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Abstract 

 

The tensile load at debonding onset between stiff particles and a soft matrix is predicted with 

the coupled criterion which combines a stress and an energy conditions. A finite element model 

of a representative volume element is implemented in order to consider the influence of the size 

of the particles, the particle volume fraction, mixed mode conditions at the interface and the 

presence of residual stresses. It is also shown how this approach can be used in order to analyze 

experimental data for the identification of the interfacial fracture parameters.  
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1. Introduction 

 

Reinforcing a matrix with rigid particles is an attractive way to increase its mechanical 

properties. Spherical particles have been demonstrated to improve the stiffness, tensile strength, 

and toughness of polymeric and ceramic matrices [1-4]. Enhancement of the global mechanical 

properties of these composites depend on the component properties and their volume fractions 

but also on the strength and toughness of the interface between the matrix and the particles.  

For polymer filled with stiff particles, there is a consensus that interfacial debonding 

which facilitates matrix shear yielding is a pre-requisite to obtain high toughness [2, 5]. As 

verified experimentally under tensile loading [6-10], at debonding onset, an area first develops 

instantaneously from the poles of the particles and extends progressively along the interface 

with increasing applied stress. Previous works [11] estimate the debonding stress Dσ  by 

evaluating the energy necessary to create the debonding area with 

2

c T
i

D
GC
R

σσ = −              (1) 

where c
iG  is the interfacial fracture energy, R is the particle radius, Tσ  is the thermal stress 

resulting from the thermal expansion mismatch between the particles and the matrix, C is a 

coefficient depending on component properties.  Eq. (1) shows that the debonding stress 

exhibits a size effect as it depends on the particle radius. Comparing Dσ  with the composite 

tensile strength indicates that there is a critical size below which no interface debonding and 

thus little toughening can develop. Similar expressions were derived for a hydrostatic loading 

[2, 5, 12-14] but it must be noted that the value of the debonding surface is always postulated 

or taken as the complete interfacial area. To get rid of this assumption, only justified under 

hydrostatic loading, a finite fracture approach can be used as already demonstrated by several 

authors [15-16]. More precisely, combining a stress and an energy conditions gives access to 
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the debond stress and the debonding area. The present work uses such a coupled criterion to 

describe the nucleation of interfacial debonding between stiff particles and a soft matrix. The 

previous studies are now extended by considering the particle volume fraction and taking into 

account the presence of residual stresses.    

 The paper is organized as follows: the coupled criterion is outlined in Section 2 while 

Section 3 examines the choice of a proper representative cell. Numerical results are presented 

in Section 4 including the influence of mixed mode conditions and residual stresses. Section 5 

is devoted to the analysis of experimental results.   

 

2. Prediction of interfacial debonding 

 

The geometry considered for the presentation of this section is the one that will be 

analyzed afterwards: a spherical particle (radius R) embedded in a matrix and submitted to a 

tensile loading σ in the z direction (Fig. 1a). A given point at the particle/matrix interface is 

located by the angle θ  measured from the z axis. Particle and matrix are elastic and isotropic 

materials with Young’s moduli ( ),p mE E  and Poisson’s ratios ( ),p mυ υ . It is assumed that the 

particle is stiffer than the matrix with p mE E> . This elastic mismatch induces a stress 

concentration along the interface around the top and bottom poles. Upon a critical loading, two 

symmetric debonds (angle Dθ )  are nucleated at the poles (Fig. 1b). Experimental observations 

may indicate that interfacial debonding occurs firstly at one pole followed shortly by a second 

crack initiated at the other pole of the same particle. In any case, the difference in predicted 

applied stress between both debonded modes is weak as shown by García et al. [15].  

Assuming a brittle behavior of the interface, the coupled criterion (CC) which combines 

an energy and a stress conditions is used to describe the initiation of this interfacial fracture 

mechanism [17, 18]: 
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a)  The energy condition requires the change in potential energy  δ Π  to be larger than the energy 

necessary for the nucleation of the interfacial crack of surface ( )S θ  with  

( ) ( )( ) ( ) 0 c
iS S Gδ θ θ− Π = Π − Π ≥ ,       (2) 

where c
iG  is the interfacial fracture energy. Note that the constant c

iG  denotes here a generic 

parameter that will be specified in Section 4.1 taking into account the concept of mixed-mode.  

Eq. (2) can be written in order to introduce the incremental energy release rate (IERR) 

( )( ) ( ) incG S Sθ δ θ= − Π  leading to  

( )( ) c
inc iG S Gθ ≥ .          (3) 

The relationship between the IERR and the differential energy release rate ( )iG S d dS= − Π  is 

[19] 

( ) ( ) ( )
( )

0

1( )
S

inc iG S G A dA
S

θ

θ
θ

= ∫ ,        (4) 

which induces 

( )( ) ( )inc
i inc

dG SS G S G S
dS

= − ,       (5) 

where θ  has been omitted in the expression of S  for sake of simplicity.  

b) The stress condition stipulates that the opening normal stress all along the anticipated crack 

path must exceed the interfacial strength c
iσ . A local coordinate system ( ),x y  along the 

interface is used to define x  as the normal direction and the stress condition is expressed as  

( )   for c
xx iσ α σ α θ≥ ≤ .         (6) 

A similar inequality is valid for mixed-mode,  c
iσ  is then a generic constant and the role of 

tensile and shear strengths will be specified further in Section 4.1.  
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Eq. (3) and (6) are the CC inequalities that must be solved to determine the applied tensile stress 

Dσ  and the angle Dθ  at onset of debonding. They can be modified to take into account mixed-

mode condition or thermal residual stresses as will be shown in section 4. 

