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The Decisive Role of Non-Decision Time for Interpreting Decision
Making Models
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Computational models of decision making are becoming increasingly popular to interpret reac-
tion time and choice data in terms of decision and non-decision related processes. But current
evidence remains scarce as to whether parameters of a mathematical model such as the Drift
Di usion Model can recover genuine latent psychological processes. In this study, we combine
an experimental approach using a decision making task with a physiological decomposition of
each reaction time into a motor and pre-motor time using electro-myography. The aim is to test
whether the non-decision time parameter of a DDM, assumed to contain encoding and motor
processes, varies according to both psychophysical predictions of stimulus encoding and the
physiological measurement of motor processes. Our results show that 1) the encoding time is
accounted by a DDM only in the case of instructions emphasizing speed over accuracy and 2)
that the onset of muscular activity does not sign the end of the accumulation of evidence. This
questions the ability of DDM to account for how participants achieve speed-accuracy tradeo
as well as the interpretability of its parameters in terms of decision and non-decision processes.

Introduction There is a general agreement tRdis can be broken down
into at least two parts: a “decision timeT{) and a time out-

Making a decision takes time. In the paradigmatic eXaM;iqa the decision, or “non-decision timeTg). The two time

ple of perceptual decisions, where a visual stimulus calls fof)eriodsTD andT, are generally thought to re ect sequential

a motor response, this .time is taken .by the neural Condl,JCévents with additive duration (Ratcli1978; Ratcli , Smith,
tion delays from the retina to the brain and from the bramBrOWn & McKoon, 2016).

to the muscles (von Helmholtz, 1850, cited by Schmidgen,

2002), and, in between, by the mental action of deciding be: In ”.‘05‘ decision mal_«ng modeldp is de nepl within .
. : the evidence accumulation framework, as the time elapsing
tween alternatives (Donders, 1868). The primary measur

L fom the start of the accumulation of evidence to the time at
used to explore how these decisions are made has been t

time elansing between the stimulation and the partici ant's\;N%iCh the accumulated evidence reaches a decision thresh-
psing u . o . P P old (Brown & Heathcote, 2005; Heathcote & Love, 2012;
overt reaction, or “reaction time’'RT). While RT measures

. . -~ . Ratcli , 1978; Ratcli & Rouder, 1998; Stone, 1960; Usher
collapse conduction and mental action delays, quantitativ

: S Ve McClelland, 2001, see Stine, Zylberberg, Ditterich, &
processing models have explored the possibility of breakm%hadlen 2020, for recent alternatived), is computed on
downRTs into more elementary components. ' ’

the basis of at least three parameters represented in Figure 1:
the boundarieg(a), usually interpreted as the response cau-
tion of the participant, thdrift (v), interpreted as the speed of
This preprint is not peer-reviewed and deposited with a CC-BYevidence accumulation, and th&as (), re ecting the start-
license. ing point of the evidence accumulation process.
The authors thank Ivan Ballasch for his help in data collec- T, in turn, is de ned as the time needed to form an in-
tion, Anna Montagnini, Mgthigu Servant, and Thierry Hasbroucqtema| representation of the stimuluBefcoding SUMmed to
for fruitful discussions, Frédéric Chavane and Alexandre Reynauqhe time needed to execute the resporesfons). To iS

for sharing and explaining the raw data from their article.This re-often referred to as the “residual” time. a term that reveals
search was supported by grant ANR-16-CONV-0002 (ILCB) and . . ' .
the secondary importance given to these aspects &1ha

the Programme "Investissements d'Avenir", Initiative d'Excellence o / - .
d'Aix-Marseille Université via A*Midex funding (AMX-19-1ET- decision making. Perhaps because of the diagnostic power
004), and ANR (ANR-17-EURE-0029). of Ty (e.g.,see Smith & Lilburn, 2020), considerations of
Correspondance should be adressed to Gabriel Weindel, Labdhis time are generally technical and focused around tting
ratoire de Neurosciences Cognitives, Case C, Aix-Marseille Uni-quality issues rather than functional interpretations. In this
versité, 3 Place Victor Hugo, 13331 Marseille, cedex 3. E-mail:paper, we focus on those so-called residual components and
gabriel.weindel@gmail.com show how they shape our understanding of decision making
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(Gomez et al., 2015; Ho et al., 2009).
In other words, experimental manipulations are not always
re ected in modulations of the parameters predicted by the
Upper threshold . . theory. This discrepancy may receive two alternative expla-

nations: either, the model does not appropriately implement
a v the theory, or the theory itself.é., the psychological inter-
pretation of the experimental manipulations) is incorrect. A
& | clari cation of this issue is required to better ground the theo-
Tencoding Thesponse retical interpretation of the parameters, especially in the con-
text of an increasing reliance on the DDM to address both
basic and clinical research.
Lower threshold ...
The present study
TDecision
Time from stimulus onset Our research on the links between parameters and pro-
Figure 1 Processing account of a single decision in awi ~ €esses in decision making models focused on the “residual®
sion model implementing evidence accumulation. non-decision timdy estimated in the Drift Diusion Model

The stochastic path represents the stimulus evidence beif§@PM. Ratcli - & Tuerlinckx, 2002b). To test how faith-
accumulated over time through a noisy channel, modeled ag_JIIy To re ects the cognitive delays it is intended to _capture
adi usion process with a drift v (i.e., , rate of accumulation). (- TencodingPIUS Tresponsg: We used targeted experimental
Accumulation starts at a given amount of evidence (referrednanipulations coupled with empirical response time decom-
to as the bias, gure represents an unbiased decision) and0Sition in a perceptual decision task.

stops once a threshold boundary, a is reached, and the cor- TheRTs of every trial were decomposed into pre-motor
responding alternative is chosen. The time between the ons@fld motor timesRMT and MT), based on muscle activ-

of the accumulation to its termination is referred to as theity onsets revealed by the electromyogram (EMG) of the
Tp, the time before and after, in blue, the. T responding hand (Burle, Possamai, Vidal, Bonnet, & Has-

broucq, 2002). Following (Luce, 1986, p. 97) and our own
previous work (Weindel, Anders, Alario, & Burle, 2021), we
assumed thaMT starts after accumulation has ended and
hence allowsT esponseto be measured rather than estimated.
Formal quantitative models of decision making allow us-As a result, the remaindétMT was thought to correspond
ing RTs to test theoretically grounded predictions about cogto the sum 0fTencoding@NdTgecision The DDM could then be
nitive processes. So, in theory, manipulating thedlilty of tted either to RTs, to estimatély as is usually done, or be
the decision should speci cally modulafg and be re ected  tted to PMTs, to provide a reasonable estimatelgfcoding
in a change of, the drift parameter. This resultisindeed ob- There were three experimental manipulations. The two
served in several studies (Gomez, Ratcl Childers, 2015;  rst ones were intended to primarily &ct To: a manip-
Palmer, Huk, & Shadlen, 2005; Voss, Rothermund, & Vossulation based on stimulus contrast was predicted teca
2004). Another example is the manipulation of the speedthe process of encoding, and a manipulation of the response
accuracy trade-o (SAT), which has been hypothesized to force requirements was predicted toegt the process of re-
a ect response caution, and thus, presumably, to lengthen sgponding. Finally, the participants' strategy was manipulated
lectively Tp through an adjustment af the decision thresh- with a classic Speed-Accuracy trade;assumed to aect
old. Such is indeed the case (Ratck McKoon, 2008; the decision process. The details for these three manipula-
Ratcli & Tuerlinckx, 2002a), but the SAT manipulation is tions are as follows.
not always selective, it can also ect the estimation ofg A ecting encoding processes.Participants had to
(Dutilh et al., 2016; Palmer et al., 2005; RatcIR006; Voss  choose which of two sinusoidal gratings (Gabor patches) had
et al., 2004). Finally, manipulating the brightness of a vi-the highest contrast. We manipulated the mean contrast of
sual stimulus or the force needed to produce the responghe gratings, while keeping their absolute éience constant.
should a ect non-decisional input and output processes, rekt has been shown that stimuli become more accessible, and
spectively. Both manipulations indeed result in a modula-are processed faster, when their contrast increasgs Kar-
tion of Ty (Gomez et al., 2015; Ho, Brown, & Serences, werth & Levi, 1978, in a simple reaction time task). We thus
2009; Servant, White, Montagnini, & Burle, 2016; Voss et expected short€fencoding for higher contrasts. Conversely,
al., 2004); however, they also impact the parameters detelAeber-Fechner's law (Stevens, 1961) states that the just no-
mining Tp: brightness manipulations actv (Servant et al., ticeable di erence between a pair of stimulus increases lin-
2016), force manipulations &ctz (Voss et al., 2004) and  early with stimulus intensity. We thus expected that discrim-

processes.
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inating between the two Gabor patches will be moredlilt ~ Marseille University, and by the “Comité de Protection des
for higher contrasts, thereby inducing longgs through a  Personnes Sud Méditerrannée 1" (Approval@41). Partic-
decrease in thérift parameter (for a detailed account on how ipants gave their informed written consent, according to the
such manipulation can &ct theTp see Ratcli & McKoon, declaration of Helsinki. They received a compensation at a
2018). In sum, the contrast manipulation was expected toate ofe 15 per hour.

