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Abstract—Because of the ever-increasing collections of mul-
tivariate data, multivariate selfsimilarity has become a widely
used model for scale-free dynamics, with successful applications
in numerous different fields. Multivariate selfsimilarity exponent
estimation has therefore received considerable attention, with
notably an original procedure recently proposed and based
on the eigenvalues of the covariance random matrices of the
wavelet coefficients at fixed scales. Expanding on preliminary
work aiming to test for the equality of the selfsimilarity exponents
in bivariate time series, we propose and study here a truly
multivariate procedure that permits, from a single observation
of multivariate time series, to test for the equality of several,
possibly many, selfsimilarity exponents. It is based on an orig-
inal bootstrap procedure, applied in a multivariate time-scale
domain and designed to effectively capture the scale-dependent
joint covariance structure of multivariate wavelet coefficients as
well as the associated wavelet eigenvalue structures. Extensive
simulations conducted on synthetic data, modeled by operator
fractional Brownian motions, the reference multivariate selfsimi-
larity model, permit to show that the proposed multivariate time-
scale domain bootstrap based test yields the targeted significance
level under the null hypothesis (all selfsimilarity exponents are
equal) and to assess the power of the test for several alternative
hypotheses. This analysis leads us to conclude that the proposed
test for the equality of multivariate selfsimilarity exponents is
effective and ready for use on (a single time series of) real data.

I. INTRODUCTION

Univariate selfsimilarity. The selfsimilarity paradigm [1]
provides a relevant framework for the analysis and modeling
of temporal dynamics in a wide range of applications very
different in nature. Fractional Brownian motion (fBm), defined
as the only Gaussian, self-similar stochastic process with
stationary increments [2], [3], is probably the most well-known
selfsimilarity model. It quantifies temporal dynamics in data
by means of a single selfsimilarity parameter H ∈ (0, 1).
The estimation of H is thus central in applications, where
it is involved in various classical signal processing tasks (e.g.,
detection, classification, diagnosis,. . . ), and a large body of
literature has been dedicated to this topic, see, e.g., [3]–[6]
and references therein. It is well documented that wavelet
analysis plays a central role in this context, and has been
shown to lead to theoretically well-grounded, accurate and
robust estimations for H [7], [8]. Most of the work and
success in applications remained limited to the modeling and
analysis of univariate, scalar-valued time series so far. Yet,
in an increasing number of areas, the available data naturally

consist of several, jointly collected time series that call for
adequate multivariate selfsimilarity models.
Selfsimilarity in multivariate time series. Operator frac-
tional Brownian motion (ofBm) was recently proposed as
a model for multivariate selfsimilarity [9]–[12]. Practically
speaking, this multivariate extension of fBm can be interpreted
as a mixture of M possibly correlated fBm, each with possibly
distinct selfsimilarity exponents Hm, m = 1, . . . ,M . For
this model, classical univariate-like statistical methods such
as entry-wise sample covariance matrix analysis, Fourier or
wavelet spectra do not yield relevant results. Recently, a statis-
tical procedure was devised that instead relies on the scaling
properties of the eigenvalues of the scale dependent sample
wavelet covariance matrices [13]–[15]. It has been shown
that this approach is effective for the joint estimation of the
vector of selfsimilarity exponents H = (H1, . . . ,HM ). The
use of this novel tool in real-world applications immediately
leads to a fundamental question: are observed differences in
the selfsimilarity exponents (H1, . . . ,HM ) statistically signif-
icant, or are they within the natural statistical fluctuations of
the estimation? A rigorous answer to this question could be
achieved by formulating it as a statistical test of the hypothesis
H0 : H1 = H2 = . . . = HM against the alternative
H1 : not H0. Yet, so far, this has only been considered in
restricted settings, non mixed ofBm in [16], mixed but non
correlated ofBm in [17] or for pairs of time series only in [18],
but never for ofBm with multiple, possibly many, correlated
and mixed components.
Goals, contributions and outline. The present work con-
structs and assesses a bootstrap driven statistical test, from
a single finite size observation of multivariate time series,
for the equality of the selfsimilarity exponents estimated on
the M ≥ 2 components. As a first significant contribution,
we expand on the wavelet estimation procedure originally
proposed in [13], [15] (cf. Section II-B) to cope with the
estimation bias induced by the so-named eigenvalue repulsion
effect [19]–[22] (cf. Section III-A).

