of particular interest for the task of link prediction.

Many of real-life networks are characterized by block structure. Loosely speaking, the block structure
means that the nodes of the network are partitioned into groups called blocks, and that the distribution of the
connections between nodes depends on the blocks to which the nodes belong. For example, when considering
citation networks, where two articles are linked if one is cited by the other, it amounts to saying that the
probability that two articles are linked only depends on their topic. Similarly, if one considers students of a
school in a social network, it is a reasonable assumption to say that the probability that two students are
linked only depends on their cohorts.

A very popular model that formalizes this idea is the stochastic block model (see, e.g., [26]). In this
model, nodes are classified into k communities: each node i is associated with a community z∗(i), where
z∗ : [n] → [k] is called the label function. This label function can either be treated as a parameter to estimate,
or as a latent variable. In this last case, it is assumed that the indexes follow a multinomial distribution: ∀i,
z∗(i)

i.i.d∼ Multinomial(1;α∗) where ∀a ∈ [k], αa is the probability that node i belongs to the community a.
Given this label function, the probability that there exists an edge between nodes i and j depends only on
the communities of i and j. Thus, the matrix of connection probabilities Θ∗ can be factorized as follows:
Θ∗

ij = Q∗
z∗(i)z∗(j), with Q∗ a k × k symmetric matrix such that Q∗

ab is the probability that there exists an
edge between a given member of the community a and a given member of the community b. The conditional
stochastic block model can be written as:

∃Q∗ ∈ [0, 1]k×k
sym , ∃z∗ : [n] → [k]

∀1 ≤ i < j ≤ n, Aij | (Q∗, z∗)
ind.∼ Bernoulli

(
Q∗

z∗(i)z∗(j)

)
, Aii = 0.

(2)

Assuming that the network follows the stochastic block model, the problem of estimating the matrix of
connection probabilities reduces to estimating the label function z∗ and the matrix of probabilities of
connections between communities Q∗. Note that the conditional stochastic block model is at best identifiable
up to a simultaneous permutation of the communities and of the rows and columns of the parameters Q∗.

The stochastic block model has attracted considerable interest from the learning community. An
important line of work has focused on the problem of estimation of the latent variables z∗, see, for example,
[37, 9, 1, 39]. The best understood framework is the binary, balanced, symmetric, assortative block model.
In this simpler model, the two communities have the same size, the same probability of intra-community
connection (Q∗

11 = Q∗
22 = p), and nodes are assumed to be more connected with nodes of the same community

(p > q = Q∗
12). Much work has been done on the precise characterisation of the conditions on p, q that allow

for strong recovery of z∗, i.e. to estimate z∗ exactly with high probability. Closest to model (2) is perhaps
the setting considered in [14]. In this work, the authors consider the related problem of community recovery
in the binary block model [22],[2], and provide tight bounds on the recovery threshold for the balanced, two
communities stochastic block model with missing observations. They propose a computationally efficient
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algorithm for estimating z∗ in regime where strong recovery is possible; this, however requires prior knowledge
of the parameter Q∗.

Missing observations scheme Usually, when working with network data, not all the edges are observed.
To account for this situation we introduce X ∈ {0, 1}n×n

sym the known sampling matrix where Xij = 1 if Aij

is observed and Xij = 0 otherwise. We assume that X is random and independent from the adjacency
matrix A and its expectation Θ∗. For any 1 ≤ i < j ≤ n, its entries Xij are mutually independent and

Xij
ind.∼ Bernoulli(p) for some sampling rate p → 0 such that p = ω (log(n)/n) when n → ∞.

2.2 Conditional maximum likelihood estimator

The log-likelihood of the parameters (z,Q) with respect to the adjacency matrix A and the sampling matrix
X is given by

LX(A; z,Q) =
∑

1≤i<j≤n

Xij

(
Aij log(Qz(i)z(j)) + (1−Aij) log(1−Qz(i)z(j))

)
=
∑
a≤b

log(Qab)
∑

(i,j)∈z−1(a,b)

XijAij +
∑
a≤b

log(1−Qab)
∑

(i,j)∈z−1(a,b)

Xij(1−Aij).

Let us denote by Zn,k the set of all label functions z : [n] → [k]. For a given label function z ∈ Zn,k, the
log-likelihood is maximized by taking

Qab =

∑
(i,j)∈z−1(a,b) XijAij∑

(i,j)∈z−1(a,b) Xij
.

It is interesting to note that, for a fixed label function z, maximizing the likelihood or minimizing the least

square criterion defined as CX (A; z,Q) =
∑

i<j Xij

(
Aij −Qz(i),z(j)

)2
yields the same estimator for the

matrix Q. The main difference between these two methods is rooted in the label functions selected by the
two criteria, see, e.g. [18].

To bound the risk of the maximum likelihood estimator, it is usual to assume that there exists sequences
ρn and γn such that ∀i < j,

0 < γn ≤ Θ∗
ij ≤ ρn < 1. (3)

This assumption ensures that the loss associated to the maximum likelihood estimator is Lipschitz continuous.
See, for example, [6] and [48], where the authors assume that the adjacency matrix is generated by an
homogeneous stochastic block model for which the matrix Q∗/ρn has entries bounded away from 0.

The restricted maximum likelihood estimator, Θ̂, is based on the maximization of the likelihood among
block constant matrices with entries in [γn, ρn]:

Θ̂i<j = Q̂ẑ(i)ẑ(j), Θ̂ii = 0

(Q̂, ẑ) ∈ argmax
Q∈[γn,ρn]

k×k
sym ,z∈Zn,k

LX(A; z,Q). (4)

In (4), γn and ρn are assumed to be known (see [18] for a discussion on how to estimate these parameters).
Note that the Expectation-Maximization algorithm used in practice to obtain the variational approximation to
the maximum likelihood estimator does not require the knowledge of these parameters. We also assume that k
is known and that it can depend on the number of nodes n; it can be chosen using a network cross-validation
method [11], a sequential goodness-of-fit testing procedure [32] or a likelihood-based model selection method
[48]. The following result provides the upper bound on the estimation risk of the maximum likelihood
estimator:

Theorem 1 (Corollary 2 in [18]). Assume that A is drawn according to the conditional stochastic block
model and ρn = ω(n−1). Then, there exists absolute constants C,C ′ > 0 such that, with probability at least
1− 9 exp

(
−Cρn

(
k2 + n log(k)

))
,

∥Θ∗ − Θ̂∥22 ≤ C ′
(

ρ2
n

((1−ρn)
2∧γ2

n)

) ρn
(
k2 + n log(k)

)
p

. (5)
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When all network entries are observed, we have p = 1. Note that this results implies that, when
ρn = O(γn), the maximum likelihood estimator is minimax optimal (see, [28, 15] for a statement of the lower
bound).

3 Variational approximation to the maximum likelihood estimator

3.1 Definition of the estimator

The optimization of the log-likelihood function LX requires a search over the set of kn labels. As a consequence,
the maximum likelihood estimator defined in (4) is computationally intractable. Celisse et al. [12] and Bickel
et al. [6] are the first to study a variational approximation to this estimator. More recently, the authors of
[46] used variational methods to approximate the maximum likelihood estimator in networks with missing
observations. We start by formally introducing the variational approximation to the maximum likelihood
estimator. We consider a stochastic block model with random labels with parameters (α,Q). For this model,
the likelihood of the observed adjacency matrix A and sampling matrix X is given by

lX(A;α,Q) =
∑

z∈Zn,k

∏
i≤n

αz(i)

 exp (LX(A; z,Q)) .