 

3. Selection of a Representative Volume Element (RVE) 

 

As recently pointed out [20], the CC can be implemented with the help of a matched 

asymptotic approach or a full finite element approach. A full field finite element analysis is 

used here but we mention that the matched asymptotic approach may also be used for very 

small values of the particle volume fraction [21]. To avoid time-consuming 3D calculations, we 

have opted for 2D calculations based on axial symmetry. The simplest of the volumes we can 

consider contains a single particle. The major challenge is then to choose a model that takes 

satisfactorily into account the interactions between neighboring particles. We must also 

determine how to evaluate the change in potential energy necessary to apply the energy 

condition.  

 

3.1 The spherical RVE 

 

The simplest shape of the RVE is made of two concentric spheres. Taking into account 

the axial symmetry and the symmetry of geometry and loading, the RVE reduces to two 

concentric quarter of disk as shown in Fig. 2a. For the sake of simplicity, the radius of the inner 

disk is set to 1 (with the appropriate changes in the equations), and the dimensionless outer one 

is 1/ 3
m P1/R V= , where PV  is the volume fraction of particles. Along the Oz  axis, no conditions 

have to be prescribed due to the axial symmetry formulation of the problem. Along the Or  axis 

(Fig. 1), usual symmetry conditions are applied to the displacement field U  and stress field σ   
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 0   0z rzU σ= =  on Or (the horizontal axis). (7) 

To simulate the remote loading, a unit macroscopic strain 1zzε =  is prescribed along the outer 

circle outΓ  by imposing 

 zU z= . (8) 

Theoretically, there exists an alternative approach prescribing a force corresponding to a unit 

unidirectional stress field 1zzσ =  but it has been checked that it is not as effective. For the 

thermal loading, the outer circle remains free of forces reflecting the fact that the macroscopic 

(homogenized) stress field is zero. 

Let us define the following functional spaces 

{ }
{ }

{ }

1 out

0 1 out

1

H ( ),  0 on ,   on ,

H ( ),  0 on ,  0 on ,

H ( ),  0 on .

z z

z z

z

W W Or W z

W W Or W

W W Or

= ∈ Ω = = Γ

= ∈ Ω = = Γ

= ∈ Ω =

U

U

V

 

Here 1H ( )Ω  is the Sobolev space ensuring enough smoothness and integrability to the functions 

over the whole domain Ω  (i.e. the domain filled by the RVE). The variational formulation for 

an auxiliary elastic problem with prescribed strain can be written 

Find elW ∈U  such that 

 el
0: :  d 0  W V s V

Ω
∇ ∇ = ∀ ∈∫ C U ,  (9) 

where C  is the elastic fourth order tensor and where the generic element of surface ds denotes 

of course the weighted integration element r dr dz taking into account the axial symmetry of Ω. 

The variational formulation for the auxiliary thermo-elastic problem (pure residual stresses 

without any mechanical loading) can be written 

Find thW ∈V  such that 

 th in: :  d : :  d   W V s V s Vε
Ω Ω

∇ ∇ = ∇ ∀ ∈∫ ∫C C V  , (10) 
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with in Iε α=  (a unit temperature change) where α  is the coefficient of thermal expansion 

(CTE) and I  the second order identity tensor. 

The actual solution is then 

 el th
zzU W TWε= + ∆  , (11) 

where zzε  is the remote strain and T∆  the actual temperature change. The potential energy 

associated with U  can be expressed as  

 

( ) ( )

( ) ( )
( )

in in

2 2
el el th in th in

el th in

1 : : d
2

: : d : : d
2 2

: : d .

zz

zz

U T U T s

TW W s W W s

T W W s

ε ε

ε ε ε

ε ε

Ω

Ω Ω

Ω

Π = ∇ − ∆ ∇ − ∆

∆
= ∇ ∇ + ∇ − ∇ −

+ ∆ ∇ ∇ −

∫

∫ ∫

∫

C

C C

C

  (12) 

The last term vanish as a consequence of Eq. (10) and the nesting of the functional spaces, then 

 

( ) ( )
2 2

el el th in th in

2 2 2
el el th th in in

th in2

2 2 2
el el th th in in

: : d : : d
2 2

: : d : : d : : d
2 2 2

: : d

: : d : : d : : d .
2 2 2

zz

zz

zz

TW W s W W s

T TW W s W W s s

T W s

T TW W s W W s s

ε ε ε

ε ε ε

ε

ε ε ε

Ω Ω

Ω Ω Ω

Ω

Ω Ω Ω

∆
Π = ∇ ∇ + ∇ − ∇ −

∆ ∆
= ∇ ∇ + ∇ ∇ +

−∆ ∇

∆ ∆
= ∇ ∇ − ∇ ∇ +

∫ ∫

∫ ∫ ∫
∫

∫ ∫ ∫

C C

C C C

C

C C C

  (13) 

The last term is unchanged for two states of the representative cell, i.e. with or without 

debonding, thus the change in potential energy is (δ  should be read “the change of”) 

 
2 2

el el th th : : d : : d .
2 2
zz TW W s W W sεδ δ δ

Ω Ω

∆
Π = ∇ ∇ − ∇ ∇∫ ∫C C   (14) 

Once (9) and (10) are discretized by finite elements, this term can be computed 

 
2 2

el el th th .
2 2
zz Tεδ δ δ∆

Π = −X X X X    (15) 

where   is the stiffness matrix of the discretized systems, the same in both cases, elX  and thX  

are the vectors of nodal unknowns of the auxiliary elastic and thermo-elastic problems.  
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Eq. (15) shows a very simple form without coupling terms, easy to implement. Unfortunately, 

as seen further when comparing with results from experiments, this spherical RVE works well 

only for small volume fraction of particles. Indeed, such a RVE is very convenient and 

commonly used in homogenization but does not really takes into account the interaction 

between neighboring particles. 

 

3.2 The cylindrical RVE 

 

An alternative is to select a cylindrical RVE (Fig. 2b). The radius of the cylinder being 

equal to the half-height to preserve the distance between particles. The symmetry conditions 

are the same as above, then the RVE reduces to a square with dimensionless half side 

1/ 3
m P(2 /3 )R V=  embedding the quarter disk with radius 1 that represents the particle.  