have opposite eects 0nTencoding@Nd ONTp. Apparatus. Participants performed the experiment in a

A ecting motor processes. We manipulated the force dark and sound-shielded Faraday cage. They were seated in
required to produce the responses, a manipulation knows comfortable chair about 100 cm away from a 15 inch CRT
to a ect processes related to motor execution (Burle et al.monitor that had a refresh rate of 75 Hz. The CRT monitor
2002). We expected that an increase in the required responggés gamma corrected by a psychophysical procedure pro-
force will result in an increase Ofresponse This would be  vided by the software PsychoPy (Peirce, 2007). Responses
consistent with studies where similar response output mawere given by pressing either a left or a right button with the
nipulations resulted in changes in the estimalggparame-  corresponding thumb. The buttons were xed on top of two
ter of the drift di usion model (Gomez et al., 2015; Ho et cylinders (3 cm in diameter, 7.5 cm in height). The cylinders
al., 2009; Voss et al., 2004). Conversely, fig tted on  were xed on a tablet and separated by a distance of 20 cm.
PMT (i.e., putatively Tencoding Was not expected to be af- The buttons were mounted on force sensors that recorded a
fected by the Force manipulation. It has occasionally beegontinuous measure of the force produced at a sampling rate
reported that force requirements can also in uence the deof 2048 Hz. The behavioral response was recorded when a
cision related parameters bias and threshold (Gomez et aforce threshold was exceeded. The device allowed adjusting
2015; Voss et al., 2004), but no explicit interpretation hasthe force threshold needed for a response to be received. The
been o ered. Our EMG decomposition and the hypothesizedhreshold was manipulated across conditions, as described
absence of decision-related latency variationifi allows  below. Response signals were transmitted to the parallel port
the following subsidiary expectations. If the force manipula-of the recording computer. At button press, participants re-
tion genuinely aect the decision processes, theeet should  ceived a 3ms sound feedback (1000 Hz pure tone).
be invariant whether the tis performed on RT or on PMT.  The participants' forearms and hypothenar muscles rested
Conversely, observing that the ects vary between both ts  comfortably on the table, to minimize muscle recruitment
would suggest an incorrect separatiorfgfandTo. during response execution. We measured the EMG activity

Speed accuracy trade-o (SAT). Finally, we manipu-  ofthe exor pollicis brevis of both hands with two electrodes
lated the SAT level required from participants through ver-placed 2 cm apart on the thenar eminences. This activity was
bal instructions. This manipulation is classicallydescribedrecorded using a BioSemi Active Il system (BioSemi Instru-
as an adjustment of the level of evidence needed before @entation, Amsterdam, the Netherlands). The sampling rate
decision is made, therefore linked to a change intbend-  \was 2048 Hz.
ary parameter of the DDM. However, the manipulation of  gtimyji.  Stimulus presentation was controlled by the

SAT has also been shown to modulate the speed of encodyyare PsychoPy (Peirce, 2007). Each stimulus was com-
ing processes (Steinemann, O'Connell, & Kelly, 2018) and,oseq of two vertical oriented Gabor patches, on the left and
of motor execution (Spieser, Servant, Hasbroucq, & Burleyjgnt of 4 xation cross separated by 1.4 visual angle degrees.
2017; Steinemann et al., 2018; Weindel et al., 2021). Thergpg Gapor patches had a spatial frequency of 1.2 cycles per
is a debate between accounts of SAT, either in terms of pagigya| angle degree and a size of 2.5 visual angle degrees
rameter (i.e. process modulations) within DDM or in tefmSgacp - At each trial, the same amount of contrast (7%) was
of changes in the nature of the generative model (€.9. Ciselgpiracted to the randomly assigned incorrect Gabor patch
Puskas, & El-Murr, 2009; Dutilh, Wagenmakers, Visser, & 4nq added to the correct one, resulting in a 14% contrast dif-

van der Maas, 2011; Ollman, 1966; Verdonck, Loossens, &qrence. The task of the participant was to press the button
Philiastides, 2020)a. Here, decision instructions were M&psilateral to the highest contrast.

nipulated to test whether the above derived predictions on

encoding and motor processes hold across all SAT spectrum. Experimental manipulations.

Contrast. We choose to manipulate the mean contrast of
Methods both Gabor patches while keeping a constaniedince of

14% on a scale between 0 and 100% (where 0% is uniform

Participants. Sixteen participants (6 men and 10 grey) between them. Six levels of mean contrast (23%, 37%,
women, mean age 24.5 years, 2 left-handed) that were 51%, 65%, 79%, 83%) were selected based on a pilot study,

students at Aix-Marseille University, were recruited for this targeting a performance that would typically span from near-
experiment. All participants reported having normal or cor-perfect accuracy to near chance level. The mean contrast
rected vision, and no neurological disorders. The experimerdcross both patches was randomly chosen at each trial with a

was approved by the ethical experimental committee of Aix- xed rate of occurrence (B) within every block.
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Force. The Force factor had two levels: strong and cantly above threshold in either hands' channels. The precise
weak. These levels were tailored to each participant beforburst onset was then identi ed with an algorithm based on the
the experiment started. Participants were asked to press twic¢tntegrated Pro le" of the EMG burst (see Liu & Liu, 2016;
the right and then the left button, with the maximum force Santello & Mcdonagh, 1998, for details). If the algorithm
they could apply. The maximum voluntary force was de nedfailed to locate or detect the EMG burst onset, the experi-
as the maximum between the two trials from the weakest ofmenter corrected or added them manually. At this stage of
the two hands. De ning maximum voluntary force this way signal processing, the experimenter was unaware of the trial
was chosen to avoid muscular fatigue from the weakest handype he was annotating to avoid any bias. Every muscular
The actual force levels for the strong and weak conditionsvent (above-threshold change in the signal followed by a
were then de ned as, respectively, 2% and 20% of this maxfeturn to the baseline) in the trial was marked, even when
imum voluntary force level (generating force levels aroundthe activation was not immediately followed by an overt re-
1.20 and 12N respectively). sponse.