Note that the maximization of lX still requires to evaluate the expectation of the label function z for
given parameters (α,Q) by summing over kn possible labels. To circumvent this problem, one can use the
mean-field approximation, which amounts to approximating the posterior distribution P (·|X ⊙A, α,Q) by a
product distribution. To ensure that this product distribution remains close to the posterior distribution, the
objective function is penalized by the Kullback-Leibler divergence of the two distributions. More precisely,
the posterior distribution P (·|X ⊙A, α,Q) is approximated by a multinomial distribution denoted Pτ , such
that Pτ (z) =

∏
1≤i≤n m(z|τ i), where m(·|τ i) is the density of the multinomial distribution with parameter

τ i =
(
τ i1, ..., τ

i
k

)
, and τ =

(
τ1, ..., τn

)
. Then, the variational estimator is defined as(

α̂V AR, Q̂
V AR

, τ̂V AR
)

= argmax
α∈A,Q∈Q,τ∈T

JX(A; τ, α,Q) (6)

for JX(A; τ, α,Q) = log (lX(A;α,Q))−KL (Pτ (·)||P (·|X ⊙A, α,Q))

where A, Q and T are the respective parameter spaces for the parameters α, Q and τ , KL denotes the
Kullback-Leibler divergence between two distributions, and X ⊙A denotes the observed entries of A. Since
for any parameter (α,Q), KL (Pτ (·)||P (·|X ⊙A, α,Q)) ≥ 0, we see that exp (JX(A; τ, α,Q)) provides a
lower bound on lX(A;α,Q).

The expectation - maximization (EM) algorithm derived in [46] can be used to iteratively approximate
the variational estimator. This algorithm alternates between the following two steps :

• Estimation Step: given parameters (α,Q), the variational parameter τ maximizing JX(A; τ, α,Q) is
given by the fixed point equation :

τ ia = ciαa

∏
j ̸=i:Xij=1

∏
b≤k

(
Q

Aij

ab (1−Qab)
1−Aij

)τj
b

where ci is a normalizing constant;

• Maximization Step: given parameter τ , the parameters (α,Q) maximizing JX(A; τ, α,Q) are given by

αa =

∑
i τ

i
a

n
, Qab =

∑
i ̸=j Xijτ

i
aτ

j
bAij∑

i̸=j Xijτ iaτ
j
b

.

Since this algorithm is not guaranteed to converge to a global maximum, it should be initialized with care, by
using, for example, a first clustering step. This solution is implemented in the package missSBM.
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Statistical guarantees for the variational estimator obtained in [12, 6, 36] establish that maximizing
maxτ∈T JX(A; τ, α,Q) is equivalent to maximizing lX(A;α,Q), and that the estimator obtained by maxi-

mizing lX(A;α,Q) converges to the true parameters (α∗,Q∗). This in turn implies that (α̂V AR, Q̂
V AR

) also
converges to (α∗,Q∗). Note that these results do not provide guarantees on the recovery of the true labels z∗

or on the matrix of connection probabilities Θ∗. In order to estimate Θ∗, we first define the label estimator
ẑV AR using the minimizer of the objective function (6):

∀ i ≤ n, ẑV AR(i) ≜ argmax
a≤k

(
τ̂V AR

)i
a
. (7)

Once we have estimated the community labels using (7), we replace the estimator Q̂
V AR

of the matrix of
connection probabilities by the empirical mean estimator:

∀a < k and b < k, Q̂
ML−V AR

ab ≜

∑
(i,j)∈(ẑV AR)−1(a,b) XijAij∑

(i,j)∈(ẑV AR)−1(a,b) Xij

and define Θ̂
V AR

as Θ̂
V AR

i ̸=j = Q̂
ML−V AR

ẑV AR(i),ẑV AR(j), Θ̂
V AR

ii = 0. (8)

We will show respectively in Theorems 2 and 3 that this new estimator
(
ẑV AR, Q̂

ML−V AR
)
is minimax

optimal for dense networks with missing observations as well as for sparse networks. The simulation study
provided in Section 4 reveals that this estimator also has good performances in practice.

3.2 Convergence rates of variational approximation to the maximum likelihood
estimator

In this section, we show the asymptotic equivalence of ẑV AR and ẑ, where

(Q̂, ẑ) ∈ argmax
Q∈Q,z∈Zn,k

LX(A; z,Q) (9)

is the maximum likelihood estimator. More precisely, we show that, with large probability, there exists a

permutation σ of {1, ..., k} such that
(
zV AR(σ(a))

)
a≤k

= (z(a))a≤k and
(
Q̂

ML−V AR

σ(a),σ(b)

)
a,b≤k

=
(
Q̂a,b

)
a,b≤k

.

When this hold, the tractable estimator
(
ẑV AR, Q̂

ML−V AR
)
is minimax optimal. These results are established

under the following assumptions:

A.1 There exists c > 0 and a compact interval CQ ⊂ (0, 1) such that A ⊂ [c, 1− c] and Q ⊂ Ck×k
Q ;

A.2 The true parameters α∗ and Q∗ lie respectively in the interior of A and Q;

A.3 The coordinates of α∗Q∗ are pairwise distinct.

Note that Assumption A.2 and A.3 are standard. Assumption A.2 requires that the true parameters lie
in the interior of the parameter space, which is classical in parametric estimation. In the most simple
case, the parameters α∗ and Q∗ lie respectively in the interior of sets A and Q of the form A = [c, 1− c],
Q = [c′, 1− c′]k×k

sym, for some c, c′ ∈ (0, 1/2). Assumption A.3 ensures the identifiability of stochastic block
model parameters. Then, under the assumption that p = ω (n/ log(n)), strong recovery of the labels is
possible. Assumption A.1 is more restrictive, as it implies that the network is dense. This assumption will be
relaxed in Theorem 3, where we consider sparse stochastic block models such that Q∗ = ρnQ

0 for some fixed
Q0 and some decreasing, sparsity inducing sequence ρn.

The following Theorem shows the minimax optimality of the tractable estimator Θ̂
V AR

under assumptions
A.1 - A.3.

Theorem 2. Assume that A is generated from a stochastic block model with parameters (α∗,Q∗) satisfying
assumptions A.1 - A.3. Then, P

(
ẑV AR ∼ ẑ

)
→ 1 when n → ∞. Moreover, there exists a constant CQ∗ > 0

depending on Q∗ such that

P

(∥∥∥Θ∗ − Θ̂
V AR

∥∥∥2
2
≤

CQ∗
(
k2 + n log(k)

)
p

)
→

n→∞
1.
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Let us now discuss the extension of Theorem 2 to the case of sparse networks. To avoid technicalities,
we will consider the case when the network is fully observed. We will also assume that the proportions of
different communities are held constant, while the probabilities of connections between communities may
decreases at rate ρn. That is, the parameters (α∗,Q∗) verify the following assumptions:

A.4 α∗ = α0 for some fixed α0 such that α0
a > 0 for any a ∈ {1, ..., k}

A.5 Q∗ = ρnQ
0 for some fixed Q0 ∈ (0, 1)k×k such that

k∑
a,b=1

α0
aα

0
bQ

0
ab = 1

Assumption A.5 relaxes Assumption A.1 and allows us consider sparse networks. The normalization constraint∑
1≤a,b≤k α

0
aα

0
bQ

0
ab = 1 ensure the identifiability of the parameters (Q0, ρn) (see [6]). In the following, we

denote by Q the set of parameters (α,Q) verifying Assumptions A.4 and A.5.
The following theorem provides the analogous of Theorem 2 in the case of fully observed sparse networks.

It is obtained by combining Propositions 2 and 3 in [18]:

Theorem 3. Assume that A is fully observed, and is generated from a stochastic block model with parameters
(α∗,Q∗) satisfying Assumptions A.4 and A.5, such that Q0 has no identical columns and the sparsity inducing
sequence ρn satisfies ρn ≫ log(n)/n. Then, P

(
ẑV AR ∼ ẑ

)
→ 1 when n → ∞. Moreover, there exists a

constant CQ0 > 0 depending on Q0 such that

P
(∥∥∥Θ∗ − Θ̂

V AR
∥∥∥2
2
≤ CQ0ρn

(
k2 + n log(k)

))
→

n→∞
1. (10)

Theorems 2 and 3 establish that the variational estimator Θ̂
V AR

is minimax optimal for both the
estimation of dense networks with observations missing uniformly at random, and sparse networks. For proofs
and discussion see Appendix B.1.