Now the boundary conditions on the upper TΓ  and lateral RΓ  boundaries should reflect both 

the remote load and the proximity of neighboring cells. To ensure the latter condition and taking 

into account the symmetries of the mechanical and thermal loadings, the upper and lateral faces 

must remain straight and move parallel to themselves. To this aim let us first define the 

following functional spaces 

{ }
{ }
{ }

1 R

1 R

0
1 T R

H ( ),  0 on ,  0 on ,   on ,

H ( ),  0 on ,   on ,  0 on ,

H ( ),  0 on ,  0 on ,  0 on .

r
z z T r

z
z z T r

z z r

W W Or W W r

W W Or W z W

W W Or W W

= ∈ Ω = = Γ = Γ

= ∈ Ω = = Γ = Γ

= ∈ Ω = = Γ = Γ

U

U

U

 

Two auxiliary elastic problems are defined as 

Find r rW ∈U  such that 

 0: :  d 0  rW V s V
Ω

∇ ∇ = ∀ ∈∫ C U  . (16) 

Find z zW ∈U  such that 
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 0: :  d 0  zW V s V
Ω

∇ ∇ = ∀ ∈∫ C U .  (17) 

The solution to the elastic problem can be written 

 el r z
r zzU a W Wε= +  , (18) 

where zzε  is the remote prescribed strain and where ra  is obtained imposing a vanishing 

horizontal resultant force, reflecting the fact that the lateral boundaries of the specimen remain 

free 

 el( ) ( ) ( ) 0r z
r r r zz rR U a R W R Wε= + =  ,  (19) 

here rR  holds for the resultant force in the Or  direction. 

Let thW  be the solution to the auxiliary thermo-elastic problem with a unit temperature change, 

the upper and lateral faces being fixed (i.e. 0 displacements) 

Find th 0W ∈U  such that 

 th in 0: :  d : :  d   UW V s V s Vε
Ω Ω

∇ ∇ = ∇ ∀ ∈∫ ∫C C  . (20) 

The solution to the thermo-elastic problem can be written 

 th th r z
r zU T W b W b W= ∆ + +  . (21) 

The coefficients rb  and zb  are determined such that horizontal and vertical resultant forces 

vanish, reflecting, as above, the fact that the macroscopic (homogenized) stress field is zero 

 
th

th

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

r z
r r r z r

r z
z r z z z

R U b R W b R W

R U b R W b R W

= + =

= + =
  (22) 

The full solution can be written 

 
th el th 

with   and  .

r z
r z

r r r z zz z

U U U T W A W A W
A a b A bε

= + = ∆ + +
= + = +

  (23) 

The change in potential energy  δ Π  is 
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in in

2
in in in

1 : ( ) : ( ) d
2
1 : :  d  : :  d : :  d .
2 2

U T U T s

TU U s T U s s

δ δ ε ε

δ δ ε δ ε ε

Ω

Ω Ω Ω

Π = ∇ − ∆ ∇ − ∆

∆
= ∇ ∇ − ∆ ∇ +

∫

∫ ∫ ∫

C

C C C
  (24) 

The last term vanishes because it does not change between the two states (without and with 

debonding) of the RVE, then substituting Eq. (23) leads to 

2 2
th th

2

in th in in2

 : :  d : :  d
2 2

: :  d : :  d
2

 : :  d  : :  d  : :  d .

r rr

z z r zz
r z

r z
r z

T AW W s W W s

A W W s A A W W s

T W s T A W s T A W s

δ δ δ

δ δ

δ ε δ ε δ ε

Ω Ω

Ω Ω

Ω Ω Ω

∆
Π = ∇ ∇ + ∇ ∇

+ ∇ ∇ + ∇ ∇

−∆ ∇ − ∆ ∇ − ∆ ∇

∫ ∫

∫ ∫
∫ ∫ ∫

C C

C C

C C C

 (25) 

and finally 

 

2 2
th th

2

in in

: :  d : :  d
2 2

: :  d : :  d
2

 : :  d  : :  d .

r rr

z z r zz
r z

r z
r z

T AW W s W W s

A W W s A A W W s

T A W s T A W s

δ δ δ

δ δ

δ ε δ ε

Ω Ω

Ω Ω

Ω Ω

∆
Π = − ∇ ∇ + ∇ ∇

+ ∇ ∇ + ∇ ∇

−∆ ∇ − ∆ ∇

∫ ∫

∫ ∫
∫ ∫

C C

C C

C C

  (26) 

Using the previous notations, rX , zX  et thX  being the vectors of nodal unknowns associated 

respectively with rW , zW  et thW  and B  being the right hand side vector of the thermo-elastic 

system Eq. (20), it comes 

 

2 2 2
th th 

2 2 2
.

r r z z r zr z
r z

r z
r z

T A A A A

T A T A

δ δ δ δ δ

δ δ

∆
Π = − + + +

−∆ − ∆

X X X X X X X X

BX BX

  
  (27) 

Even if each term is rather simple and can be easily computed, it may be better, first to combine 

the terms applying Eq. (23) and then to use Eq. (24) to compute the change in potential energy 

 

th ,
1    .
2

r z
r zT A A

Tδ δ δ

= ∆ + +

Π = − ∆

X X BX BX

XX BX
  (28) 

In order to evaluate the efficiency of the spherical and cylindrical RVEs, prediction of Young’s 

modulus estimated in the z direction as a function of the particle volume fraction is compared 
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with experimental data. Careful measurements of this property for a composite consisting of 

glass spheres embedded in epoxy resin are available in the literature [22].  Fig. 3 shows that 

both RVE are equivalent for P 10%V <  but the cylindrical one must be preferred for higher 

values. We thus adopt this axisymmetric geometry which has also been demonstrated 

sufficiently accurate when compared with a three-dimensional analysis [23]. However, this 

approach is not entirely free of drawbacks. Obviously, the Or  and Oz  directions are not 

equivalent. This is not perceptible for small volume fractions, but for larger fractions it can be 

seen, for example, that the tension acting along the interface in case of pure thermal loading is 

not strictly constant. It exhibits a slight maximum at the pole of the particle, on the Oz axis. As 

mentioned by previous authors [24], a particulate composite can be modeled as a matrix filled 

with a periodic array of particles. Assuming an hexagonal array and simplifying the hexagon to 

a cylinder allows to perform an axisymmetric analysis. Nevertheless, the usual conditions of 

the theory of homogenization are not exactly realized and it is not possible to reconstruct exactly 

the entire structure by repeating the pattern formed by the RVE. 