SAT. The speed-accuracy trade-qSAT) instruction In trials where a single EMG burst was detected, motor
was manipulated between blocks. Participants were intime (MT)was de ned as the time between the onset of EMG
structed that “Speed” instructions required a mean reactioRurst and the force threshold crossing recorded. Pre-motor
time near 400 ms and that “Accuracy” instructions required dime (PMT) was de ned as the time between stimulus onset
percentage of correct responses near 90% while maintainirnd the EMG burst onset. Multiple EMGs were observed in
RTs below 800 ms. Each block started with the presentatiod1% of trials. Such observations are not new (e.g. Weindel et
on the center of the screen of its corresponding instruction@l., 2021, and others), but a precise account of these multiple
the French word for Speed (“Vitesse”) or Accuracy (“Pré- activities is still IaCking (although see Servant, Logan, Gaj'
cision”). The end of each block was followed by feedbackdos, & Evans, 2021, for a tentative account of such trials).
about mean reaction time and mean accuracy, along with ordflinimally, they show that participants where not always en-

feedback from the experimenter, if the participant had nogaged in a pure sequential encoding-decision-execution pro-
satis ed the condition goals of the block. cess. Therefore, we removed these trials from all the analysis

Procedure. All participants performed a single experi- in the study.

mental session with 24 blocks of 100 trials each. Session =
duration was around 1h30 including a training session of 15>tatistical procedure
minutes and self-paced breaks between each block. Partic- gayesian Statistics. All analysis were performed in a

ipants were asked to keep their gaze on the central xatiorgayesian framework. Bayesian methods try to estimate an
cross throughout each block, and to respond to the visuginknown parameter (or set of parameters) and the uncer-
stimuli according to the corresponding SAT instruction. tainty around it. More explicitly, Bayesian methods combine
The training session started with 40 trials without speci ¢ prior information and Bayes' rule to quantify the likelihood
SAT instructions, followed by 2 blocks of 10 trials in the of the parameters by generating a posterior distribution for
Speed condition, followed by 2 blocks in Accuracy condi- each of them. This posterior distribution can be naturally
tion, and ended with 2 blocks of 10 trials with alternating interpreted as the probability of any given parameter value
instructions. During the experimental session, SAT instrucyiven the priors, the data, and the tested model. In our study
tions alternated every three consecutive blocks. The forcge summarize the posterior distribution using the mean and

settings varied every six blocks, with an on-screen messagge Credible Interval (Crl), the 95% Highest Probability Den-
to inform the participant beforehand. The order of the SATsijty interval (HPD; Kruschke, 2010).

instructions and the force requirement was counterbalanced Hierarchical Modelling.  All models, including linear

across participants so that every possible order combinatiomodels, were constrained to follow a hierarchical structure
was presented to 4 participants. Within each block, the yith parameters from each participant as units assumed to be
levels of mean contrast value were fully randomized acrosgrawn from a population distribution. This parametrization
trials. No response deadline was applied, and the inter-trigdjlows to estimate population parameteesy(, the slope of
interval was xed to 1000 ms from button press to next stim-the e ect of stimulus contrast oRTs) along with individ-
ulus onset. ual parameterse(g., the inter-individual di erences in the
EMG processing. The EMG recordings were read in slope of contrast with RT), often referred to respectively as
Python using the MNE module (Gramfort et al., 2013). xed and random eects in the case of linear models. Hier-
The signal was Itered using a Butterworth 3rd order high archical modelling remains Bayesian thus preserving the un-
pass Iter at 10Hz from the scipy Python module (Oliphant, certainties associated with parameter values. Such approach
2007), then segmented by-trial in windows between 150 msllowed directly testing our hypotheses, by comparing the
before and 1500 ms after stimulus onset. We used a variancpesterior distributions for the population ects across con-
based method to detect whether EMG activity was signi - ditions.
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Linear Mixed Models. We used linear mixed models visual inspection of the MCMC chains. We visually checked
(LMM) on the log transformedRT, PMT, and MT, and the assumptions of the linear regression by inspecting the
generalized linear mixed models (gLMM) for the proportion normality of the residuals through QQ-plots and assessment
of correct responses. Formally, LMM model the dependenbf homeoscedasticity. The LMM and generalized LMM
variable as drawn from a normal distribution who's param-were tted with a custom Stan code, available in the on-
eters are constrained by the experimental design (e.g. tHae repository, inspired from the code provided by Nicen-
mean of the normal distribution changes with SAT instruc-boim, Vasishth, Engelmann, and Suckow (2018) and using
tions). the pystan package (Stan Development Team, n.d.). The

Given our analysis plan, we derived generic LMMs for summary statistics and plots of the parameters were created
RT, PMT and MT where all xed e ects and all random usingarviz python package (version 0.4.1, Kumar, Carroll,

e ects were estimated. The ects of the experimental fac- Hartikainen, & Martin, 2019).
tors were modeled on the mean parameter for normally dis- Priors for the gLMMs. The priors for the LMM and
tributed dependent variables (DV), assuming equal variancgLMM are intended to ease the tting procedure, we chose

across conditions. to use the relatively broad informative priors described as de-
scribed in Weindel et al. (2021). .
vi N(i D (1) Estimated di erence between condition levelsl. In

order to estimate the magnitude of the elience tﬁ) be-
tween the levels of the experimental factors Contrast, Force
i= j+ 1jSAT+ , FC+ 3 Con and SAT, we chose to use the predictions of the tted linear
models. For each dependent variable, we rst computed the
+ 15 SAT FC+ .3 SAT Con 2 ) . i :
1 23] @ predicted di erence between both SAT level with all other
+ 13 FC Com+ 15 FC SAT Con predictors set at 0 (see Appendix A). We then computed the

Wherey; represents the modeled DRT, PMT or MT) predicted di erences between the lowest and highest contrast

on theith trial for thejth participant and is assumed to be nor- |€V€! @s Well as the weak and high force condition for each
mally distributed with mean; and standard deviatior?. As ~ SAT Instruction separately. The results are thus composed
seen in Equation 2, is dependent of the experimental factors of the e ZCt of SAJ’ ;hedgects of f?rﬁe and contrast in each
(Con. for mean contrast, FC for Force Condition and SAT for>/1 €ondition and the dierence of these ects across SAT
speed accuracy trade-nstructions). The LMM where only conditions. Due to the Bayesian nature of the analysis, the

tted on correct responses as Weindel et al. (2021) alreaol)|7|ncertainties associated with the regression parameters are
reported the eect on these variables on errors and, for thepresgrved in these est|mated. efences. Thank; to the hl.er-
sake of simplicity, to limit the analysis to three factors. archical nature of the regression models, we directly estimate

Response correctness was modelled with a gLMMa population dierence. Both the Bayesian and hierarchical

whereby proportion of correct responses is hypothesized tBa“_”e ofthe metho_d ther_efo_re allow to_directly infer the pop-
follow a Bernoulli distribution, modulated by the same fac- ulation level e ect size with its uncertainty using the poste-
tors than in Equation 2: rior distribution of the predicted derence. The strength of

evidence for the presence or absence of aecewas de-
p(responsg = 1)  Bernoullilogit( ;)) (3) termined based on the credible values of theedénces as
provided by the mean and the 95% Crl of the posterior dis-
To reiterate, in the LMMs and the gLMM, the intercept tribution.
and all factors and interactions are modeled as random ef- Drift Di usion Modelling.
fects: Model tting procedure. We used the implementation
i N (2 (4)  of a hierarchical Bayesian DDM provided in tit¢DDM
N 2) (5) python package (T. V. Wiecki, Sofer, & Frank, 2013). Note
X1 < x that HDDM uses the diusion coe cient (See Ratcli &
where and | are the population estimated intercept andMcKoon, 2008, for a review of the DDM parameters) as
regression coecient and 2 and ZX the estimated random a scaling parameter by xing it to a value of 1 (contrary
e ect of the population sampling. to a value of 0.1 in some applications of the DDM). For
Fitting procedure for the dLMMs. For each LMM and each model oiRT and onPMT, both in the “Model selec-
gLMM, six Markov Chain Monte Carlo (MCMC) sampling tion” section below and for the model including co-variates,
processes were run in parallel, each composed of 2000 iterave ran 32500 burn-in samples and 2500 actual recorded
tions among which the rst 1000 samples were discarded asamples across four Markov chains Monte-Carlo (MCMC).
warm-up samples. We assessed convergence of the MCM®@e inspected each parameter of each chain visually to as-
chains both by computing the potential scale reduction facsess whether they reached their stationary distribution, and
tor (R, see Gelman, Rubin, et al., 1992) and by means ofvhether theR (Gelman et al., 1992) was under the con-
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ventional threshold of 1.01. Additionally, we examined the tted models (Ando, 2007)we also report for each model
autocorrelation of each chain to ensure that samples weithe Bayesian predictive information criterion (Ando, 2007,
drawn independently. For the priors, because our design BPIC). BPIC is intended to correct DIC's bias in favor of
canonical and in order to ease convergence, we used the daver- tted models by increasing the penalty term for the
fault informative priors used in HDDM based on the work number of parameters. For all these measures, a lower value
of Matzke and Wagenmakers (2009). Almost all parame-of DIC or BPIC indicates a preferred model.