4 Numerical Results

4.1 Synthetic data

In this section we provide a simulation study of the performances of the maximum likelihood estimator defined
in (8), and compare it to the variational estimator defined in [46] and implemented in the package missSBM,
as well as to the Universal Singular Value Thresholding estimator introduced in [24] and implemented in the
package softImpute. The results are reported in Figure 1. Thorough descriptions of the simulation protocols
are provided in the Appendix.

Dense stochastic block model First, we evaluate the empirical performances of the variational approxi-
mation of the maximum likelihood estimator defined in (8) on dense stochastic block models. We estimate the
matrix of probabilities of connections, and we compare our estimator with the estimator given by the methods
missSBM and softImpute. The quality of the inference is assessed by computing the squared Frobenius
distance between the estimators and the true matrix of connection probabilities Θ∗.

We consider three types of three-communities stochastic block model. The first model, given by
(αassort.,Qassort.), provides a simple assortative network, where individuals are more connected with peo-
ple from their communities than with other individuals. On the contrary, the second model, given by
(αdisassort.,Qdisassort.), is disassortative: individuals are more connected with individuals from outside
of their communities. Both the assortative and disassortative models have balanced communities. The
third model considered, given by (αmix.,Qmix.), exhibits neither assortativity nor disassortativity, and the
communities are unbalanced. We introduce missing data by observing each entry of the adjacency matrix
independently with probability 0.5.

The variational approximation to the maximum likelihood estimator defined in (8) outperforms the
softImpute method across all models and all number of nodes. Its error is equivalent to that of the oracle
estimator with hindsight knowledge of the true label function z∗ when the network is a few hundred nodes
large. Interestingly, our estimator also outperforms the variational estimator implement in the package
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(a) Assortative SBM. (b) Disassortative SBM. (c) Mixed SBM.

(d) Robustness against sparsity. (e) Robustness against missing
observations.

Figure 1: Top : Error of connection probabilities estimation as a function of the number of nodes (top left :
assortative SBM with balanced communities; top middle : disassortative SBM with balanced communities;
top right : mixed SBM with unbalanced communities) or of the sparsity parameter ρ (bottom left) and of
the sampling rate p (bottom right). We compare the variational approximation to the maximum likelihood
estimator (in blue) to that of missSBM (in red), that of softImpute (in green), that of the oracle estimator
with knowledge of the label z∗ (in black), and that of the trivial estimator with entries equal to the empirical
average degree divided by the number of nodes (orange, bottom only). The full lines indicate the median
respectively of the mean squared error (top and bottom right) and of the mean squared error divided by the
sparsity parameter ρ (bottom left) of the estimators over 100 repetitions, while the dashed lines indicate its
25% and 75% quantiles.

missSBM. We underline however that the primary focus of the missSBM method is to infer the parameters
(α∗,Q∗).

Additional experiments illustrating the strong consistency of the variational estimator canbe found in
Appendix B.2.

Sparse stochastic block model Next, we investigate the behaviour of our estimator on increasingly
sparse networks. We consider a three-communities assortative stochastic block model of 500 nodes with
balanced communities, and 50% missing values. The probabilities of connections are given by Q∗ = ρQ0,
where ρ is a parameter controlling the sparsity, which ranges from 0.05 to 1. We compare the performance of
the variational approximation to the maximum likelihood estimator to that of the methods softImpute and
missSBM. We also compare these estimators to the trivial estimator with all entries equal to the average
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degree divided by the number of nodes. The error is measured as the squared Frobenius distance between the
estimator and the matrix Θ∗ divided by ρ2.

As the network sparsity increases, the clustering of the nodes becomes more difficult. The normalized

error of the estimator Θ̂
V AR

increases up to a threshold corresponding to the normalized error of the trivial
estimator with all entries equal to the empirical degree, divided by the number of nodes. Note that when
considering very sparse networks, with ρ ≪ log(n)/n, it is known that the trivial estimator with entries equal
to the empirical mean degree is minimax optimal (see, eg, [28])). Thus, the estimator enjoys relatively low
error rates in both high and low signal regime. By contrast, the normalized error of the softImpute method
diverges as the network becomes increasingly sparse.

Stochastic block model with missing observations To conclude our simulation study, we evaluate
the robustness of the methods against missing observations. We consider a three-communities assortative
stochastic block model with balanced communities and 500 nodes. We increase the proportion of missing
observations, and we compare the performance of the variational approximation to the maximum likelihood
estimator to that of the methods softImpute and missSBM. The error is measured as the squared Frobenius
distance between the estimator and the matrix Θ∗.

As the sampling rate p decreases, the clustering becomes impossible and the error rate of the estimator

Θ̂
V AR

increases up to that of the trivial estimator obtained by averaging the observed entries of the adjacency
matrix. By contrast, the methods softImpute and missSBM lack robustness against missing observations,
and their error diverges as the number of missing observations increases.

4.2 Analysis of real networks

4.2.1 Prediction of interactions within a elementary school

We apply our algorithm to analyze a network of interactions within a French elementary school collected
by the authors of [45]. The network records durations of physical interactions occurring within a primary
school between 222 children divided into 10 classes and their 10 teachers over the course of two consecutive
days; this dataset was collected using a system of sensors worn by the participants. We consider that an
interaction has occurred if the corresponding duration is greater than one minute. If an interaction of less
than one minute is observed, we consider that this observation may be erroneous, and treat the corresponding
data as missing. By doing so, we remove respectively 11 and 13% of the observations on Day 1 and Day 2.

The graphs of interactions recorded during Day 1 and Day 2 can be considered as two outcomes of the
same random network model characterized by the matrix of connection probabilities Θ∗. In this spirit,
we use the observations collected on Day 1 estimate the matrix Θ∗, and evaluate those estimators on the
network of interactions corresponding to Day 2. We note that the network of interactions for Day 1 has
rather homogeneous degrees (the maximum degree is 41 and the minimum degree is 5, while the mean degree
is 20). Moreover, it exhibits a strong community structure. Therefore, we expect the networks of interactions
to be well approximated by a stochastic block model.

We compare the performance in terms of link prediction of the estimator Θ̂
V AR

defined in (8) to that of
the method missSBM, and that of the method softImpute. In this last method, we set the penalty to 0, and
we choose the rank of the estimator to be equal to the number of communities, which is estimated according
to the Integrated Likelihood Criterion. We also compare these methods to the naive persistent estimator

Θ̂
naive

given by Θ̂
naive

ij = 1 if an interaction between i and j has been recorded on Day 1, Θ̂
naive

= 0 if no

such interaction has been recorded, and Θ̂
naive

ij = d/n if the information is missing, where d is the average
degree of the graph for Day 1. Table 1 present the error of the different estimators, measured as the squared
Frobenius distance between the adjacency matrix of Day 2 and its predicted value, divided by the squared
Frobenius norm of the adjacency matrix of Day 2 (i.e, the error of the trivial null estimator).

The variational method predicts most accurately the interactions on Day 2. It is closely followed by the
estimator provided by the package missSBM. By contrast to the simulation study, the reduction in error when

using the new estimator is moderate : the error of Θ̂
V AR

is respectively 1.4% and 12.4% smaller than that

of Θ̂
missSBM

and Θ̂
softImpute

. In addition, the precision-recall curve presented in the Appendix indicates

9



Estimator Θ̂
V AR

Θ̂
missSBM

Θ̂
SV T

Θ̂
naive

∥X ⊙ (A− Θ̂)∥22
/
∥X ⊙A∥22 0.312 0.317 0.357 0.541

Table 1: Link prediction error on the network of interactions within a primary school.

that no estimator is better across all sensitivity levels. Interestingly, the naive estimator obtains a high error,
which suggests a certain versatility in the children’s behaviour.