 

4. Numerical results 

 

 Finite element calculations are now performed with the cylindrical RVE in order to 

estimate the applied stress at decohesion onset using the CC.  

 

4.1 Single mode failure analysis 

 

We first consider a tensile loading in the direction z. As already mentioned, the 

representative displacement field requires the superposition of two elastic solutions Eq. (18). 

The link between the CC inequalities (Eq. (3), Eq. (6)) and the applied uniaxial strain zzε  is 



12 
 

established by introducing the stress concentration factor (SCF) ( )xxk θ  and the dimensionless 

IERR ( )A θ  with  

( ) ( )
( )( ) ( ) ( ) 2

,

.
xx xx i zz

inc inc i zz

k E

G S G RE A

σ θ θ ε

θ θ θ ε

=


= =
      (29) 

where  ( ) ( ) 12 22 1 1i p p m mE E Eν ν
−

 = − + −   is an interfacial effective modulus [25].  

The SCF ( ), , , ,xx p p m p mk V E Eθ ν ν  only requires one calculation with the perfectly bonded 

interface. It was checked that the finite element model allows to recover the analytical solution 

originated by Goodier [26] and also reported elsewhere [10, 27] for a rigid particle embedded 

within an infinite matrix (i.e for Vp < 0.01%). The dimensionless IERR ( ), , , ,p p m p mA V E Eθ ν ν  

requires several computations with a successive release of the interfacial nodes to vary the 

debonding length. A mesh refinement must be introduced along the selected crack path (i.e the 

particle/matrix interface) in order to capture accurately the angle Dθ  at initiation [20]. This 

value is proportional to the interfacial characteristic length c
iL  as will be shown by Eq. (35). A 

convergence study was performed and leads to select a minimum mesh size (expressed here in 

terms of minimum discretized angle) 1θ∆ <  deg. provided that 0.005c
iL R ≥ . A contact zone 

may appear near the crack tip of an interfacial crack [28]. This means that contact would take 

place in case of debonding and therefore further debonding cannot develop. The overlapping of 

crack faces was thus checked but was not detected with the selected discretization if the 

decohesion angle is smaller than the maximum angle Mθ  which is now defined.  

The stress concentration is maximum for 0θ =  and xxk  is a decreasing function of θ . 

For low values of the particle volume fraction, results indicate that the SCF may become 

negative for M
Sθ θ≥  with ( ) 0M

xx Sk θ = . Inversely, ( )A θ  exhibits a local maximum with an 

increase up to the angle M
Wθ θ= . As pointed out by previous authors [25,28,29], the presence 
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of this maximum coincides with the progressive change from mode I to mode II of the 

interfacial crack opening. Results reveal that M M
W Sθ θ< . Assuming a monotonically increasing 

applied strain, the energy condition Eq. (3) is first satisfied for M M
Wθ θ θ= =  if  

( ) ( ) 2M M c
inc i zz iG RE A Gθ θ ε= = .        (30) 

The initiation of a debonding crack also requires the stress condition Eq. (6) to be fulfilled 

( ) ( )M M c
xx xx i zz ik Eσ θ θ ε σ= ≥ .       (31) 

Combining Eq. (30) and Eq. (31) leads to compare the characteristic interfacial length 

( )2c c c
i i i iL E G σ= to the structural length Rβ  with  

( )
( )2

M

M
xx

A

k

θ
β

θ
= .         (32) 

If c
iL Rβ≥ , the energy condition Eq. (30) is governing. The debonding angle at initiation 

reaches its maximum value Mθ  which only depends on the structural geometry. The debonding 

strain ( )M c M
D i iG RE Aε θ=  does not depend on the interfacial strength. The debonding stress 

is thus  

( )
c

M i
D c M

i

GE
RE A

σ
θ

= ,         (33) 

where cE  is the homogenized composite modulus.  

If we exclude the presence of residual stress (which will be considered in the next section), it is 

worthy of note that Eq. (33) is similar to Eq. (1). Further, Eq. (5) indicates that the nucleated 

interfacial crack is stable since  ( )( ) 0MincdG d
θ θ

θ θ
=

=  implies that  

( ) ( )M M c
i inc iG G Gθ θ= = .         (34) 

Then, according to Eq. (5), ( ) c
i iG Gθ <  for Mθ θ> which means a priori crack arrest. 
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If c
iL Rβ< , the debonding angle at initiation M

Dθ θ<  now depends on the geometry and the 

interfacial length c
iL . It is obtained by solving  

( )
( )2

c
D i

xx D

A L
Rk

θ
θ

= .          (35) 

The debonding stress M
D Dσ σ>  is now  

( )
c
i

D c
i D

GE
RE A

σ
θ

= .        

 (36) 

In that case [30], the nucleated crack is unstable, at least in an initial phase, since Eq. (5) 

indicates that  

( ) ( )( )( )i inc incG S G S S dG S dS= +  which leads to ( ) c
i iG S G>  as ( ) 0incdG S dS >  for  

M
Dθ θ< . Finally, Eq. (33) and (36) can be written as  

( )
1  

c
c iD

c
i i D

E L
E R A

σ
σ θ

=          (37) 

with ( ) ( )2 =   if   c c
D xx D i iA k L R L Rθ θ β<   and  if  M c

D iL Rθ θ β= ≥  . 