ters were estimated individually with the constrain of being DDM regression analysis. Once the best- tting model
drawn from a common normal distribution (or half-normal was identi ed and selected, the ects of the experimen-
depending on the boundaries.g., variability parameters  tal factors on the parameters were assessed by further em-
cannot have a negative value). Only the inter-trial variabil-pedding a hierarchical regression in the model tting pro-
ity parameters of the drift rate, of the bias, and of the noncedure (Boehm, Marsman, Matzke, & Wagenmakers, 2018).
decision time were estimated at the group-level because thephe three experimental factors and their interactions were in-
are notoriously di cult to estimate (Boehm, Annis, et al., cluded as predictors in the regression, on the condition that
2018; T. Wiecki, Sofer, & Frank, 2016). The informative had been left free to vary across conditions in the model se-
piors used for the t of the Hierarchical drift dusion model |ection procedure. Each parameter that is free to vary with
are given by T. V. Wiecki et al. (2013) based on the analysissne or more factors was estimated with one intercept and
of range of plausible values done by Matzke and Wagenmakone slope for each factor and interactions. This allowed to
ers (2009). use the posterior distribution of intercept and slopes to test

Model selection. We designed a base model and addeddirectly for the presence and the direction of areet by in-
parameters according to our hypotheses. The base modaecting whether 0 is included in the posterior distribution.
was chosen based on previous studies. For this base mod¥Ye compared the results of joint DDM-regression ts on the
the boundary parameter was free to vary with SAT instruc:°PMT andRT.
tions. The drift rate was free to vary with the contfasts The hierarchical nature of the data is preserved in these
this parameter has been shown to be associated with stinftodels because each intercept and slope parameters is es-
ulus strength. Th&, was free to vary with SAT, as it has timated as being drawn from a population distribution.
been observed that this parameter also varies with SAT conthe parameters that do not vary with experimental fac-
ditions (Palmer et al., 2005; Ratcli2006; Voss et al., 2004), tors (.e., inter-trial variability of the drift rate and the non-
with the Force Condition and with the contrast factor, as alldecision time) are estimated as described in the model selec-
three are the factors of interest in the studyTgf2. The tion section. The inter-trial variability of the bias was free to
accumulation bias was free to vary for each participant. Wevary between SAT instructions but the correspondinga
also added inter-trial variability of the drift rate and the non-Size was not estimated with a regression. This is because,
decision time, because of their ability to reduce the in uence I'st, we only have one estimate for the population due to the
of contaminant fast-trials (Lerche, Voss, & Nagler, 2017). Fi-di culty to estimate it and, second, we do not have speci ¢
nally, we added the inter-trial variability of the starting point hypothesis about this parameter. As in the model selection
parameter which was free to vary with SAT instructions, be-procedure, the models were tted using tHé&DM python
cause it is often reported that the latency contrast between epackage (T. V. Wiecki et al., 2013).
rors and correct response does change according to the SAT Fast-guess detection and removal. Fast guess trials can
condition and that this pattern is captured by aedent bias  be problematic when studying decision making in the con-
variability. text of evidence accumulation models. Before performing

In addition to the base model, we tested the following hy-any statistical analysis, we applied an exponentially weighted
pothesis, and combinations thereof: whether the drift raténoving average lter (EWMA; Vandekerckhove & Tuer-
also varies with SAT (Rae, Heathcote, Donkin, Averell, & linckx, 2007). This method iteratively computes a weighted
Brown, 2014), or with the Force Condition (Voss et al., @&cCuracy measure (amount of correct responses relative to
2004); and whether the bias and the boundaries are variabfirors) from the fastest to the slowest response time. The
between Force conditions (respectively Voss et al., 2004 and—

Gomez et al., 2015; Ho et al., 2009). The 16 possible combi- *As boundaries were coded as right and left responses (respec-

nations of hypotheses are summarized in Table B1. tively upper and lower threshold), and in order to avoid estimating
Wi d the devi inf f iteri DIC) t one drift for each combination of stimulus side and contrast, the
€ use e deviance information criterion ( ) to S€-model was coded to take negative drift value when the correct stim-

lect among competing models. The DIC is an analog to thg,,s was on the left
Akaiake information criterion (AIC) generalized to the hier-  2ye started by including models that do not allow the parameter
archical Bayesian estimation method, in which the improve-T, to take di erent values for the derent contrast levels but these

ment of the log-likelihood is weighted against the cost of ad-models failed to converge probably because of thects reported
ditional parameters. But because DIC tends to select ovein the behavioral results section
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method is usually performed on the sorfed distribution, Crl = [ 197 134], and so does the accuracy ratear =

but was applied here to the sort€dMT distribution. Par- 0:10, Crl = [ 0:13 0:.07]. The eect of contrast

ticipants are considered to be in a fast guess state untdn RT proved to be dierent between SAT instructions

the weighted accuracy is higher than a de ned thresholddcontrasts peedacc = 95,Crl = [ 70; 39]. When par-

The PMT at which this change of state occurs is identi- ticipants are asked the emphasize accuracy, an increase in

ed, and faster trials are censored. EWMA involves the contrast lengthenRTs, &camrasmcc = 60, Crl = [35;83],

following user-de ned parameters: the initial starting point and reduces response accurzch()mrasmcc = 0:22,Crl =

of the weighted accuracy, the amount of preceding trial§ 0:27, 0:18]. The contrast eect is essentially can-

(weight) retained in the accuracy computation, and the aceeled when participants are asked to speed their responses,

curacy threshold for de ning non-guess trials. The startinga(;omrasts peed= 5, Crl = [ 13;22]. The proportion of cor-

point was de ned at 0.50 based on the assumption that aect responses however displayed similaeets of Contrast

guessing strategy yields a 50% chance of correct responsia both the Speed and Accuracy conditiodsentrasts peed=

The weight (bounded from O to 1, with O being all preced- 0:22, Crl = [ 0:27; 0:16], dcontrastspeedace = 0:02,

ing trials used) was xed at 0.01 as in the description ofCrl =[ 0:01; 0:04].

the method by Vandekerckhove and Tuerlinckx (2007). The When force requirements are highf increases both in

threshold was xed at 0.55 based on a reasonable assumptighe AccuracyﬁForceACC = 48,Crl = [22;75] and the Speed

that participants could not reach an accuracy superior to 0.58onditions drorces peed= 35,Crl = [16;53]. The proportion

on the basis of guessing. of correct response is not acted by the Force factor neither
The EWMA Iter was applied for each participantBMT in accuracy&ForcaACc = 0:.01, Crl = [ 0:010:02] nor in

distribution, separately in the speed and accuracy conditionshe speed conditiodrorces peed = 0:03, Crl = [0:00; 0:05]

fast-guesses can have drent latencies across both condi- although the Crl barely included 0.

tions. PMTs rather thaRTs were used for the EWMA, rst Unexpectedly, the interaction between Force and Contrast

because Weindel et al. (2021) showed a high reliability wherhad an eect onRT selectively in the Accuracy condition,

the method was applied separate\P T andRT, and Sec-  deoree conrastace = 47, Crl = [ 68 27] but not in the

ond because trials that do not appear very fasRdncan  Speed conditiomrorce contrasts peed= 7, Crl = [ 11;23].

sometimes be fast on tH&MT and therefore be problematic The proportion of correct responses was not sensitive to

when tting a DDM on thePMT as done here. The g- the interaction between force and contrast neither in Accu-

ures illustrating these rejection procedures can be found iracy deorce contrastace = 0:03, Crl = [ 0:09;0:03]) nor in

the online repository. We thank Michael Nunez for kindly Speeddrorce contrasts peed= 0:04,Crl =[ 0:08 0:07].

providing the code used for this mettiod o ) )
Drift Di usion Model selection on RT. The model se-

Results lection procedure is fully described in Appendix B, with

) ) . DIC and BPIC estimates summarized in Table B1. In the
The method implemented for detecting EMG onsets im+y, e that was ultimately selected, one boundary parameter
posed arRT upper limit of 1500 ms, whereby 1% of the