4.2.2 Network of co-authorship

Finally, we use variational approximation to predict unobserved links in a network of co-authorship between
scientists working on network analysis, first analysed in [41]. We discard the smallest connected components
(with less than 5 nodes), and we obtain a network of 892 nodes. By contrast to the network of interaction
in an elementary school, the network of co-authorship is quite sparse, and presents heterogeneous degrees:
the average number of collaborators is 5, while the maximum and minimum number of collaborators are
respectively 37 and 1.

In order to obtain unbiased estimates of the error of the estimators Θ̂
V AR

, softImpute, and missSBM, we
introduce 50% of missing values in the dataset. We train the three estimators on the observed entries of the
adjacency matrix, and we use the unobserved entries to evaluate their imputation error. Table 2 present the
mean imputation error of the different estimators over 100 random samplings, measured in term of squared
Frobenius error and normalized by the squared Frobenius norm of the adjacency matrix of the remaining
entries (i.e, the error of the null estimator). Here again, the variational approximation to the maximum

Estimator Θ̂
V AR

Θ̂
missSBM

Θ̂
SV T

∥(1−X)⊙ (A− Θ̂)∥22
/
∥(1−X)⊙A∥22 0.857 0.869 0.894

Table 2: Imputation error of the estimators on the network of co-authorship.

likelihood estimator obtains the best performance. The precision-recall curves of these methods, included in
the Appendix, indicates that this new estimator is preferable across almost all sensitivity levels. We underline
however that the errors in term of Frobenius norm of the three estimators are close, and relatively high. This
comes as no surprise, as the high sparsity of the network causes the link prediction problem to be difficult.

5 Conclusion

In this work, we have introduced a new tractable estimator based on variational approximation of the
maximum likelihood estimator. We show that it enjoys the same convergence rates as the maximum likelihood
estimator, and that it is therefore minimax optimal. Our simulation studies reveal the advantages of our
estimator over current methods. In particular, they highlight its robustness against network sparsity and
missing observations. Our results pave the way for analysing variational approximations of more general
structured network models such as the latent block model.
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A Proofs

In this section, we prove Theorem 2. This proof follows to some extend that of Theorem 3, so we underline
the main differences. Because of missing links, we introduce new techniques to compare the restricted
and unrestricted maximum likelihood estimators. We also need to establish the strong consistency of the
maximum likelihood estimator for the conditional SBM (in the full observation setting, this result is a direct
consequence of [7]). Similarly, the proof of Theorem 3 relies heavily on the fact that the likelihood function
at the parameters and the profile likelihood function at the parameters are asymptotically equivalent, which
is a direct consequence of Lemma 3 [6]. This result does not hold under missing observations, and we develop
new arguments to prove the strong consistency of the variational estimate of the labels.

A.1 Proof of Theorem 2

To prove Theorem 2, we first show that P
(
·|X ⊙A, α̂V ar, Q̂

V ar
)
, i.e. the posterior distribution of z at the

variational estimator (α̂V ar, Q̂
V ar

), concentrates around δz′ , the dirac distribution at some label function z′

such that z′ ∼ z∗ :

P
(
z′|X ⊙A, α̂V ar, Q̂

V ar
)
= 1− op(1). (11)

Then, we show that it implies the concentration of the estimator ẑV ar :

P
(
ẑV ar = z′|X ⊙A

)
= 1− op(1). (12)

Since P
(
ẑV ar = z′|X ⊙A

)
is bounded, this also implies that it converges to 1 in expectation :

P
(
ẑV ar = z′

)
→ 1. (13)

Finally, we show that with probability going to one,

P (ẑ ∼ z∗) → 1. (14)

Combing Equations (12) and (14), we prove the first part of Theorem 2 :

P
(
ẑ ∼ ẑV AR

)
→ 1. (15)

To establish the second part of Theorem 2, we show that the maximum likelihood estimator defined in (9)
is equal to the restricted maximum estimator (4). Theorem 3 then follows from Theorem 1.

Define cmin = mina,b Q
∗
a,b and cmax = maxa,b Q

∗
a,b. Theorem 1 implies that for some absolute constant

C > 0,

P
(∥∥∥Θ∗ − Θ̂

r
∥∥∥2
2
≤ C(cmax/cmin)

2
(
k2 + n log(k)

))
→ 1,

where the restricted maximum likelihood estimator Θ̂
r
is defined as

Θ̂
r

i<j = Q̂
r

ẑr(i)ẑr(j), Θ̂
r

ii = 0

(Q̂
r
, ẑr) ∈ argmax

Q∈[cmin/2,2cmax]
k×k
sym ,z∈Zn,k

∑
i ̸=j

LX(Aij ,Qz(i)z(j)).

Now, Equation (15) implies that with probability going to one, the variational estimator of the probabilities

of connections Θ̂
V AR

is equal to the maximum likelihood estimator Θ̂ given by

Θ̂i<j = Q̂ẑ(i)ẑ(j), Θ̂ii = 0

for (Q̂, ẑ) ∈ argmin
Q∈Q,z∈Zn,k

∑
i ̸=j

K(Aij ,Qz(i)z(j)).
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Thus, it is enough to show that Θ̂ = Θ̂
r
with large probability to prove the second part of Theorem 3. To do

so, we show that
P
(
Q(ẑ) ∈ [cmin/2, 2cmax]

k×k
)
→ 1. (16)

Equation (16) implies that with probability going to 1, the maximum likelihood estimator of the probabilities

of connections between nodes coincides Θ̂ with the restricted maximum likelihood estimator Θ̂
r
. This

concludes the proof of Theorem 3.

Proof of Equation (11)

For any z ∈ Zn,k and (α,Q) ∈ Q, let l′X (A, z;α,Q) =

(∏
i≤n

αz(i)

)
exp (LX(A; z,Q)) be the profile

likelihood of the parameters (z,Q). Then,

l′X (A, z;α,Q) ≤ sup
τ∈T

exp (JX (A; τ, α,Q)) ≤ lX (A;α,Q) . (17)

Let z′ = argmaxz:z∼z∗ l′X

(
A, z; α̂V AR, Q̂

V AR
)
. By definition of lX ,

lX

(
A; α̂V AR, Q̂

V AR
)
=
∑
z∼z′

l′X

(
A, z; α̂V AR, Q̂

V AR
)
+
∑
z ̸∼z′

l′X

(
A, z; α̂V AR, Q̂

V AR
)
. (18)

On the one hand, we bound the sum
∑
z∼z′

l′X

(
A, z; α̂V AR, Q̂

V AR
)
using the following result, proven in

[36] :

Proposition 1 (Proposition 6.11 in [36]). For any (α,Q) ∈ Q,∑
z∼z∗

l′X (A, z;α,Q)

l′X (A, z∗;α∗,Q∗)
= #Sym(α,Q)max

z′∼z∗

l′X (A, z′;α,Q)

l′X (A, z∗;α∗,Q∗)
(1 + op(1))

where the op(1) is uniform in (α,Q) and

Sym(α,Q) =

{
σ ∈ Sk :

(
ασ(a)

)
a≤k

= (αa)a≤k and
(
Qσ(a),σ(b)

)
a,b≤k

=
(
Qa,b

)
a,b≤k

}
for Sk the set of permutations of [k].