Fig. 4a depicts the typical evolution of ( )xxk θ  and ( )A θ  versus the debonding angle. 

The expected decreasing behavior of  the SCF is observed and the presence of a local maximum 

( )MA θ  is evidenced. For Mθ θ> , the normalized IERR is decreasing but a contact model 

should be used for further calculations as the overlapping of crack faces is detected. Fig. 4b 

reveals the influence of the particle volume fraction. Increasing pV  enhances the stress 

concentration and linearly decreases the angle Mθ . 

 Fig. 5a presents the angle at initiation ( )c
D iL Rθ  obtained by solving Eq. (35). The 

angle Dθ  increases with c
iL R  but reaches the value Mθ  as soon as c

iL R β≥ . As shown in 
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Fig. 5b, the structural parameter β  decreases with the particle volume fraction and is weakly 

dependent on the elastic contrast p mE E . Fig. 6a plots the ratio c
D iσ σ  as a function of  .c

iL R  

A size effect is clearly evidenced which shows that for smaller particles such that c
iR L β≤ , 

the debonding stress scales with c
iG R  which is reflected by an increasing linear part in Fig. 

6a. For larger particles with c
iR L β> , the debonding stress now depends on c

iG  and c
iσ . A 

very low value of the interfacial fracture energy with 0c
iL →  implies that 0Dθ →  and the stress 

condition is dominating with  

( )0

c
c i

D
xx i

E
k E

σσ =           (38) 

which corresponds to the horizontal line in Fig. 6a. This plot also depicts the debonding stress 

provided only by the energy condition Eq. (33) which is similar to Eq. (1) largely used in the 

literature. It is clear that using only the energy condition leads to underestimate the debonding 

stress for larger particles. For the typical configuration defined by 10p ME E =  and 10%,pV >

results show that this error is less than 1% provided 2 c
iR L β≤ . The intersection point between 

the energy condition Eq. (33) and the stress condition Eq. (38) can be easily determined with: 

( )
( )

2
2 0

Mc
i

xx

AL
R k

θ
γ= = .         (39) 

Eq. (39) defines the parameter γ  which is plotted versus the particle volume fraction in Fig. 6b. 

This structural value decreases with pV  and with the elastic contrast p mE E .  

Fig. 7 describes the influence of the particle volume fraction on the debonding stress for 

fixed values of c
iL R . For low values of  c

iL R  such that c
iL R β<  for the whole range of 

investigated particle volume fraction, the decohesion angle Dθ  is small and almost independent 

of c
iL R  as illustrated in Fig. 5a. However the value ( )DA θ  increases with pV  and the ratio 
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c
D iσ σ  is thus decreasing with pV  according to Eq. (37). For higher values of  c

iL R  such that

c
iL R β≥ , Eq. (37) indicates that the ratio c

D iσ σ  varies   as ( )M
cE A θ . As shown by Fig. 

4b, the value ( )MA θ  is almost constant with pV  but cE  increases with pV which explains the 

increase of the stress ratio. While the failure load increases with the volume fraction of particles 

pV  for high values of the ratio c
iL R , at least in part through an increase in the stiffness of the 

structure, we draw attention to its unexpected decrease for small values of the ratio. Indeed, 

increasing the volume fraction of particles also increases the total length of interfaces which is 

the weak point of the structure in case of very small values of interface toughness, which could 

explain this phenomenon (see also Fig. 10b). 

 

4.2 Mixed mode conditions 

 

The opening mode is predominant for small values of the debonding angle but it is to 

be noted that the amplitude of the interfacial shear stress increases with Dθ . The influence of 

these mixed-mode conditions on the debonding onset can be evaluated with the CC.   

The stress condition is modified by introducing an equivalent stress eqσ  which 

combines the interfacial normal and shear stresses ( ) ( )( ),xx xyσ θ τ θ . A Coulomb law can be 

preferred [31] but a quadratic expression is also commonly used [15,32-34]: 2 2
eq xx xyσ σ τ µ= +  

with c c
i iµ τ σ= ( )1µ ≥ , where c

iτ  is the interfacial shear strength. A high value of µ  leads to 

neglect the influence of shear.  

Introducing the SCF ( )eqk θ , the stress condition is now given by   

( ) ( ) ( ) ( )
2

2 xy c
eq xx i zz eq i zz i

k
k E k E

θ
σ θ θ ε θ ε σ

µ
= + = ≥ ,     (40) 
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where ( ) ( )xy
xy

i zz

k
E

τ θ
θ

ε
= . 

The energy condition ( ) ( )c
inc iG Gθ ψ≥  must now take into account the dependence of 

the interfacial fracture energy on the fracture mode mixity angle ψ  defined by 

( ) ( ) ( )( )1tan xy xxψ θ τ θ σ θ−= . Using a phenomenological characterization law [35] provides 

the increase of the interfacial fracture energy versus θ  with    

( ) ( ) ( )( ) ( )21 tan 1c c c
i i iG G M Gθ λ ψ θ θ = + − =       (41) 

where λ  ( )0 1λ≤ ≤  is a material parameter. Setting 1λ =  allows to ignore mode-mixity with 

( ) 1M θ = . 

The energy condition is thus  

( ) ( ) ( )( )
0

1 c
inc iG G dS

S

θ

θ ψ θ
θ

≥ ∫ .       (42) 

Reminding that ( ) ( )22 1 cosS Rθ π θ= −  leads to  

( ) ( )
( )

2 ,c
inc i i

A
G RE G

N
θ

θ ε
θ

= ≥ with ( ) ( )
0

1 sin
1 cos

N M d
θ

θ θ θ θ
θ

=
− ∫ .  (43) 

Results indicate that taking into account mode-mixity does not modify the angle Mθ  but 

decreases the structural parameter β  which is now given by ( ) ( ) ( )2M M M
eqA N kβ θ θ θ= . 