. . - . . . was estimated for each combination of SAT and force con-
trials were excluded. Trials with low signal-to-noise ratio o yitio jevels, one drift for each level of contrast, one starting

with high spontaneous tonic activity that resulted in uncerin: for each force level, and one non-decision time for each

tain EMG onset detection were excluded (7%). Trials thatexperimental cell of the three factors SATForce Con-

presented more than one EMG activity (see Method Sectiof,st (see Table B1). The ects of the experimental factors
on EMG analysis) were also excluded (2£%Finally, the o thase model parameters are summarized in Table 1 and
trim criterion derived from the fast-guess detection methOdspeIIed out below.

lead to the exclusion of 8% of the data. Thus, the combined

EMG and statistical criteria resulted in the exclusion of 37% E ects onTy when tted on RT. EstimatedT, was

of the trials. Censoring errors, for the LMM analysis of RT, longer when accuracy was emphasize@ignSAT and force
PMT, and MT, removed 13% of the remaining data. On av-interacted: increasing force had a strongeet on Ty in
erage, 1513 trials (SB 310) were available per participant. the accuracy condition, and the interaction term indicated
All estimated di erencesd) are presented on the data scale,

milliseconds for chronometric variables and proportion cor-  >https://github.com/mdnunez/bayesutils/blob/master/

rect for accuracy. wienerutils.py
“Those trials display a longer mean RT. While usual behavioral
Behavioral results RT and error rates) experiments would analyse these data, EMG allows to Iter them

out as they could represent alternative response modes (e.g. mind
Linear mixed models. The following observations are wandering) or trials in which decision threshold were crossed mul-
illustrated in Figure 2 and in Figure 3 (two left columns). tiple times (Servant et al., 2021), thus departing from decision mak-
When speed is emphasizelT decreasesgsat = 165, ing asimplemented by a DDM
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Figure 2 Average values for proportion correBT, MT, andPMT (columns from left to right) plotted for each SAT condition
(accuracy on the top row and speed on the bottom row), broken down by contrast levels and by force condition. The lines
represent 1000 random draws from the joint posteriors of the combined MCMC chains of the correspdbiing t5. The

thick line represent the predicted regression line with all parameters set at their maximum a posteriori value.

Figure 3 Estimated dierences between condition Ievebb for SAT, Force (FC), Contrast and their interactions on the
millisecond scale of the data in the Accuracy condition (blue), the Speed condition (chocolate), ancetkaat between

both conditions (i.e. interaction; grey). Dots represent the maximum a posteriori, and bars the 2.5% and 97.5 % HPD of the
corresponding marginal posterior distributions.

a smaller yet reliable eect in the speed condition (see left for the three way interaction (although in this latter case the
column of Figure 4). SAT and Contrast also interacted (se€rl barely included 0). These estimates are summarized in
left column, middle and bottom panels, of Figure 5): thereTable 1.

was no evidence for an ect of contrast o in the accu-

. . . - . E ects on decision related parameters when tted on
racy condition, but the interaction term indicated a negatweRT The model selection procedure revealed that the drift
e ect when speed was emphasized.. Finally, there was ng '

. ) . rate was aected by Contrast (see left column top panel of
evidence for an interaction between Force and Contrast, anigure 5 and Table 1), but not by SAT nor Force (for de-
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Figure 4. E ect of Force on the parametep Estimated on RT s (left panel) vs. on PMT s (right panel)

Upper row: estimated mean values and one SD as shaded lines (barely visible).

Bottom row: posterior distribution of the DDM parameter for theset of Force only at each level of SAT, and of its
interaction with SAT (se&y SAT FC in Table 1).

tails, see model selection results in Table B1). The boundary,. We show in the next sections &iT andPMT measures
parameter was a&cted by SAT, being smaller for the speed that this account is very unlikely.

condition, and it was not reliably &cted by Force in either Regarding the targeted motor processgd, increased
SAT condition (see left panel in Figure 6). The starting pointyith higher Force demands, while the rate of correct re-
parameter revealed no evidence for aret of Force (with  sponses was not acted by Force. The variation RTs was
the provision that the corresponding Crl barely included 0;captured by the DDM as a rather selective incread ithat
Table 1). left all other parameters unacted (with the possible excep-

Summary and discussion of behavioral observations tion of bias). However, there was a discrepancy between the
and the DDM ton RT. Regarding the targeted encoding € €cts of Force estimated dRT vs. on theT, tted val-
processes, performance decreased with increasing contrad€s. In theRT analysis, the eect size of Force was 48 ms
This variation was captured by the model as the predicted the accuracy condition and 35 ms in the speed condition,
negative relation between contrast aiglas well as the pre- and Force did not interact with SAT; in the tted values,
dicted negative relation between contrast and drift — the latForce interacted with SAT and its values for the Accuracy
ter resulting in a positive relation between contrast #gd  and Speed conditions were 71 ms and 46 ms, respectively.
However, the eect of Contrast offy was only present when In the next section, we quantify factor ects onMT and
participants were asked to emphasize speed over accura®ye build on our assumption linkinBT to Tresponset® assess
BecauseT, aggregated encoding@nd Tresponse Which cannot whether the more fgithful capture of motor_processes comes
be estimated separatelypast-hoaccount of the unexpected from linear regression oRT or from DDM tting.
absence of Contrast ect in the Accuracy condition would Regarding the parametersecting the decision timé&p,
be to hypothesize opposite ects on the two components of the observed escts were exactly as predicted: the drift was
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Figure 5 E ect of Contrast on the parameters drift rate (V) angebtimated with DDM on RT (right column) and PMT (left
column) in the speed and accuracy conditions

Panels in the top row show the estimated drift rdfgrfiean values and one SD as shaded lines along with the contrast levels.
Panels in the middle show the estimafiedmean values and one SD as shaded lines. In the General Discussion section we
describe external data whose t is represented by the plain line and compared to th@gredaach condition represented

by the dashed lines. The best t, as assessed usirfg abetween both lines is colored according to the color code of the
condition.

Panels in the bottom row show the posterior distribution of theceof contrast in accuracy and speed along with theidince
between both condition§§ SAT FC in Table 1).

selectively aected by the Contrast manipulation and the Summary and discussion oMT results. We found no
boundary was selectively acted by the SAT manipulation. evidence for an eect of contrast oM T nor of its interac-

tion with SAT. In the section on behavioral resulBT{and
Motor times (MT) error rates), we reported an interaction between Contrast and
SAT, and speculated that Contrast may have opposkiets
0N Tencoding@Nd Tresponse the two components ofg, in the
Accuracy condition. The current analysisMfT shows that
this hypothesis is implausible. One alternative possibility is
that response mechanisms in the Speed and Accuracy condi-
tions are di erent enough that they are dirently sensitive
to the encoding of contrast. We come back to this issue in
the General Discussion.

Linear mixed model. The following observations are
illustrated in Figure 2 and in Figure 3 (third column). The
SAT condition Speed reduceMT, dsar = 24, Crl =
[ 30; 17]. A higher force requirement increashtir, both
in the accuracyﬁpc;ACC = 93, Crl = [75;110], and the
speed conditionsgec.s peea= 59, Crl = [48;71]. The in-
teraction term con rmed that the ect of Force was indeed
smaller when speed was emphasiﬁael;s peedAcc = 34,
Crl =[ 47, 20] The expected eact of Force orMT was clear, but its size

Contrast and its interaction with Force had no reliable ef- '

fect on MT across any of the SAT conditions, as indicated b)fg?’ ms and 60 ms in the Accuracy and Speed conditions, re-
. . ) - spectively) was much larger than that observe®dr(48 ms
coe cients restricted to low eect sizes an€@rls containing

0 and 35 ms). Because edef is the sum of its corresponding
' MT andPMT, this discrepancy can only be explained by an
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Figure 6. E ect of Force on the boundary parametewhen estimated on RT s (left panel) vs. on PMT s (right panel).
Upper row: estimated mean values and one SD as shaded lines.