Now, with probability going to one, (α̂V AR, Q̂
V AR

) exhibits no symmetry, i.e. #Sym(α̂V AR, Q̂
V AR

) = 1
(see Section B.11 in [36] for a proof of this result). Then, Proposition 1 implies that∑

z∼z′

l′X

(
A, z; α̂V AR, Q̂

V AR
)
= l′X

(
A, z′; α̂V AR, Q̂

V AR
)
(1 + op(1))

which in turn implies∑
z∼z′

l′X

(
A, z; α̂V AR, Q̂

V AR
)
= l′X

(
A, z′; α̂V AR, Q̂

V AR
)
+ lX

(
A; α̂V AR, Q̂

V AR
)
op(1). (19)

On the other hand, we bound the term
∑
z ̸∼z′

l′X

(
A, z; α̂V AR, Q̂

V AR
)

by combining the two following

propositions from [36] :

Proposition 2 (Proposition 6.8 in [36]). Let (tn)n∈N be a positive sequence such that tn → 0 and
pntn/

√
log(n) → +∞. Then, on an event of probability going to 1 and for n large enough,

sup
(α,Q)∈Q

∑
z/∈S(z∗,tn)

l′X (A, z;α,Q) = op (l
′
X (A, z∗;α∗,Q∗))

where S(z∗, tn) = {z ∈ Zn,k : ∃z′ ∼ z,
∑

|z∗i − z′i| ≤ ntn}.
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Proposition 3 (Proposition 6.10 in [36]). There exists a positive constant C such that

sup
(α,Q)∈Q

∑
z∈S(z∗,C),z ̸∼z∗

l′X (A, z;α,Q) = op (l
′
X (A, z∗;α∗,Q∗)) .

Combining Propositions 2 and 3, we find that on a event of probability going to 1,∑
z ̸∼z∗

l′X

(
A, z; α̂V AR, Q̂

V AR
)
= l′X (A, z∗;α∗,Q∗) op(1).

Now, we use the definition of the variational estimator and Equation (17), and find that

l′X (A, z∗;α∗,Q∗) ≤ sup
τ∈T

exp (JX (A; τ, α∗,Q∗)) ≤ exp
(
JX

(
A; τ̂V AR, α̂V AR, Q̂

V AR
))

≤ lX

(
A; α̂V AR, Q̂

V AR
)
.

Thus, ∑
z ̸∼z∗

l′X

(
A, z; α̂V AR, Q̂

V AR
)
= lX

(
A; α̂V AR, Q̂

V AR
)
op(1). (20)

Combining Equations (18), (19) and (20), we find that

lX

(
A; α̂V AR, Q̂

V AR
)
= l′X

(
A, z′; α̂V AR, Q̂

V AR
)
+ lX

(
A; α̂V AR, Q̂

V AR
)
op(1).

Dividing both sides by lX

(
A; α̂V AR, Q̂

V AR
)
, we find that

P
(
z′|X ⊙A, α̂V ar, Q̂

V ar
)
=

l′X

(
A, z′; α̂V AR, Q̂

V AR
)

lX

(
A; α̂V AR, Q̂

V AR
) = 1 + op(1)

which proves Equation (11).

Proof of Equation (12)
By definition of JX ,

KL
(
Pτ̂V AR(·)||P

(
·|X ⊙A, α̂V AR, Q̂

V AR
))

= log
(
lX(A; α̂V AR, Q̂

V AR
)
)
− JX(A; τ̂V AR, α̂V AR, Q̂

V AR
).

Equation (17) implies that

JX(A; τ̂V AR, α̂V AR, Q̂
V AR

) ≥ log
(
l′X

(
A, z′; α̂V AR, Q̂

V AR
))

so

KL
(
Pτ̂V AR(·)||P

(
·|X ⊙A, α̂V AR, Q̂

V AR
))

≤ log
(
lX(A; α̂V AR, Q̂

V AR
)
)
−log

(
l′X

(
A, z′; α̂V AR, Q̂

V AR
))

.

Note that Equation (11) implies

log
(
lX(A; α̂V AR, Q̂

V AR
)
)
− log

(
l′X

(
A, z′; α̂V AR, Q̂

V AR
))

= op(1).

Now, using Pinsker’s inequality, we see that∣∣∣Pτ̂V AR(z′)− P
(
z′|X ⊙A, α̂V AR, Q̂

V AR
)∣∣∣ = op(1).

We use Equation (11) and the definition of ẑ(V AR) to conclude the proof of Equation (12).

Proof of Equation (14)
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For z ∈ Zn,k, define

Λ(z) = maxQ∈QLX(A; z,Q)− LX(A; z∗,Q∗) and

Λ̃(z) = maxQ∈QE
[
LX(A; z,Q)− LX(A; z∗,Q∗)

∣∣∣z∗] .
Moreover, for z ∈ Zn,k and (α,Q), define

∥z − z∗∥∼,0 = min
z′:z′∼z∗

∥z′ − z∗∥0

where ∥z′ − z∗∥0 is the Hamming distance between the label functions z′ and z∗.
To prove Equation (14), we will use the following results.

Proposition 4 (Equation (B.1) in [36]). There exists a constant c > 0 such that on an event of probability
going to one, for all positive sequence (tn)n∈N such that tn → 0 and pntn/

√
log(n) → +∞, ∀z /∈ S(z∗, tn),

Λ̃(z) ≤ −3cpn2tnδ(Q
∗)

4

where and δ(Q) = mina,a′ maxc KL (Qac,Qa′c) and S(z∗, tn) =
{
z ∈ Zn,k : ∥z − z∗∥∼,0 ≤ ntn

}
.

Proposition 5 (Proposition 6.7 in [36]). There exists a constant CQ > 0 depending on Q such that for any
sequence (ϵn)n∈N with ϵn < CQ and ϵn ≥ k2/(

√
8n),

sup
z∈Zn,k

(
Λ(z)− Λ̃(z)

)
= Op(ϵnn

2).

We choose ϵn = 3δ(Q∗) log(n)/(8n). Then, Proposition 5 implies that there exists a constant C > 0

such that with probability going to 1, supz∈Zn,k

(
Λ(z)− Λ̃(z)

)
≤ Cϵnn

2. Moreover, we choose tn =

2C log(n)/(cnp) and note that under the assumption p ≫ log(n)/n, tn → 0. Then, Propositions 4 and 5
imply that with probability going to one

sup
z/∈S(z∗,tn)

Λ(z) ≤ sup
z/∈S(z∗,tn)

Λ̃(z) + sup
z/∈S(z∗,tn)

(
Λ(z)− Λ̃(z)

)
≤ −3Cpn2tnδ(Q

∗)

4
+

3Cpn2tnδ(Q
∗)

8

≤ −3Cn log(n)δ(Q∗)

8
.

This implies in particular that

P

(
sup

z/∈S(z∗,tn)

Λ(z) < 0

)
→ 1. (21)

We show a similar result for label functions z that are close to z∗. To do so, we use the following result.

Proposition 6 (Proposition 6.5 in [36]). There exists a positive constant C such that on an event of
probability going to 1, for all z ∈ S(z∗, C),

Λ̃(z) ≤ −
3cpn2δ(Q∗) ∥z − z∗∥∼,0

4
.

We use Proposition 4, where we choose ϵn = k2/n. Then, there exists a constant C ′ > 0 such that with

probability going to 1, supz∈Zn,k

(
Λ(z)− Λ̃(z)

)
≤ C ′nk2. Now, Proposition 6 implies that with probability

going to 1,

17



sup
z∈S(z∗,C),z ̸∼z∗

Λ(z) ≤ sup
z∈S(z∗,C),z ̸∼z∗

Λ̃(z) + sup
z∈S(z∗,C),z ̸∼z∗

(
Λ(z)− Λ̃(z)

)
≤ −3cpn2δ(Q∗)

4
+ C ′nk2

≤ nk2
(
C ′ − 3cpnδ(Q∗)

8k2

)
.

Since pn → +∞, this implies that

P

(
sup

z∈S(z∗,C),z ̸∼z∗
Λ(z) < 0

)
→ 1. (22)

Finally, since tn → 0, for n large enough Zn,k = S(z∗, C) ∪ S(z∗, tn). Thus, Equations (21) and (23)
imply that

P

(
sup
z ̸∼z∗

Λ(z) < 0

)
→ 1. (23)

Now, Λ(z∗) = 0. Thus, with probability going to 1, argmaxΛ(z) ∼ z∗, so ẑ ∼ z∗.