The debonding stress is now expressed as  

( )
( )

c
Dc iD

c
i i D

NE L
E R A

θσ
σ θ

=          (44) 

with 
( )

( ) ( )2 =   if   
c

D ci
i

D eq D

A L L R
RN k

θ
β

θ θ
<   and  if  M c

D iL Rθ θ β= ≥  . 

Fig. 8 plots the predictions of the CC obtained with mixed-mode conditions defined by 

( )1, 0.1µ λ= = . Comparing with the results that ignore the mixed-mode ( )10, 1µ λ= = , the 
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debonding angle is higher with mixed-mode conditions (Fig. 8a) but the influence on the 

debonding stress remains weak (Fig. 8b).  

 

 

4.3 Presence of residual stresses 

 

If the particle has a larger CTE ( )pα  than the matrix ( )mα , interfacial tensile stress is 

generated upon cooling from the fabrication temperature. Introducing the CTE of the composite 

cα  and 0T∆ <  the temperature change permits to derive the stress and energy conditions for 

interfacial debonding during the cooling step: 

( ) ( ) ( )
( ) ( )( )2

,

,

T c
xx xx i c i

T c
inc i c i

k E T

G RE A T G

σ θ θ α σ

θ θ α

 = − ∆ ≥


= − ∆ ≥
       (45) 

where ( ), , , ,T
xx p p m p mk V E Eθ ν ν  and ( ),, , , , , ,T

p p m p m p mA V E Eθ ν ν α α  are the corresponding 

SCF and normalized IERR.  

These factors are estimated with the help of a modified finite element procedure which 

now requires the superposition of three elastic solutions Eq. (21). For this geometry, the stress 

state at the interface is hydrostatic and T
xxk  does not depend on θ . It was checked that the FE 

model allows to recover the analytical solution of the SCF for a rigid particle embedded within 

an infinite matrix and submitted to a uniform temperature change [36]. However we detected 

that the cylindrical cell induces a stress concentration at 0θ =  for higher values of pV . This 

artefact limits the use of the cell to low values of the particle volume fraction with 10%.pV ≤  

The normalized IERR ( )TA θ  increases monotonically with θ . The maximum angle at 
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decohesion is thus 90M
Tθ = ° . Using the CC provides the debonding angle at initiation by 

solving 

( )
( )2 =   if   

T
D c c T

i iT
xx

A
L R L R

k

θ
β< ,       (46) 

with  if  M c T
D T iL Rθ θ β= ≥  and ( ) 2T T M T

T xxA kβ θ= . 

The temperature change ( )D
T∆  at initiation of debonding is given by  

( )
( )

1  
c

i c i
c D T
i D

E LT
R A

α
σ θ

−
∆ = .        (47) 

Fig. 9a illustrates Eq. (47) by plotting ( )D
T− ∆  versus c

iL R  for selected values of the elastic 

properties of the composite constituents. The curve exhibits two branches defining the stress or 

the energy dominated domains according to the value of the ratio c
iL R .  

Debonding upon cooling from the fabrication temperature is not predicted if the 

temperature change T∆  is lower than the value ( )D
T∆  provided by Eq. (47). Superposing 

now a mechanical tensile load provides the conditions for interfacial debonding taking into 

account the presence of residual stresses with 

( ) ( ) ( ) ( )
( ) ( ) ( )( )22

,

.

T c
xx xx i zz xx i c i

T c
inc i zz c i

k E k E T

G RE A A T G

σ θ θ ε θ α σ

θ θ ε θ α

 = + − ∆ ≥
  = + ∆ ≥  

     (48) 

The IERR in Eq. (48b) is here simply obtained by adding the values corresponding to the tensile 

loading (Eq. (29b)) and the temperature change (Eq. (45b)). We have checked numerically that 

the coupling terms which are present in Eq. (28) can be ignored.  

Results show that ( )xxσ θ  is still a decreasing function of θ  and that the IERR possesses a 

maximum if  M
TMθ θ= . The debonding angle at initiation is obtained by solving  
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( )
( )

( )2 2
2 1

c
D T T i

xx D

xx D

A Lk A
Rk

θ
κ θ κ

θ
 − + =   

,      (49) 

with M
D TMθ θ≤ , T c

iκ σ σ=  and T
i cE Tσ α= − ∆ . 

Comparing to Eq. (35) reveals an additional term involving the stress ratio κ . Finally, the 

debonding strain Dε  can be estimated and the corresponding debonding stress is given by  

( )
( )

1
2 21 1

c
TD c i

Dc c
i i iD

E L R A
E R LA

σ κ θ
σ θ

 
= − 

 
      (50) 

It is to be noted that this expression reduces to Eq. (37) if 0κ = and that ( )
2

1 T
Dc

i

R A
L

κ θ>  as 

D
T T∆ < ∆ . Fig. 9b plots the ratio c

D iσ σ  as a function of c
iL R  for various values of the 

stress ratio κ . It is clear that the presence of residual stresses decreases the debonding stress 

but this influence is weaker for higher values of c
iL R  as the mechanical loading becomes 

predominant. Comparing Eq. (50) with  Eq. (1) reveals that the additional term Tσ  taking into 

account the thermal residual stresses also depends on the interfacial fracture properties (and not 

only on the thermal expansion mismatch between the particles and the matrix).  

 

5. Analysis of experimental results 

 

In this section, the numerical results from the previous section are now used to analyze 

experimental data. More precisely, the objective is to show how the interfacial fracture 

parameters ( ),c c
i iGσ  can be extracted from experimental records. Polymer matrices 

strengthened by glass particles are considered first.  