Bottom row: posterior distribution of DDM regression coaents for the eect ona of Force in accuracy, speed and their
di erence on either chronometric variable (8meindariesn Table 1).

opposite eect of Force orPMT. We pursue thisissueinthe Crl = [ 46; 8]. Here the eects of Force were reli-

next section oiPMT. ably di erent across SAT conditionslc:s peedacc = 26,
The e ect size of Force orMT was also remarkably Crl = [2;50].

higher than the eect size estimated in the previous section o ] ) )

on To (71 and 47 ms). Our assumption linkifdT to the Drift Di  usion Model selection. The model selection

TresponseCOmponent offy invites, again, a tentative compen- procedure applied tPMT selected the same mode! struc-

sation account in which the other componen@ef namely ture that was selected when the procedure was applied to

Tencoding Would be sensitive to Force in the opposite direc-Namely M13in Table B1.
tion. While this hypothesis may seem counter-intuitive, it
can be directly tested in our framework by ttingDM to
PMT distributions, as we do in the next section.

E ects onTp when tted on PMT. The patterns of ef-
fects were similar for botiPMT andRT ts, with the fol-
lowing important exceptions (compare the two panels on Ta-
ble 1). The main dierence is that neither Force nor its inter-
action with SAT appeared to act theT, estimated oiPMT

Linear Mixed Model. The results foPMT were very  (Figure 4 right panel). In addition, we highlight in Figure
similar to those reported above f&T with the important 5 that the eect of contrast ofT, interacted with SAT. The
exception of the eects of Force. This can be appreciatede ect was in the expected direction in the Speed condition
by comparing the second and fourth columns in Figure Zalthough the Crl included 0) but centered on 0 in the Accu-
and Figure 3. The eect of Force onPMT was opposite racy condition.
to that observed ofRT both in accuracyﬂFc:Acc = 53, E ects on decision related parameters when tted on
Crl = [ 79 27] and speed conditionslgc.s peed= 27, PMT. Contrary to the results observed with a t daiT,

Pre-Motor times (PMT)
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RT PMT
DDM Par. Factor d 2.5% | 97.5% d 2.5% | 97.5%
Drift (Intercept) 1.79 | 2.03 1.51 191 | 2.19 1.62
Contrast -1.77 | -1.46 | -2.08 | -1.90| -1.55 | -2.23
(Intercept) 1.08 1.02 1.15 1.05 | 0.99 1.10
Boundaries SAT -0.33 | -040 | -0.25 | -0.30| -0.38 | -0.22
FC:Acc. -0.06 | -0.14 | 0.02 | -0.17| -0.26 | -0.08
FC:Speed -0.03 | -0.13 | 0.08 | -0.07 | -0.19 | 0.05
FC:Speed-Acc. 0.03 | -0.05 | 0.11 | 0.10 | 0.01 0.18
Bias (Intercept) 0.50 | 0.48 0.53 | 0.49 | 0.47 0.51
FC 0.004 | -0.001| 0.01 | 0.002| -0.002 | 0.006
(Intercept) 4146 391.0 | 439.1 | 301.2| 280.0 | 322.8
SAT -77.7 | -106.1| -49.0 | -51.5| -77.7 | -22.7
FC:Acc. 70.6 | 54.1 87.2 -4.2 | -14.6 6.6
To (MS) FC:Speed 46.3 | 26.0 66.2 -5.6 | -19.7 9.1
FC:Speed-Acc. 243 | 372 | <113 | -14 | -124 9.8
Contrast:Acc. 1.0 -8.8 11.0 0.0 -9.7 9.4
Contrast:Speed -10.2 | -21.6 0.7 -8.9 | -20.0 2.0
Contrast:Speed-Acc. -11.2 | -19.3 | -2.7 -8.8 | -16.6 | -1.1
FC Contrast:Acc. -6.0 | -16.0 4.1 -25 | -11.9 6.8
FC Contrast:Speed 55 -3.6 14.7 6.9 -1.6 15.5
FC Contrast:Speed-Acc. 11.5 -1.3 24.7 9.3 -4.1 21.5

Table 1
Comparison of Estimated dérences between conditions leval} 4cross ts on RT and on PMT. Columns labeltbdefer

to the maxima a posteriori from the corresponding marginal posterior distribution. Columns labelled 2.5% and 97.5% refer
to the Crl intervals. Colors refer to the sign of the estimate, red for positive values, blue for negative values.

in the t on PMT the boundary parameter wasexted by section onMT) that opposite eects of Force compensate
Force and this eect interacted with SAT. Increasing Force one another on the two components T, Tencoding and
resulted in a lower boundary parameter, are@ that was Tresponse INstead, the DDM t attributed the eect of Force
much reduced (if not absent) in the Speed condition (Figuréo the boundary parameter. Boundary decreased with in-
6 right panel). The other decision parameters, drift and bias;reasing Force requirements, in the Accuracy condition only
were roughly similar when derived from ts ddMT andRT  (Figure 6). This means thatthe DDM ts dRiT and onPMT
(compare the two panels on Table 1). lead to di erent attributions of the Force ect, particularly
in the Accuracy condition.

Summary and discussion ofPMT observations and
their DDM t. The e ects of Contrast were consistent
with those observed oRT, revealing “opposite” eects on ~ General summary of ndings
To and drift, including the fact that Contrast interacts with
SAT instructions showing that the expecteceet is mainly Altogether when a DDM is tted on RT we observe the
present in the Speed condition only (Figure ®MT does  expected results. A manipulation of contrast translates into
notincludeMT, which we hypothesized to be strongly linked an e ect on theT, and the drift rate. A manipulation of force
t0 Tresponse Therefore, in this analysi3, provides a reason-  speci cally impacts thelo while leaving the decision related
able estimate ofencoding IN SUM, encoding processes are parameters unchanged. Finally as observed on a regular ba-
orderly a ected by Contrast in the Speed condition only.  sis, changing SAT instructions translated into an adjustment

Conversely, the eect of Force was remarkably dérent  of both the decision boundaries amgl This last manipula-
for RT and for PMT. The linear models revealed Force tion however also resulted in a change in the expectette
e ects of opposite sighs dRT andPMT, wherebyPMTs  of contrast. When instructions where to favor accuracy over
were shorter with stronger force (Figure 2). The DDM t speed the expected decreasé gnwith the increase in con-
of PMT did not capture this eect onTy (Figure 4). This trast was not found. Fitting the DDM on PMT also proved to
absence of eect is consistent with the assumption that, be challenging to the interpretation usually made from model
here, Ty indexes force-independent encoding processes (i.eaarameters as in such case the force manipulation abscis
Tencoding- It undermines the tentative hypothesis (from thethe estimated decision boundaries.
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General Discussion interpretability of EMG onsets in the context of DDM. An
] o ] EMG onset occurring during the evidence accumulation pro-
The reported ndings help clarifying how faithfully @ cegs would challenge our hypothesis tRMT = Tencoding*

quantitative model such as DDM can separate decision angl,  Other aspects of the data help clarifying this issue.
non-decision processes. In this General Discussion, we CoRsgodness of t was comparable f@MT andRT ts. PMT
sider the_ consequences of obs_er_ving that the response O%L"d thus be generated by a diion process. Moreover,
put manipulation changed decision related parameters, ithe other decision parameters (drift and bias) were essen-

contrast to common expectations. We then re-examine thﬁa”y similar across both ts. This would happen if the
fact thatTy did not conform to the predictions regarding vi- EmG onset and the end dfp correspond to the crossing

sual encoding processes in the accuracy condition. Finallyf tyo di erent thresholds for the same dsion process.
we discuss more generally why observingelient ndings  gych double-threshold hypothesis is congruent with a re-
across SAT conditions may challenge the assumed generatiyg theory proposing that motor execution is determined by

model, despite the rather canonical setting we used. an evolving decision variable (Servant et al., 2021; Servant,
White, Montagnini, & Burle, 2015).
To and motor processes The unexpected ndings occurred in the accuracy SAT

h . ha . condition, only. This could suggest strategical adjustments
The common assqmp'uon thatp cont.a|ns PTOCESSES T€- 4 he participants across SAT conditions. We come back to
lated to motor execution or, more speci cally, assuming tha

TresponseiS equal toMT (Luce, 1986; Weindel et al., 2021), tthls pointin the last section.
entails two predictions. The rst one is tha@y estimated
using a DDM tted onRT should be sensitive to the force
manipulation wherea$, tted on PMT (hence correspond- We observed, as expected, a negative relation between
ing to Tencoding Should not. As expectell T (measured) and contrast and non-decision processes whether estimated on
To (estimated) are both in uenced by the force required tothe wholeRT (To) or the PMT (Tencoding. Unexpectedly,
respond. We found no @ct of force onTencoding This pat-  this was only true when participants had to respond rapidly,
tern of results strengthens the hypothesis Tiyals the sum  but not when accuracy was emphasized. We undertook addi-
of two components, one of which captures motor processestional analysis to better understand this discrepancy.