Proof of Equation (16)
To prove Equation (16), we use Bernstein’s inequality, which we recall here for sake of completeness :

Theorem 4 (Bernstein’s inequality). Let X1, ..., Xn be independent centered random variables. Assume that
for any i ∈ [n], |Xi| ≤ M almost surely, then

P

∣∣∣∣∣∣
∑

1≤i≤n

Xi

∣∣∣∣∣∣ ≥
√

2t
∑

1≤i≤n

E[X2
i ] +

2M

3
t

 ≤ 2e−t.

For z ∈ Zn,k and (a, b) ∈ [k]2, define

nab(z) =

{
|(z)−1(a)| × |(z)−1(b)| if a ̸= b
|(z)−1(a)| ×

(
|(z)−1(a)| − 1

)
otherwise

and
nX
ab(z) =

∑
i∈z−1(a),j∈z−1(b)

i̸=j

Xij

the number of entries and of observed entries of the adjacency matrix between nodes of the communities a

and b, and Q(z) = (Q(z)ab) such that Q(z)ab =

( ∑
i∈z−1(a),j∈z−1(b)

XijAij

)
/nX

ab(z). With these notations,

we note that Q̂ = Q(ẑ).
Note that |(z∗)−1(a)| is a sum of n independent Bernoulli random variables with mean αa. Using

Bernstein’s inequality 4, we find that for any a,

P
(
nαa − |(z∗)−1(a)| ≥ 0.5nαa

)
≤ 2e−nαa/16.

Thus,

P
(
min
a

|(z∗)−1(a)| ≤ 0.5nmin
a

αa

)
≤ 2ke−nmina αa/16.

Therefore, the event Ω =
{
mina,b na,b(z

∗) ≥ n2 mina(αa)
2/5
}
holds with probability going to 1.

Similarly, note that conditionally on z∗, nX
ab(z

∗) is a sum of nab(z
∗) independent Bernoulli variables with

parameter p. Then, for any two (a, b) ∈ [k]2, Bernstein’s inequality 4 implies that

P
(
|pnab(z

∗)− nX
ab(z

∗)| ≥ 0.5pnab(z
∗)
∣∣z∗) ≤ 2e−pnab(z

∗)/16.
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Thus,

P
(
min
a,b

nX
ab(z

∗) ≤ 0.5pmin
a,b

nab(z
∗)
∣∣z∗) ≤ 2ke−pmina,b nab(z

∗)/16.

This implies that

P
(
min
a,b

nX
ab(z

∗) ≤ 0.1n2pmin
a

α2
a

∣∣Ω) ≤ 2ke−pn2 mina αa/80.

Since p ≫ log(n)/n, the event Ω′ = {∀(a, b) ∈ [k]2, nX
ab(z

∗) ≥ 0.1n2pmina α
2
a} holds with probability

going to 1.
Now, we show that on the event Ω′, with large probability, Q(z∗) ∈ [cmin/2, 2cmax]

k×k. Recall that
for any a, b, conditionally on z∗ and X, nX

ab(z
∗)Q(z∗)ab is a sum of nX

ab(z
∗) independent Bernoulli random

variables with mean Q∗
ab. Then, Bernstein’s inequality implies that for any t > 0

P
(∣∣nX

ab(z
∗)Q(z∗)ab − nX

ab(z
∗)Q∗

ab

∣∣ ≥√2tnX
ab(z

∗)Q∗
ab +

2t

3

∣∣∣z∗,X) ≤ 2e−t.

Choosing t = nX
ab(z

∗)Q∗
ab/16 yields

P
(∣∣nX

ab(z
∗)Q(z∗)ab − nX

ab(z
∗)Q∗

ab

∣∣ ≥ 0.5nX
ab(z

∗)Q∗
ab

∣∣∣z∗,X) ≤ 2e−nX
ab(z

∗)Q∗
ab/16.

On the event Ω′, this implies that

P
(
|Q(z∗)ab −Q∗

ab| ≥ 0.5Q∗
ab

∣∣∣Ω′
)
≤ 2e−n2Q∗

ab(mina αa)
2/160.

A union bound yields

P
(
Q(z∗) /∈ [cmin/2, 2cmax]

k×k
∣∣∣Ω′
)
≤ 2k2e−n2 mina,b Q∗

ab(mina αa)
2/160.

Since P (Ω′) → 1, this shows that

P
(
Q(z∗) ∈ [cmin/2, 2cmax]

k×k
)
→ 1.

Now, Equation (14) shows that with probability going to 1, ẑ ∼ z∗. Thus,

P
(
Q(ẑ) ∈ [cmin/2, 2cmax]

k×k
)
→ 1.

A.2 Proof of Theorem 3

In the case of fully observed network, we alleviate notations and write

L(A; z,Q) =
∑
i̸=j

Aij log
(
Qz(i),z(j)

)
+ (1−Aij) log

(
1−Qz(i),z(j)

)
,

l (A;α,Q) =
∑

z∈Zn,k

(∏
i

αz(i)

)
exp (L(A; z,Q)) ,

and J (A; τ, α,Q) = log (l (A;α,Q))−KL (Pτ (·) ||P (·|A, α,Q)) .

For any z ∈ Zn,k and (α,Q) ∈ Q, we denote

l′ (A, z;α,Q) =

∏
i≤n

αz(i)

 exp (L(A; z,Q))

the likelihood of the parameters (α,Q) and the label function z. Then, the likelihood of the stochastic
block model with parameters (α,Q) is given by l (A;α,Q) =

∑
z∈Zn,k

l′ (A, z;α,Q). Note that the likelihood

19



functions l (A;α,Q) and l′ (A, z;α,Q) provide lower and upper bounds on the variational objective function
J (A; τ, α,Q) : for any parameter (α,Q) and any label function z ∈ Zn,k,

l′ (A, z;α,Q) ≤ sup
τ∈T

exp (J (A; τ, α,Q)) ≤ l (A;α,Q) . (24)

To prove Proposition 3, we first show that P
(
·|A, α̂V ar, Q̂

V ar
)
, i.e. the posterior distribution of z at

the variational estimator (α̂V ar, Q̂
V ar

), concentrates around δz′ , the dirac distribution at the label function

z′ = argmaxz:z∼z∗ l′
(
A, z; α̂V AR, Q̂

V AR
)
:

P
(
z′|A, α̂V ar, Q̂

V ar
)
= 1− op(1). (25)

Then, we show that it implies the concentration of the estimator ẑV ar :

P
(
ẑV ar = z′|A

)
= 1− op(1). (26)

Together (25) and (26) imply P
(
ẑV ar ∼ z∗|A

)
= 1 − op(1). Since the random variable P

(
ẑV ar ∼ z∗|A

)
is bounded, Equation (26) also implies that it converges to 1 in expectation. Finally, we show that with
probability going to one, the maximum likelihood estimator of the label function is equal to the true label
function (up to permutation):

P (ẑ ∼ z∗) = 1− op(1) (27)

which concludes the proof of the first part of Theorem 3.
To prove the second part of Theorem 3, we show that the maximum likelihood estimator studied in

Proposition 3 is equal to the restricted maximum estimator studied in Theorem 1. More precisely, define
cmin = mina,b Q

0
a,b and cmax = maxa,b Q

0
a,b. Theorem 1 implies that for some absolute constant C > 0,

P
(∥∥∥Θ∗ − Θ̂

r
∥∥∥2
2
≤ C(cmax/cmin)

2ρn
(
k2 + n log(k)

))
→ 1,

where the restricted maximum likelihood estimator Θ̂
r
is defined as

Θ̂
r

i<j = Q̂
r

ẑr(i)ẑr(j), Θ̂
r

ii = 0

(Q̂
r
, ẑr) ∈ argmin

Q∈[cminρn/2,2cmaxρn]
k×k
sym ,z∈Zn,k

∑
i̸=j

K(Aij ,Qz(i)z(j)).

One the other hand, Proposition 3 implies that with probability going to one, the variational estimator of the

probabilities of connections Θ̂
V AR

is equal to the maximum likelihood estimator Θ̂ given by

Θ̂i<j = Q̂ẑ(i)ẑ(j), Θ̂ii = 0

for (Q̂, ẑ) ∈ argmin
Q∈Q,z∈Zn,k

∑
i̸=j

K(Aij ,Qz(i)z(j)).