Building up on the wavelet domain bootstrap proposed in
[18], the second main contribution consists of the bootstrap
scheme, designed to preserve the time-scale joint (multivariate)
dependence structure of the wavelet coefficients and thus the
joint statistics of the (H1, . . . ,HM ), rather than focusing on
the univariate component-wise dependence structure only as



in [18] (cf. Section III-B).
Monte Carlo simulations, conducted using OfBm synthetic

data (cf. Section II-A for definitions) with M = 4 and
10 components, and for several sample sizes, are used to
show that the proposed multivariate wavelet domain bootstrap
procedure reproduces well the targeted test significance level
under the null hypothesis (cf. Section IV-B), and to study the
power of the proposed test under several alternative hypothesis
(cf. Section IV-C). Our results demonstrate that the proposed
test effectively permits to test for the equality of selfsimilarity
across components from a single observation of multivariate
data. OfBm synthesis, selfsimilarity exponent estimation and
test procedures are implemented by the authors and will be
made available at the time of publication.

II. MULTIVARIATE SELFSIMILARITY

A. Model: operator fractional Brownian motion

For simplicity, we make use of a subclass of time reversible
ofBm, see [9]–[12] for an introduction of ofBm in all gener-
ality. It is a natural multivariate extension of fBm consisting
of a multivariate Gaussian self-similar process with stationary
increments.

Let X , {XH1
(t), . . . ,XHM

(t)}t∈R be a collection of M
fBm components, each characterized by their selfsimilarity
exponents H = (H1, . . . ,HM ), 0<H1≤ . . .≤HM <1. These
components are possibly correlated according to a pointwise
M ×M covariance matrix ΣX . If we denote by σ2

m and
ρm,m′ the variances of each component and their respective
correlation coefficients, the entries of ΣX can be written as
(ΣX)m,m′ = σmσm′ρm,m′ . It is in general not possible to
choose H and ΣX independently, see [11].

Further, let denote W a real-valued and invertible M×M
matrix (the mixing matrix). Then, the M -variate stochastic
process, referred to as ofBm, is defining as a linear mixture
of these M correlated fBm:

Y , {Y H,ΣX ,W
1 (t), . . . , Y

H,ΣX ,W
M (t)}t∈R ,

W {XH1
(t), . . . , XHM

(t)}t∈R = WX. (1)

It can be shown that (1) implies that Y has the following key
properties: i) its increments are stationary and ii) it satisfies
the multivariate selfsimilarity relation:

∀a > 0 : { Y H,ΣX ,W
1 (t), . . . , Y

H,ΣX ,W
M (t) }t∈R

fdd� { aH(Y
H,ΣX ,W
1 (t/a), . . . , Y

H,ΣX ,W
M (t/a)) }t∈R, (2)

where
fdd� stands for the convergence of finite dimen-

sional distributions, aH ,
∑+∞
k=0 logk(a)Hk/k!, and H ,

Wdiag(H)W−1 denotes the so-named selfsimilarity exponent
matrix. When W is diagonal, the multivariate selfsimilarity
relation simplifies to component-wise selfsimilarity relations
as in [23].

B. Wavelet based joint estimation of Hm, m = 1, . . . ,M

The central goal of selfsimilarity analysis is to estimate
the vector of exponents H = (H1, . . . ,HM ) from the M -
variate time series Y . It is only when W and thus the
selfsimilarity matrix H are diagonal that each component Ym
is a fBm and H can be inferred with conventional, univariate-
like approaches [16], [23]. Otherwise, each component is a
mixture of fBms, and such estimations are strongly biased
[13], [15]. To obtain consistent estimates for H in all gen-
erality, a statistical procedure based on the multivariate dis-
crete wavelet transform was proposed [13], [15]. Multivariate
wavelet coefficients are defined as (D(2j , k)) , DY (2j , k) =
(DY1

(2j , k), . . . , DYM
(2j , k)), ∀k ∈ Z, ∀j ∈ {j1, . . . , j2},

with ∀m ∈ {1, . . . ,M}: DYm(2j , k) = 〈2−j/2ψ0(2−jt −
k)|Ym(t)〉 and ψ0 is a mother wavelet [24], [25]. The pro-
cedure relies on first estimating wavelet coefficient M ×M
sample covariance matrices at each scale 2j independently:

S(2j) ,
1

nj

nj∑
k=1

D(2j , k)D(2j , k)∗, w = 1, . . . , 2j , (3)

with N the sample size, j the octave and nj = 2−jN .
Second, eigen-decompositions of these S(2j) are per-
formed at each scale independently, yielding eigenvalues
{λ1(2j), . . . , λM (2j)}. Then, it was shown in [13], [15]
that the wavelet estimator (Ĥ0

1 , . . . , Ĥ
0
M ) for (H1, . . . ,HM ),

defined as weighted linear regressions of log2 λm(2j) against
analysis scales 2j1 , . . . , 2j2 ,

Ĥ0
m =

 j2∑
j=j1

wj log2 λm(2j)

/2− 1

2
, ∀m = 1, . . . ,M,

(4)
with wj classical weights satisfying

∑
j jwj = 1 and∑

j wj = 0 (cf. [8]), converges asymptotically in probabil-

ity, N → ∞, under mild assumptions, (Ĥ0
1 , . . . , Ĥ

0
M )

P→
(H1, . . . ,HM ).