The second prediction is that decisional parameters should In psychophysical (Harwerth & Levi, 1978) and neuro-
be the same when estimatedRm vs. PMT This is because physiological (Reynaud, Masson, & Chavane, 2012) stud-
motor processes are hypothesized to start after the threshaigs, latencies related to the encoding of visual gratings have
has been reached. This prediction proved inaccurate, mobken found to be negatively and non-linearly related to stim-
clearly in the condition combining high force condition and ulus contrast. This well establishedext concerns the early
accuracy, there, the threshold parameter was lower in th¢ 80 ms) discharge latency of V1 neurons in macaques.
PMT than in theRT DDM t (Figure 6). This implies that  Such an early process is not expected to be modulated by
the EMG onset does not index the end of the accumulatiomesponse strategy adjustments such as SAT. Therefore, if our
process estimated by DDM. estimatedTencoding '€ €Cts these stages, it should be non-

If the standard t onRT is taken as a reference to es- linearly related to the contrast manipulation similarly across
tablish decision duration, then the shorter decision durationSAT levels.
estimated based oAMT invites the inference that the de-  This prediction was tested against external data from Rey-
cision processife., accumulation of evidence) continues naud et al. (2012). These authors measured the latency of the
beyond EMG onset. In other words, the appropriate interonset of cortical neuron activity in visual area V1 in awake
pretation of the response componentTef(i.e., Tesponsg  mMonkeys (described in Appendix C1). Their data provide
is it that starts as late as after EMG onset. Evidence thabnset times of V1 neurons, revealing a non-linear increase of
the decision process is pursued during response executi@nset-latencies across visual gratings of decreasing contrast.
has previously been observed (Buc Calderon, Dewulf, GevReynaud et al. (2012) then used these latencies to t a well
ers, & Verguts, 2017; Resulaj, Kiani, Wolpert, & Shadlen, established neurophysiologically motivated model (Naka &
2009; Selen, Shadlen, & Wolpert, 2012). Crucially, the re-Rushton, 1966) using the inverted equation as in Barthélemy,
sponse settings in those previous studies were verdnt,  Fleuriet, and Masson (2010) (summarized in Appendix C).
e.g., pointing or reaching movements, and response execuf Tencogingreally re ects the low level extraction of stimulus
tion took much longer than in (isometric) button presses (foffeatures, its latency should follow the same quantitative rela-
a related discussion see Burle, Roger, Vidal, & Hasbroucgtionship. We tested whether the modulation of our estimated
2008; Scaltritti, Job, Alario, & Sulpizio, 2020). TencodingMatches the modulation observed in V1 (Reynaud et

In addition to modifying the standard interpretation of al., 2012) by calculating alR? across contrast levels between
Tresponse the previous paragraph begs the question of thehe centered V1 data and our centefggloding broken down

To and encoding processes
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by SAT and force conditions (see Figure 5 or Figure C1 incesses as expected by modellers when accuracy is empha-
Appendix C for a close-up). sized. This could further fuel the idea that the DDM is the

In the condition where speed is emphasized and the forceeduced version of an overarching model only reasonable in
required is weak, there was an almost perfect adjustmerthe condition where RTs are (highly) speeded (Verdonck et
(R? = 0:99) between the model tted on V1 discharge laten-al., 2020).
cies and our out-of-samplB.ncoding€Stimates. When speed ~ One alternative interpretation can be made given that an
is emphasized but the force required is high, we observed creased is linked to an added non-decision process (Rat-
lower but still substantial agreemefiR?(= 0:63). Thus, un- cli & McKoon, 2008). Following this logic and contrary to
der speed instructionencodinglikely re ects a meaningful ~ the common assumption that non-decision processes refer to
duration pertaining to visual processing. encoding and motor latencies, an additional pre-motor non-

In contradistinction, the model tted on V1 discharge la- decision stage is present in the accuracy condition. This is
tencies did not adjust t@encoding When accuracy was em- actually congruent with a recent nding which shows, us-
phasized, neither in the low nor the high force conditionsing electro-encephalographic data, an additional pre-decision
(R = 0:71,R? = 1:14, respectivelyy. Thus, under ac- stage specically in the accuracy condition (van Maanen,
curacy instructions, the variations ®f.coding@re not easily ~ Portoles, & Borst, 2021). Together with the observation of
linked to variations of early visual process durations. decreased boundaries and decreased motor times under speed

Overall, this analysis consolidates the standard interpretestress, this would show that SAT is achieved by participants
tion of Tencodingdurations in speed but undermines it in accu-by multiple adjustments therefore de nitely breaking the se-

racy. lective in uence of SAT hypothesis. If this interpretation
turned out to be true, would remain the question of the func-
SAT and non-decision processes tional role of the added stage. One could for example suggest

that when speed is emphasized, participants are accumulat-

As reported in the two previous sections, the manipulationng evidence as soon as evidence enters the system while in
of SAT instructions played a crucial role for the congruencegccyracy they are using a xed time to start the accumula-
between experimental and physiological predictions on thgion of evidence (respectively the hypothesis of visual short
estimated non-decision durations. Consistently, these predi¢aym memorys.a release from inhibition mechanism Smith

_tions were found to be true mainly when participants whereg 5icji , & McKoon, 2014), congruent with the absence of
instructed to speed their response. Analysing theceof  gntrast eect ONTencodingin accuracy.

SAT on the estimatedl is also informative on the nature of

this parameter. Conclusion
Replicating previous studie§,, was found to be sensi- o
tive to SAT instructions (Palmer et al., 2005; Rat¢lR006; The combination of EMG measurement and model t for

Voss et al., 2004: Weindel et al., 2021). This is coherenf canonical perceptual decision task, questions the usual in-
with the observations made multiple times, including in thisterpretation of the drift diusion model in terms of cognitive

manuscript, that motor processes as captured byare sen-  Processes.. .
sitive to SAT (Spieser et al., 2017; Steinemann et al., 2018: The drift di usion model postulates a partition of the reac-

Weindel et al., 2021). It would then be tempting to concludetion time into decisional and non-decisional times (encoding
that motor processes alone drive the SATeet on the es- and response execution durations). However, we show that
timatedT,. This is found to be false as the SAT ect on the EMG onset does not index the end of the accumulation

TencodingiS Of 50 Ms, suggesting that most of the SATeet process, contrary to what is commonly assumed. Moreover,
onT, is actually estimated to be Funcoding when accuracy is emphasized over speed, the model does not
Smith and Lilburn (2020) have shown that inferences of2/loW to recover the encoding time. This may question the

SAT e ect onT, can be in uenced by an inappropriate mod- valld.|ty of the mterpretaupn of DDM paramgters in many
eling of how the evidence is entering the decision processStudies. Therefore, providing decision making models ac-
Here, we used a canonical stimulus comparison task whichounting for non-decision times is a major issue for future
we think aligns with the theory behind the DDM. We are résearch.

thus left with the interpretation that approximatel bf the
e ect of SAT found orRT (and 23 of the e ect of SAT on
To) I? Off glgknownTpre-motgr orlgln gl\r:en tbhe reSIQUaI iAT from PMT we nd the similar results:R? = 0:91 andR? = 088
eecto MS OMMencoding BUt given the o Servatlonst at speed, low and high force respectively. B = 1:11 and

the DDM does not account for all ects of SAT manipu- g2 = .02 in accuracy, low and high force. The eient levels
lations (Ra ei & Rahnev, 2019, 2021) and that predictions of adequacy between the V1 data (Reynaud et al., 2012) and DDMs
are rejected only in the accuracy condition, we suggest that,,.,qi,swere further replicated with a derent unpublished data set
the DDM is not decomposing decision and non-decision proinvolving a three-level manipulation of contrast.