In the study reported by Bai et al. [7], samples were made with polyethylene reinforced 

with glass beads. A coupling agent was used to promote interfacial adhesion and both untreated 
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(GH1) and treated (GH2) reinforcements were tested. The angle Dθ  and the applied stress Dσ  

at debonding onset were estimated with the help of in situ tensile tests. In this case, the 

identification procedure is straightforward. Eq. (30) and Eq. (31) respectively provide the 

estimation of the interfacial strength and toughness with ( )c
i xx D Dkσ θ σ=  and

( ) 2 .c
i D D

i

RG A
E

θ σ=  Corresponding estimations are indicated in Table 1 for GH1 and GH2 

composites. These interfacial properties characterize a very weak interface but it is worthy of 

note that similar magnitude orders were also determined in [7] as reported in Table 1. It is 

expected that the CC provides a better accuracy as these authors used more approximate 

models. As pointed out by the authors, the interfacial debonding is difficult to detect and may 

occur earlier so that the experimental debonding stress is an upper limit which is consequently 

also the case for the estimated interfacial properties.   

 In their experimental work, Cho et al. [9] have also observed the nucleation of interfacial 

debonding within composites made with a vinyl ester resin reinforced with glass particles of 

various diameters. Their results indicate that the debonding stress can be taken as about 90% 

(respectively 70%) of the tensile strength of each composite if 70 μmR ≥  (respectively

70 μmR < ). Following the procedure proposed by Martin et al. [37], Eq.  (37) is used to 

produce isovalues of the debonding stress in the ( ),c c
i iGσ  plane. For each particle radius, a 

search procedure then allows to estimate the values of the interfacial parameters which provide 

the best fit of the predicted values with the experimental data as indicated in Table 1. Fig. 10a 

plots the predicted ratio c
D iσ σ  as a function of  c

iL R  and reveals that the values 

( )-262 MPa,  35.7 Jmc c
i iGσ = =  lead to a good agreement for the largest particles 

( )70 μmR ≥ . The CC predicts a larger applied stress for a small particle ( )6 μmR = . It is 

very likely that the experimentally found values in this case are not initially caused by 
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particle/matrix debonding but by matrix cracking. In fact, the values of the debond load are 

deduced from the loading at final failure (weighted by a coefficient of 70 or 90%) without it 

being possible in reality to know precisely the origin of the mechanism. The tensile strength of 

the matrix (50 MPa) is obviously an upper bound for the predicted values for debonding. This 

upper bound is clearly visible on Fig. 10a. 

It reveals difficult to find in the literature experimental data indicating debond thresholds for 

various particle volume fractions. We use data from Papanicolaou and Bakos [38] who reported 

the tensile strength of composites made with glass beads embedded in an epoxy resin. Table 1 

indicates that various volume fractions up to 30% were used. Based on the observations by Cho 

et al. [9], the debonding stress was taken as 90% (respectively 70%) of the tensile strength if 

70 μmR ≥  (respectively 70 μmR < ). These experimental data are analyzed with a search 

procedure (based on Eq. (37)) in order to identify the interfacial parameters (Table 1). Fig. 10b 

compares the CC prediction of the debonding stress versus the particle volume fraction with 

the experimental results. As already shown in Fig. 7 and Section 4.1, a low value of the ratio 

c
iL R  is required to reproduce the decrease of the debonding stress with pV  .  

 Finally, we consider ceramic matrix composites reinforced with particles based on the 

results of Davidge and Green [39]. These authors fabricated several glass composites with a 

10% volume fraction of ThO2 spheres. Several batches with particles of varying radius between 

min 22.5 μmR =  and max 355 μmR =  were elaborated with vacuum hot-pressing. Micrographic 

examination of the specimens after cooling revealed cracks that originate at the matrix/particle 

interface. The presence of cracks was found dependent on the sphere radius: an upper bound 

1R R≤  and a lower bound 2R R≥  respectively define the absence and the presence of cracks. 

Assuming that the interfacial properties are identical for every batch, these experimental results 

indicate that the energy condition (which depends explicitly on the particle radius) controls the 

interfacial debonding. Following Eq. (46), we can thus consider that the debonding angle is 
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M
D Tθ θ=  with min max for c T

iL R R R Rβ≥ ≤ ≤ . Applying the energy condition Eq. (45b) provides 

estimations of the interfacial fracture energy with 

( ) ( )( )

( ) ( )( )

2
1min

2
2max

,

.

c c T M
i i i T c

c c T M
i i i T c

G G R E A T

G G R E A T

θ α

θ α

 > = − ∆


≤ = − ∆
       (51) 

An upper bound of the interfacial strength is obtained with the help of the condition 

( ) ( )max min max
 for c T c c c

i i i iL R G G Gβ≥ ≤ ≤  which leads to  

( ) ( )1min

max max

c T M
i i Tc

i i cT T

E G ARE T
R R

θ
σ α

β β
≤ = ∆  .      (52) 

The estimations of the interfacial properties through Eq. (51) and (52) only require the structural 

parameters ( )( ),T M T
TA θ β  which can be easily computed as described in the previous section. 

Table 2 reports the values corresponding to the experimental results obtained with two different 

matrices.  

 

6. Conclusion 

 

 Interfacial debonding between stiff particles and a soft matrix submitted to tensile 

loading is analyzed with a finite fracture mechanics approach. A finite element model of a 

cylindrical representative cell is used to apply the CC which couples stress and energy 

conditions. This method does not require any assumption regarding the crack size at debonding 

onset and is very efficient to derive the debonding stress for various interfacial properties. The 

key parameters are the length ratio c
iL R  and the structural parameter β  as the condition 

c
iL R β≥  delimitates the energy dominant domain for which the debonding stress scales with 

c
iG R . Additional results reveal that the influence of interfacial mixed-mode conditions on 
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the value of the debonding stress is weak. Taking into account the cooling phase after 

elaboration at high temperature allows to estimate the amplitude of the temperature change 

responsible for debonding. Superposing residual stresses and mechanical loading introduces an 

additional term proportional to the stress ratio κ  which decreases the applied stress at 

debonding. Finally, it is shown that experimental data can be used to estimate bounds or values 

of the interfacial fracture properties.   
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Table 1 