III. MULTIVARIATE WAVELET DOMAIN DE-BIASED
ESTIMATION AND BOOTSTRAP HYPOTHESIS TEST

A. De-biased estimation

The estimation procedure described above shows very sat-
isfactory practical performance but can suffer from a bias in
estimation in certain situations that impairs testing the equality
in H . It is indeed well known that eigenvalue decomposition
applied to estimated covariance matrices is impaired by the so-
called repulsion effect: the gap between estimated eigenvalues
is on average larger than the gap between actual values, and
more importantly, two equal eigenvalues are not estimated
equal. This bias is all the more pronounced as the sample
size available for covariance estimation is small. In wavelet
transforms, the number of wavelet coefficients actually avail-
able for covariance estimation (cf. Eq. 3) decreases as scale
increases. This yields a scale dependent bias in the estimation
of λm(2j) that results in a bias in Ĥ0

m.



To reduce such bias, one first original contribution of the
present work is to use for wavelet coefficient covariance matrix
estimation the same number of wavelet coefficients at each
scale. Specifically, a reference scale 2J = 2j2 is chosen here as
the upper limit of the range where the linear fit is performed.
For scale 2j , a collection of 2j−j2 covariance matrices are
estimated from non-overlapping wavelet coefficients snapshots
of equal size nj2 = 2−JN , for w = 1, . . . , 2j−j2 :

S(w)(2j) ,
1

nj2

wnj2∑
k=1+(w−1)nj2

D(2j , k)D(2j , k)∗. (5)

The eigenvalues of each of these matrices S(w)(2j), denoted as
{λ(w)

1 (2j), . . . , λ
(w)
M (2j)}, have similar repulsion at all scales

j ∈ {j1, . . . , j2}. Their logarithms are averaged

ϑm(2j) , 2j2−j
2j−j2∑
w=1

log2(λ(w)
m (2j)) (6)

and a new wavelet estimator (Ĥ1, . . . , ĤM ) for (H1, . . . ,HM )
is defined by means of weighted linear regressions of ϑm(2j)
against analysis scales 2j1 , . . . , 2j2 as

Ĥm =

 j2∑
j=j1

wjϑm(2j)

/2− 1

2
, ∀m = 1, . . . ,M. (7)

B. Multivariate wavelet domain bootstrap test

Asymptotic normality and χ2 statistics. It was shown
in [13]–[15], that under mild hypothesis, the wavelet esti-
mator (Ĥ0

1 , . . . , Ĥ
0
M ) was characterized by jointly Gaussian

multivariate statistics. Numerical simulations suggest that the
new wavelet estimator proposed here, (Ĥ1, . . . , ĤM ) for
(H1, . . . ,HM ) also displays jointly Gaussian multivariate
statistics. Such empirical evidence will be theoretical stud-
ied elsewhere and jointly Gaussian multivariate statistics are
assumed to hold for the rest of the present work.

Given joint normality for the selfsimilarity exponents H =
(H1, . . . ,HM ), a natural statistic to test the null hypothesis
H0 (H1 = H2 = . . . = HM ) reads:

T = (Ĥ − 〈Ĥ〉1M )TΣ−1

Ĥ
(Ĥ − 〈Ĥ〉1M ) (8)

where ΣĤ denotes the M × M covariance matrix of Ĥ ,
while 〈Ĥ〉 stands for the average across components: 〈Ĥ〉 =
1/M

∑M
m=1 Ĥm and 1M = (1, . . . , 1). Asymptotic joint

normality of Ĥ = (Ĥ1, . . . , ĤM ) implies that the test statistic
T follows a χ2 distribution with M − 1 degrees of freedom
under the null hypothesis H0.