We show that
P
(
Θ̂ = Θ̂

r
)
→ 1, (28)

which concludes the proof of Theorem 3.

Proof of Equation (25)
The proof of Equation (25) relies on results proven in [6], which we recall for the sake of completeness. For
any two parameters (α,Q) and (α′,Q′) in Q, we say that (α′,Q′) ∈ Sα,Q if there exists a permutation σ of
{1, ..., k} such that for any (a, b) ∈ {1, ..., k}2, Q′

σ(a),σ(b) = Qa,b and α′
σ(a) = αa.
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Theorem 5 (Theorem 1 in [6]). Let (z∗, A) be generated from a stochastic block model with parameters
(α∗,Q∗) ∈ Q such that Q0 has no identical columns and ρn ≫ log(n)/n. Then, for any (α,Q) ∈ Q,

l (A;α,Q)

l (A;α∗,Q∗)
= max

(α′,Q′)∈Sα,Q

l′
(
A, z∗;α′,Q′)

l′ (A, z∗;α∗,Q∗)

(
1 + ϵn

((
α′,Q′) , k))+ ϵn

((
α′,Q′) , k)

where sup(α,Q)∈Q ϵn ((α,Q) , k) = op(1).

Proposition 7 (Lemma 3 in [6]). Let (z∗, A) be generated from a stochastic block model with parameters
(α∗,Q∗) ∈ Q such that Q0 has no identical columns and ρn ≫ log(n)/n. Then,

l′ (A, z∗;α∗,Q∗)

l (A;α∗,Q∗)
= 1 + op(1).

Recall that z′ = argmaxz:z∼z∗ l′
(
A, z∗; α̂V AR, Q̂

V AR
)
. By definition of l and l′,∑

z ̸=z′

l′
(
A, z; α̂V AR, Q̂

V AR
)

= l
(
A; α̂V AR, Q̂

V AR
)
− l′

(
A, z′; α̂V AR, Q̂

V AR
)
.

Thus∑
z ̸=z′

l′
(
A, z; α̂V AR, Q̂

V AR
)

l′ (A, z∗;α∗,Q∗)
=

l (A;α∗,Q∗)

l′ (A, z∗;α∗,Q∗)
×

l
(
A; α̂V AR, Q̂

V AR
)

l (A;α∗,Q∗)
−

l′
(
A, z′; α̂V AR, Q̂

V AR
)

l′ (A, z∗;α∗,Q∗)
.(29)

Using Proposition 7, we have that

l (A;α∗,Q∗)

l′ (A, z∗;α∗,Q∗)
= 1 + op(1). (30)

Moreover, we note that

max
(α′,Q′)∈S

α̂V AR,Q̂
V AR

l′
(
A, z∗;α′,Q′) = max

z∼z∗
l′
(
A, z; α̂V AR, Q̂

V AR
)

= l′
(
A, z′; α̂V AR, Q̂

V AR
)

by the definition of z′. Then, applying Theorem 5, we get that

l
(
A; α̂V AR, Q̂

V AR
)

l (A;α∗,Q∗)
=

l′
(
A, z′; α̂V AR, Q̂

V AR
)

l′ (A, z∗;α∗,Q∗)
(1 + op(1)) + op(1). (31)

Combining Equations (29), (30) and (31), we obtain that∑
z ̸=z′

l′
(
A, z; α̂V AR, Q̂

V AR
)

l′ (A, z∗;α∗,Q∗)
=

l′
(
A, z′; α̂V AR, Q̂

V AR
)

l′ (A, z∗;α∗,Q∗)
op(1) + op(1).

Thus, ∑
z ̸=z′

l′
(
A, z; α̂V AR, Q̂

V AR
)
= max

{
l′ (A, z∗;α∗,Q∗) , l′

(
A, z′; α̂V AR, Q̂

V AR
)}

op(1). (32)

On the one hand, using Equation (24) and the definition of (τ̂V AR, α̂V AR, Q̂
V AR

), we find that

l′ (A, z∗;α∗,Q∗) ≤ sup
τ∈T

exp (J (A; τ, α∗,Q∗))

≤ exp
(
J
(
A; τ̂V AR, α̂V AR, Q̂

V AR
))

≤ l
(
A; α̂V AR, Q̂

V AR
)
.
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Also, by the definition of l and l′, we have that l′
(
A, z′; α̂V AR, Q̂

V AR
)
≤
(
A; α̂V AR, Q̂

V AR
)
. Thus, Equation

(32) implies ∑
z ̸=z′

l′
(
A, z; α̂V AR, Q̂

V AR
)
= l
(
A; α̂V AR, Q̂

V AR
)
op(1). (33)

Now, we can conclude the proof of Equation (25) by noticing that

P
(
z′|A, α̂V ar, Q̂

V ar
)

=
l′
(
A, z′; α̂V AR, Q̂

V AR
)

l
(
A; α̂V AR, Q̂

V AR
)

= 1−

∑
z ̸=z′

l′
(
A, z; α̂V AR, Q̂

V AR
)

l
(
A; α̂V AR, Q̂

V AR
)

and using Equation (33).

Proof of Equation (26) By the definition of J (A; τ, α,Q), we have that

KL
(
Pτ̂V AR(·)||P

(
·|A, α̂V AR, Q̂

V AR
))

= log
(
l
(
A; α̂V AR, Q̂

V AR
))

− J
(
A; τ̂V AR, α̂V AR, Q̂

V AR
)
.

Equation (24) implies that J
(
A; τ̂V AR, α̂V AR, Q̂

V AR
)
≥ log

(
l
(
A, z′; α̂V AR, Q̂

V AR
))

, so

KL
(
Pτ̂V AR(·)||P

(
·|A, α̂V AR, Q̂

V AR
))

≤ log
(
l
(
A; α̂V AR, Q̂

V AR
))

− log
(
l
(
A, z′; α̂V AR, Q̂

V AR
))

.

Note that Equation (25) implies

log
(
l
(
A; α̂V AR, Q̂

V AR
))

− log
(
l
(
A, z′; α̂V AR, Q̂

V AR
))

= op(1).

Now, using Pinsker’s inequality, we see that∣∣∣Pτ̂V AR(z′)− P
(
z′|A, α̂V AR, Q̂

V AR
)∣∣∣ = op(1).

We use Equation (25) and the definition of ẑ(V AR) to conclude the proof of Equation (26).

Proof of Equation (27)
Equation (27) is proven in [7]. In this work, the authors define the profile likelihood modularity QLM (A, z)

of a label function z ∈ Zn,k as

QLM (A, z) =
1

2

∑
a,b

nab

(
Oab

nab
log

(
Oab

nab

)
+

(
1− Oab

nab

)
log

(
1− Oab

nab

))
.

for Oab =
∑

i∈z−1(a),j∈z−1(b)

Aij and

nab =

{
|z−1(a)| × |z−1(b)| if a ̸= b
|z−1(a)| ×

(
|z−1(a)| − 1

)
otherwise

For ẑLM = argmaxz∈Zn,k
QLM (A, z), the authors of [7] prove that under the assumptions of Proposition

3, with probability going to 1, ẑLM ∼ z∗. Since maximizing QLM (A, z) is equivalent to maximizing
maxQ L (A;Q, z), this implies that ẑ ∼ z∗ with probability going to 1.
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Proof of Equation (28) To do so, we show that with large probability, Q(ẑ) ∈ [cminρn/2, 2cmaxρn]
k×k].

We define

nab(z) =

{
|z−1(a)| × |z−1(b)| if a ̸= b
|z−1(a)| ×

(
|z−1(a)| − 1

)
otherwise

for z ∈ Zn,k, and Q(z) = (Q(z)ab) such that Q(z)ab =

( ∑
i∈z−1(a),j∈z−1(b)

Aij

)
/nab(z). With these notations,

we note that Q̂ = Q(ẑ).
Recall that |(z∗)−1(a)| is a sum of n independent Bernoulli random variables with mean α0

a. Using
Bernstein’s inequality 4, we find that for any a,

P
(
nα0

a − |(z∗)−1(a)| ≥ 0.5nα0
a

)
≤ 2e−nα0

a/16.