5 When computing th&? on T, estimated fronRT rather than
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Appendix A

From Linear model parameters to estimatedas
All regression models, including the regression on the DDM
parameters followed the same factor coding scheme. The
SAT factor was coded as a treatment factor (0 for accuracy
and 1 for speed). The force condition was coded as a sum
contrast (-0.5 for weak and 0.5 for strong force). The factor
contrast was centered on the middle value and scaled so that
-0.5 represented the lowest contrast and 0.5 the highest. A
summary of this factor coding for the regression models is
given in the matrices below, the rst row represent the origi-
nal levels, the second row the values on which the regression
were estimated :

!
SAT= Accuracy S peed
0 1
!
Weak Strong

Force= 0:5 05

!
Contrast= 2570 37% 51% 65% 79% 93%
-5 3 10 3 5

These coding features were chosen to ease the inter-
pretation of the resultant coecients. When the binary pre-
dictor is sum-contrasted (-0.5 and 0.5), the estimatealue
can be read as the dérence between both conditions. When
the binary predictor is treatment-contrasted (0 and 1), the es-
timated can be read as the dérence to add to the intercept
(predictor at 0) to obtain the mean of the condition where the
predictor is at value 1. Hence, in our analysis, the intercept
can be read as the predicted time for the reference condition
where the SAT emphasis is on accuracy, and at an intermedi-
ate value for the predictors contrast and FC.

Given these coding features and the Bayesian nature
of the estimation we can estimate theeet of a factor in a
given condition and preserve the uncertainty associated with
the e ects. E.g. To compute the ect of Force in the speed
condition we can add the interaction terfat rorce to the
estimated rorce in the accuracy condition. As coeients
are estimated using a MCMC procedure this addition is done
on each MCMC iteration, allowing to keep the uncertainty
around the resulting coecient.

Units of the JLMMs parameters. For the LMMs
on proportion correcRT, PMT andMT, the data was trans-
formed prior to the modeling (logit for proportion correct
and log for the other variables). Using Monte Carlo Markov
Chain (MCMC) processes, we back-transformed the predic-
tions of the linear models for the chosen diences at each
iteration, with the exponential for log transformed variables
(LMM) or the inverse logit for proportion correct (gLMM).
This preserves the uncertainty around the parameter values
while reverting them to the natural units of the dependent
variables.
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Appendix B age sensitive dye and the variation of this temporal activation

Model Selection with the contrast of stimuli close to the one used in this study.
As seen in table B1 the DIC criterion almost always favorThey then tted the relationship between onset of V1 neurons
the complex models over the simpler one. However two patactivity and contrast with an inverted Naka-rushton equation
terns are consistent across the models, allowing the boundrom Barthélemy et al. (2010) :
aries and the bias to vary with force conditions and drift rate
to vary with SAT in addition to the contrast always improves c
the goodness of t as assessed by the DIC. However when (©) = maxt shift ——
considering the BPIC criterion, initially intended to correct Cn+ 5o
the complexity bias of the DIC, only allowing the variation
of force on boundaries and on the bias seems to improve trﬁ/
goodness of L Hen(_:e based on.BPIC we select the modg um latency observed at highest contrast and the maximum
a!'F’W”?g the b Qundarles and _the bias to vary across forcg CONecrease in latencp is the estimated latency shift exponent,
dition in addltllon to the designed base model (respectlvelysf)0 the estimated half decay contrast value. For the purpose
M13 and Ml. n _Table B1). Importantly the resuits of the of our analysis we recovered the values of the parameters
model selection is the same fo_r aton PMT' The QOOdnessestimated by Reynaud et al. (2012) and draw the predictions
of t both on RT and PMT as displayed with quantile prob-

0 . ) . - associated with the mean contrast levels used in our study.
ability plot (see Figure B2 and B1) is satisfactory in most y

herec is contrast, maxand gpif; are respectively the mini-

conditions but the amount of errors is rather mis tted when Figure C1 represents the adjustment between point
considering a high force especially in the t on PMT (that estimate ofTo and TencodingWith the curve predicted by the
pattern is common across all tested models). recovered parameters of Reynaud et al. (2012) for the in-
verted Naka-Rushton equation. However, since monkey la-
Appendix C tencies are shorter than those we observed with humans, we
Predictions by V1 neuron activation onset centered them by subtracting their mean and adding the mean

Reynaud et al. (2012) performed a measurement of the tenof the TencogingCOMputed over all contrast levels and partici-
poral activation of V1 neurons in awake monkey using volt-pants.
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Bound. Drift To Bias sBias sDrift ¥y BPICkT DICrt BPICpuT DICpmT
M1 S CcC CF S 1 S 1 1 -12963 13447 -16125 -16595
M2 S C S CF S 1 S 1 1 -12931 -13483 -16072 -16618
M3 S CF CF S 1 S 1 1 -12866 -13419 -16105 -16645
M4 S CS F CF S 1 S 1 1 -12800 -13467 -16003 -16668
M5 S F C C F S 1 S 1 1 -13157 -13661 -16471 -16967
M6 S F cC S CF S 1 S 1 1 -13108 -13689 -16423 -16993
M7 S F C F CF S 1 S 1 1 -13042 -13614 -16393 -16959
M8 S FCSF CF S 1 S 1 1 -12946 -13639 -16272 -16964
M9 S C CF S F S 1 1 -13022 13519 -16132 -16617
M10 S CcC S CF S F S 1 1 -12981 -13548 -16075 -16637
M11 S CF CF S F S 1 1 -12926 -13493 -16115 -16668
M12 S CS F CF S F S 1 1 -12860 -13540 -16006 -16687
M13 S F C C F S F S 1 1 -13212 -13729 -16474  -16987
M14 S F CcC S CF S F S 1 1 -13150 -13750 -16418  -17007
M15 S F C F C F S F S 1 1 -13095 -13654 -16392 -16976
M16 S F CSF CZF S F S 1 1 -13000 -13728 -16284 -16987

Table B1

Summary of the tested models displaying for each model (row) which parameters could vary with experimental conditions (S
F and C respectively for SAT, Force and Contrast, 1 indicates that only 1 estimate was tted across all conditions). sBias,
sDrift and sT refer to the inter-trial variability parameters of the corresponding main parameters. The results in terms of
BPIC and DIC are presented in the two last columns.
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Figure B1 Quantile-probability plots (Ratcli& McKoon, 2008) for high force based on a t on RT (left column) and PMT

(right column), in the accuracy (upper row) and speed (lower row) conditions, computed from the best tting model.

The X-axis displays obtained response proportion across contrast levels (color coded), symmetrically for errors (left side) an
correct responses (right side). The Y-axis displays the tted (dot) and observed (Rb&shned in 5 quantiles (.1, .3, .5,

.7 and .9 quantiles, from bottom to top). Observed response proportioRagdantiles were computed from values pooled
across participants. Model predictions were obtained by drawing 250 parameter values from the joint posterior distribution
and computing their associated predicted performance. The mist of the DDM is particularly apparent in the t on PMT in
accuracy (upper right corner), where the DDM clearly predicts a response proportion lower than the one observed on the dat:
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Figure B2 Quantile-probability plots (Ratcli& McKoon, 2008) for low force based on a t on RT (left column) and PMT
(right column), in the accuracy (upper row) and speed (lower row) conditions, computed from the best tting model.

The mis t of the DDM is particularly apparent in the t on PMT in accuracy (upper right corner), where the DDM clearly
predicts a response proportion lower than the one observed on the data.
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Figure C1 EstimatedT, (obtained from a DDM t onRT) andTencoding(Obtained from a t onPMT) across contrast levels

and splitted between SAT and Force conditions. Bars around the point estimate represents 65% Crl of the population meal
The colored lines represent the mearTgfor TencodingfOr €ach corresponding sub-cell. The grey lines represents the values
predicted by the parameters of the inverted Naka-Rushton recovered from Reynaud, Masson, and Chavane 2012. The
prediction have been rst centered on O by subtracting their mean then rescaled by adding the mean of the correspondin

sub-cell. Grey and color lines have therefore the same mean in each sub-cell formed by the combination of SAT and Forc
levels.