The key issue is that the matrix ΣĤ is a priori unknown and
therefore needs to be replaced with an estimate (see [13]–[15]
for theoretical elements). Because it is intended here that the
proposed test can be put at work from a single observation of
the multivariate data, ΣĤ cannot be estimated by averaging
across realizations, thus calling for a bootstrap procedure [26]
in the spirit of those developed in [18], [22], [27].
Wavelet domain bootstrap. To take advantage of the short

term temporal and across-scale dependencies of the wavelet
coefficients, the bootstrap procedure is implemented in the
wavelet domain rather than in the time domain. The vector
wavelet coefficients D(2j , k), k = 1, . . . , nj are resampled
jointly (i.e., in a multivariate way) by a block-bootstrap pro-
cedure which preserves their scale-time dependence structure,
as opposed to a resampling for each component independently,
which would not preserve the cross-component dependencies
[28]. Technically, for each scale 2j , R block bootstrap resam-
ples D∗(r)j = (D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)), r = 1, . . . , R
are drawn with replacement, from dcard(Y )/LBe overlap-
ping blocks of size LB , (D(2j , k), . . . , D(2j , k + LB − 1)),
k = 1, . . . , nj .

From each bootstrap sample of wavelet coefficients D∗(r)j ,
bootstrap estimates S∗(r)(2j), ϑ∗(r)m (2j) and Ĥ

∗(r)
m are pro-

duced using Eqs. (5-7). Finally, from the R vector bootstrap
samples Ĥ

∗(r)
= (Ĥ

∗(r)
1 , . . . , Ĥ

∗(r)
M ), r = 1, . . . , R, a covari-

ance matrix Σ̂Ĥ∗ is estimated that is expected to approximate
the true covariance matrix of H = (H1, . . . ,HM ).
Bootstrap test formulation. From the estimates Ĥ and the
bootstrap covariance matrix Σ̂Ĥ∗ , the following test statistics
is constructed:

T ∗ = (Ĥ − 〈Ĥ〉1M )T Σ̂−1

Ĥ∗
(Ĥ − 〈Ĥ〉1M ). (9)

If the covariance structure is well approximated by the block-
bootstrap procedure, the bootstrap statistic T ∗ should asymp-
totically be well approximated by a χ2 distribution (as verified
by numerical results in Section IV-B), hence yielding the
following test decision:

dα = 1 (H0 rejected) : T ∗ ≥ F−1
χ2(M−1)(1− α), (10)

with Fχ2(M−1) the chi-square cumulative distribution function
with M − 1 degrees of freedom and α the significance level.

IV. TEST PERFORMANCE ASSESSMENT

A. Monte Carlo Simulation

To assess the accuracy of the proposed bootstrap test proce-
dure and actual reproduction of a targeted significance level by
the test under the null hypothesis, and to quantify the power
of the test under several representative alternative hypotheses,
we conduct Monte Carlo simulations with synthetic data.

Specifically, the numerical simulations make use of NMC =
1000 independent realizations of synthetic M -variate ofBm,
with M = 4 or M = 10 components, and with three different
sample sizes N = 214, 216, and 218. The covariance matrix
ΣX is set to a Toeplitz matrix, with off-diagonal entries all
set to ρ = 0.5. The mixing matrix W is chosen randomly in
the space of invertible M ×M matrices. Both matrices are
kept fixed for all the experiments.

Under the null hypothesis H0, the selfsimilarity exponents
are set to H1 = . . . = HM = 0.7. Several significance levels
α ∈ {0.005, 0.01, 0.05, 0.1, 0.15} are studied.

For the alternative hypothesis, two scenarios are tested. In
Scenario1, there are only two different values of H , denoted
H1 and H2, amongst the M components. In Scenario1a,



Fig. 1: Test statistics under the null hypothesis. Quantile-
quantile plot of the bootstrap statistic T ∗ against a theoretical
χ2 distribution with M − 1 degrees of freedom.

the two groups of components corresponding with H1 and
H2 have equal size M1 = M2 = M/2 ; in Scenario1b,
they have unbalanced sizes (M1,M2) = (1, 3) for M = 4,
(M1,M2) = (2, 8) for M = 10. Further, H1 = 0.5 is fixed
and H2 is varied in the interval [0.5, 0.9]. In Scenario2, there
are four groups of components of sizes (M1,M2,M3,M4) =
(2, 3, 2, 3) (M = 10) and (M1,M2,M3,M4) = (1, 1, 1, 1)
(M = 4) with selfsimilarity exponents (H1 = 0.5, H2 = H1+
∆H,H3 = H1 + 2∆H,H4 = H1 + 3∆H), ∆H ∈ [0, 0.13].
The significance level is set to α = 0.05.

For estimation, the multivariate wavelet transform is com-
puted with the least asymmetric Daubechies3 wavelets, esti-
mation scales are set to j1 = 6 and j2 = log2(N) − 5. For
the test, R = 500 bootstrap resamples are used with LB = 6
corresponding to the size of the Daubechies3 mother-wavelet
time support.