Thus,

P
(
min
a

|(z∗)−1(a)| ≤ 0.5nmin
a

α0
a

)
≤ 2ke−nmina α0

a/16.

Therefore, the event Ω =
{
mina,b na,b(z

∗) ≥ n2 mina(α
0
a)

2/5
}
holds with probability going to 1.

Now, we show that on the event Ω, with large probability, Q(z∗) ∈ [cminρn/2, 2cmaxρn]
k×k. Recall that

for any a, b, conditionally on z∗, nab(z
∗)Q(z∗)ab is a sum of nab(z

∗) independent Bernoulli random variables
with mean ρnQ

0
ab. Then, Bernstein’s inequality 4 implies that for any t > 0

P
(∣∣nab(z

∗)Q(z∗)ab − nab(z
∗)ρnQ

0
ab

∣∣ ≥√2tnab(z∗)ρnQ
0
ab +

2t

3

)
≤ 2e−t.

Choosing t = nab(z
∗)ρnQ

0
ab/16 yields

P
(∣∣nab(z

∗)Q(z∗)ab − nab(z
∗)ρnQ

0
ab

∣∣ ≥ 0.5nab(z
∗)ρnQ

0
ab

)
≤ 2e−nab(z

∗)ρnQ
0
ab/16.

On the event Ω, this implies that

P
(∣∣nab(z

∗)Q(z∗)ab − nab(z
∗)ρnQ

0
ab

∣∣ ≥ 0.5nab(z
∗)ρnQ

0
ab

)
≤ 2e−n2ρnQ

0
ab(mina α0

a)
2/80.

A union bound yields

P
(
Q(z∗) /∈ [cminρn/2, 2cmaxρn]

k×k
)
≤ 2k2e−n2ρn mina,b Q0

ab(mina α0
a)

2/80

on the event Ω. Since P (Ω) → 1 and n2ρn → +∞, this shows that

P
(
Q(z∗) ∈ [cminρn/2, 2cmaxρn]

k×k
)
→ 1.

Now, Equation (27) shows that with probability going to 1, ẑ ∼ z∗. Thus, Q(ẑ) ∈ [cminρn/2, 2cmaxρn]
k×k

with probability going to one, and the maximum likelihood estimator of the probabilities of connections
between nodes coincides with the restricted maximum likelihood estimator. This concludes the proof of
Equation (28).

B Further informations on the numerical experiments

B.1 Simulation protocol

In this section, we provide details on the simulation protocol for Section 4.1. The numerical experiments
where conducted using R version 4.0.3, the package softImpute version 1.4.1, and the package missSBM
version 0.3.0.
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Dense stochastic block model The parameters used for the simulations are the following :
αassort. = αdisassort. = (1/3, 1/3, 1/3), αmix. = (0.1, 0.3, 0.6), and

Qassort. =

 0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5

 , Qdisassort. =

 0.2 0.5 0.5
0.5 0.2 0.5
0.5 0.5 0.2

 , Qmix. =

 0.1 0.5 0.3
0.5 0.2 0.4
0.3 0.4 0.6

 .

For each model and each number of nodes, we simulate 100 networks. For each networks, entries of the
adjacency matrix are observed independently from one another with probability 1/2. Then, the matrix of
connection probabilities Θ∗ is estimated using each method (variational approximation to the maximum
likelihood estimator, missSBM, and softImpute). The oracle estimator is obtained as

∀a < k and b < k, Q̂
∗
ab ≜

∑
i∈(z∗)−1(a),j∈(z∗)−1(b),i̸=j

XijAij∑
i∈(z∗)−1(a),j∈(z∗)−1(b),i̸=j

Xij

Sparse stochastic block model The parameters (α,Q) of the stochastic block model are given by
α = (1/3, 1/3, 1/3), and

Q = ρ

 0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5


for ρ ranging between 0.05 and 1. For each sparsity, we simulate 100 networks with 500 nodes. For each

networks, entries of the adjacency matrix are observed independently from one another with probability 1/2.
Then, the matrix of connection probabilities Θ∗ is estimated using each method (variational approximation
to the maximum likelihood estimator, missSBM, softImpute, the oracle estimator and the naive estimator).

Stochastic block model with missing observations The parameters (α,Q) of the stochastic block
model are given by
α = (1/3, 1/3, 1/3), and

Q =

 0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5


The proportion of observed entries p varies between 0.02 and 1. For each p, we simulate 100 networks

with 500 nodes. For each networks, entries of the adjacency matrix are observed independently from one
another with probability p. Then, the matrix of connection probabilities Θ∗ is estimated using each method
(variational approximation to the maximum likelihood estimator, missSBM, softImpute, the oracle estimator
and the naive estimator).

B.2 Empirical strong consistency of the variational estimator

We illustrate the empirical strong consistency of the variational estimator. Using the parameters chosen for
simulating dense stochastic block models, we compute the number of misclassified nodes, defined as

min
z∼ẑ

{∑
i

1 {z∗(i) ̸= z(i)}

}
.

The total classification error for the assortative, dissasortartive and mixed models are presented in Figure
2. These simulations confirm that the variational estimator achieves strong recovery of the labels, even in
unbalanced setting when neither assortative or disassortative behaviour are observed.
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(a) Assortative SBM. (b) Disassortative SBM. (c) Mixed SBM.

Figure 2: Number of nodes misclassified by the variational estimator in the assortative SBM with balanced
communities (left), in the disassortative SBM with balanced communities (middle), and in the mixed SBM
with unbalanced communities (right). The full lines indicate the median of the number of misclassified nodes
over 100 repetitions, while the dashed lines indicate its 25% and 75% quantiles.

B.3 Prediction of interactions within an elementary school

To compare the errors in term of link prediction of the methods missSBM and softImpute with that of our
estimator, we plot the precision-recall curves of these estimators. More precisely, for any estimator Θ̂ of
the matrix of connection probabilities Θ∗, and all thresholds t ∈ [0, 1], one can define the link-prediction

estimator Â as follows : Âij = 1 if and only if Θ̂ij ≥ t, that is, we predict that there exists a link between
nodes i and j is the estimated probability that these nodes are connected is larger than the threshold t. The
recall-precision curves obtained by varying this threshold is presented in Figure 3. We also represent the
mean precision-recall curve of the baseline estimator obtained by predicting edges independently at random
with an increasing probability.

The three methods used for link prediction obtain quite similar precision-recall curves. No single method
is better across all sensitivity levels.

B.4 Prediction of collaboration in the co-authorship network

Similarly, we plot the precision-recall curves of the link-prediction methods obtained by using our new
estimator, missSBM and softImpute. We also represent the mean precision-recall curve of the baseline
estimator obtained by predicting edges independently at random with an increasing probability. The
recall-precision curves is presented in Figure 4.

The precision-recall curve of the variational approximation to the maximum likelihood estimator is
equivalent to or better than the other estimators across all sensitivity levels.

25



Figure 3: Precision-recall curves for link prediction in the network of interactions within a
school: Precision-recall curves of the estimator obtained using missSBM (in red), of the estimator obtained
using softImpute (in green), and of the variational approximation to the maximum likelihood estimator (in
blue). The dotted black line represents the precision of the baseline estimator.

Figure 4: Precision-recall curves for link prediction in the network co-authorship: Precision-recall
curves of the estimator obtained using missSBM (in red), of the estimator obtained using softImpute (in
green), and of the variational approximation to the maximum likelihood estimator (in blue). The dotted
black line represents the precision of the baseline estimator.
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https://CRAN.R-project.org/package=missSBM
form https://CRAN.R-project.org/package=softImpute 
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