Analysis of experimental data (polymer matrices reinforced with glass particles) 

 Ep 
(GPa) 

νp Em 
(GPa) 

νm Vp 
(%) 

R 
(µm) 

Dθ  (1)
 

(°) 
Dσ  (1)

 

(MPa) 

Dσ  (2)
 

(MPa) 
c
iσ (1) 

(MPa) 

c
iG (1) 

(Jm-2) 

c
iσ (2) 

(MPa) 

c
iG (2) 

(Jm-2) 
[7] 52 0.22 1.03 0.38 5         

GH1      10 23 3.81  6.6 28.0 10-3 6.0 65.3 10-3 
GH2      13 20.5 5.0  8.6 63.0 10-3 8.3 133.4 10-3 
[9] 70 0.25 3.5 0.35 5      25-50 62 35.7 

      6  46.2 168.7     
      72  51.2 53.4     
      210  42.9 38.4     
      521  32.7 34.4     

[38] 53.3 0.27 4.21 0.35  108      71.1 1.0 
     5   47.6 39.0     
     10   40.7 38.7     
     15   37.1 38.0     
     20   34.8 37.1     
     25   33.1 36.0     
     30   31.8 34.6     
      10.5        
     5   56.7 51.8   93.3 0.8 
     10   52.2 51.3     
     15   49.8 50.5     
     20   48.1 49.5     
     25   46.8 48.1     
     30   45.8 46.5     

 (1) experimental value - (2) identified value 
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Table 2 

Analysis of experimental data (glass matrices reinforced with thoria particles [39]) 

 Ep 
(GPa) 

νp pα  
(10-6 °C-1) 

Em 
(GPa) 

νm mα  
(10-6 °C-1) 

Vp 
(%) 

T∆  
(°C) 

1R  
(µm) 

2R  
(µm) 

( )
max

c
iσ  

 

(MPa) 
( )

min

c
iG

(Jm-2) 
( )

max

c
iG  

(Jm-2) 
G1 250 0.275 8.7 70 0.2 3.6 10 -545 29.5 41.5 64 8.3 11.6 
G2 250 0.275 8.7 70 0.2 5.4 10 -500 97.5 137.5 68.7 9.65 13.6 
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a) b) 

 
Fig. 1: a) A spherical particle bonded to a surrounding matrix and subjected to a tensile loading in the z direction,  b) Nucleation of interfacial debonding 
(angle Dθ ) for an applied debonding stress Dσ .    
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a) b) 
 
Fig.  2: Representative volume element  with a) spherical geometry, b) cylindrical geometry.    
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Fig. 3: Young’s modulus of a composite made with small glass spheres imbedded in an epoxy polymer matrix [22]: comparison of the experimental data 
(black dots) with the prediction of the spherical (red line) and cylindrical (blue line) RVEs with 76 GPa, 0.23, 3 GPa, 0.4p p m mE Eν ν= = = = . 
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a) b) 

Fig. 4: a) Evolution of the stress concentration factor ( )xxk θ  and the incremental energy release rate ( )A θ  versus the debonding angle θ  for 1%pV = , b) 

Maximum debonding angle Mθ , stress concentration factor ( )0xxk  and normalized incremental energy release rate ( )MA θ  versus the particle volume 

fraction pV . These data are computed for 10, 0.2, 0.3p m p mE E ν ν= = = .  
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a) b) 

 
Fig. 5: a) Debonding angle Dθ  at crack onset versus the ratio of the interfacial length c

iL  over the particle radius R  for various values of the particle 
volume fraction with 10, 0.2, 0.3p m p mE E ν ν= = = , b) Structural parameter β  Eq. (32) versus the particle volume fraction pV  for various values of the 
elastic contrast with  ( )0.2, 0.3p mν ν= = . 
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a) b) 

Fig. 6: a) Debonding stress ratio c
D iσ σ at crack onset versus c

iL R  for Vp=10% with 10, 0.2, 0.3p m p mE E ν ν= = = ; the blue and the green line 
respectively plots the energy condition Eq. (33) and the stress condition Eq. (38) , b) Structural parameter γ  Eq. (39) versus the particle volume fraction 

pV  for various values of the elastic contrast with  ( )0.2, 0.3p mν ν= = .  
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Fig. 7: a) Debonding stress ratio c
D iσ σ  at crack onset versus the particle volume fraction for various values of the ratio c

iL R  with 
10, 0.2, 0.3p m p mE E ν ν= = = . 
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a) b) 

Fig. 8: Influence of the mixed mode conditions defined by ( )10, 1µ λ= =  and ( )1, 0.1µ λ= =  with 10, 0.2, 0.3, 10%p m p m pE E Vν ν= = = = : a) 

Debonding angle Dθ  at crack onset versus the ratio c
iL R , b) Debonding stress ratio c

D iσ σ at crack onset versus c
iL R .  
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a) b) 

Fig. 9: Influence of residual stresses a) Temperature change at initiation of debonding versus the ratio c
iL R  for two values of the particle volume fraction,  

b) Debonding stress ratio c
D iσ σ at crack onset versus c

iL R  for various values of the residual stress ratio κ  and 10%pV = . The material data are 
-1 -1100 GPa, 0.2, 10E 06°C , 10 GPa, 0.3, 1E 06°Cp p p m m mE Eν α ν α= = = − = = = − . 
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a) b) 

Fig. 10: Analysis of experimental data (points) with the CC (solid line) in order to identify the interfacial fracture parameters (Table 1): a) Debonding 
stress ratio c

D iσ σ  at crack onset versus c
iL R  [9]; the dotted line plots the ratio of the matrix tensile strength over the identified interfacial strength, b) 

Debonding stress versus the particle volume fraction for two values of the particle radius 10.5 μmR =  and 108 μmR =  [38]. 
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