B. Test behavior under the null hypothesis

Fig. 1 reports quantile-quantile plots of the empirical distri-
bution of T ∗ obtained from the NMC independent realizations
against the theoretical chi-square distribution with M − 1
degrees of freedom. It shows, for three different samples sizes
N and two different number of components M , an excellent
agreement, hence validating the heuristic assumption in Sec-
tion III-B that the test statistic T ∗ follows χ2 distribution.

Furthermore, Fig. 2 shows that the empirical distributions
of the corresponding p-values are approximately uniform, as
should theoretically be the case under the null hypothesis H0.

To finish with, Fig. 3 shows, for the three different samples
sizes N , and the two different number of components M ,
that the achieved significance levels, obtained as averages of
the binary decisions of the bootstrap test across realizations,
reproduce very satisfactorily the targeted test significance.

Overall, these results strongly suggest that, for large ranges
of sample sizes N and numbers of components M , the
bootstrapped statistics T ∗ reproduce well the distribution of
the true statistics T and follow well a χ2 distribution with
M − 1 degrees of freedom, and that the proposed bootstrap
procedure test is effective in controlling the significance level
(type-I error) of the test.

Fig. 2: Distributions of p-values under the null hypoth-
esis. Empirical distributions of the p-values of the proposed
bootstrap test compared to the Uniform Distribution.
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Fig. 3: Significance levels. Empirical significance levels (ob-
tained as averages of the bootstrap test decisions against
realizations) against targeted ones.

C. Power of the test under different alternative hypothesis

Fig. 4 report the empirical assessment (by average across
independent realizations of the test decisions) of the power of
the proposed bootstrap-based χ2 tests as functions of ∆H =
|H2−H1|, for Scenario1 and Scenario2, respectively. In both
scenarios, and as expected, the power of the test increases with
sample size and with ∆H . From an elementary study of the
χ2 statistics T , and given that the variance in the estimation
of H essentially decreases as 1/N (see [13]–[15]), it can be
deduced that the power of the test increases as ∆H ·

√
N .

In addition, Fig. 4 (top plots) shows that, for a scenario with
two different H and a fixed ∆H , the test power decreases
when the number of components M increases.

Further, and interestingly, comparing the results of Sce-
nario1a and 1b shows that, for a fixed ∆H , test powers
are larger when the groups of components with same H
have equal sizes, compared to when groups of components
have unbalanced sizes, which can be explained as follows.
Under alternative hypothesis, the test statistics T ∗ follows a
noncentral χ2 distribution with M−1 degrees of freedom, with
a noncentrality parameter that explicitly depends on the values
of the true values H1, . . . ,HM , as well as on the covariance
and mixing matrices ΣX and W . The test power, directly
stemming from the distance between the central and noncentral
χ2 distributions, both with M − 1 degrees of freedom, is
thus fully determined by this noncentrality parameter. For
instance, for Scenario1, calculations not detailed here show
that the noncentrality parameter is essentially proportional to
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Fig. 4: Power of the test. Empirical assessment of the test
powers, obtained as average of the decision of the bootstrap
test, as a function of ∆H , for M = 4 (left) and M = 10
(right), for different sample sizes, and with equal or different
sizes in the groups of equal components, for Scenario1 (top)
and Scenario2 (bottom). Significance level is set to α = 0.05
(magenta dashed line).

(M1×M2)/(M1 +M2) and thus decreases when |M2−M1|
increases, and so does the test power.

Fig. 4 (bottom plots) finally shows that the test also has
significant power when there are more than two different
values of H .

V. CONCLUSIONS AND PERSPECTIVES

We have devised and assessed a multivariate wavelet domain
bootstrap procedure that permits to test, from a finite size
single observation of a multivariate time series, whether or
not the selfsimilarity exponents are equal. Monte Carlo sim-
ulations, based on operator fractional Brownian motion, the
reference process to model multivariate selfsimilarity, enabled
us to show that the procedure is effective in controlling an
a priori prescribed significance level and that the proposed
test benefits from significant power under several alternative
hypothesis. The proposed test is ready for application to real-
world multivariate time series. OfBm synthesis, selfsimilarity
exponent estimation and testing procedures are implemented
by the authors and will be made available at the time of
publication. The work opens interesting perspectives related to
i) the assessment of how many different values for H actually
exist amongst the M components and ii) the study of large
dimensional cases, where the number of components M and
sample size N become comparable in magnitude.
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